
TYPE Original Research
PUBLISHED 21 October 2025
DOI 10.3389/fncom.2025.1628115

OPEN ACCESS

EDITED BY

Jay S. Coggan,
NeuroLinx Research Institute, United States

REVIEWED BY

Vacius Jusas,
Kaunas University of Technology, Lithuania
René Larisch,
Chemnitz University of Technology, Germany

*CORRESPONDENCE

Thaddeus J. A. Kobylarz
t.kobylarz@ieee.org

RECEIVED 13 May 2025
ACCEPTED 01 September 2025
PUBLISHED 21 October 2025

CITATION

Kobylarz TJA (2025) An AI methodology to
reduce training intensity, error rates, and size
of neural networks.
Front. Comput. Neurosci. 19:1628115.
doi: 10.3389/fncom.2025.1628115

COPYRIGHT

© 2025 Kobylarz. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

An AI methodology to reduce
training intensity, error rates, and
size of neural networks

Thaddeus J. A. Kobylarz*

Retired, Murray Hill, NJ, United States

Massive computing systems are required to train neural networks. The prodigious
amount of consumed energy makes the creation of AI applications significant
polluters. Despite the enormous training effort, neural network error rates limit
its use for medical applications, because errors can lead to intolerable morbidity
and mortality. Two reasons contribute to the excessive training requirements
and high error rates; an iterative reinforcement process (tuning) that does not
guarantee convergence and the deployment of neuron models only capable
of realizing linearly separable switching functions. tuning procedures require
tens of thousands of training iterations. In addition, linearly separable neuron
models have severely limited capability; which leads to large neural nets. For
seven inputs, the ratio of total possible switching functions to linearly separable
switching functions is 41 octillion. Addressed here is the creation of neuron
models for the application of disease diagnosis. Algorithms are described that
perform direct neuron creation.This results in far fewer training steps than that
of current AI systems. The design algorithms result in neurons that do not
manufacture errors (hallucinations). The algorithms utilize a template to create
neuron models that are capable of performing any type of switching function.
The algorithms show that a neuron model capable of performing both linearly
and nonlinearly separable switching functions is vastly superior to the neuron
models currently being used. Included examples illustrate use of the template for
determining disease diagnoses (outputs) from symptoms (inputs). The examples
show convergence with a single training iteration.

KEYWORDS

non-linearly separable neurons, far less training, much smaller neural networks, far less
power for training, no network hallucinations

1 Introduction

Current neural networks essentially employ the McCulloch–Pitts (McCulloch and
Pitts, 1943) neuron model, introduced over 80 years ago. The original McCulloch-Pitts
neuron model is defined by the following two equations:

u =
n∑

i=1
wixi (1)

where: (w1, w2, . . . , wn) = w′′ is an analog vector of synaptic weights,
(x1, x2, . . . xn) = x is a binary vector of inputs,
u is an analog summation result.

y =
{

0, if u <θ

1, if u >θ
(2)

Frontiers in Computational Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2025.1628115
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2025.1628115&domain=pdf&date_stamp=2025-10-21
mailto:t.kobylarz@ieee.org
https://doi.org/10.3389/fncom.2025.1628115
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2025.1628115/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Kobylarz 10.3389/fncom.2025.1628115

where: “y” is a binary output,
“u” is computed from Equation 1.
“θ” is a known threshold used to compute “y.”
In order to improve neural network performance, Equation 1

was extended with the following representation (Alzahrani and
Parker, 2020).

The corresponding equation (Alzahrani and Parker, 2020) for
Figure 1 is:

ay = ϕ

(n∑
i=1

wixi

)
(3)

A variety of activation functions (ϕ) exist. If the activation function
is a binary step function with a threshold comparison, Equation 3
represents the composite of Equations 1, 2. Instead of using a linear
or stair-step function that results in binary classification (0 or 1),
some neuron models use a sigmoid function (Tanaka, 2020) to
assist in generating nonlinear separations. The function generates
binary, digital outputs for continous inputs. Continuous inputs
is inconsistent with accepted neurological neurons’ properties.
Neurological neurons’ input signals are binary and they perform
switching functions.

Observe that the transfer function (σ) is the same as in
Equation 1. Hence, all realizations of switching functions remain
limited to the linearly separable class for Equation 3. It is very
significant that the neurological neuron can perform both linearly
separable and nonlinearly separable switching functions (Kobylarz
and Kobylarz, 2023). Another neurological neuron inconsistency
exists in that the threshold of the above neuron models vary
according to the switching function realization. The neurological
neuron’s threshold has a per unit value of “1” and is constant
(Kobylarz and Kobylarz, 2023). If the above neuron model
(Equation 3) possessed the neurological constant threshold, it
would not be able to perform an “and” function. A neuron model,
derived from the Kobylarz-Bradley template, does not have the
previously cited inconsistencies with neurological neurons.

Another weakness of the current AI methodology is
“forgetting” data. During training, data could be overwritten
to cause the forgetting. In the proposed methodology, data is
permanently stored; unless commanded to change by a user.

A template has been conceived to generate (complete)
neuron models capable of performing all linearly separable
and nonlinearly separable switching functions, It was first
disclosed in 1967 (Kobylarz and Bradley, 1967) and therefore
is ascribed the name of the 1967 paper’s authors Kobylarz-
Bradley neuron model template (Kobylarz and Bradley, 1967).

Fn({X}) =
n∑

i=1
WiXi+︸ ︷︷ ︸

1 @ a time︸ ︷︷ ︸
linear part

n−1∑
i=1

Xi

(n∑
j=i+1

WijXj

)
︸ ︷︷ ︸

2 @ a time

+
n−2∑
i=1

Xi

(n−1∑
j=i+1

Xk

(n∑
k=j+1

WijkXk

))
︸ ︷︷ ︸

3 @ a time

+ . . .

. . .

+ W1...nX1. . . Xn

︸ ︷︷ ︸
n @ a time︸ ︷︷ ︸

nonlinear part

(4)

where: Fn ({X}) is the neuron model’s threshold function,
Xm is a variable that corresponds to the model’s switching

function input variable,

Wp is a weight assigned to a product of one or more Xm,
{X} = {X1, . . . , Xn} is the set of variables.
The template first identifies a summation of one variable at a

time; the linear part. It next identifies a summation of products
having two variables at a time. This continues until the product of
all the variables of the set is included. The quantity of products for
the summations that precede a plus (“+”) sign of Equation 4 is the
combination of “n” variables taken “m” (m ≤ n) at a time:[

n
m

]
=

n!
m!(n-m)!

(5)

The product of a weight times its associated variables is a “term”
of Equation 4. Having a weight (Wp) equal to zero signifies that
the term does not appear in a neuron model’s threshold equation.
For a complete explanation of the Kobylarz-Bradley neuron model
template, including a proof that all switching functions can be
represented by the template, see Kobylarz and Kobylarz (2023).
This property has a far reaching significance. It implies that each
switching function output for a neural network can be realized by a
single neuron model.

It is important to understand that the neuron model Equation 4
is not a neuron model. Algorithms are presented to provide the
means for extracting a neuron model from the template. These
algorithms and examples are provide later.

Gidon et al. (2020) studied pyramidal neurons, which comprise
approximately two-thirds of all neurons in the mammalian cerebral
cortex, and therefore play the most important role in many
cognitive and motor functions. They studied these most populous
neurons from layers 2/3 of the human cerebral cortex ex vivo
in an attempt to determine how the brain of the human species
differs from those of other animals, e.g. rodents. Through the
use of somatodendritic recordings they discovered previously
unknown properties of the highly complex activity of these
neurons. They described a class of calcium-mediated dendritic
action potentials (dCaAPs) which occur in a graded, rather than
all-or-none fashion, being sharply tuned to the amplitude of
the stimulus. For threshold level stimuli the dCaAPs amplitudes
are maximal, but become reduced with stronger stimuli. Such
a relationship enables the human brain to have “linearly non-
separable” (nonlinearly separable), rather than the conventionally
adopted linearly separable multilayered network functionality.

This group utilized a compartmental model of L2/3 neurons
to replicate dCaAP behavior in dendrites. A very important
observation was that although each synaptic pathway could induce
dCaAPs by itself, when 2 or more neurons fired simultaneously,
the amplitude was reduced. These results suggest that there must

be a balance between excitatory and inhibitory inputs to generate
these action potentials; this supports the exclusive OR (XOR) logic
operation for dCaAPs in the human cerebral cortex. The XOR

Frontiers in Computational Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2025.1628115
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Kobylarz 10.3389/fncom.2025.1628115

FIGURE 1

Artificial neuron structure (Alzahrani and Parker, 2020).

function cannot be performed by a single linear neuron model
(Minsky and Papert, 1972).

The emulation of the XOR function in a conventional neural
sigmoid network has been reported (Data Science). The reported
results were “I attempted to create a 2-layer network, using the
logistic sigmoid function and backprop, to predict xor. My network
has 2 neurons (and one bias) on the input layer, 2 neurons and
1 bias in the hidden layer, and 1 output neuron. To my surprise,
this will not converge. if I add a new layer, so I have a 3-layer
network with input (2 + 1), hidden1 (2 + 1), hidden2 (2 + 1), and
output, it works. Also, if I keep a 2-layer network, but I increase
the hidden layer size to 4 neurons + 1 bias, it also converges.”
Observe that at least two layers and 4 neurons +1 bias are necessary.
This is a result for one individual and different results may exist.
The application of the Kobylarz-Bradley template, utilizing the
forthcoming algorithms, yields a network of only one neuron that
has the threshold function

FXOR (X) = 1X1 + 1X2 - 2 X1 X2.

Being able to realize nonlinearly separable switching functions
makes the Kobylarz-Bradley neuron model vastly more versatile
than the linear neuron models currently deployed. Shown in Table 1
(Kobylarz and Kobylarz, 2023) are the amounts of possible logic
functions for linearly separable functions L(n) (Gruzling, 2001)
and the total number of logic functions T(n), with respect to the
number (n) of axonal inputs. The quantity of linearly separable
functions (L(n)) is cited in reference (Gruzling, 2001). The quantity
of total logic functions (T(n)) is computed in reference (Kobylarz
and Kobylarz, 2023). The final column of Table 1 is the ratio of these
two numbers.

The exceedingly rapid growth of T(n), as shown in Table 1,
illustrates the weakness of the currently deployed linear neuron
model. For n = 7 there are greater than 4.06 d7 1028 (41 octillion)
times more functions available than those that can be realized
by an AI linear neuron model deployment. Even more startling
is that a human neuron receives an average 103 to 104 inputs
(Kriesel, 2007) from other neurons, suggesting the percentage of
linearly separable functions is essentially zero when compared to a
neurological neuron’s capability.

TABLE 1 Limitation of the AI linear neuron model (Kobylarz and Kobylarz,
2023).

n Linearly
separable

logic functions
L(n) (Gruzling,

2001)

Total logic
functions T(n)

Ratio T(n)/L(n)

1 4 4 1

2 14 16 1.143

3 104 256 2.462

4 1,882 65,536 34.82

5 94,572 4,294,967,296 45,415

6 15,028,134 1.84467440737 × 1019 1.227 × 1012

7 8,378,070,864 3.40282366921 × 1038 4.062 × 1028

A partial plot of the ratio vs. the number of inputs is shown in
Figure 2 (Kobylarz and Kobylarz, 2023). Notice that the ordinate
has a logarithmic scale. Logarithmic scales will plot exponential
growth as a straight line. Even with the logarithmic scale the plotted
rate of growth is much more rapid than exponential; suggesting that
for thousands of inputs, this ratio is far beyond astronomical.

Adopting neuron models from the Kobylarz-Bradley template
can be viewed as an increase of versatility over the strictly linear
neuron model. This means that a template model of seven inputs
is 4.06 × 1028 times more versatile than a linear model of seven
inputs. Seven inputs represent the “tip of the iceberg,” since
the AI neuron models have hundreds of inputs. The functional
capability of AI neuron models is an infinitesimal portion of the
possible functions.

2 Basic concepts to use the
kobylarz-bradley template

The application of disease diagnosis from symptoms will be
used to demonstrate how the Kobylarz-Bradley template is used.

Frontiers in Computational Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2025.1628115
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Kobylarz 10.3389/fncom.2025.1628115

FIGURE 2

Growth of total function proportions (Kobylarz and Kobylarz, 2023).

FIGURE 3

A simplified representation of a neural net.

A simplified representation of a neural network, commensurate to
this application, appears in Figure 3 (Neural Network, 2013). Some
annotations are made to the original illustration for association
with this application.

A set of symptoms, shown by the set “{s1, . . . , si, . . . , sk}”
(inputs), are presented to a trained neural network. The neurons
operate on the symptoms to determine one or more diagnoses. The
set of diagnoses are shown as “{d1, . . . , dp}” (outputs). Although
only one hidden or deep layer is shown in Figure 3, many hidden
layers are used in current AI systems. These networks are termed
Deep Neural Networks (DNN). However, the newly presented
concepts of this paper only use the input layer neurons. The outputs
of these neurons represent diagnoses. Deep neural networks, using

McCullough-Pitts neuron models, are considered to demonstrate
performance improvements yielded by neuron models derived
from the Kobylarz-Bradley template.

A label convention for variables is adopted within this
paper. Lower case variables represent the binary digital axonal
inputs/outputs of a neuron model. Upper case letters are used
for the neuron model’s internal operations. The letter “x” is used
as the general neuron model’s input. For the symptoms/diagnosis
application, the letter “s” is used in lieu of “x” for the neural
network’s initial input. The letter “d” is used for the neural network’s
final output. The use of “s” and “d” are intended to emphasize this
application of the neural network.

An “si” is a label that associates a textual and/or auditory
and/or visual representation of a symptom entered during a neural
network’s training. Likewise, “di,” is a variable label that associates
the choice of representation of a diagnosis entered during a neural
network’s training. After a representation is entered, the algorithm
records this for future retrieval and ascribes the associated binary
variable labels.

The general neuron model’s input variable label, used within
the algorithm, is “xi.” Hence, it is applicable to any application and
to any layer. Because sets of one or more inputs exist in a neural
network, the following representations are defined for {s} and {x}:

{s} = {si, . . . , sk} (6)

{x} = {xi, . . . , xk} (7)

Similarly a neuron model’s output variable representation,
within the algorithm, is “ui.” The use of “ui” is intended to be
general. Hence, related to any application and to any layer. To
underscore the final layer’s diagnoses outputs, “di” is substituted
for “ui.” But note that any portion of the algorithm, that has “ui,”
is applicable to the final layer; i.e., “di” is to be substituted. Because
sets of one or more outputs exist in a neural network, the following
representations are defined for {d} and {u}:

{d} = {
dh, . . . , dp

}
(8)

{u} = {
uh, . . . , up

}
(9)

The algorithms, for applying the Kobylarz-Bradley template,
use the letters “X” and “W” as the internal neuron model variables.
Both will possess subscripts, as shown in the Equation 4. A
transformation of signals occurs at synapses of a neuron. The
transformation is represented by the following relationship:

Xj =
{

0 ⇔ xj = 0
1 ⇔ xj = 1

(10)

Observe in Figure 3 that all inputs are shown connected to all
first hidden layer neuron models and all final hidden layer neuron
models are shown connected to all output neurons. Within hidden
layers, all preceding hidden layer neuron models are connected
to all succeeding hidden layer neuron models, until the output is
reached. For us, the hidden layers are not “hidden,” but can be
observed when a need exists. Furthermore, the connections are
“available,” meaning that the algorithm places available connections
into use, as needed. Otherwise, unused connections do not
appear in an application resulting from training. This results in

Frontiers in Computational Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2025.1628115
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Kobylarz 10.3389/fncom.2025.1628115

FIGURE 4

A graphical representation of a neuron model.

greatly simplified neural networks from using the algorithms to
be described.

For current AI systems, properties of the deep layer neurons
are unknown. In contrast, the presented methodology includes an
address to identify a particular neuron of the network to retrieve
a neuron’s properties. This facility is important, especially during
training. To do this, the network will be a rectangular array of
neuron models to allow for the matrix notation of row “r” and
column “c” pairs. Each column (“c”) identifies a hidden layer.
By identifying the pertinent neuron model with the (r, c) pair
values, it becomes possible to add/modify/remove a neuron’s terms.
Otherwise, the data remains permanently stored. The function
“N(r, c)” is used as the address of a neuron model in the neural
network. This permits the use of the template in Equation 4 to enact
these changes to the addressed neuron model’s threshold function
terms. Details of “N(r, c)” and its accompanying neural network is
the subject matter of a paper under preparation.

At its inception, all neurons of the network have no designated
terms (the neuron models are empty) and no connections are
in “use” (all are merely available). The terms are created during
network training. An exception exists for input (sensory) neurons
(column “0”). Sensory neurons are transducers that convert a
stimulus to the binary axonal neurotransmission, recognized by
internal neurons.

The internal neurons, according to Figure 3, are within the
hidden layers. Therefore, an input neuron of layer 0 has its
operation a’ priori known. For example, the transducer (input
neuron) converts the equivalent of a keyboard signal to a digital
representation “(Si)′′ that conforms to the internal neuron format.

It will be assumed that such a network has been built and
the algorithms relates to the training of the neuron models in the
network. Training encompasses the incorporation of neuron model
operations derived from the Kobylarz-Bradley template. Hence, a
reader’s referral to the Kobylarz-Bradley template (Equation 1) is
essential during the algorithms’ description.

Figure 4 illustrates a general neuron model of the network. The
inputs are represented by the set

“{X1, . . ., Xi, . . ., Xm}” and the single value output identified
by “u.” The output may branch to multiple destinations. Each
destination receives the same value of “u.” The variable “x”
represents input generality with respect to the network layers. For
this application the variable “s,” of Figure 3, is used as a specific case
of “x.” The variable “s” identifies the initial inputs which are used
by the first layer. Likewise, the general output symbol for all layers
is “u.” In this application substitutes “d,” of Figure 3, for the final
layer output.

A neuron model, in general, has two functional components
(McCulloch and Pitts, 1943). The axonal input and output portions
are associated with a switching function, shown as fn({x}). Its
variables are binary (digital); i.e., variables possess one of the two
per unit values “0” or “1.” The other functional component is an
analog threshold function shown as Fn({X}). The two functions
interrelate to provide an axonal output, computed according to:

fn({X}) =
{

1 ⇐⇒ Fn({X}) ≥ θ

0 ⇐⇒ Fn({X}) < θ
(11)

Where: fn is the neuron’s end to end logic function,
Fn is an analog threshold function performed by a neuron’s cell,
θ is a threshold value contained within a neuron’s cell,
{x} = {x1, . . ., xm} is the set of pre-synaptic values having digital

components,
{X} = {X1, . . ., Xm} is the set of post-synaptic values having

analog components,
{x} = {X}, the two sets have equal per unit values,
⇔ represents “if and only if ” hence, the inverse exists.
Equation 11 indicates the relation between fn({x}) and Fn({X}).

The distinction of the two functions is that fn({x}) represents
the effective switching function between a dendritic input {x}
and the axonal output fn({x}). However, the binary digital output
computation is made internally to the neuron model by Fn
({X}), according to the inequalities of Equation 11. To make
this computation, the binary digital input {x} is converted post-
dendrite to the analog {X}. The conversion preserves the values of
“0” and “1.”

An important property is that the threshold (θ) per unit values
are always either “0” or “1” (Kobylarz and Kobylarz, 2023). A
zero threshold value results in an unstable neuron and will not
be considered in this paper. For stable systems, the threshold has
a per unit value of “1.” This conforms to the experimental report
that the neurological threshold variation is less than 100% (Yu
et al., 2008); signifying that it cannot even double. This variation
limit implies “and” functions would not be possible for neurological
neurons if they could only perform linearly separable functions.
The significance of this limitation illustrates that the currently
deployed neuron models are a poor representation of a neurological
neuron, as their thresholds need to at least equal “2” per unit to
perform an “and” function. The neuron model proposed here is
consistent with the neurological neuron’s stable threshold of “1”
per unit. For this reason, “θ = 1” is an initial condition of this
methodology. Another initial condition is that all term weights are
equal to “0”; which means no terms exist.

The template used to determine Fn({X})is shown in Equation 4.
Pertinent template terms are selected and term weights are assigned
during training. At the inception of training, all weights have a
zero (0) value; meaning none of the equation terms are yet used.
Terms of the template will be selected by the assignments of non-
zero weight values during the training phase. The other phase is
the neural network deployment of neuron models that resulted
from the training algorithm. Neuron model weights may also be
changed, added, or removed during the deployment. The algorithm
for deployment changes are variations of the training algorithms
and will be described in an ensuing paper.

The medical diagnosis’ training algorithm represents the
iterative application of known ({s1, . . . , sm}, {d1, . . . , dp})

Frontiers in Computational Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2025.1628115
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Kobylarz 10.3389/fncom.2025.1628115

input/output set pairs to the neural network. While training, each
time a new input set appears, an input neuron is selected, having the
commensurate interconnections to the first hidden layer neurons
that yield a path to an output di that belongs to “{d1, . . . , dp}.”
Likewise, each time training indicates a new output, the output is
established, having the commensurate interconnections to the final
hidden layer.

3 Algorithms for the Kobylarz-Bradley
template

Three algorithms are presented to establish a neuron model
from the template. Execution of these algorithms represents
training. The algorithm, named “Affirmation,” is used to select
template terms for which the neuron output is to be “1.” The
algorithm, named “Refutation,” is used to select template terms for
which the neuron output is to be “0.” As will be seen, an execution
of “Affirmation” can result in having other input sets also result in
a “1” output. Should a “0” output be required for such an input
set, the “Refutation” algorithm must be executed for the input set.
The third algorithm “Subsumption” is used to remove superfluous
terms in “Fn({X}).”

It is important to note that at the beginning of training
Fn({X})contains no terms (the initial condition of all term weights
equal to “0”). Hence, the output is “0” for all inputs (recall the initial
condition of “θ = 1”). Therefore, “Refutation” is only necessary, if
“Affirmation” has caused an input set to erroneously have a “1”
output. Clarification will be made later.

A third possibility for an input set is a “don’t care (
,
ω,)” output.

Because the output doesn’t matter, no training is necessary for these
input sets.

The algorithms are repeated for each successive output (ui) of
an input/output set pair

({x1, . . . , xm}, {u1, . . . , up}) presented during training. The
variables are represented by {x}, {X}, and {u} for generality, as
the three algorithms apply to all layers. To relate the diagnosis
application’s examples, the first layer variable labels {s}, {S}, and {d},
for the final layer, are substituted for the general variables{x}, {X},
and {u}.

The first algorithm considered is named “Affirmation.” An
execution of Affirmation provides a term to the neuron model’s
threshold function Fn({X}), when the term is required for the
axonal output. The input to Affirmation includes the input set “{xi,
. . . , xm}” for which it is desired to have:

fn (xi, . . . , xm) = 1 (12)

The current threshold function Fn({X}) represents the
other input to Affirmation. If a change is made, Fn({X})
is returned to the invoker by Affirmation. Otherwise, no
change is made. The symbol “⊕” represents the “exclusive
or” operation.

If the neuron is empty (first time Affirmation is used), the
temporary assignment of Fa({X}) in step 1 will also be empty until a
term has been assigned. Observe that Affirmation assigns a value to
Wa{X} only when there is an incorrect evaluation of “Fa({X}).” The
(No-op) is a flag sent to the invoker that means no changes were
made to Fn({X}).

NEURON MODEL ALGORITHM 1/3 – AFFIRMATION

To have fn (xi, . . . , xm) = 1, Affirmation assigns a value to Wa{X} for the term

Wa{X} Xi . . . Xm according to the following procedure:

1) (Assign (Fa ({X}) = Fn ({X})) => fa ({x}) = fn ({x})),

2) Apply the input {x1, . . . , xm to fa ({x}),

3)
⊕

4)

3) (Fa ({X}) < θ) => (Assign the smallest positive integer to

Wa{X} �: Fa ({X}) + Wa{X} > θ),

=> (Assign Fn ({X}) = Fa ({X}) + Wa{X} Xi . . . Xm)

4) (Fa ({X}) > θ) => (No-op)

It is possible that “Fa({X}) > θ” prior to the execution of step
3. Step 3 will not be executed and step 4 will be executed instead.
This results in not having an additional term entered into Fa({X}).
The inequality of “Fa({X}) > θ” happens when a set “{xi, . . . , xm}”
was previously processed by Affirmation and the set “{xi, . . . , xm,
xj, . . . , xk}” is afterwards processed by Affirmation. Having the term
“Wa{X} Xi . . . Xm” already within “Fa({X})” results in “fn (xi, . . . ,
xm, xj, . . . , xk) = 1” or

“Fa({X}) > θ.” That is, the following relationship precludes
adding a new term:{

xi, . . . , xm, xj, . . . , xk
} ⊃ {xi, . . . , xm} (13)

That is, the execution of Affirmation to have f ({xi, . . . , xm}) = 1
will cause

f ({xi, . . . , xm, xj, . . . , xk}) = 1. However, it may be desired to have
f ({xi, . . . , xm, xj, . . . , xk}) = 0. The remedy of such an error is the
Refutation algorithm to provide a threshold term for the input set

“{xi, . . . , xm, xj, . . . , xk}.”
The template term for the Refutation is “Wr{X}Xi . . . Xm Xj . . .

Xk.” The “Refutation” algorithm has the role of assigning a value to
“Wr{X }” to make:

Fn ({X}) + Wr{X}Xi . . . XmXj Xk. < θ (14)

NEURON MODEL ALGORITHM 2/3 - REFUTATION

The Refutation input is the set {xh, . . . , xp} and the current neuron model

function Fn ({X}).

Refutation assigns a value to Wr{X} for the term Wr{X} Xh . . . Xp according

to the following procedure:

1) Assign (Fr ({X}) = Fn ({X})) ⇒ (fr ({x}) = fn ({x})),

2) Apply the input {xh, . . . , xp} to fr ({x}),

3)
⊕

4)

3) (fr ({x}) = 1) => (Assign the smallest magnitude negative integer

to Wr{X} �: Fr ({X}) + Wr{X} < θ),

=> (Assign Fn ({X}) = Fr ({X}) + Wr{X} Xh . . . Xp)

4) (fr ({x}) = 0) => (No-op)

During the refutation procedure, the notation “Fr({X})” is
assigned the neuron’s threshold function, prior to the inclusion
of the refutation term. If the Refutation conditions are satisfied,

Frontiers in Computational Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2025.1628115
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Kobylarz 10.3389/fncom.2025.1628115

“Fn({X})” will include the Refutation term within its threshold
function. Also, for a Refutation term to be evaluated properly, the
Affirmation term(s) that are refuted must first be determined.

The general Refutation input set is shown as {xh, . . . , xp} and
the current neuron model threshold function is Fn({X}). Prior to
the addition of a refutation term, when one or more Affirmation
input sets are included within {xh, . . . , xp}, then fn(xh, . . . , xp) =
1. This will provide a convenient means to determine inclusion
of Affirmation terms and the evaluation of the weight of the
Refutation term.

Step 3 is not executed when “fr ({x}) = 0” (fn ({x}) = 0) and step
4 is executed instead. Having

“fr ({x}) = 0” implies that either Refutation is not necessary, due
to no inclusion, or term had previously been incorporated within
Fn({X}) for the prescribed input.

Execution of Refutation may cause an erroneous result when
the sequence with Affirmation is improperly executed. Consider
that a pair of terms has been refuted and one of the terms is
affirmed. If the affirmed term is also paired with a third term for
which the latter pair is affirmed, the weight applied by Affirmation
may be erroneous. An example of this error and a mitigating
procedure will be provided later.

An optional algorithm deals with the removal of superfluous
terms. A set of affirmed symptoms of the form “{xi, . . . , xm, xj, . . . ,
xk}” may be considered superfluous when the set “{x1, . . . , xm}" was
also affirmed for the same inputs. Superfluous terms appear when
the term (from the input “{xi . . . xm xj . . . xk}”) is processed by
Affirmation prior to an included term (from the input “{xi, . . . ,
xm}”). When the input “{xi . . . xm xj . . . xk}” is applied, it will
cause the term “Wa{X} Xi . . . Xm” within the “Fn({X})” to also
be evaluated. When the term “Wa{X } Xi . . . Xm” suffices for the
result “Fn({X}) > θ”, then “Ws{X} Xi . . . Xk Xj . . . Xk” may be
considered superfluous and removed by assigning “Ws{X} = 0.” The
algorithm Subsumption is used to make such an assignment and
remove superfluous terms in “Fn({X}).” If the option is selected,
Affirmation will invoke Subsumption following the assignment of
a new term “Wa{X} Xi . . . Xm” to “Fn({X}).” Subsumption receives
“Wa{X} Xi . . . Xm” and “Fn({X})” as its inputs.

NEURON MODEL ALGORITHM 3/3 - SUBSUMPTION

After Affirmation assigns Wa{X} Xi . . . Xm to Fn ({X}) the steps

for Subsumption follow:

1) Assign Fs ({X}) = Fn ({X}) - Wa{X} Xi . . . Xm,

2) Repeat for each term (Ws{X} Xj . . . Xk) of Fs ({X}),

3)
⊕

4)

3)
{

Xj, . . . , Xk
} ⊃ {Xi, . . . , Xm} =>

(
Ws{X} = 0 for Fn({X}] term Ws{X}Xi . . . Xk

)
(Removes term),

4)
({

Xj, . . . , Xk
}
⊃ {Xi, . . . , Xm}

) => (No-op),

Keeping both “Wa{X} Xi . . . Xm” and “Ws{X}Xi . . . Xm Xj . . .
Xk” in Fn({X}) does not cause computation errors. The adverse
consequences from superfluous terms include additional memory
and processing during the program’s application. However,

searching for superfluous terms during training may be an
exorbitant effort, outweighing the application’s processing burden.

An example deploying these three algorithms will now be
provided by the use of tables. Because symptoms are the example
inputs, the symbols “{S}” and “{s}” will be used. Consecutive
rows of a table represent the sequence of symptom “{s}”
inputs, which are identified in the middle column. The column
to the left presents the threshold function “Fn({S})” prior to
applying an input “{s}.” The column to the right presents the
threshold function “Fn({S})” after applying an input “{s}.” Table 2
has two sections corresponding to the first two algorithms. It
represents the beginning of training. The training input sequence
begins with Affirmation. Having Affirmation precede Refutation
is important because the affirmed set needs determination to be
refuted.

Table 3 illustrates a sequence of two Affirmations for which
the first Affirmation is superfluous and Subsumption is applied to
remove the superfluity. Table 3 is shown as an extension to Table 2.

A digression will now be made to demonstrate the improved
efficiency of using the Kobylarz-Bradley template. Consider the
Table 3 product terms in Fn({S}); e.g., “S3 S4S5.” These correspond
to “and” gates. Also observe that in this training process, the
“and” gate terms were determined by a single step. Training of
McCulloch-Pitts neuron models (McCulloch and Pitts, 1943) will
require at least three steps because a threshold of 3 is required and
the increment per training step is “one.” Furthermore, “and” gates
may have hundreds of inputs in an AI application, requiring over
hundreds of iterations to acquire the required threshold value for
its “and” gates. By comparison, the Kobylarz-Bradley template will
still create the “and” gate term in one step for any number of “and”
gate inputs.

Graphical representations to achieve the example’s functionality
for both Kobylarz-Bradley and McCulloch-Pitts neuron models
will now be shown. The two neuron models will have the general
representations shown in Figures 5, 6.

Figure 7 illustrates the neural net using the Kobylarz-
Bradley neuron model. Only one neuron is needed, having the
threshold function:

Fn ({S}) = S1 + S2S3 + S3S4S5 − 2 S1S2S3 + S4S8 (15)

Theorem
Application of the Kobylarz-Bradley template permits a

network of a single neuron for each binary, digital network output.
Proof

In reference (Kobylarz and Kobylarz, 2023) it is proven that the
Kobylarz-Bradley template represents any switching function of “n”
variables. Also, the relationship of an input/output pair ({s}, d) is
representable by a switching function. By applying the Kobylarz-
Bradley template, the threshold function of a single neuron model
is provided.
Q.E.D.

The cost of the Kobylarz-Bradley Neural network is one
neuron model, one layer, one row, eight inputs, four products,
four summations, and one threshold comparison. Also, it was
generated by single iterations of three algorithms, having a total
of seven steps. Most importantly, it provides the correct diagnosis
for all symptom sets applied in training and will not provide

Frontiers in Computational Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2025.1628115
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Kobylarz 10.3389/fncom.2025.1628115

TABLE 2 An example of the algorithms 1 and 2 executions.

Affirmation (1/3)

Step Fn ({S}) before affirmation Symptoms input Fn ({S}) after affirmation

1 0 (No terms) {s1} S1

2 S1 {s2, s3} S1 + S2 S3

3 S1 + S2 S3 {s3, s4, s5} S1 + S2 S3 + S3 S4 S5

Refutation (2/3)

Step Fn ({S}) before refutation Symptoms input Fn ({S}) After refutation

4 S1 + S2 S3 + S3 S4 S5 {s1, s2, s3} S1 + S2 S3 + S3 S4 S5 – 2 S1 S2 S3

TABLE 3 An example of subsumption.

Affirmation (1/3)

Step Fn ({S}) before affirmation Symptoms input Fn ({S}) after affirmation

5 S1 + S2 S3 + S3 S4 S5 – 2 S1 S2 S3 {s3, s4, s6, s7, s8} S1 + S2 S3 + S3 S4 S5 – 2 S1 S2 S3 + S3 S4 S6 S7 S8

6 S1 + S2 S3 + S3 S4 S5 – 2 S1 S2 S3 + S3 S4 S6 S7 S8 {s4, s8} S1 + S2 S3 + S3 S4 S5 – 2 S1 S2 S3 + S3 S4 S6 S7 S8 + S4 S8

Subsumption (3/3)

7 {s3, s4, s6, s7, s8} ⊃ {s4, s8}
Ws = 0 for WsS3 S4 S6 S7 S8

Fn ({S}) = S1 + S2 S3 + S3 S4 S5 – 2 S1 S2 S3 + S4 S8

a diagnosis for symptom sets that are not recognized. The
contrast with existing neural nets, like ChatGPT (Lock, 2022),
normally provide an answer, regardless of whether the answer
is wrong or right. An erroneous diagnosis may be misconstrued
as plausible and, if accepted, can result in an injury or even
a fatality.

It is no surprise that one neuron suffices for the
implementation. The Kobylarz-Bradley template provides the
means to create a neuron model capable of performing any
switching function. Hence, it can always yield a single neuron
network. A description of creating networks of multiple neurons is
later presented.
Tautology

A neural net’s end-to-end functionality (input-to-output) is
expressible by one or more switching functions.1

Rational
A neural net has binary digital inputs and a set of one

or more binary digital outputs. Hence regardless of its internal
complexity, the net’s end-to-end functionality is representable
by a switching function for each output. Furthermore, it is
essentially a propositional calculus axiom that every logic function
(switching function) has a corresponding truth table (table of
combinations) and conversely. Each specific neural net’s input set,
in combination with the value of an associated output, represent
a truth table row. The corresponding truth table is formed
by having its rows correspond to all possible combinations of

1 This excludes having state variables within a neural network’s operation.

No publication has been found of an AI neural network in which state

variables are used.

FIGURE 5

Kobylarz-Bradley neuron model graphical representation.

FIGURE 6

McCulloch-Pitts neuron model graphical representation.

true/false values, accompanied by an output value. Many methods
exist by which a logic function can be inferred from such a
truth table.

Frontiers in Computational Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2025.1628115
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Kobylarz 10.3389/fncom.2025.1628115

FIGURE 7

Neural network example using Kobylarz-Bradley neuron model.

FIGURE 8

The neural network resulting from using the McCulloch-Pitts neuron model.

With respect to the algorithm, Affirmation creates rows for
which an output is “1.” Refutation creates rows having a “0” output
value. By the definition of the template, all remaining rows will
have a “0” output value. A switching function representation that
corresponds to the example is:

fn ({s}) = (16)

(s1 + s2s3) (s1s2s3)
′ + (s3s4s5) + (s3s4s6s7s8) + (s4s8)

A neural network for Equation 16, using the McCulloch-Pitts
neuron model, is shown in Figure 8. When θ = 1, the McCulloch-
Pitts neuron model performs a logical “Or” function. The logical
“And” function is performed by the McCulloch-Pitts neuron model

when θ > 2. The circle enclosing “∼” represents an inhibitory
synapse (logical negation).

Although simpler neural networks may exist, it is likely
close to the complexity of Figure 8. The cost of the McCulloch-
Pitts neural network is eight neuron models, four layers, 23
inputs, eight summations, one negation, and eight threshold
comparisons. The versatility ratio of the Kobylarz-Bradley neuron
model to the McCulloch-Pitts neuron model grows more rapidly
than exponentially. For applications, inputs may number in
the hundreds. Hence, neural network complexity, using the
McCulloch-Pitts neuron model, will be horrendous compared to
using the Kobylarz-Bradley model.

The current neural networks’ connectivity is established before
training is begun. Hence, it is not possible to skip layers, as is shown

Frontiers in Computational Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2025.1628115
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Kobylarz 10.3389/fncom.2025.1628115

FIGURE 9

The neural network without skipping layers, using the McCulloch-Pitts neuron model.

in Figure 8. Figure 9 is a realization of the example when no layers
can be skipped. When comparing Figure 9 to only one neuron, the
value of the Kobylarz-Bradley model is obvious.

The switching function shown in Equation 16, demonstrates
that algorithms, using the Kobylarz-Bradley neuron model,
significantly decrease training intensity. No algorithm exists to
directly create the McCulloch-Pitts neural network of Figures 8, 9.
It needs to be established by “trial and error.” Although the trial
and error process includes positive and negative reinforcement,
having to establish the connectivity of the pertinent neuron
models’ web, including their thresholds and negations, represents
a formidable undertaking. This will require much iteration, most
likely in the thousands and yet not replicate the function perfectly.
Furthermore, function errors or an omission, as the omission of (s4
s8) in Equation 16 and not in Equation 17, could result at the after
training:

fn ({s}) = (s1 + s2s3) (s1s2s3)
′ + (s3s4s5) + (s3s4s6s7s8) (17)

The omission of the term “(s4 s8)” means that many possible
symptom inputs will not determine the diagnosis. That is, the
inadequate neural network manufactures an error by not possessing
the correct switching function. Comparatively, the algorithm
utilizing the Kobylarz-Bradley template will not manufacture
additional errors. Any neural network error is due to the intrinsic
error rate of the training symptoms/diagnosis set. If this set is
perfect, the neural network error will be “0%.”

Indicated earlier was that the improper ordering of an
Affirmation and Refutation may result in errors. The following
example function illustrates how an error may occur:

fn ({s}) = (s1 + s2 + s3) (s1s2)′ (s1s3)′ (s2s3)′ + s1s2s3 (18)

Assume that Affirmations are first performed on the term “(s1
+ s2 + s3).” This will result in the following partial threshold
function results:

Fa ({S}) = S1 + S2 + S3 (19)

If an Affirmation is now performed on the term “s1 s2 s3,” no
threshold function term will be added because of inclusion by the
switching terms “{s1},” “{s2},” and “{s3}.”

When Refutations are afterwards performed for (s1 s2)′ (s1 s3)′
(s2 s3)′, the threshold function becomes:

Fr ({S}) = S1 + S2 + S3 − 2S1S2 − 2S1S3 − 2S2S3 (20)

According to Equation 18, when s1 = s2 = s3 = 1, then fn({s}) =
1. However, Equation 20 yields Fr({S}) = −3 < θ. This erroneous
result is a consequence of the training sequence used. Rather than
establishing an algorithm to properly sequence training steps, a
simpler remedy is to run a test of all inputs following training.
When an input fails to yield a “1” output, the Affirmation algorithm
is performed for the failed input. Likewise, if an input fails to yield
a “0” output, the Refutation algorithm is again performed for the
failed input. The example’s failure implies an Affirmation is needed
for the input (s1 s2 s3). Performing Affirmation, for this input, yields
the correct threshold function:

Fn ({S}) = S1+ S2+ S3− 2S1S2− 2S1S3− 2S2S3+ 4S1S2S3 (21)

Due to sequence errors, such as for the preceding example, the
following recommendation is made. Before the neural net is
released as an application, testing of all inputs used during training
is performed. Should any errors result, either Affirmation and/or

Frontiers in Computational Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2025.1628115
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Kobylarz 10.3389/fncom.2025.1628115

Refutation will be conducted for the failed inputs, depending on
the type of error.

The algorithms presented here create a neural network that,
during implementation, yields the information for which it has
been trained. That is, if an input set “{s}” matches the set of
a training set diagnosis pair ({s}, d), the implementation will
faithfully yield the diagnosis “d” of the pair. This means that
the implementation accuracy is controlled by the adequacy and
accuracy of the training diagnosis pairs.

If an input set “{s}” does not appear in any training set diagnosis
pair, the implementation will yield an equivalent of “I don’t know”
or not provide a response, depending upon an application’s initial
conditions. It is possible to misconstrue the “I don’t know” or
no response as a negative diagnosis (possible false negative). Also,
training’s diagnosis pair ({s}, d) may inherently contain a false
negative possibility or be erroneous. However, the algorithms will
not manufacture false negative responses; so that the possibility
of a false negative is the same as that contained by the training
data. The currently used AI methodology may manufacture false
negative outcomes.

Similarly, false positive diagnoses may result when the data
inherently has a false positive possibility. The algorithms do
not manufacture false positive outcomes. Again, the currently
used AI methodology may manufacture false positive outcomes
(hallucinations).

An implementation error rate wholly depends upon the
training. Hence, training data needs to be as correct and
comprehensive, as possible. No means are known to compute
an exact error rate. Empirical testing represents a process
for estimating an application’s error rate. Prior to making an
application publically available, thousands of known cases need
to be run. The errors are to be observed and corrected by either
Affitmation or Refutation. If the error rate was unacceptable, the
process is repeated until a satisfactory error rate exists. After the
final iteration, one can expect that empirical evidence suggests an
acceptable accuracy. It is believed that the 92% average accuracy
of current neural networks will be easily surpassed by Kobylarz-
Bradley neural networks. Even a 100% empirical accuracy appears
feasible for certain applications.

4 Preview of network generation

Heretofore, there has been no description of how a network of
Kobylarz-Bradley neurons is generated. This work is now underway
and will be the subject of a future paper. An early stage of
this endeavor is the application of the neurological associative
learning aspect of neuroplasticity (Carter, 2009). This neurological
process will forge an axonal link between pairs of neurons
that fire together following a common stimulus. Forming such
links institutes network interconnections. Algorithms, emulating
neurological associative learning, are planned.

The training input/output set pairs “({s1, . . . , sm}, {d1, . . . , dp})”
imply a primitive neural network. As shown in Figure 10, only
peripheral neuron models occur from execution of the algorithms.

Should a different input set “{S}” have a common diagnosis, say
“dp,” the network may appear as shown in Figure 11.

5 Discussion

5.1 Model’s performance improvements

By only realizing linear separable switching functions, the
McCulloch-Pitts neuron model has severely limited versatility. For
seven variables, the ratio of available functions to linearly separable
functions is 4.062× 1028. As the number of variables increases, this
ratio grows faster than exponentially. Being essentially infinitesimal
for seven variables, McCulloch-Pitts neuron model applications are
stymied from utility when tens or hundreds of variables exist. This
results in enormous neural networks and many training days, with
no hope of 100% accuracy.

When current neural networks are large, the parameter
gradients become exetremely small and may vanish during training
of deep neural networks. This slows down or stops learning in deep
networks because weight updates are negligible. Rectified linear
unit (ReLU) (Brownlee, 2020) provide a means to help mitigate
this problem. Since this problem does not exist when using the
Kobylarz-Bradley template, no mitigation procedure’s are required.

It has been shown that the neurological neuron is capable of
performing nonlinearly separable functions, which comes as no
surprise. One expects that Mother Nature, with her infinite wisdom,
would not mistakenly use the McCulloch-Pitts neuron model in
her neural networks. Additionally, having a threshold value fixed
at “1” per unit corresponds to neurological measurements made
(Yu et al., 2008). Extrapolating, the neurological brain’s efficiency
is a persuasive indication that the incorporation of neurological
modeling will lead to improved results. I attribute the better
performance to a more neurologically accurate neuron model.

The neurological property of performing all switching
functions is provided by the Kobylarz-Bradley template. This
extensive neuron model versatility provides the means to establish
much simpler networks. The example presented here shows the
relative complexity of the McCulloch-Pitts neuron model network
(Figure 9) compared to the Kobylarz-Bradley neuron model
network of only one neuron.

Relative complexity represents one of two McCulloch-Pitts
neuron model disadvantages. The other drawback is training,
which is intended to establish neural networks that provide correct
results. Figure 9 shows an example of such a network. However,
current training algorithms do not create a network directly. They
do so by trial and error. Having high accuracy from a trial and
error process is very difficult to achieve. The hope is that the
error rate will be low when the trained network is applied. The
error rate for the McCulloch-Pitts neuron model networks averages
8% (Thompson et al., 2021). Although the AI implementation
error rate varies with specific applications, it is used as a frame of
reference here. Whereas, for an application’s invocation of a trained
input, the Kobylarz-Bradley neuron model network is anticipated
to have much better than an 8% error rate.

It is speculated that thousands of training iterations may
be necessary for a McCulloch-Pitts neural network to learn
the example.

I propose a challenge to owners of AI systems, more advanced
than one using a McCulloch-Pitts neural network, to train their
AI system to perform one of this paper’s examples. Reporting the
performance results to me would be greatly appreciated.

Frontiers in Computational Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2025.1628115
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Kobylarz 10.3389/fncom.2025.1628115

FIGURE 10

The primitive neural network implied by the algorithms.

FIGURE 11

The primitive neural network sharing a diagnosis.

5.2 Applications

I foresee many medical applications of the Kobylarz-Bradley
neuron model networks. Work has embarked on recognition of
atrial fibrillation. Because atrial fibrillation is a precursor of strokes,
its early determination, and then proper treatment can preclude the
devastating consequences of a stroke. The efficiency of the neuron
models will result in small networks that consume little power. This
suggests that electronic neural network chips, can be used by any
device that observes the heart beat, to detect atrial fibrillation; e.g., a
consumers’ ordinary sphygmomanometer (blood pressure meter).

Another important application of the Kobylarz-Bradley neuron
model networks is symptom recognition of epileptic seizures.
The present practice of electroencephalography (EEG) recording
contains many channels, requiring complicated and uncomfortable
cranium connections. Studies are being conducted to determine the
feasibility of using non-cerebral, time-series data to detect epileptic
seizures (Hamlin et al., 2021). Patients wear sensors monitoring
electrocardiography, electrodermal activity, electromyography,
accelerometry, and audio signals. These physical manifestations
accompany seizures and have the advantage of sensor use in a

normal patient environment. The use of a Kobylarz-Bradley neuron
model network can be trained to recognize combinations of sensor
signals to detect seizures.

5.3 Further algorithm work

Study is now underway to build network layers beyond the
input layer. They will not be hidden layers. Rather, neurological
processes to create and connect neurons will be emulated. A related
pursuit, which applies to establishing neuronal connections beyond
the first layer, is to include an algorithm that provides a probability
assessment of outputs, based on statistical data. Such an algorithm
will not only yield statistical results for input/output data, but is also
intended to indicate output probabilities for (input, output) pairs
that have not appeared in training.

When networks of Kobylarz-Bradley neuron models exist,
additional neurological properties can be introduced. An important
neurological property is Hebbian Learning (Hebb, 1949). Hebbian
Learning is a process in which synaptic connections between
neurons are strengthened when they are simultaneously active. The

Frontiers in Computational Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2025.1628115
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Kobylarz 10.3389/fncom.2025.1628115

stremgthened connections represent associative memory, which is
a very pwerful lesrning means.

It has been observed that the spike (firing) rate of neurons can
vary (Smith and Ratcliff, 2004). A possible reason for the variation
is to invoke a state change. Human reactions to emergencies suggest
that the brain is a state machine. That is, the present functionality
is conditioned upon a concurrent state of cognition and a state
change alters functionality. An apt phrase supporting this belief
is “A state of shock.” When a person experiences a shocking
experience, the reaction to a stimulus is usually quite different than
a reaction when circumstances are normal and more predictable.
This suggests that the functional relation to a stimulus is dependent
upon an individual’s cognitive state. An initial exploration has
begun on introducing a state operation into a neural network’s
behavioral model.

Situations exist in which it is possible to learn while an
application is being executed. An example of such situations and an
algorithm to enact learning will be the subject of an ensuing paper.

Because funding to implement these findings has been twice
denied, only theoretical research is being performed. I hope that
there will be interest, by sources with funding, in pursuing the
experimental development of a neural network having neuron
models generated by the Kobylarz-Bradley neuron model template.
The results of such an endeavor will either show that the algorithm
has little value, or demonstrate that it is a major AI milestone, or
something in-between.

6 Conclusion

It can be concluded that AI in medicine, including all specialties
is still in the developmental phase, although some progress has
been made, particularly in the recent past. For instance, prognosis
as well as diagnosis (CRI Staff, 2025). This technology has great
potential on a number of fronts, to include the diagnosis and
treatment of patients, as well as in medical education and training.
Given the serious consequences from any errors that might be
made from inadequate machine learning models, guardrails must
be put in place during its development. I feel that the Kobylarz-
Bradley template will yield neural networks far more accurate
and superior to those utilizing the McCulloch-Pitts model. Even
so, results interpretation by appropriately trained physicians will
continue to be necessary.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

TK: Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Alzahrani, R. A., and Parker, A. C. (2020). “Neuromorphic circuits with neural
modulation enhancing the information content of neural signaling,” in Proceedings
of International Conference on Neuromorphic Systems. Art. 19 (New York, NY:
Association for Computing Machinery). doi: 10.1145/3407197.3407204

Brownlee, J. (2020). A Gentle Introduction to the Rectified Linear Unit (ReLU).
Deep Learning Performance. Available online at: https://machinelearningmastery.com/
rectified-linear-activation-function-for-deep-learning-neural-networks/#:~:text=
The%20rectified%20linear%20activation%20function,otherwise%2C%20it%20will
%20output%20zero (Accessed August 20, 2020).

Carter, R. (2009). The Human Brain. London: DK Publishing, 156–193.

CRI Staff (2025). AI and Cancer: The Emerging Revolution. Cancer Reasearch
Institute. Available online at: https://www.cancerresearch.org/blog/ai-cancer (Accessed
January 14, 2025).

Data Science. Creating Neural Net for Xor Function. Available online at: https://
datascience.stackexchange.com/questions/11589/creating-neural-net-for-xor-
function (Accessed May 4, 2016).

Gidon, A., Zolnik, T. A., Fidzinski, P., Bolduan, F., Papoutsi, A., Poirazi, P., et al.
(2020). Dendritic action potentials and computation in human layer 2/3 cortical
neurons. Science 367, 83–87. doi: 10.1126/science.aax6239

Gruzling, N. (2001). Linear Separability of the Vertices of an n-Dimensional
Hypercube [M.Sc. Thesis]. Prince George, BC: University of Northern
British Columbia.

Hamlin, A., Kobylarz, E., Lever, J. H., Taylor, S., and Ray, L. (2021). Assessing the
feasibility of detecting epileptic seizures using non-cerebral sensor data. Comput. Biol.
Med. 130:104232. doi: 10.1016/j.compbiomed.2021.104232

Hebb, D. O. (1949). The Organization of Behavior. New York, NY: Wiley & Sons.

Frontiers in Computational Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2025.1628115
https://doi.org/10.1145/3407197.3407204
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/#:~:text=The%20rectified%20linear%20activation%20function,otherwise%2C%20it%20will%20output%20zero
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/#:~:text=The%20rectified%20linear%20activation%20function,otherwise%2C%20it%20will%20output%20zero
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/#:~:text=The%20rectified%20linear%20activation%20function,otherwise%2C%20it%20will%20output%20zero
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/#:~:text=The%20rectified%20linear%20activation%20function,otherwise%2C%20it%20will%20output%20zero
https://www.cancerresearch.org/blog/ai-cancer
https://datascience.stackexchange.com/questions/11589/creating-neural-net-for-xor-function
https://datascience.stackexchange.com/questions/11589/creating-neural-net-for-xor-function
https://datascience.stackexchange.com/questions/11589/creating-neural-net-for-xor-function
https://doi.org/10.1126/science.aax6239
https://doi.org/10.1016/j.compbiomed.2021.104232
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Kobylarz 10.3389/fncom.2025.1628115

Kobylarz, T. J., and Bradley, W. (1967). “Adaptation in linear and non-linear
threshold models of neurons,” in IEEE Transactions on Information Theory and the
International Symposium on Information Theory (San Remo).

Kobylarz, T. J. A., and Kobylarz, E. J. (2023). Neurological properties to
circumvent AI’s error reduction impasse. Trends Comput. Sci. Inf. Technol. 8, 061–072.
doi: 10.17352/tcsit.000070

Kriesel, D. (2007). A Brief Introduction to Neural Networks. Bonn. Available online
at: https://dkriesel.com/en/science/neuroal_networks

Lock, S. (2022). https://www.theguardian.com/technology/2022/dec/05/what-is-
ai-chatbot-phenomenon-chatgpt-and-could-it-replace-humans What is AI chatbot
phenomenon ChatGPT and could it replace humans? The Guardian. December 5.

McCulloch, W. S., and Pitts, W. (1943). A logical calculus of ideas immanent in
nervous activity. Bull. Math. Biophys. 5, 115–133. https://en.wikipedia.org/wiki/Doi_
(identifier)doi: 10.1007/BF02478259

Minsky, M., and Papert, S. (1972). Perceptrons: An Introduction to Computational
Geometry, 2nd Edn. Cambridge, MA: MIT Press.

Neural Network (2013). Artificial neural network with layer coloring. 13:53:39.
Available online at: https://en.wikipedia.org/wiki/File:Colored_neural_network.svg
(Accessed February 28, 2013).

Smith, P. L., and Ratcliff, R. (2004). Psychology and neurobiology of simple
decisions. Trends Neurosci. 27, 161–168. doi: 10.1016/j.tins.2004.01.006

Tanaka, M. 2020 Weighted sigmoid gate unit for an activation function
of deep neural network. https://www.sciencedirect.com/journal/pattern-
recognition-letters Pattern Recognit. Lett. 135, 354–359. doi: 10.1016/j.patrec.2020.
05.017

Thompson, N., Greenewald, K., Lee, K., and Manso, G. F. (2021). Deep learning’s
diminishing returns: the cost of improvement is becoming unsustainable. IEEE Spectr.
58, 50–55. doi: 10.1109/MSPEC.2021.9563954

Yu, Y., Shu, Y., and McCormick, D. A. (2008). Cortical action
potential backpropagation explains spike threshold variability and rapid-
onset kinetics. J. Neurosci. 28, 7260–7272. doi: 10.1523/JNEUROSCI.1613-
08.2008

Frontiers in Computational Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fncom.2025.1628115
https://doi.org/10.17352/tcsit.000070
https://dkriesel.com/en/science/neuroal_networks
https://www.theguardian.com/technology/2022/dec/05/what-is-ai-chatbot-phenomenon-chatgpt-and-could-it-replace-humans
https://www.theguardian.com/technology/2022/dec/05/what-is-ai-chatbot-phenomenon-chatgpt-and-could-it-replace-humans
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007/BF02478259
https://en.wikipedia.org/wiki/File:Colored_neural_network.svg
https://doi.org/10.1016/j.tins.2004.01.006
https://www.sciencedirect.com/journal/pattern-recognition-letters
https://www.sciencedirect.com/journal/pattern-recognition-letters
https://doi.org/10.1016/j.patrec.2020.05.017
https://doi.org/10.1109/MSPEC.2021.9563954
https://doi.org/10.1523/JNEUROSCI.1613-08.2008
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	An AI methodology to reduce training intensity, error rates, and size of neural networks
	1 Introduction
	2 Basic concepts to use the kobylarz-bradley template
	3 Algorithms for the Kobylarz-Bradley template
	4 Preview of network generation
	5 Discussion
	5.1 Model's performance improvements
	5.2 Applications
	5.3 Further algorithm work

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

