AUTHOR=Wang Fufeng , Luo Zihe , Lv Wei , Zhu XiaoLin TITLE=DTCNet: finger flexion decoding with three-dimensional ECoG data JOURNAL=Frontiers in Computational Neuroscience VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2025.1627819 DOI=10.3389/fncom.2025.1627819 ISSN=1662-5188 ABSTRACT=ECoG signals are widely used in Brain-Computer Interfaces (BCIs) due to their high spatial resolution and superior signal quality, particularly in the field of neural control. ECoG enables more accurate decoding of brain activity compared to traditional EEG. By obtaining cortical ECoG signals directly from the cerebral cortex, complex motor commands, such as finger movement trajectories, can be decoded more efficiently. However, existing studies still face significant challenges in accurately decoding finger movement trajectories. Specifically, current models tend to confuse the movement information of different fingers and fail to fully exploit the dependencies within time series when predicting long sequences, resulting in limited decoding performance. To address these challenges, this paper proposes a novel decoding method that transforms 2D ECoG data samples into 3D spatio-temporal spectrograms with time-stamped features via wavelet transform. The method further enables accurate decoding of finger bending by using a 1D convolutional network composed of Dilated-Transposed convolution, which together extract channel band features and temporal variations in tandem. The proposed method achieved the best performance among three subjects in BCI Competition IV. Compared with existing studies, our method made the correlation coefficient between the predicted multi-finger motion trajectory and the actual multi-finger motion trajectory exceed 80% for the first time, with the highest correlation coefficient reaching 82%. This approach provides new insights and solutions for high-precision decoding of brain-machine signals, particularly in precise command control tasks, and advances the application of BCI systems in real-world neuroprosthetic control.