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Introduction: People with post-stroke aphasia (PSA) exhibit significant 

interindividual variability attributed to distinctive network disruption patterns 

across individuals. This complexity limits the effectiveness of conventional one-

size-fits-all brain stimulation approaches, but to date no individualized tACS 

targeting on functional network was studied in PSA. This two-phase study aimed 

to investigate the immediate network-modulation and language-facilitation 

effects of dual-site in-phase tACS utilizing a novel individualized targeting 

method based on individual’s EEG dysfunctome. 

Methods: In the first phase, network-based linear regression was used to identify 

aphasia-severity-predictive dysfunctome from the speech-production EEG data 

of 15 Cantonese-speaking people with aphasia (PWA). Individualized stimulation 

targets were determined using two targeting principles. Restoration-based 

targeting aims to restore a target edge which is centralized within the target 

dysfunctome but weakly-connected in the individual, whereas enhancement-

based targeting selects a strongly-connected target edge. The second phase 

involved a single-session double-blinded sham-controlled trial with the same 

group to evaluate the immediate effects of dual-site 7-Hz 1-mA tACS under four 

conditions: Restoration In-phase (RI), Enhancement In-phase (EI), Enhancement 

Anti-phase (EA), and Sham (SH). 

Results: In the first phase, we explored a range of frequency bands and EEG tasks 

and identified a left frontal-temporal theta network under divergent naming task 

that significantly predicted aphasia severity. The single-session clinical trial in the 

second phase demonstrated that RI condition produced increases in the target 

node strength, global network properties, and divergent naming performance, 

which were absent in sham and the other two real stimulation conditions. 
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Discussion: This was the first-of-its-kind dysfunctome-based data-driven 

individualized tACS demonstrated immediate neuromodulatory effects in PSA. 

The findings suggest that EEG dysfunctome can help pinpointing effective 

individualized targets for tACS to promote clinically-beneficial functional 

reorganization. Despite limited generalizability due to the small sample, this 

methodology holds significant potential for application in longer-term treatment 

and other network-based disorders. 

KEYWORDS 

post-stroke aphasia, electroencephalography, transcranial alternating current 
stimulation, dysfunctome, oscillatory network, individualized neurorehabilitation 

1 Introduction 

Post-Stroke Aphasia (PSA) is a language disorder caused 
by damage to the left-hemisphere-dominant language processing 
network in the brain following a stroke (Ueno et al., 2011; 
Kümmerer et al., 2013; Geranmayeh et al., 2014; Fridriksson 
et al., 2016; Siegel et al., 2016; Hartwigsen and Saur, 2019). Due 
to the diverse network disruption patterns, people with aphasia 
(PWA) are considered to be a heterogenous group with individually 
varying language impairment profile in terms of severity, subtypes, 
and prognosis (Pedersen et al., 2004). Currently, speech-language-
therapy (SLT) remains to be the mainstay of aphasia treatment. 
However, such behavioral-oriented approach has faced substantial 
challenges because of its limited eÿcacy and its inability to target 
the neurological underpinnings of the symptoms. To address 
this issue, non-invasive brain stimulation (NIBS) techniques have 
gained increasing attention as an adjunct treatment to boost the 
therapeutic eects of SLT (Williams et al., 2024). Today, NIBS 
in aphasia treatment is undergoing early proof-of-principle stage, 
yielding mixed results from various distinctive, or sometimes 
even contradicted stimulation principles (Miceli and Vogel-Eyny, 
2016; Biou et al., 2019; Bucur and Papagno, 2019; Ding et al., 
2022; Han et al., 2024). Although evidence of these techniques 
was generally positive, the emphasis of “individualization” was 
surprisingly low. Most existing studies employed one-size-fits-all 
stimulation protocols (Williams et al., 2024), which are deemed 
to be suboptimal for PWA because of the high inter-individual 
variability in their network disruption patterns after stroke (Shah-
Basak et al., 2023). In other words, it is less likely for a single 
stimulation protocol focusing on a specific focal region to be able 
to bring universal eectiveness across PWA. This highlights the 
pressing need to develop individualized NIBS techniques for PSA. 

There are fundamentally two types of approach in devising 
individualized NIBS techniques for PSA: the theory-driven 
approach and the data-driven approach. Theory-driven 
approaches select individualized stimulation targets based on 
established theories regarding how NIBS can facilitate recovery 
mechanism and assign individuals to particular pre-defined 
stimulation strategy based on certain criteria. However, recent 
findings suggested that following an extensive structure-function 
remapping process during stroke recovery, a distributed domain-
general brain regions can be involved in the newly consolidated 

language network (Saur et al., 2006; Turkeltaub et al., 2011; 
Hartwigsen and Saur, 2019; Kiran et al., 2019). Apparently, 
restricting the stimulation targets to certain pre-defined regions 
can be potentially suboptimal for certain individuals. Alternatively, 
data-driven approaches oer several key advantages. First, they 
do not rely on generalized models that often reduce individuals’ 
unique characteristics to a winner-takes-all universal pattern, 
therefore, they allow tailoring treatment decisions based on 
actual patterns observed in the individual. Second, data-driven 
approaches excel at handling complexity, that is, when theoretical 
models fall short in capturing the intricate interactions of multiple 
contributing factors, data-driven approaches can leverage large 
datasets to identify patterns and uncover relationships that might 
not align with existing theories. Third, data-driven approaches 
provide the flexibility to adapt treatment decisions in response to 
dynamic changes in an individual’s condition. 

Currently, there are several attempts in aphasia research 
that adopted the data-driven approach (e.g., Richardson et al., 
2015). These studies mainly adopted two types of individualized 
target selection approaches: restoration-based targeting and 
enhancement-based targeting (Shah-Basak et al., 2023). 
Restoration-based targeting approaches aim to utilize NIBS 
techniques to normalize the aberrant activities, as compared to 
typical patterns observed in healthy individuals, identified in 
pre-intervention brain scan. While enhancement-based targeting 
approaches typically integrate functional imaging with language 
tasks to identify an individual’s activation patterns during the target 
behavior. These methods often select stimulation targets at the 
locations of maximal activation (Richardson et al., 2015; Ulm et al., 
2015; Griÿs et al., 2016; Fridriksson et al., 2018; Cherney et al., 
2021). This approach aims at boosting an individual’s activation 
through NIBS promotes recovery, as the activation patterns are 
believed to represent the optimal neural pathways within the 
individual’s reorganized network. 

To date, there is no agreement on the most eective 
individualization approach for aphasia treatment, and the existing 
studies also come with certain limitations. In particular, these 
studies focused on stimulation techniques aimed to modulate 
the level of excitation of neuronal activities at the localized 
brain regions (Brunoni et al., 2012; Klomjai et al., 2015; Roche 
et al., 2015), while overlooking the network dynamics rooting 
the problem. In fact, aphasia is widely-recognized as a “network 
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GRAPHICAL ABSTRACT 

This two-phase study aimed to investigate the feasibility of using a novel EEG-guided, dysfunctome-based, data-driven targeting method to 
individualize tACS stimulation targets to promote neural- and language-facilitation in people with chronic post-stroke aphasia. Results support the 
feasibility of this approach by demonstrating personally-relevant target identification, safety, immediate network changes, and detectable language 
facilitation effect in restoration in-phase (RI) condition. This approach holds potential for multi-session stimulation in promoting long-term 
language recovery. 

disorder” (Kiran and Thompson, 2019; Kiran et al., 2019; Meier 
et al., 2019). This means that the impairment in language function 
is not solely attributable to dysfunction in isolated brain regions 
but rather to disrupted interactions between large-scale neural 
networks. By focusing only on localized neuromodulation, these 
approaches may fail to address the broader connectivity issues that 
underpin aphasia. A more comprehensive strategy would involve 
targeting the dysfunctional network dynamics, such as abnormal 
connectivity patterns, to restore the overall network balance. 

To address the above limitation, this study aimed to 
investigate the feasibility of using electroencephalography 
(EEG) dysfunctome guide individualized dual-site in-phase 
transcranial alternating current stimulation (tACS) for aphasia 
treatment. Dysfunctome is a comprehensive mapping of symptom-
predictive network components in the brain-wide network (Horn, 
2025). Fundamentally, we proposed a data-driven, individualized 
targeting approach embedded within a conceptualized neurological 
feedback cycle (Figure 1). This approach leverages individual’s 
dysfunctome to guide the selection of stimulation targets. 
The stimulation, in turn, is expected to induce changes in the 
individual’s dysfunctome, creating an adaptive neurological 
feedback cycle. 

Specifically, dysfunctome mapping in EEG involves 
identification of symptom-predictive oscillatory network under 
a particular neural state. TACS is a stimulation technique 
used to modulate neuronal oscillatory activities non-invasively 
(Herrmann et al., 2013; Elyamany et al., 2021; Wischnewski 
et al., 2023). Research demonstrated that in-phase tACS can 
modulate functional connectivity through coupling the oscillatory 
activities between two stimulation sites by applying an identical, 
phase-aligned waveforms to both stimulation sites (Polanía et al., 
2012; Helfrich et al., 2014). As EEG measures electric fields 
in the brain through scalp electrodes and tACS modulates the 

electric fields through the same medium, theoretically, in-phase 
tACS and functional network detected by EEG through phase-
based connectivity measures are causally linked. Therefore, the 
combination of EEG-dysfunctome assessment and in-phase tACS 
holds several advantages. First, this approach aims at modulating 
functional network related to aphasic symptoms rather than 
solely targeting the excitability of localized regions, which may 
better account for the complex dynamics of language processing. 
Second, EEG phase-based connectivity measures and in-phase 
tACS have direct reciprocal causal relationships, which creates 
an ideal combination for data-driven individualized adaptive 
feedback cycle. Lastly, both technologies are relatively accessible, 
cost-eective, and user-friendly, making them more practical for 
routine clinical applications. 

Aiming to examine the feasibility of this novel individualized 
targeting approach, we conducted a two-phase clinical trial. 
In the first phase, a group of PWA underwent an EEG 
scan while performing various language production tasks. An 
exploratory analysis using Network-based statistics (Zalesky 
et al., 2010) was performed aiming to identify a significant 
network component that predicts aphasia symptoms (i.e., the 
dysfunctome). We aimed to select an optimal single target 
edge from the target dysfunctome for each individual, using 
data-driven selection methods. Two individualized stimulation 
target selection methods were tested: restoration-based targeting 
prioritizes centralized-but-weakly-connected edge based on the 
individual’s dysfunctome profile, aiming for restoration, whereas 
enhancement-based targeting prioritizes centralized-and-strongly-
connected edge, aiming to enhance them further. Consequently, 
each participant was assigned both a restoration-based target 
and an enhancement-based target to guide the dual-site in-
phase tACS intervention. In the second phase, the same group 
of participants was included in a single-session double-blinded 
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FIGURE 1 

Conceptual framework of the EEG-guided individualized tACS based on dysfunctome mapping. 

sham-controlled trial. We compared four stimulation conditions: 
(1) Restoration-based In-phase (RI), (2) Enhancement-based In-
phase (EI), (3) Enhancement-based Anti-phase (EA), and (4) Sham 
(SH). EA and SH served as control conditions. Specifically, EA 
condition was examined to test whether anti-phase stimulation, 
an opposite stimulation technique of in-phase stimulation aimed 
to decouple the oscillatory activities between the target sites, 
can reduce the connectivity of the strong connection identified 
through enhancement-based targeting and produce opposite eect. 
Each condition involved a single intervention session consisted 
of tACS and concurrent SLT, accompanied by immediate pre-
and post-intervention EEG and language assessments. These 
assessments aimed to evaluate whether the intervention could 
induce immediate improvements in both the target neural network 
and language performance. 

2 Materials and methods 

2.1 Materials 

2.1.1 Participants 
In phase 1, a total of 15 Cantonese-speaking PWA (age: 

mean = 54.7, s.d. = 9.31; 5 females; Table 1) lived in Hong Kong 
were recruited to join the study. All participants were in the 
chronic stage of recovery (>6 months post-onset) following their 
first-ever stroke and were clinically diagnosed with aphasia using 
the Cantonese Aphasia Battery (Yiu, 1992) by a certified speech-
language pathologist. All participants were right-handed verified 
by the Chinese version of Edinburgh Handedness Inventory 
(Yang et al., 2018). Exclusion criteria included aphasia due to 
causes other than stroke, a history of other developmental or 
acquired conditions aecting cognitive or language abilities, severe 
cognitive impairment, global aphasia, and any medical conditions 

contradicting transcranial electrical stimulation according to the 
safety guidelines (Antal et al., 2017). Written consent was obtained 
from all participants before the study began. This study was 
approved by the Human Research Ethics Committee of the 
University of Hong Kong [Approval Number: EA230112]. 

In phase 2, all participants in phase 1 were invited to join 
the clinical trial. Three participants (P004, P017, P022) withdrew 
from this phase due to personal reasons. One participant (P009) 
withdrew from the study after completion of the first stimulation 
session due to experiencing considerable fatigue after the session. 
A total of 11 participants had completed the phase 2 study. 

2.1.2 EEG instruments 
Electroencephalography recordings were collected using a 

BrainVision actiCHamp amplifier with 61 electrodes mounted in 
BrainVision actiCAP snap, following the extended International 
10–20 positioning system (Oostenveld and Praamstra, 2001). 
Easycap HiCl Electrolyte-Gel was applied for electrode 
conductivity. To monitor physiological movements during 
speech that could introduce excessive artifacts into the EEG 
recordings, bipolar surface electromyograms (EMGs) were placed 
over the left superior and inferior orbicularis oris muscles to collect 
electromyographic signals (Lapatki et al., 2010) for subsequent 
speech production artifacts correction procedures (Porcaro et al., 
2015). The online sampling rate was set to 512 Hz. Impedances 
were kept below 33 k. A frequency range of 0.1–100 Hz was 
applied for online bandpass filtering. EEG and audio data were 
recorded while participants performed specific tasks. 

2.1.3 EEG tasks 
Four EEG conditions were implemented including a resting 

state and three overt speech production tasks: (1) a delayed 
confrontation naming task, (2) a divergent naming task, and (3) a 
discourse production task. 
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TABLE 1 Clinical features of participants. 

ID Gender Age (y) Education 
(y) 

Post-onset 
(m) 

Etiology Lesion Type of aphasia Fluency AQ 

P004 M 61 16 22 Hemorrhagic Left parietal, temporal 
lobes 

Anomic Fluent 85.9 

P005 F 46 17 34 Ischemic Left hemisphere Broca Non-fluent 71.4 

P008 F 60 9 100 Unspecified Left hemisphere Anomic Fluent 91.5 

P009 M 59 11 39 Hemorrhagic Left internal capsule TM Non-fluent 76.6 

P010 M 49 11 47 Hemorrhagic Left internal capsule Anomic Fluent 90.3 

P011 M 57 13 8 Hemorrhagic Left posterior parietal, 
temporal lobes 

Wernicke Fluent 35.9 

P012 F 61 11 17 Ischemic Left frontal, parietal, 
temporal lobes, BG 

Broca Non-fluent 52 

P013 M 54 9 23 Hemorrhagic Left putamen Isolation Non-fluent 23.9 

P014 M 63 8 25 Ischemic Left hemisphere TM Non-fluent 54.8 

P016 M 66 20 13 Hemorrhagic Left hemisphere Anomic Fluent 94.2 

P017 M 50 11 10 Ischemic Left parietal lobe Wernicke Fluent 40.9 

P019 F 60 11 30 Hemorrhagic Left putamen TM Non-fluent 57.5 

P020 F 43 11 43 Hemorrhagic Left hemisphere Anomic Fluent 81.1 

P021 M 62 24 53 Hemorrhagic Left frontal, parietal, 
temporal, occipital lobes 

Isolation Non-fluent 32.6 

P022 M 31 16 6 Hemorrhagic Left parietal, occipital lobes TS Fluent 63 

BG, basal ganglia; TM, transcortical motor; TS, transcortical sensory; AQ, aphasia quotient. 
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2.1.3.1 Resting-State 
Participants were seated calmly in front of a computer 

screen 80 cm from their eyes and asked to focus on a central 
fixation point displayed on a white background on the screen. 
The task consisted of a 2-min eye-open scan followed by a 2-
min eye-closed wakefulness scan, each prompted by spoken and 
written instructions. 

2.1.3.2 Delayed confrontation naming task 
Participants were instructed to name an object shown as a 

line drawing on the computer screen as soon as they heard a 
sound signal, which occurred 4 s after the image appeared. Before 
the sound signal, participants were asked to simply view the 
image without responding. Each trial allowed a 20-s window for 
participants to respond. The next image was displayed only after the 
participant’s response, with the examiner manually controlling the 
presentation. The images used were taken from the Chinese version 
of the Boston Naming Test (Cheung et al., 2004). The task included 
5 practice trials and 30 actual trials. 

2.1.3.3 Divergent naming task 
Participants were asked to name as many single words as 

possible within a given semantic category. The categories included 
both high- (e.g., land animals) and low-frequency (e.g., birds) 
conditions and were prompted by spoken and written instructions. 
Participants were given 1 min to respond for each trial. The task 
consisted of 1 practice trial and 4 actual trials. 

2.1.3.4 Discourse production task 
Participants were instructed to spontaneously produce 

monologues based on 7 discourse prompts selected from the 
Cantonese AphasiaBank (Kong and Law, 2019). These included 
two well-known narratives, two single-picture descriptions, two 
sequential-picture descriptions, and one procedural discourse. 
Participants were allowed unlimited time during the preparation 
stage to review the stimulus before beginning their monologue. 
Once the monologue began, a 3-min time limit was applied for each 
discourse task. All picture stimuli were displayed on the screen, 
with the examiner managing the timing of their presentation. 

2.1.4 TACS instruments 
Transcranial alternating current stimulation was delivered by 

the Soterix Medical MxN-9 HD tES stimulator (Soterix Medical, 
New York, USA) through circular Ag/AgCl electrodes (1 cm 
radius, 5.99e7 S/m) attached to plastic hybrid holders that fixed 
both tES electrodes and EEG electrodes on the same EEG cap. 
The electrodes were filled with conductive gel (4 mm thickness, 
1.4 S/m). Impedance of the tACS electrodes was kept equal to or 
below 10 k. 

2.2 Methods 

2.2.1 Phase 1: identification of target 
dysfunctome 
2.2.1.1 Design and procedure 

All 15 participants from phase 1 underwent an EEG session 
utilizing the tasks and stimuli detailed in the “Section 2.1 

Materials.” EEG data was preprocessed and segmented into 
time series for connectivity estimation. Network-based statistic 
(NBS) was applied to identify aphasia-related dysfunctomes. 
These results informed restoration-based and enhancement-based 
individualized stimulation targets for each participant, to be used 
in the phase 2 clinical trial. 

2.2.1.2 EEG preprocessing 
All pre-processing procedures were performed using in-house 

routines and the EEGLAB toolbox (Delorme and Makeig, 2004; 
RRID:SCR_007292) on MATLAB version 9.14 (The MathWorks 
Inc, 2022; RRID:SCR_001622). The raw EEG signals were subjected 
to a bandpass filtering process with cut-o frequencies of 0.1 and 
40 Hz. Bad channels were identified through visual inspection 
and corrected using spherical interpolation (Perrin et al., 1987). 
The data was then down-sampled to 250 Hz. To correct artifacts, 
an independent component analysis was conducted. Component 
classification was performed using the ICLabel plugin from 
EEGLAB, rejecting components labeled as “eye,” “muscle,” or 
“channel noise” with a probability greater than 50%. On top of 
that, we also rejected components showing higher-than-majority 
correlation with the EMG signals recorded from the lip muscles 
(Porcaro et al., 2015). The cleaned data were then reconstituted into 
channel space and underwent a final visual inspection to ensure 
quality. Subsequently, the signals were converted to an average 
reference. EEG signals were filtered into dierent frequency bands, 
including delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (15– 
30 Hz), and low-gamma (31–40 Hz) ranges. The EEG time series of 
each frequency band was then obtained by segmenting the signals 
into 4-s intervals. Time series with amplitude exceeding ±50 µV 
were rejected. 

2.2.1.3 Connectivity estimation 
Connectivity matrices were constructed in sensor space, in 

which each electrode channel was defined as a node, and the 
connectivity between each pair of electrodes was defined as an 
edge. Phase Lag Index (PLI) was used as the connectivity estimator, 
which ranges from 0 to 1 and is robust against the eects of 
volume conduction (Peraza et al., 2012; Hardmeier et al., 2014). 
The calculation of the PLI was performed using in-house MATLAB 
code. A 61 × 61 connectivity matrix was constructed within each 
frequency band in each EEG task for each individual, resulting in 
a total of 20 sets connectivity matrices (5 frequency bands × 4 
EEG tasks) for exploration in subsequent network-based statistical 
analyses. 

2.2.1.4 Network-based statistic 
All 20 connectivity matrices were included in the exploratory 

analysis using the Network-Based Statistic toolbox in MATLAB 
(Zalesky et al., 2010; RRID:SCR_002454). The goal of this analysis 
was to identify sub-networks comprising interconnected edges 
significantly predict aphasia severity (i.e., aphasia dysfunctome), as 
measured by aphasia quotient (AQ). As illustrated in Figure 2, the 
process began by performing mass univariate regression models on 
all edges to generate a single “statistic matrix,” where each element 
of the matrix represented the t-value of the corresponding edge. 
A primary threshold (a t-value threshold) was then applied to 
identify edges that showed a significant association with the AQ. 
This resulted in a binary statistic matrix, where edges exceeding the 
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FIGURE 2 

Identification of AQ-predictive dysfunctome using network-based statistics. (A) N connectivity matrices were obtained from N PWA. (B) Mass 
univariate linear regression was conducted for all edges to calculate a t-value for each edge in the statistic matrix, where higher t-values indicated a 
more significant positive relationship between the edge weight and aphasia quotient. (C) A t-value threshold (primary threshold) was applied to the 
statistic matrix to retain only the edges that showed the highest significance. (D) The size of the largest interconnected network component was 
extracted from the thresholded binary statistic matrix. (E) A permutation test was performed to obtain the random distribution of the largest network 
component size through 10000 iterations. (F) Statistical significance of the observed network component was determined. 

FIGURE 3 

Dysfunctome-based individualized targeting method. The edge betweenness centrality was calculated for each edge within the target dysfunctome, 
a centrality ranking was obtained and normalized to a 0-to-1 value for each edge. The edge weight of the individual’s dysfunctome profile within the 
target dysfunctome was used to estimate the connectivity ranking for each edge, which was also normalized to a 0-to-1 value. In restoration-based 
targeting, edges with weaker connectivity were ranked higher, whereas in enhancement-based targeting, edges with stronger connectivity were 
ranked higher instead. Priority index was the average of the values of two rankings to ensure equal contribution of two factors. The single edge with 
the highest priority index was selected as the stimulation target for the individual where two stimulating electrodes were placed in the dual-site tACS. 

primary threshold were assigned a value of “1,” and all other edges 
were assigned a value of “0.” 

Using this binary statistic matrix, network components were 
formed by linking all interconnected edges. The size of the 

largest network component was quantified by calculating the 
number of edges involved in the component. According to the 
assumptions of the NBS, cognitive processes rely on interconnected 
sub-networks serving as neural substrates, rather than on 
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isolated connections distributed across the brain. Consequently, 
individual edges that were detached from the largest network 
component were considered less critical in supporting the cognitive 
process of interest. 

Next, to evaluate the statistical significance of the observed 
network component, a permutation test was performed. In this test, 
the data labels were randomly shued across participants, and the 
size of the largest network component was recalculated for each 
permutation. This process was repeated 10,000 times to generate a 
null distribution of component sizes that could arise by chance. The 
observed network component was deemed statistically significant 
if its size exceeded the 95th percentile of the null distribution, 
corresponding to a p-value below 0.05. 

The choice of primary threshold is considered arbitrary and 
open to exploration. In particular, applying a higher primary 
threshold is expected to extract smaller network components, 
and vice versa. There is no definitive rule for selecting primary 
threshold, as dierent cognitive processes may involve varying 
degree of focality in their neural substrates. A stringent threshold 
is appropriate when the eect is expected to be strong but localized, 
whereas a less stringent threshold is better suited for detecting 
weaker eects that are distributed across broader regions. Since 
predicting the nature of these eects is inherently challenging, 
analyzing the data with a range of thresholds allowed for greater 
flexibility and insight into the network patterns (Fornito et al., 2016; 
Mehraram et al., 2023). Therefore, the above-described procedure 
was repeated with multiple primary thresholds, starting from 2 to 4 
with increments of 0.2 per step. 

Finally, we evaluated which significant network component 
identified via NBS had the highest correlation with AQ. For 
this purpose, the individual averaged connectivity within each 
significant network component was calculated and entered into a 
Pearson’s correlation analysis with AQ. The network component 
with the highest correlation coeÿcient was selected as the 
target dysfunctome. 

2.2.1.5 Dysfunctome-based individualized targeting 
The dysfunctome-based individualized targeting consists 

of three steps: (1) dysfunctome identification, (2) individual 
dysfunctome examination, and (3) edge prioritization (Figure 3). 
This method requires two input information, one is the target 
dysfunctome defined as a binary matrix derived from the network-
based linear regression, another is the individual’s dysfunctome 
profile defined as a weighted matrix. This method outputs a single 
edge which serves as the stimulation target for dual-site in-phase 
tACS with the stimulating electrodes positioned at the two nodes 
connected by the target edge. 

After the exploratory analysis in phase 1, we identified an 
aphasia-predictive theta dysfunctome during divergent-naming 
task (see Section “3 Results” for details). The primary goal of the 
stimulation was to enhance the connectivity within this target 
dysfunctome. Given that the mechanism of dual-site in-phase tACS 
is to increase the connectivity between two stimulation sites, the 
individualized stimulation target was defined as a single edge within 
the target dysfunctome that was both “topologically important” and 
“individually relevant” based on two key factors: edge betweenness 
centrality and connectivity. 

Edge betweenness centrality defines how an edge is considered 
to be topologically important based on the structure of the network. 

Particularly, it quantifies the importance of an edge based on 
the proportion of “shortest paths” that pass through it (Girvan 
and Newman, 2002). Edges with higher betweenness centrality are 
considered “bottlenecks” in the network which play a critical role 
in the flow of information of the network (Freeman, 1977). Edges 
with higher edge betweenness centrality in the target dysfunctome 
were prioritized for stimulation. 

To determine which edges are individually relevant, the 
connectivity of the edges within an individual dysfunctome profile 
was considered. As discussed, it is indefinitive about whether 
stimulation should aim for restoring weak connections that were 
damaged from the stroke or further enhancing strong connections 
that showed functional importance in the reorganized network, 
therefore, two distinct targets were chosen based on connectivity. 
For restoration-based targeting, edges with lower connectivity were 
prioritized, while for enhancement-based targeting, edges with 
higher connectivity were prioritized. 

To equally weigh the influence of both edge betweenness 
centrality and connectivity in the edge prioritization process, all 
edges within the target dysfunctome were ranked and normalized 
based on these two variables. This process resulted in a 0-to-
1 value for both centrality ranking and connectivity ranking for 
each edge within the target dysfunctome. By averaging these two 
rankings, a priority index ranging from 0 to 1 was obtained for each 
edge, representing its priority for stimulation. The edge with the 
highest priority index was selected as the target for the dual-site in-
phase tACS. 

2.2.2 Phase 2: single-session clinical trial 
2.2.2.1 Design and procedure 

In phase 2, a single-session double-blinded sham-controlled 
trial was conducted with procedure illustrated in Figure 4. All 
participants underwent four 30-minute tACS stimulation sessions, 
with each session corresponding to one of the following stimulation 
conditions: (1) Restoration-based In-phase (RI), (2) Enhancement-
based In-phase (EI), (3) Enhancement-based Anti-phase (EA), and 
(4) Sham (SH). During each session, a concurrent 30-min SLT was 
conducted by trained student clinicians. All student clinicians and 
participants were blinded to the stimulation condition. A 1-week 
washout period was implemented between sessions to minimize 
carryover eects, and the order of stimulation conditions was 
counterbalanced across participants. Five trained speech therapy 
students blinded to the experimental condition were responsible for 
carrying out all assessment, scoring, and the SLT. The first author 
was responsible for operating the stimulation machine and was not 
involved in the SLT and any outcome scoring. 

Within each session, EEG scans were implemented 
immediately before and after stimulation to assess immediate 
eects of the intervention. The procedure and analytic method of 
EEG were consistent with those used in phase 1 but included only 
the divergent naming task (which derived the target dysfunctome). 
The same set of items was used for both pre- and post-intervention 
assessments within a session. To reduce practice eects, two 
distinct sets of items were alternated across sessions. After each 
session, a questionnaire was given to obtain participant’s subjective 
sensation, perception about being stimulated and adverse events 
associated with the stimulation. This questionnaire was adapted 
from the recommended template provided in the tES safety 
guidelines (Antal et al., 2017). 
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FIGURE 4 

Phase 2 experimental design. 

2.2.2.2 TACS protocol 

In all conditions, a dual-site 3 × 1 HD electrode montage 
was employed. This setup involved two stimulating electrodes 
positioned at the target nodes required for synchronization (i.e., the 
target edge), while three return electrodes were placed at the nearest 
channels surrounded each stimulating electrode (based on the 
configuration of the 64-channel EEG cap) to create a focal electrical 
field (Helfrich et al., 2014; Keator, 2022). The current intensity 
was set to 0.5 mA for both stimulating electrodes, and 0.17 mA 
for all returning electrodes, which had opposite polarity to the 
stimulating electrode they surrounded. In the in-phase conditions, 
both stimulating electrodes were set to the same polarity, whereas 
in the anti-phase condition, the two stimulating electrodes were 
assigned opposite polarities. 

As we identified a theta (4–8 Hz) target dysfunctome in phase 
1, the stimulation frequency for all conditions was set to 7 Hz. 
This frequency was chosen because previous studies suggested 
that a higher frontal-centric theta peak is associated with greater 
performance in cognitive tasks among healthy individuals (Moran 
et al., 2010). 

The stimulation target of the sham condition followed 
enhancement-based target. During sham stimulation, the 
stimulator ramped up to the target intensity within the first 
30 s of the session to mimic the stimulation sensation and 
then immediately ramped down to a negligible intensity for the 
remainder of the stimulation period. This procedure was repeated 
during the final minute of the session. This “fade-in, short-
stimulation, fade-out” (FSF) protocol is the most commonly-used 
sham procedure across clinical trials and is considered eective 
for blinding when the stimulation intensity does not exceed 1 mA 
(Ambrus et al., 2012). 

2.2.2.3 Speech language therapy 

The 30-min SLT focused on speech production training. A two-
phase repetitive training routine was conducted. The first phase 
consisted of a cueing-hierarchy naming training (McNeil et al., 
1995), which utilized a series of increasingly less explicit cues to 
help the participant retrieve the correct name of an object depicted 
in a picture. Once the participant demonstrated retention of the 
trained target words, the training transitioned to the second part 
of the routine, which utilized the Response Elaboration Training 
(RET) (Kearns, 1985) approach. In this phase, the therapist asked 
the participant to describe a realistic, action-depicting picture that 
included a few target words trained in the first phase. Following the 
participant’s initial verbal response, the therapist provided a verbal 
model and asked follow-up wh-questions to prompt an expanded 
version of the sentence. This process was repeated multiple times 
until the participant was unable to further elaborate. Through this 
iterative method, the participant’s speech was shaped to become 
more detailed and complex. 

All SLT stimuli were obtained from open-source picture 
banks available online. The target words were selected based 
on the individual participant’s ability level. One week prior 
to the stimulation sessions, a pre-treatment probe of 140 key 
words was administered to each participant to identify the most 
appropriate training items. Priority was given to words that the 
participant initially had diÿculty producing but could successfully 
retrieve with cueing. 

2.2.2.4 Outcome measures 

To investigate the eects of the stimulation on the target 
dysfunctome, the primary neurological outcome measures included 
the (1) connectivity of the target edge (estimated by phase lag 
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index), (2) target node strength (calculated as the average node 
strength of the two nodes connected by the target edge), and (3) 
average connectivity within the target dysfunctome. Additionally, 
to determine whether the stimulation eects specifically modulated 
the target connections without influencing other connections, 
changes in the normalized connectivity of the target edge, 
normalized target node strength, and the average normalized 
connectivity within the target dysfunctome were also analyzed. 

In addition to the connectivity changes within the target 
dysfunctome, we also explored the changes in global network 
properties during the divergent-naming EEG (the task-dependent 
EEG that derived the target dysfunctome). This included clustering 
coeÿcients, global eÿciency, small-worldness, and modularity. 
These global network metrics represent important characteristics 
of the brain’s overall network organization and eÿciency (Bullmore 
and Sporns, 2009; Ismail and Karwowski, 2020). The clustering 
coeÿcient reflects the tendency of nodes to form tightly 
connected groups, which is indicative of local specialization 
(Kaiser, 2008). Global eÿciency measures the brain’s ability to 
integrate information across distant regions, serving as a marker 
of functional integration (Bullmore and Sporns, 2012). Small-
worldness captures the balance between local specialization and 
global integration, a hallmark of eÿcient brain networks (Bullmore 
and Sporns, 2012). While modularity quantifies the degree to which 
the network is organized into distinct communities or modules that 
support specialized processing (Newman and Girvan, 2004). By 
examining these network properties, we aimed to assess whether 
the treatment not only influenced the target dysfunctome but also 
induced broader changes in the brain’s functional organization 
during a language task. All global network metrics were evaluated 
in unweighted connectivity matrix with a density threshold of 35% 
as binarization criteria. This threshold was determined based on 
prior exploratory analysis of multiple density thresholds ranging 
from 5% to 50% with 5% increments. The density threshold of 
35% captured the most significant post-treatment dierences in 
global network metrics across conditions. These measures were 
calculated by Brain Connectivity Toolbox (Rubinov and Sporns, 
2010; RRID:SCR_004841) in MATLAB. 

Apart from neurological changes, it was also important to 
investigate whether changes in the neural network corresponded 
to language facilitation. To this end, we measured the average 
number of hyponyms generated per minute performed during the 
divergent-naming EEG. 

2.3 Statistical analysis 

Statistical analysis program JASP (JASP Team, 2024 version 
0.19.3, Netherlands, RRID:SCR_015823) was used to implement 
Bayesian analysis. A series of Bayesian paired-samples t-tests were 
performed to evaluate the evidence for post-treatment changes in 
each outcome measure within each stimulation condition. Cauchy 
prior distribution with a scale parameter of 0.707, centered at 
zero, was employed, reflecting the assumption that the null and 
alternative hypotheses are equally likely to account for the data (van 
Ravenzwaaij and Etz, 2021). Sequential analysis was performed to 
monitor how the evidence supporting either the null or alternative 
hypothesis develops over the course of data collection. If the 

Bayes factor BF10 rapidly increases and stabilizes above 3, it 
indicates accumulating and substantial evidence in favor of the 
alternative hypothesis. Conversely, if the Bayes factor decreases 
and stabilizes below 1/3, it suggests substantial evidence for the 
null hypothesis. To compare post-treatment change values for 
each outcome measure across stimulation conditions, a Bayesian 
one-way repeated measures ANOVA was performed using the 
multivariate Cauchy prior for eect size estimation, followed 
by Bayesian post hoc pairwise comparisons between conditions. 
Finally, Bayesian correlation analyses with a stretched beta prior 
width of 1 were used to assess the strength of association between 
change values in neurological outcomes and change values in the 
language outcome. 

3 Results 

3.1 Phase 1: target dysfunctome 

Within the 20 conditions (5 frequency bands × 4 EEG 
tasks) which underwent NBS exploration for identification of 
significant network components that positively predicted AQ, only 
three conditions showed significant network components with 
p-value below 0.05, they were resting-state alpha, resting-state 
beta, and divergent-naming theta networks. As multiple primary 
thresholds were used during the exploration, multiple network 
components within the same condition were found significant 
with dierent component sizes. Higher primary thresholds have 
the advantage of yielding smaller network components but often 
sacrifice meaningful network structures that reflect the coordinated 
activity of multiple regions supporting a cognitive function, the loss 
of network structure can diminish the detectability of important 
network hubs within the network component. To address this, for 
each condition, we selected the significant component generated 
at the highest primary threshold that still contained at least 3% 
of total edges (55 edges), ensuring the preservation of meaningful 
network structure. 

The three resulting significant network components were 
shown in Figure 5. The resting-state alpha network had 63 
edges, yielded from a primary threshold of 2.8 (p = 0.035). This 
alpha network had wide-spread edges connecting left temporal 
and left frontal regions, left frontal and right temporal regions, 
and right frontal and left occipital regions. Fp1 was identified 
as one of the most important network hubs with the highest 
node degree and node betweenness centrality. The resting-state 
beta network had 73 edges, yielded from a primary threshold 
of 3.0 (p = 0.017). The beta network had a round-shape circuit 
of edges connecting left temporal and left frontal regions, left 
frontal and right temporal regions, right temporal and right 
occipital regions, and right occipital back to left temporal 
regions. Within this network, T7, Fp1, C6, and PO8 were the 
four most important network hubs that showed higher node 
degrees and betweenness centralities. Lastly, the divergent-naming 
theta network had 61 edges, yielded from a primary threshold 
of 3.0 (p = 0.024). This network had densely interconnected 
edges within the left frontal-temporal regions, with several 
extended connections to the right temporal, parietal, and occipital 
regions, where CP3 was the most important network hub with 
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FIGURE 5 

Three significant network components identified by network-based statistics. Edge color scales with edge betweenness centrality, node color scales 
with node betweenness centrality, node size scales with node degree. Pearson’s r indicates the correlation between the average connectivity within 
the network component and aphasia quotient. 

FIGURE 6 

All individualized stimulation targets selected based on restoration-based and enhancement-based targeting. Different target edges are highlighted 
in different colors. 

the highest node degree and betweenness centrality. Notably, 
the divergent naming task possibly shifted the aphasia-related 
network activities from faster waves to a slower wave, and from 
widespread interregional activities to left-frontal-temporal focused 
activities. 

We then estimated the Pearson correlation between the average 
connectivity of each of the three network components and AQ. The 
analysis revealed that the average connectivity of all three network 
components was significantly and positively correlated with AQ 
(resting-state alpha network: r(13) = 0.873, p < 0.001; resting-state 
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beta network: r(13) = 0.845, p < 0.001; divergent-naming theta 
network: r(13) = 0.877, p < 0.001). 

Among these, the divergent-naming theta network 
demonstrated the strongest correlation with AQ and was 
considered more representative of a language-specific network 
compared to the resting-state networks. Therefore, it was chosen 
as the target dysfunctome for subsequent stimulation in phase 2. 

3.2 Phase 2: Single-session clinical trial 

3.2.1 Participant perception and safety 
According to the post-stimulation questionnaire, all 

participants perceived that they had received real stimulation 
in all conditions including the sham condition, which ensured 
equal placebo eect across conditions. No serious adverse events 
were reported. The most frequently reported subjective sensations 
were mild tingling, mild itchiness at the stimulation sites, occurring 
27.3% and 25% of the time, respectively. Fatigue following the 
session was reported 22.7% of time. On rare occasions, participants 
also experienced mild headaches (6.8%) and mild burning 
sensation at the stimulation sites (2.3%). Overall, the data indicated 
that the stimulation was safe. 

3.2.2 Individualized targets 
Figure 6 showed the selected stimulation targets for all 

participants based on both restoration-based and enhancement-
based targeting approaches. In some cases, the edge with the highest 
priority index could not be selected as stimulation target because 
the corresponding stimulation sites were positioned too close to 
one another, which could prevent dual-site in-phase tACS from 
achieving the intended eect. In such instances, the next highest-
priority edge that did not violate this criterion was chosen. 

Given the wide range of participant characteristics in this 
study, including aphasia type, severity, and post-onset period, 
the proposed individualized targeting method appropriately 
selected dierent stimulation targets for each individual, as 
expected. Noteworthily, the targets selected through restoration-
based targeting for some of the participants overlapped with 
the targets selected through enhancement-based targeting for 
other participants. This was considered normal, as individual 
dysfunctome profiles can vary across individuals. Nevertheless, it is 
not possible for the two selection methods to produce overlapping 
targets within the same individual. 

3.2.3 Post-treatment changes 
Table 2 displayed the descriptive statistics of all pre- and post-

test values of all conditions. The Bayesian statistic table (Table 3) 
and the sequential analysis plots (Figure 7) highlighted the evidence 
of post-treatment changes across all outcome measures evaluated 
by Bayesian paired-sample t-tests in each condition. 

Firstly, sham stimulation did not yield BF10 higher than 
3 in any outcome while yielding BF10 below 1/3 in several 
outcomes including normalized target edge, target dysfunctome, 
normalized connectivity in target dysfunctome, global eÿciency, 
and modularity. These results indicate that the data did not 
favor the alternative hypothesis across all neurological or language 
outcomes. This suggests that providing SLT alone with the placebo 

eect of stimulation was insuÿcient to induce notable neural or 
language change following a 30-min single-session dosage. 

Among the three real stimulation conditions, RI condition 
was the only condition yielding moderate evidence of treatment 
eects across multiple neurological and language outcomes. 
This included target node strength (BF10 = 10.1847, posterior 
median = 0.906, 95% CI [0.203, 1.680]), modularity (BF10 = 5.321, 
posterior median = 0.776, 95% CI [0.117, 1.505]), small-worldness 
(BF10 = 7.62, posterior median = 0.848, 95% CI [0.165, 1.601]), 
and divergent naming performance (BF10 = 3.61, posterior 
median = 0.700, 95% CI [0.065, 1.403]). Sequential analyses 
showed robustness in target node strength and small-worldness 
as they demonstrated stability in BF10 upon accumulating data. 
The close-to-moderate evidence in increasing global eÿciency 
(BF10 = 2.719, posterior median = 0.644, 95% CI [0.026, 1.328]) is 
also worth noting. 

While EI and EA conditions did not yield substantial evidence 
of treatment eect in any outcomes, they still showed close-
to-moderate evidence in increasing target node strength (EI: 
BF10 = 2.080, posterior median = 0.591, 95% CI [−0.012, 1.258]; 
EA: BF10 = 2.995, posterior median = 0.663, 95% CI [0.039, 1.354]). 
Another notable finding is the anecdotal evidence suggesting that 
the EA condition may increase connectivity within the target 
dysfunctome. While this eect did not demonstrate stability, 
it was the only condition for which the evidence favored the 
alternative hypothesis. 

Overall, these findings indicate that RI stimulation was capable 
of increasing target node strength, but not the connectivity of 
the target edge nor the target dysfunctome. These eects reflect 
an increase in the overall connectivity of the target sites with a 
broader range of brain regions instead of increases limited within 
the dysfunctome. Since RI stimulation had the most substantial 
eect in increasing target node strength, probably due to the 
lower baseline values of the targets, this suggests a heightened 
centrality within the network of both target sites. Remarkably, RI 
stimulation also demonstrated a superior eect in improving global 
network properties, including global eÿciency, modularity, and 
small-worldness. This indicated that RI stimulation may have a 
more pronounced impact on enhancing the global network change. 
The observed improvements in global eÿciency suggested that 
RI stimulation facilitates better integration of information across 
distant brain regions. While enhanced modularity indicated that RI 
stimulation promotes more distinct community structures within 
the network, which may support specialized processing. Both the 
above properties may contribute to the increase in small-worldness 
reflecting an optimized balance between local specialization and 
global integration. These findings highlighted the potential of RI 
stimulation to induce widespread changes in brain connectivity 
beyond the target dysfunctome. 

Additional to the separate evaluations of post-treatment 
improvement for each of the conditions, a series of Bayesian one-
way repeated-measure ANOVA were performed to compare the 
post-treatment change values across the four conditions for each 
outcome measure (Figure 8). Possibly due to the small sample size, 
no significant results were found. Nonetheless, Bayesian post hoc 
pairwise comparison found that RI condition had moderate 
evidence of larger post-treatment increase in divergent naming 
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TABLE 2 Descriptive statistics of pre- and post-tests values of all outcome measures. 

Outcomes Restoration in-phase Enhancement in-phase Enhancement anti-phase Sham 

Pre Post Pre Post Pre Post Pre Post 

Target edge weight 0.4172 (0.3592) 0.5426 (0.4240) 0.5590 (0.3353) 0.5279 (0.2813) 0.5106 (0.3585) 0.6084 (0.1927) 0.4966 (0.2440) 0.4844 (0.3996) 

Normalized target edge weight −0.10 

(1.94) 
0.55 

(2.06) 
0.65 

(1.61) 
0.38 

(1.35) 
0.23 

(1.58) 
0.25 

(1.01) 
0.28 

(0.87) 
0.15 

(1.72) 

Target node strength 26.45 

(4.85) 
28.26 

(4.12) 
27.03 

(1.85) 
28.57 

(3.95) 
26.09 

(3.95) 
28.33 

(3.67) 
27.36 

(5.46) 
27.35 

(5.04) 

Normalized target node strength −0.17 

(0.50) 
0.04 

(0.34) 
0.09 

(0.88) 
0.14 

(0.50) 
−0.05 

(1.18) 
0.28 

(0.55) 
−0.01 

(0.56) 
0.26 

(0.94) 

Connectivity in the target 
dysfunctome 

0.5218 (0.1461) 0.5376 (0.1318) 0.5057 (0.1431) 0.5297 (0.1428) 0.5114 (0.1801) 0.5419 (0.1807) 0.5375 (0.0905) 0.5456 (0.1907) 

Normalized connectivity in the target 
dysfunctome 

0.41 (0.39) 0.29 (0.24) 0.30 (0.24) 0.33 (0.24) 0.26 (0.46) 0.28 (0.40) 0.37 (0.42) 0.41 (0.53) 

Clustering coeÿcient 0.3965 (0.0274) 0.4117 (0.0292) 0.3968 (0.0414) 0.4072 (0.0179) 0.3899 (0.0159) 0.4088 (0.0317) 0.3991 (0.0216) 0.3985 (0.0315) 

Global eÿciency 0.6715 (0.0026) 0.6721 (0.0017) 0.6711 (0.0028) 0.6728 (0.0025) 0.6719 (0.0028) 0.6730 (0.0035) 0.6723 (0.0015) 0.6728 (0.0042) 

Small-worldness 0.9057 (0.0823) 0.9838 (0.1423) 0.9421 (0.1661) 0.9910 (0.1101) 0.9540 (0.1574) 0.9968 (0.1173) 0.9617 (0.1629) 1.0068 (0.1500) 

Modularity 0.1510 (0.0341) 0.1691 (0.0294) 0.1629 (0.0378) 0.1627 (0.0342) 0.1636 (0.0510) 0.1652 (0.0222) 0.1676 (0.0383) 0.1707 (0.0389) 

# of hyponyms in 

divergent naming 

3.25 

(5.50) 
4.00 

(6.25) 
3.25 

(6.50) 
4.25 

(7.75) 
3.25 

(6.50) 
2.75 

(6.75) 
1.75 

(6.00) 
1.75 

(8.00) 

Median (interquartile range), N = 11. Normalized scores = within-subject z-scores. 
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TABLE 3 Bayesian paired-sample t-tests examining significance of post-treatment change across conditions and outcomes. 

BF10 [95% CI of effect size] 

Post – pre RI EI EA Sham 

Target edge 0.361 [−0.363, 0.712] 0.529 [−0.249, 0.866] 0.902 [−0.142, 1.030] 0.357 [−0.368, 0.706] 

Normalized target edge 0.307* [−0.459, 0.600] 0.313* [−0.443, 0.618] 0.413 [−0.316, 0.774] 0.310* [−0.452, 0.609] 

Target node strength 10.185** [0.203, 1.680] 2.084 [−0.012, 1.258] 2.995 [0.039, 1.354] 0.446 [−0.293, 0.804] 

Normalized target node strength 2.659 [0.023, 1.322] 0.300* [−0.495, 0.562] 0.408 [−0.320, 0.768] 0.360 [−0.365, 0.710] 

Dysfunctome 0.416 [−0.313, 0.776] 0.805 [−0.163, 0.997] 1.421 [−0.068, 1.156] 0.319* [−0.427, 0.636] 

Normalized dysfunctome 0.574 [−0.893, 0.231] 0.334 [−0.668, 0.399] 0.306* [−0.596, 0.463] 0.298* [−0.522, 0.534] 

Clustering coeÿcient 1.086 [−0.111, 1.082] 0.340 [−0.391, 0.679] 0.809 [−0.162, 0.999] 0.492 [−0.840, 0.267] 

Global eÿciency 2.719 [0.026, 1.328] 0.322* [−0.422, 0.642] 0.313* [−0.620, 0.441] 0.317* [−0.629, 0.433] 

Modularity 5.321* [0.117, 1.505] 0.370 [−0.354, 0.724] 0.304* [−0.471, 0.588] 0.300* [−0.567, 0.490] 

Small worldness 7.620* [0.165, 1.601] 1.640 [−0.047, 1.194] 0.384 [−0.340, 0.742] 0.334 [−0.400, 0.667] 

Divergent naming 3.610* [0.065, 1.403] 0.995 [−0.126, 1.058] 0.363 [−0.362, 0.714] 0.507 [−0.259, 0.851] 

*Moderate evidence with BF10 > 3 or <1/3, **Strong evidence with BF10 > 10 or <1/10, RI, restoration in-phase; EI, enhancement in-phase; EA, enhancement anti-phase. 

performance than EA condition (BF10 = 4.413), and close-to-
moderate evidence of larger post-treatment increase in modularity 
than sham condition (BF10 = 2.401) 

Lastly, Bayesian Pearson’s correlations were performed to 
investigate relationship between changes in dierent outcome 
variables observed in RI condition (Table 4). There is anecdotal 
evidence supporting that the change in divergent naming is 
negatively correlated with the change in normalized connectivity in 
the target dysfunctome (r = −0.503, BF10 = 1.123). Notably, there 
is moderate evidence supporting that the change in normalized 
connectivity in the target dysfunctome is also negatively correlated 
with the change in modularity (r = −0.677, BF10 = 3.781). 
Although preliminary, these findings suggest that a decrease in the 
connectivity in the target dysfunctome relative to the rest of the 
brain network may be associated with an increase in modularity 
and improvement in language performance. 

4 Discussion 

This two-phase study aimed to investigate the therapeutic 
eects of a single-session individualized dual-site in-phase tACS by 
utilizing a novel dysfunctome-based, data-driven method to select 
individualized stimulation target for PWA. In the first phase, we 
successfully identified an AQ-predictive theta dysfunctome from 
the task-dependent EEG data of a group of PWA performing 
divergent naming task. Based on the proposed dysfunctome-based 
individualized targeting method, we selected two individualized 
stimulation targets for each individual, one based on restoration 
principle, one based on enhancement principle. Particularly, 
restoration-based targeting selects a centralized edge within 
the target dysfunctome which is weakly-connected within the 
individual’s dysfunctome profile, whereas enhancement-based 
targeting selects a strongly-connected target edge instead. We 
observed that both selection principles successfully identified 
dierent target edges for participants with varying clinical profiles. 
This reflects the significant diversity in network patterns among 

PWA, which also underscores the importance of individualized 
brain stimulation in this population. 

In the second phase, a single-session double-blinded sham-
controlled trial was conducted to the same group of PWA 
to examine the immediate neuromodulatory eects of the 
individualized dual-site tACS with concurrent SLT. In summary, 
we found that sham condition did not result in significant 
improvements in any neurological or language outcome measures, 
indicating that SLT combined with the placebo eect alone was 
insuÿcient to induce meaningful changes in brain networks 
or language performance after a 30-min dosage. Among all 
conditions, only RI stimulation produced substantial positive post-
treatment changes across a range of neurological and language 
outcome measures including target node strength, global eÿciency, 
modularity, small-worldness, and divergent naming performance. 
RI stimulation also induced larger increase in modularity than 
sham stimulation and larger improvement in divergent naming 
than EA stimulation. Although the small sample size and single-
session dosage may substantially reduce the detectability of 
treatment eect, the observed trend indicates that dual-site high-
definition in-phase tACS using this novel targeting approach can 
induce positive language facilitation eect alongside with global 
network reorganization. 

4.1 Language facilitation involves 
network reorganization rather than 
dysfunctome restoration 

First and the foremost, the current findings suggest that 
the primary neural engagement eect of dual-site HD tACS is 
increasing the centrality of the target sites. Yet, directing neural 
resources to dierent target sites selected by restoration principle 
and enhancement principle shows dierential network modulatory 
eects, in which restoration-based targeting has superior eect 
over enhancement-based targeting. The current target selection 
methods select target edge with high betweenness, which typically 
represents a connection with a high likelihood of linking two 
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connector hubs in the network (Sporns et al., 2007). In RI 
stimulation, a centralized-but-weakly-connected edge within an 

individual’s dysfunctome was selected, which likely represents 
two weakened connector hubs were selected. Since small-world 

architecture depends on eective integration between connector 

hubs from dierent network modules (Fornito et al., 2016), 
enhancing the relative centrality of these weakened connector 

hubs–through certain mechanisms of brain adaptability–appears 
to facilitate the reorganization of the overall functional network 

architecture. This reorganization results in a more integrated, 
specialized, and small-world-like network (i.e., a highly clustered 

yet integrated architecture), which may facilitate language 

processing. However, it is important to note that RI stimulation 

did not increase the connectivity of the target edge nor the 

average connectivity within the target dysfunctome. Together 

with the findings from correlational analysis showing a trend of 
negative association between the target dysfunctome and divergent 
naming performance as well as modularity, we hypothesize 

that RI stimulation may facilitate language by “redistributing” 

neural connections from the dysfunctome to other regions and 

facilitating improvement in global network properties. Further 

investigation is needed to verify this hypothesis. The potential 
causal link between the increases in global network properties 
such as global eÿciency, modularity and small-worldness in the 

theta network and the language facilitative eect in PSA has 
not been previously reported in the literature. Nevertheless, this 
finding aligns with previous studies showing that people with 

aphasia exhibit decreased small-worldness in the theta network 

FIGURE 7 (Continued) 
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FIGURE 7 

(A,B) Sequential analysis plots of Bayesian paired-sample t-tests of all outcomes. Variables with BF10 > 3 are highlighted in green, indicating 
substantial evidence favoring alternative hypothesis. Variables with BF01 > 3 are highlighted in red, indicating substantial evidence favoring null 
hypothesis. 

compared to healthy controls in EEG (Sims et al., 2016; Dattola 
and La Foresta, 2022; Mehraram et al., 2023). These studies 
suggest that the ubiquitous small-world network architecture 
observed in healthy brain networks (Bullmore and Sporns, 2009) 
may also play a critical role in supporting language processing 
in PWA. Although not focused on global network properties, 
previous findings also suggested that theta oscillatory network 
in general was linked to language processing (Bastiaansen et al., 
2005; Murphy, 2016) and aphasia recovery (Nicolo et al., 2015). 
For example, Nicolo et al. (2015) demonstrated that post-stroke 
language recovery was correlated with increased node degree in 
right Broca homologue within the theta EEG network independent 
of age, initial lesion size and clinical severity. The current findings 
further reinforce the notion that enhancing the global network 
properties in theta network may improve language performance 
in PWA. However, further investigation is needed to verify this 
hypothesis. 

This finding challenges the neurological feedback cycle we 
hypothesized. In other words, the dysfunctome helps to identify 

a stimulation target that does not engage the dysfunctome itself. 
It seems counter-intuitive, but this observation leads to the 
hypothesis that dysfunctome examination aids in pinpointing key 
hubs in the network, but recovery is likely based on certain 
functional reorganization “beyond” the dysfunctome rather than 
restoration of the dysfunctome itself. 

Alternatively, EI stimulation, which targets a centralized-and-
strongly-connected edge within an individual’s dysfunctome, likely 
selects two intact connector hubs. These connector hubs hold 
the characteristics of being centralized in the aphasia-predictive 
dysfunctome, while being strongly connected at the same time, 
which might represent the key regions of the optimal neural 
pathways within the individual’s adaptive reorganized network after 
stroke. Therefore, enhancing the centrality of these intact hubs was 
not necessarily linked to substantial restoration of global network 
properties, which may undermine the overall language facilitative 
eect. 

The exact mechanisms underlying both stimulation approaches 
remain unclear. However, both observations align with the 
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FIGURE 8 

Bayesian one-way repeated-measure ANOVA of post-treatment change comparison across conditions. RI, restoration in-phase; EI, enhancement 
in-phase; EA, enhancement anti-phase. 

hypothesis that language recovery in PSA relies on a complex, 
distributed network that integrates both the residual canonical 
language regions and newly-recruited domain-general regions 
(Sims et al., 2016; Kiran and Thompson, 2019; Kiran et al., 
2019). In fact, research indicates that greater tissue damage 
within canonical language regions reduces the potential for their 
restoration, thereby increasing dependence on extra-brain regions 
for recovery (Turkeltaub et al., 2011; Sims et al., 2016). This may 
explain why disrupted connections within the EEG dysfunctome 
show limited potential for restoration and are less responsive 
to stimulation. Therefore, it is hypothesized that rather than 
attempting to restore the dysfunctome itself, redirecting neural 
communication to broader, intact brain regions may oer greater 
potential for facilitating language recovery. 

4.2 Differential effects of in-phase and 
anti-phase stimulations 

It is also worth noting that the anti-phase stimulation 
(EA condition) produced small but noticeable increases in the 

connectivity of the target dysfunctome, whereas such an increase 
was not observable in other conditions. As discussed earlier, 
improving the connectivity within the dysfunctome was not 
associated with language facilitative eect, however, these results 
indicate that anti-phase stimulation might have more focal 
modulatory eect to the target network. 

Although earlier studies proposed that in-phase stimulation 
synchronizes oscillatory activities between brain regions and 
anti-phase stimulation decouples them (Polanía et al., 2012; 
Helfrich et al., 2014), more recent studies presented conflicting 
findings that anti-phase stimulation may actually increase 
synchronization between brain regions (Salamanca-Giron et al., 
2020; Zhang et al., 2023), because the anti-phase waveforms 
may align with the optimal wave propagation lag between 
distant brain regions (Salamanca-Giron et al., 2020). Zhang 
et al. (2023) proposed that “zero-lag synchronization” may 
not always be beneficial to signal processing. This raises 
an important consideration that dual-site tACS aiming to 
modulate connectivity should first determine whether the 
connection of interest involves “zero-lag synchronization” 
or “phase-lag synchronization.” Selecting the appropriate 
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TABLE 4 Bayesian correlation between post-treatment change values of outcome measures in RI condition. 

Variables Variables Pearson’s r BF10 

 Divergent naming  Normalized dysfunctome −0.503 1.123 

 Target edge  Normalized target edge 0.982 64415.199 

 Target edge  Target node strength 0.658 3.183 

 Target edge  Normalized target node strength 0.532 1.313 

 Target edge  Dysfunctome 0.875 83.498 

 Target edge  Normalized dysfunctome 0.754 8.834 

 Normalized target edge  Target node strength 0.585 1.828 

 Normalized target edge  Normalized target node strength 0.589 1.877 

 Normalized target edge  Dysfunctome 0.806 18.962 

 Normalized target edge  Normalized dysfunctome 0.787 14.132 

 Normalized target edge  Global eÿciency 0.512 1.178 

 Target node strength  Normalized target node strength 0.738 7.230 

 Target node strength  Dysfunctome 0.662 3.313 

 Normalized target node strength  Clustering coeÿcient 0.595 1.948 

 Normalized target node strength  Small worldness 0.532 1.317 

 Dysfunctome  Normalized dysfunctome 0.765 10.191 

 Normalized dysfunctome  Modularity −0.677 3.781 

 Clustering coeÿcient  Small worldness 0.757 9.181 

Only correlations with evidence favored alternative hypothesis are displayed. 

stimulation approach that aligns with the specific connection 
type could optimize the target engagement eect. In the 
current study, phase lag index was used to model the target 
dysfunctome, which might explain why anti-phase stimulation 
had an comparative advantage in increasing the connectivity 
in the target dysfunctome. Another potential explanation 
lies in the dierential directionality of wave propagation 
induced by in-phase and anti-phase stimulation. A recent 
study by Alekseichuk et al. (2019) demonstrated that anti-
phase tACS generates unidirectional electric fields at any 
given moment, with the propagation direction alternating 
over time between stimulation sites. In contrast, in-phase 
tACS consistently produces bidirectional electric fields at 
any given moment. Together with the observations in 
the current study, it is possible that the unidirectional 
anti-phase stimulation favors the time-lag propagation 
between the target sites, but this restricted the connectomic 
modulatory eect within the dysfunctome, which is not 
language facilitative (moderate evidence supported that RI 
had greater language facilitative eect than EA). In contrast, 
the bidirectional in-phase stimulation could not strengthen 
the “phase-lag synchronization” within the dysfunctome, 
but it allowed greater connectomic modulatory eects 
outside the dysfunctome, which in turn facilitated functional 
reorganization, resulting in language facilitation. Nonetheless, 
the current study has limited ability to investigate the exact 
neuromodulatory mechanisms of in-phase and anti-phase 
stimulation on EEG connectome in group-level analysis 
due to the individualized nature, thus, this hypothesis needs 
further verification. 

4.3 Strengths, limitations, and future of 
the current individualized targeting 
methodology 

4.3.1 Strengths 
The current individualized targeting methodology was based 

on a combination of group-level dysfunctome identification, 
individual dysfunctome examination, and edge prioritization by 
pre-defined target selection principles. This method had proved 
its ability to select dierent individualized targets for dierent 
individuals in the heterogeneous sample we recruited. 

Compared to the existing theory-driven individualized 
targeting methods, this approach does not rely on pre-defined 
targets identified by other studies or established theories. Instead, 
it employs a data-driven strategy, which is especially advantageous 
for diseases with heterogenous subtypes that are diÿcult to 
categorize based on the multifaceted clinical features. Additionally, 
the state-dependent nature of this method is beneficial for 
conditions that involve intraindividual changes over time, such 
as stroke or progressive diseases. Furthermore, this method ranks 
potential stimulation candidates using a priority index, making it 
particularly useful when certain stimulation locations are medically 
contraindicated (e.g., due to craniectomy, surface wounds, or 
metallic implants). In such cases, the next prioritized target that is 
suitable for stimulation can be selected. 

4.3.2 Limitations 
Despite its strengths, this method has several limitations. The 

small sample size in this study limits the generalizability of the 
results, especially when the sample was heterogenous. Also, the 
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use of EEG sensor-space network as neural measurement instead 
of using source-space approaches could undermine the spatial 
precision of modeling and stimulation. Yet, the main purpose 
of this study was to demonstrate the feasibility of this novel, 
low-computation-loading, EEG sensor-space dysfunctome-guided 
targeting for dual-site tACS. This simple methodology builds 
on the assumption that EEG sensor-space and tACS can form 
a causal feedback cycle without understanding the underlying 
neural sources. According to our current findings, we support 
the feasibility of this methodology by demonstrating reasonable 
identification of individualized target, safety and tolerability, 
successful blinding, preliminary target engagement eect, and 
preliminary clinical benefit. Another limitation concerns the test-
retest reliability of EEG networks. If certain edges exhibit unstable 
connectivity over time, the selected target may vary significantly 
across time points. To address this issue, regular reassessments or a 
closed-loop system for online target selection may be necessary to 
optimize the state-dependent target selection process. 

4.3.3 Future directions 
As the first attempt in using EEG dysfunctome to inform tACS 

target selection, there are several aspects of this methodology that 
require further exploration. First, the choice of which dysfunctome 
to target can induce vastly dierent eects, as the modulatory 
eects of tACS are considered to be state-dependent (Feurra et al., 
2013). In other words, the participant’s engagement in a specific 
brain state can significantly influence the outcomes of tACS. In the 
current study, an AQ-predictive dysfunctome was identified during 
a divergent naming task and used as the target. However, because 
AQ is a multifaceted clinical measure, it remains unclear whether 
the selected SLT used in the study could eectively prime a brain 
state that favors the modulatory action of tACS. To optimize the 
use of dysfunctome-based tACS, it would be beneficial to identify 
a target dysfunctome under a focused and reproducible brain 
state. For example, a “naming-predictive” dysfunctome identified 
during a naming task could serve as the target. In this scenario, 
the dysfunctome-based tACS could be paired with SLT specifically 
designed to focus on naming. This approach would better align the 
therapy with the target dysfunctome, ensuring optimal eects from 
the tACS. 

Second, the optimal edge prioritization method also remains 
unclear. For example, using edge betweenness centrality as 
a priority indicator is just one of many possible approaches for 
determining the relative importance of an edge within the network 
(Bröhl and Lehnertz, 2022). The choice of priority indicator can 
significantly influence the identification of stimulation targets, 
meaning that the targets could vary substantially if a dierent 
indicator were used. This highlights the need for further 
investigation into the most eective priority indicators for target 
selection. 

Third, this study did not demonstrate that tACS could alter 
the connectivity of the target edge or dysfunctome following a 
single session. Instead, substantial changes were observed in the 
target node strength across all three real stimulation conditions, 
highlighting that tACS has a more consistent target engagement 
eect on node strength. From this perspective, it may be worth 
investigating whether target selection should focus on nodes rather 
than edges. Nonetheless, the current study only tested single-
session dosage, it is also possible that dysfunctome change requires 
longer-term treatment and higher dosage. 

Lastly, as this study shows that tACS can modify global network 
properties to achieve clinical facilitative eects, it would be valuable 
to explore network-property-based target selection methods. For 
example, selecting targets that could possibly maximize a certain 
symptom-related global network property within the network 
could be a promising direction for future research. 

5 Conclusion 

This study was the first-of-its-kind, dysfunctome-based, 
data-driven individualized tACS clinical trial. The findings 
suggested that combining EEG dysfunctome identification, 
individual dysfunctome examination, and priority-based targeting 
principles can eectively guide the selection of individualized 
stimulation targets for dual-site in-phase tACS. A single-session of 
individualized in-phase tACS adopting restoration-based targeting 
principle successfully enhanced the target node strength and global 
network properties, and facilitated language performance in people 
with PSA. The language facilitation observed in restoration-based 
stimulation is potentially attributable to network reorganization 
following elevation of the functional role of the weakened 
connector hubs. This study highlights the significant potential of 
tACS in modulating functional networks and provides a novel 
methodology for the emerging field of individualized connectomic 
tACS. Although the small sample size limits external validity, 
the current feasibility study proves that this approach holds 
potential for application in longer-term treatment and in various 
network-based disorders. 
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