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Introduction: The e�ectiveness of neural interfacing devices depends on the

anatomical and physiological properties of the target region. Multielectrode

arrays, used for neural recording and stimulation, are influenced by electrode

placement and stimulation parameters, which critically impact tissue response.

This study presents a multiscale computational model that predicts responses of

neurons in the hippocampus—a key brain structure primarily involved in memory

formation, especially the conversion of short-term memories into long-term

storage—to extracellular electrical stimulation, providing insights into the e�ects

of electrode positioning and stimulation strategies on neuronal response.

Methods: We modeled the rat hippocampus with highly detailed axonal

projections, integrating the Admittance Method to model propagation of the

electric field in the tissue with the NEURON simulation platform. The resulting

model simulates electric fields generated by virtual electrodes in the perforant

path of entorhinal cortical (EC) axons projecting to the dentate gyrus (DG) and

predicts DG granule cell activation via synaptic inputs.

Results: We determined stimulation amplitude thresholds required for granule

cell activation at di�erent electrode placements along the perforant path.

Membrane potential changes during synaptic activation were validated against

experimental recordings. Additionally, we assessed the e�ects of bipolar

electrode placements and stimulation amplitudes on direct and indirect

activation.

Conclusion: Stimulation amplitudes above 750 µA consistently activate DG

granule cells. Lower stimulation amplitudes are required for axonal activation and

downstream synaptic transmission when electrodes are placed in the molecular

layer, infra-pyramidal region, and DG crest.

Significance: The study and underlying methodology provide useful insights to

guide the stimulation protocol required to activate DG granule cells following the
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stimulation of EC axons; the complete realistic 3D model presented constitutes

an invaluable tool to strengthen our understanding of hippocampal response to

electrical stimulation and guide the development and placement of prospective

stimulation devices and strategies.

KEYWORDS

extracellular electrical stimulation, admittance method, electrode design, multiscale

modeling, neuron

1 Introduction

Interfacing with neural systems often employs invasive

electrode-based methods for stimulation and recording. The

development of implantable medical devices using multi-electrode

arrays (MEAs) marks a significant achievement in neural

engineering. MEAs enable the recording and stimulation of a

large number of neurons with increased spatial and temporal

precision (Zhou et al., 2015; Hsiao et al., 2015; Heuvelmans et al.,

2024; Spira and Hai, 2013), enabling more refined modulation of

neuronal activity and paving the road toward the development

of hippocampal memory prostheses (Hsiao et al., 2015). Recent

advancements in medical implants and MEAs in particular are

trending toward miniaturization and increased electrode density

(Spira and Hai, 2013; Cogan, 2008; Brunner et al., 2011). Yet,

maximizing the benefits of these technological advances would

strongly benefit from a deep understanding of the targeted

neural system’s electrophysiology and anatomy, the topology of

the neural networks targeted, and the interactions between the

exogenous electric field applied and the neural tissue. Taking into

consideration this comprehensive knowledge constitutes a great

resource toward optimizing MEA design, determining optimal

electrodes placement, orientation, electrode number and density,

and stimulation patterns to elicit the desired neural responses.

The hippocampus plays a crucial role in learning and memory

formation. Damage to the hippocampal region is known to result

in memory impairment, dramatically affecting quality of life

(Mitchell et al., 2010). Ongoing research is focused on developing

a hippocampal prosthesis aimed at functionally replacing parts

of the hippocampal neural circuitry that no longer function

appropriately, with substantial progress made in predicting and

replicating the spatiotemporal patterns of activity as they propagate

in the hippocampus (Berger et al., 2011). Additionally, recent

research indicates that patterns of electrical stimulation may also

have therapeutic potential for treating cognitive disorders (Wu

et al., 2024).

Given the intricate anatomy of the hippocampus, a priori

investigation of the consequences of a specific MEA design, and

more specifically the placement of the electrodes with respect to

the neurons to be activated may help identify the optimal range

for stimulation parameters and overall strategy to use to elicit

the desired neural response. Recent advances in computational

methodologies, along with increased computational power have

led to the development of highly predictive models which have

successfully informed the design of several prosthetic devices and

examined the impacts of exogenous electrical stimulation (Loizos

et al., 2016a; Farzad et al., 2023; Paknahad et al., 2021; Loizos

et al., 2016b; Howell et al., 2014; Howell and Grill, 2014; Tsai

et al., 2012; Howell et al., 2015; Martens et al., 2011; Mcintyre and

Grill, 1999; Miocinovic et al., 2009; Foutz and McIntyre, 2010) and

evaluated the precision of modern methodologies and parameters

(Grill, 1999; Howell and McIntyre, 2017; Butson and McIntyre,

2005). Although these models have provided valuable insights,

achieving sufficient biological realism specific to the hippocampal

region is essential for accurately evaluating the electrode arrays’

ability to induce the spatiotemporal patterns of neuronal activation

desired in this intricate neural system. To address this, we have

developed a multiscale model that integrates a highly realistic

large-scale neuronal network of the rat hippocampus (Yu et al.,

2014) with stimulating and/or recording electrodes inserted in the

tissue using an extensive, three-dimensional Admittance Method-

NEURONmodel (Loizos et al., 2016a; Farzad et al., 2023; Paknahad

et al., 2021; Loizos et al., 2016b; Hines and Carnevale, 1997; Cela,

2010; Bingham et al., 2018; Eberdt et al., 2003).

At the tissue level, accurately representing the extracellular

space is crucial to accurately predict the spatial distribution of

current within tissue in a stimulating or recording system. Hence,

accurate dielectric properties are essential for discretizing the

space into circuit components and creating distinct anatomical

representations of the tissue (Grill, 1999; Howell and McIntyre,

2017). Grill and McIntyre have shown that Rattay-style activating

functions fall short in accurately predicting action potential

initiation sites, thus highlighting the significant advantages of using

detailed neural models for neurons (Mcintyre and Grill, 1999).

Numerous computational models of neurons have been developed

for the brain structures of interest, each with varying degrees

of realism. Yet, it remains unclear whether simpler models than

those described in this paper can predict neural circuit responses

to extracellular electrical stimulation with the desired level of

accuracy (Herz et al., 2006). Given that different neural components

(dendrites, somas, and axons) are differentially activated, and that

axonal chronaxie is significantly shorter than somatic chronaxie

(by a factor of up to 40), using detailed and realistic axonal

morphologies appears of paramount importance. This approach

should yield better predictions of the spatial and anatomical

specificity of the neural activity in response to electrical stimulation

(Mcintyre and Grill, 1999; Nowak and Bullier, 1998).

The hippocampus is a highly organized structure with distinct

anatomical pathways, including the trisynaptic circuit (EC → DG

→ CA3 → CA1), which supports episodic memory encoding,

spatial navigation, and context discrimination (Andersen et al.,

1971; Amaral and Witter, 1989). The entorhinal cortex, which

provides the major cortical input to the hippocampus, can

be functionally divided into the medial (MEC) and lateral
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(LEC) subdivisions. These regions contribute differently to

hippocampal processing: MEC neurons convey spatial and path

integration signals (e.g., grid cells, head-direction cells), while

LEC neurons primarily encode object identity and non-spatial

sensory information (Deshmukh and Knierim, 2011; Knierim et al.,

2014; Hargreaves et al., 2005). Their axons project to distinct

laminar zones within the molecular layer of the dentate gyrus,

enabling region-specificmodulation of granule cell activity. Despite

extensive computational modeling of CA1 and CA3 pyramidal

cells, relatively few studies focus on the dentate gyrus and its input

layer under the influence of localized stimulation. Prior models of

this region have largely depended on stochastic representations of

entorhinal input activity, such as probabilistic firing of axons, to

estimate granule cell responses across different laminar domains

(Aimone et al., 2011; Santhakumar et al., 2005). However, these

approaches do not capture the spatially heterogeneous distribution

of extracellular electric fields that result from targeted electrical

stimulation. To address these limitations, our model integrates

a circuit-based volume conductor approach with high spatial

resolution, enabling more realistic simulations of electrical field

spread and its localized impact on dentate circuitry.

Entorhinal cortical inputs provide the primary excitatory

drive to the dentate gyrus, conveying sensory and contextual

information from the neocortex (Witter et al., 2000). Granule

cells, in turn, transform these inputs through sparse firing and

high activation thresholds, enabling effective pattern separation

(Jung andMcNaughton, 1993; Rolls, 2010). This selective activation

constitutes an opportunity for examining the initial stages of

hippocampal signal flow and allows for localized control over

stimulation, making it particularly useful for studying the effects

of spatially targeted neuromodulation (Aimone et al., 2011).

Our model constitutes an ideal framework to perform these

investigations as it integrates both exogenous electrical stimulation

and morphologically realistic neural network.

Within this context, this study systematically explores the

activation of realistic entorhinal cortical (EC) axons in the

perforant path resulting from electrical stimulation by electrodes

placed in the perforant path, which, in turns, indirectly activate

granule cells in the dentate gyrus. By simulating different

electrode locations and stimulus amplitudes, we investigate how

both anatomy and stimulus strength individually and collectively

influence granule cell responses.

2 Methods

The neural response to extracellular electric fields is modeled

using a computationally realistic representation of a rat dentate

gyrus (DG). This specific model focuses on over 8,000 entorhinal

cortical (EC) axons that project onto 11 adjacent granule cells

(GC) (located, on average, within 75 µm of each other). The

various methodologies and parameters used in the development

of this model are described in prior studies (Hendrickson et al.,

2015; Tamamaki and Nojyo, 1993). The major simulation stages

are the following: (1) A 3D model of hippocampal tissue is used

to calculate the electric field distribution resulting from bipolar

electrode stimulation; (2) this field is then applied to the different

segments of the neuron models, which activation is computed to

determine the neural response to the electrical stimulation.

2.1 Computational tools and infrastructure

The admittance method (Loizos et al., 2016a; Farzad et al.,

2023; Paknahad et al., 2021; Loizos et al., 2016b; Bingham et al.,

2018; Eberdt et al., 2003) determines the field distribution, while

neural network simulations are performed using compartmental

models within the NEURON simulation environment (version 7.7).

The model runs in parallel on a computing cluster with 4,040

processors, supported by the High-Performance Computing and

Communications Center at the University of Southern California.

The analysis of the axonal projections to a single GC required 40

nodes corresponding to 2,000 CPUs and 1 GB of RAM per CPU.

2.2 Establishing anatomical reference
coordinates

In 2018, Bingham et al. (2018) developed a computational

model that simulates the effects of electrical stimulation in-vitro on

a 400 µm thick hippocampal slice. The current model builds upon

this and extends the 2D extruded slide model to include the entire

septotemporal extent of the dentate gyrus, with granule cell (GC)

neurons and their corresponding dendritic morphologies.

To do this, we use a detailed 3D hippocampal model obtained

by serial tracing of high-resolution thin histological sections of a

rat brain, combined with dense digital embedding of reconstructed

neuronal morphologies (Ropireddy et al., 2012). This 3D model

allows us to quantify the volumetric distributions and dendritic

occupancy within the hippocampal layers and subregions, which

are mapped to standard brain coordinates and hippocampal axes.

Although other well-established rodent brain atlases, like those by

Swanson, Paxinos or Kjonigsen, are available, we chose to use the

Ropireddy atlas for this work because it offers marginally higher

resolution and granularity throughout the entire hippocampal

extent and provides more detailed region demarcation within the

hippocampus (Kjonigsen et al., 2011; Petrovich et al., 2001; Vogt

and Paxinos, 2014).

Furthermore, we employ this detailed 3D hippocampal model

as the foundational tissue volume for constructing the AM-

NEURON multiscale simulation. To integrate the anatomical

data into the simulation environment, we convert these regions

into a voxelized format. By accurately assigning to each voxel

the corresponding resistivity value, we create a precise 3D

representation of the hippocampal tissue, illustrated in Figure 1.

The resulting three-dimensional voxel grid is then utilized as the

tissue model in the AM-NEURON multiscale simulation, enabling

detailed computational modeling of neuronal activity within this

anatomically accurate hippocampal tissue model.

2.3 Admittance method model
construction and NEURON interface
(AM-NEURON)

The Admittance Method (AM) was selected over other

techniques like the Finite Element Method (FEM) because it

offered specific advantages pertinent to this study. In particular,

this method is simpler to implement than FEM. Although
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FIGURE 1

(A) Illustration depicting electrical stimulation of the hippocampal region with a diagram of the hippocampo-entorhinal circuit, illustrating the main

trisynaptic pathway EC → DG → CA3 → CA1. CA, cornu ammonis; DG, dentate gyrus; EC, entorhinal cortex. (B) Serial tracing of high-resolution thin

histological sections of a rat brain (Ropireddy et al., 2012) has been converted into (C) the three-dimensional voxel grid which is utilized as the tissue

model in the AM-NEURON multiscale simulation, enabling detailed computational modeling of neuronal activity within this anatomically accurate

hippocampal tissue model. Experimentally obtained resistivity values are applied to cell body regions (blue) and molecular layers (remaining of the

model space, not shown) of DG (López-Aguado et al., 2001).

FEM supports non-uniform grids, its computational complexity

increases with more independent current sources. In contrast, an

AMmodel may efficiently includemultiple current sources, making

it practical for modeling multi-electrode arrays and estimating

feedback potentials. Second, representing the model space as an

electrical circuit offers an intuitive way to model bulk neural

tissue. This approach aligns naturally with neuron models, which

also use circuit elements, enabling voltages within the volume

conductor to serve as external inputs to neurons. As a result,

both the tissue and neural networks are described within a unified

circuit framework.

To calculate the extracellular voltage generated by electrical

stimulation, we build a model of hippocampal tissue along with

a bipolar stimulating electrode. A highest resolution of 10 µm

is chosen to provide a reasonable amount of spatial detail for

accurately capturing axonal compartments. A coarser resolution

(up to 640 µm) is used in bulk tissue surrounding the model to

reduce computational load. Each voxel is assigned specific material

properties, as described in the following section. As current is

injected into the virtual electrode, we compute the voltage at each

voxel node within the 3D tissue model using AM. For further

details pertaining to the AM method, we refer the reader to Loizos

et al. (2016a), Farzad et al. (2023), Paknahad et al. (2021), Loizos

et al. (2016b), Bingham et al. (2018), and Eberdt et al. (2003). The

multicompartmental neuron morphologies that reside within the

3D tissue model receive the computed voltages as voltage applied

extracellularly on their membrane. More specifically, we compute

the extracellular voltage at each neuronal compartment as a linear

interpolation of the voltage values at the nodes that define the

voxel that contains a specific compartment and apply the result

to that specific compartment. These calculations are done for all

compartments of all neurons in the network.

Given that the AM and NEURON models occupy the same

coordinate space, the voltages from the AM are applied to

the NEURON model to drive the neuronal compartments, as

shown in Figure 2. By adding voltage sources in series with

each membrane, extracellular potentials can be introduced to the

neuronal compartments in the NEURON model, as described by

the following relationship (Equation 1):

Im(t) =
dVext

dt
× Cm (1)

Where Im is the transmembrane current resulting from

an extracellular potential (Vext) that charges the membrane

capacitance (Cm).
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FIGURE 2

A granule cell compartmental model is depicted as a cable model, with compartments linked in series or parallel based on their morphology (A, B).

Each compartment is modeled as a circuit. (C) This diagram illustrates how the neuron compartmental model is integrated in the tissue simulated

with the Admittance Method. Notably, this diagram shows the simple case where the two (teal and orange) compartments perfectly align with nodes

of the voxeled AM model. In reality, compartments may reside at arbitrary positions within the computational volume. In such cases, the voltages

from surrounding nodes are used to interpolate the extracellular potential to be applied at the exact position of each compartment; (D) illustrates the

circuit equivalent representation of a two-compartment neuron model.

2.4 Hippocampal tissue resistivity

The voxel model was discretized based on the resistive

characteristics of hippocampal tissue at low frequencies (under

10 kHz). In the absence of impedance data for the dentate

gyrus, resistivity values were assigned using measurements from

the CA1 region. These measurements were conducted using

the four-electrode impedance method by Lopez-Aguado, Ibarz,

and Herreras (López-Aguado et al., 2001). These measurements

revealed resistivity values of∼2.9�·m in themolecular regions and

6.4� ·m in the cell body regions. Consequently, the computational

model was simplified by dividing the hippocampus into two distinct

regions: one representing the molecular area and the other the cell

body area, each with uniform resistive properties based on these

findings. The resistivity values utilized in the model correspond to

those documented by Lopez-Aguado et al. and are illustrated in

Figure 1.

Electrical stimulation was modeled by incorporating a

pair of insulated microwire electrodes along with a reference

electrode, following the experimental setup described by Soussou

et al. (2006), as depicted in Figure 1. The electrodes, each

with a diameter of 50 µm, had the resistivity of platinum

(10−8 � ·m).

The electrodes were encased in insulation that was

20 µm thick, possessing the dielectric properties of Teflon

(1016 � ·m).

A bipolar current source was used, with the anode in

one microwire and the cathode in the other. Simulations were

performed using a biphasic, square-wave pulse with a 1 ms

duration. The results were then interpolated using tri-linear

methods and applied to each segment of each neuron in the large-

scale compartmental (NEURON) model. This process charges the

membrane, generating intracellular currents, and the response of

each cell in the network is then computed.

2.5 Granule cells (GC) and synapses

TheGCmodels were created using the L-NEURON tool (Ascoli

and Krichmar, 2000), with structural parameters derived from a

database of GC morphological reconstructions to generate unique

structures (Williams and Matthysse, 1983). Uniform compartment

lengths were maintained, and the current models include the

dendrites and somas, excluding the axons.

Biophysical parameters for the GCs were sourced from

previously established computational models of the dentate gyrus

(Santhakumar et al., 2005; Yuen and Durand, 1991). These

parameters detail the ion channel types, densities, and distributions

within the neuron model. The electrophysiological characteristics

and parameters of the GC models have been validated in earlier

research, as presented in Table 1 (Hendrickson et al., 2015).

EC axons connect to the GCs through 1900–2500 synapses

(Eberdt et al., 2003) evenly located in the outer and middle thirds

of the molecular layer, corresponding to the lateral perforant

path and medial perforant path axons, respectively. When an

action potential is triggered, it propagates down the axon and

reaches the presynaptic terminal, leading to the release of excitatory

neurotransmitters (in this case glutamate). The neurotransmitters

then bind to ionotropic receptors triggering the opening of their

associated channels, leading to a temporary increase in synaptic

conductance and a depolarizing flow of ions. We model the

conductance time course (g) using the difference between two

exponential functions (Equation 2) (Tang et al., 2023):

g = e
−t
τ1 − e

−t
τ2 (2)

Notably, in this model, the postsynaptic response between

entorhinal axons and GCs is mediated solely by AMPA receptors.

The τ1,2 are 1.05 and 5.75 ms for both medial (MEC) and lateral

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2025.1638002
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Farzad et al. 10.3389/fncom.2025.1638002

TABLE 1 Passive and active properties for dentate granule cells.

Passive property Value Mechanism Soma GCL Inner 1/3 Middle 1/3 Outer 1/3

R.M.P. (mV) -78.02 Cm (µF/cm2) 9.8 9.8 15.68 15.68 15.68

Rin (M�) 242.2 Ra (ohm-cm2) 210 210 210 210 210

Membrane time constant (ms) 34.5 Leak (S/cm2) 2.9E-4 2.9E-4 4.6E-4 4.6E-4 4.6E-4

Sodium (S/cm2) 0.84 0.126 0.091 0.056 -

Delayed Rectifier K (slow) (S/cm2) 6.0E-3 6.0E-3 6.0E-3 6.0E-3 8.0E-3

Delayed Rectifier K (fast) (S/cm2) 0.036 9.0E-3 9.0E-3 2.25E-3 2.25E-3

A-type K (S/cm2) 0.108 - - - -

L-type Ca (S/cm2) 2.5E-3 3.8E-3 3.8E-3 2.5 -

N-type Ca (S/cm2) 1.5E-3 7.4E-4 7.4E-4 7.4E-4 7.4E-4

T-type Ca (S/cm2) 7.4E-5 1.5E-4 5.0E-4 1.0E-3 2.0E-3

Ca-dependent K (S/cm2) 1.0E-3 4.0E-4 2.0E-4 - -

Ca- and V-dependent K (S/cm2) 1.2E-4 1.2E-4 2.0E-4 4.8E-4 4.8E-4

Tau for decay on intracell. Ca (ms) 10.0 10.0 10.0 10.0 10.0

Steady-state intracell. Ca (mol) 5.0E-6 5.0E-6 5.0E-6 5.0E-6 5.0E-6

entorhinal cortical (LEC) axons with synaptic weights of 1.17E-4

and 1.5E-4 µS, respectively (Hendrickson et al., 2015).

2.6 Axonal projections of the perforant
path from the entorhinal cortex

2.6.1 3D reconstruction of axons
The model includes detailed 3D reconstructions of the rat

dentate gyrus based on thin histological sections (Ropireddy et al.,

2012). The entorhinal cortex projects to the hippocampus through

the perforant pathway, with specific topographical distinctions

betweenmedial and lateral subdivisions. Upon reaching the dentate

gyrus, the lateral perforant path terminates in the outer third of the

molecular layer, while the medial perforant path terminates in the

middle third (Hjorth-Simonsen and Jeune, 1972;Witter, 2007). The

foundational study by Dolorfo and Amaral (Dolorfo and Amaral,

1998) served as a key reference in modeling the entorhinal cortex’s

projections to the dentate gyrus. Using retrograde dye injections

into the dentate gyrus of rats, the study identified specific regions

within the entorhinal cortex that send projections to those targeted

areas in the dentate gyrus, thus clarifying the detailed topographical

organization of these entorhinal connections.

Using the connectivity map of granule cells (GC) with perforant

path axons, we identified the corresponding axon IDs from the

medial and lateral entorhinal cortex (MEC and LEC) that connect

to the target GC.

Ultimately, it also integrates the dentate gyrus GCs and

axon arbors from the entorhinal cortex (EC), which connect

to the GCs via the perforant path, with realistic axon arbor

configurations generated using the Ruled-Optimum Ordered Tree

System (ROOTS) algorithm (Bingham et al., 2020).

The benefit of using ROOTS is that it enhances neuronal

morphology generative techniques by incorporating intricately

branched cortical axon terminals. It also excels at accurately

reflecting biological realism within model fibers, improving the

precision of predictions related to how microscale structures and

branching configurations affect spatiotemporal activity patterns

under extracellular electric fields. Figure 3 illustrates the 3D

reconstruction steps and the complexity of the first and last EC

axons that connect to a single granule cell. Of importance, there

are over 1,900 more axons in between the two presented EC axons.

2.6.2 Myelination
In the study by Bingham et al. (2018), the EC axons aremodeled

in a simplified manner, without myelination, and with a uniform

diameter. However, recent studies indicate that hippocampal axons

are, in fact, myelinated, which plays a critical role in their function

(Meier et al., 2004; Harich et al., 2008; Aberra et al., 2018; Nickel

and Gu, 2018).

Aberra et al. (2018) adapted neuronmodels from the Blue Brain

Project (Markram et al., 2015; Ramaswamy et al., 2015) to better

mirror the geometric and biophysical traits of adult rat and human

cortical neurons. These adjustments were made to more accurately

simulate their response to different types of stimulation. The model

in this study, incorporated more accurate features of EC axons

by including biophysical properties of myelinated L2/3 pyramidal

cells. The EC axon was divided into segments along its length, with

each segment consisting of a 20 µm myelinated portion followed

by a 1 µm node of Ranvier.

Neuronal morphology plays a critical role in shaping responses

to extracellular electrical stimulation. For example, axon diameter

affects the input resistance and threshold for action potential

initiation, thinner axons generally require higher field strength

to activate (McIntyre et al., 2002). Axons in the cortical region,

including those of the hippocampus, have been shown to

taper as they bifurcate and extend toward their target region

(Hu et al., 2009). Key morphological features, such as axon

diameter, tapering, branching (bifurcations), and orientation

relative to the electric field, significantly affect the degree of

polarization and likelihood of activation. These features influence

the spatial distribution of transmembrane potentials induced by

the external field and, consequently, the excitability of different
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FIGURE 3

2D to 3D Mapping steps and axon arbor reconstruction. (A) The 2D locations of the granule cells for all entorhinal cortex (EC) axons were obtained

from experimental work by (Gaarskjaer, 1978), with each axon having ∼2,500 connections, (B) B-splines were used to map the 2D data onto a 3D

model, (C) Reconstruction Using ROOTS Algorithm: Reconstructed axon arbors using the ROOTS Algorithm, ensuring accurate representation of

axonal paths (Bingham et al., 2020), (D) Synaptic Connections: Over 1,900 axons make synaptic connections to a single granule cell. The two

depicted axons illustrate the range of dentate gyrus (DG) coverage, representing the first and last EC axons connecting to the same granule cell.

compartments, highlighting the importance of incorporating

realistic morphologies in stimulation models. Based on this

understanding, the diameter of the EC axons is assumed to taper

from 1.6 µm at the origin to 0.8 µm at the final bifurcation along

the axon. This tapering reflects more accurately what is observed

in the biological structure, thereby more faithfully replicating the

resulting functional properties of these EC axons as they connect

with their target granule cells.

3 Results

After constructing the models for various stimulation sites as

depicted in Figure 4, simulations were performed to assess the

effect of multiple parameters on the granule cells response. This

process involved several steps. First, we examined the effect of

synaptic integration on GC activation, focusing on how synaptic

inputs integrate along the dendritic tree to shed some light on

how different synaptic activation profiles shape the overall cellular

response (Figure 5). Next, we validated the GC synaptic activation

model by comparing the simulation results with experimental data,

ensuring that the model reproduces the granule cell behavior as

observed experimentally when they are synaptically stimulated

(Figure 6). Finally, we simulated the application of an electric field

using the AM-NEURON model to analyze the resulting axonal

activation and the subsequent sensitivity of GC activation for

different stimulation locations and pulse amplitudes (Figures 7, 8).

This final step aimed to identify parameters that result in the most

efficient granule cell activation with minimal power consumption,

thereby yielding useful predictions to guide stimulation device

development and placement for practical applications. Further

details for each of these steps are provided in the following sections.

3.1 Granule cell synaptic integration and
model validation

To characterize granule cells (GCs) activation in response to

synaptic inputs, we first evenly place synapses on the number of

dendritic branches to generate an action potential. We examine

the effect of synaptic clustering on the GC dendrites, as well as the

consequences resulting from their location on the dendritic tree. To
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FIGURE 4

Stimulation locations in the 3D model: (A) Infrapyramidal, (B) Crest, and (C) Suprapyramidal. A biphasic, charge-balanced, and square-wave impulse

of 1 ms width was applied to evaluate the activation of EC axons that consequently leads to synaptic activation of GC.

FIGURE 5

Characterization of dendritic integration of synaptic inputs in granule cells (GCs) and corresponding GC activation threshold. The plots depict the

relationship between the number of active synaptic inputs and the probability of generating an action potential. Notably, the number of dendrites on

which these active synapses are distributed influences the activation threshold, with more distributed configurations (i.e., increased number of

dendrites) resulting in a slight decrease in the number of active synapses needed to generate an action potential. (A) Illustrates the synaptic

connections of EC axons to GC at the medial perforant path (MPP), while (B) illustrates the situation where active synaptic connections are located at

the lateral perforant path (LPP).

do so, we subdivide the dendritic tree into two regions, the middle

third in which synapses are formed with axons originating from

the medial perforant path (MPP), and the outer third region in

which synapses are formed with axons originating from the lateral

perforant path (LPP), illustrated in Figure 1.

The granule cell model consists of 21 dendritic segments on the

medial side and 20 dendritic segments on the lateral side. Figure 5A

illustrates the synaptic integration within the medial perforant

path (MPP) segments of GC, while Figure 5B shows the synaptic

integration for the lateral perforant path (LPP) segments.
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FIGURE 6

Comparison of intracellular voltages recorded experimentally and with our computational model. (A) illustrates the membrane potential response of

our GC model at the soma and in a proximal dendrite. For this result, we used 1,800 synaptic inputs distributed on 20 dendrites. (B) shows the

corresponding experimental activation profiles reported by Krueppel et al. (2011). The intracellular voltage traces obtained with the model are in

accordance with experimental recordings, indicating that our simulated GC model replicates the response of its biological counterpart, highlighting

the model’s ability to accurately predict the cell’s behavior.

FIGURE 7

Stimulation e�ects with the electrode placed in the cell body layer of the dentate gyrus at di�erent positions. (A) shows the stimulation at the Crest,

(B) at the Infra-pyramidal, and (C) at the Supra-pyramidal region. The stimulation amplitude ranges from 50 to 750 µA. The green area on the plot

represents the amplitudes at which the EC synaptic connections with GCs reach a threshold, resulting in the firing of the GCs. In addition to highlight

the e�ect of stimulation amplitude, this figure illustrates how electrode placement within these specific regions influences the activation of neural

tissue in the dentate gyrus.

FIGURE 8

Direct and indirect (i.e., synaptic) consequences of electrical stimulation when the electrode is placed in the Molecular Layer of the Dentate Gyrus at

three di�erent positions, with di�erent stimulation amplitudes. (A) shows the stimulation at the Crest, (B) at the Infra-pyramidal, and (C) at the

Supra-pyramidal region. The stimulation amplitude ranges from 50 to 750 µA. The Y axis represents the number of axons activated. The green area

on the plot represents the amplitudes at which the EC synaptic connections with GC reach a threshold, resulting in the firing of the GC.
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To assess the probability of granule cell action potential

generation, we conducted 100 simulations, each with variable

numbers of synapses activated evenly across different dendritic

segments at both MPP and LPP positions. In each simulation,

the number and location of active synapses were randomized to

capture variability in synaptic input patterns and the stochastic

nature of synaptic transmission. This probabilistic approach allows

us to quantify action potential generation likelihood across diverse

synaptic activation scenarios, accounting for inherent randomness

in synaptic responses and dendritic integration.

Figure 5 illustrates that the location and clustering properties

of active synapses affect the probability of activating the GC,

with a threshold that varies based on the number of synapses

and dendritic connections. Specifically, Figure 5A indicates that at

least 1,500 active synapses distributed on all 21 medial dendritic

segments are needed to activate the GC with a probability < 80%.

When the number of medial synapses activated exceeds 2,000,

a more clustered distribution is sufficient to result in a similar

activation (activated synapses should be distributed on more than 9

dendritic segments).

Similarly, Figure 5B demonstrates that more than 2,000

synchronous synaptic inputs distributed on at least 20 lateral

dendritic segments of the GC are required to activate the GC with

a probability < 80%. Additionally, as the number of active LPP

synapses increases, less segments are required for AP generation.

For example, with over 2,500 active synapses, 17 dendritic segments

(or more) are sufficient to elicit the same probability of activation.

To validate the response of our GC model to synaptic inputs,

we recorded the intracellular voltage at multiple locations within

the cell and compared these recordings with experimental results.

Figure 6A illustrates this validation process, showing the simulation

responses obtained at the soma (blue) and one of the dendrites

(red). The simulated voltages align with experimental findings from

a previous study conducted by Krueppel et al. (2011) obtained in

response to similar synaptic stimulation.

3.2 Granule cell activation threshold across
di�erent stimulation sites

A primary objective of this modeling effort was to identify

electrode placements and stimulation strategies to elicit a specific

response from hippocampal tissue. This study details the results of

multiple excitation sites, with the aim of determining the effect of

electrode position and stimulation amplitude on GC activation.

In this manuscript, two electrode placement setups separated

by 200 µm were evaluated. The first setup involved positioning

the electrode within the granule cell layer. This region is crucial

because it houses the densely packed cell bodies of GCs, which

are the principal neurons of the dentate gyrus. In the second

setup, electrodes are placed in themolecular layer, where significant

synaptic connections are formed between the medial and lateral

EC axons and the dendrites of the granule cells. Furthermore,

three primary stimulation sites were considered for the analysis:

the crest, infra-pyramidal, and supra-pyramidal regions, shown in

Figure 4. For each of the three electrode sites, we systematically

evaluated multiple electrode positions to identify the optimal

placement. Specifically, we measured the distance between the

electrode tip and all axons connected to the target granule cell,

selecting positions that minimized the distance from the axon

segments and measuring the mean segment diameter at these

positions. From all evaluated positions, we selected the electrode

placements where the diameter closely matched among all three

stimulation sites. This ensures a consistent comparison across

locations and maximizes proximity to first branching point. This

approach was chosen because the first bifurcation point has

the largest axon diameter, which enhances its responsiveness to

electrical stimulation as larger axons require less current to reach

the activation threshold compared to smaller ones, making them

more responsive to electrical stimuli (Rattay, 1999; McIntyre et al.,

2002; Verveen, 1962). The results indicated that, for electrodes

placed in the cell body layer, the mean distances from all axon

segments to a single granule cell were 70.86 µm at the crest, 66.84

µm at the infra-pyramidal, and 105.96 µm at the supra-pyramidal

positions, with the corresponding mean axon segment diameters

being 1.03 µm, 0.99 µm, and 1.08 µm, respectively. For electrodes

placed in the molecular layer, the mean distances were 14.35 µm

at the crest, 23.33 µm at the infra-pyramidal, and 40.86 µm at the

supra-pyramidal positions, with mean axon segment diameters of

1.1 µm, 1.04 µm, and 1.02 µm, respectively.

Figures 7, 8 present the outcomes of stimulating the GC

layer when electrodes are positioned in the GC cell body layer

and the molecular layer, respectively. The GC cell body layer

primarily contains neuron cell bodies responsible for receiving and

processing inputs, while the molecular layer is rich in dendritic

and axonal processes that facilitate complex synaptic interactions.

These figures detail the activation patterns of MEC and LEC axons,

which subsequently lead to GC response via synaptic activation at

various stimulation sites and at different stimulation amplitudes.

Stimulation with an amplitude of 600 µA at the crest electrode

site activated 88% of MEC axons and 73% of LEC axons (from

the total number of 1,909 EC axons that project to one single

GC), as shown in Figure 7A. Additionally, granule cell activation

occurs at the infra-pyramidal location with a stimulation amplitude

of 450 µA, where 85% of MEC axons and 86% of LEC axons

were activated, as depicted in Figure 7B. Furthermore, granule cell

activation is also observed at the supra-pyramidal location with a

stimulation amplitude of 750 µA, resulting in the activation of 89%

of MEC axons and 74% of LEC axons, as shown in Figure 7C.

In Figure 8A, at a stimulation amplitude of 350 µA at the crest

electrode site, 93% of MEC axons and 70% of LEC axons were

activated. Granule cell activation also occurs at the infra-pyramidal

location with a stimulation amplitude of 250 µA, where 92% of

MEC axons and 88% of LEC axons were activated, as depicted in

Figure 8B. Additionally, granule cell activation is observed at the

supra-pyramidal location with a stimulation amplitude of 550 µA,

resulting in the activation of 90% of MEC axons and 76% of LEC

axons, as shown in Figure 8C.

In all six positions, the MEC count exceeds the LEC count,

as the electrode tip is positioned closer to the middle third of the

granule cell dendritic tree, facilitating greater MEC activation.

These results highlight the significant impact of varying

stimulation amplitude and electrode placement on the number of
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activated MEC and LEC axons. They also suggest that among these

3 electrode sites, stimulation at infra-pyramidal locations yields

the lowest stimulation amplitude threshold. This is true when the

electrode is placed both in the cell body layer and the molecular

layer. Higher stimulation amplitudes are required for stimulation

in the crest, and the highest stimulation amplitudes are needed in

the supra-pyramidal blade.

4 Discussion

The work presented here describes a detailed 3D model of the

Dentate Gyrus, featuring realistic, myelinated, three-dimensional

perforant path axons and the direct and indirect consequence

of electrically stimulating these axons on the downstream

activation of DG granule cells. This development extends

prior research by Bingham et al. (2018), by enhancing axonal

morphologies through the inclusion of axon diameter tapering

and incorporating realistic biophysical properties of myelinated

axons. Earlier studies have either focused on bulk-tissue-level

modeling without considering network dynamics or examined

smaller networks using multi-compartmental neuron models. In

contrast, this study employs a hybrid, multi-scale (from tissue

to network to cell to subcellular scales) AM-NEURON model,

encompassing highly detailed axonal morphologies and biophysical

properties, and the resulting electrical activity of DG granule cells.

While finite element methods (FEM) often require significant

computational resources—especially for complex or large-scale

problems—resulting in long simulation times and substantial

memory demands, the AM-NEURON platform we have developed

is inherently capable of modeling both complex, large-scale

heterogeneous biological tissues and micro-scale, biophysically,

and morphologically accurate neuron models. Its multiphysics

capabilities help guide the design of electrical stimulation

strategies to enhance the effectiveness of current hippocampal

prosthetic systems, ultimately steering the development of the next

generations of prostheses. By analyzing the sensitivity of these

models to variations in dielectric properties and electrical stimuli,

we can reveal essential properties of the hippocampal system. These

insights are crucial for guiding the design of more efficacious

therapeutic interventions and devices.

4.1 Enhancements of the model relative to
prior research

Previous investigations utilizing the NEURON model that

underpins this study have identified the spontaneous formation

of spatiotemporal clusters of activity within the DG driven by

synaptic inputs (Hendrickson et al., 2015). The present model

incorporates a detailed three-dimensional representation of the

dentate gyrus region, integrating realistic myelinated axons for

EC projections. This enhancement enables the characterization

of the effect of exogenous electrical stimulation as an additional

input that stimulates the hippocampal network. Consequently,

the model enables the investigation of stimulation thresholds and

the spatiotemporal patterns of activity generated in response to

electrical stimulation, providing an accurate visualization of the

active signal propagation across the transverse structure.

Key structural features such as diameter, tapering, branching

points, and geometric orientation relative to the applied field

can significantly influence the local polarization of membrane

compartments. For example, experimental studies have shown that

granule cell mossy fiber axons exhibit substantial tapering along

their length, with proximal diameters around 1 µm gradually

narrowing to ∼0.5 µm in distal segments (Schmidt-Hieber et al.,

2008). This gradual tapering affects axial resistance and local

current flow, which in turn modulates the sensitivity of axonal

compartments to electric fields.

Real axons often display non-linear tapering profiles, diameter

irregularities, and varicosities—features that can produce local

hotspots of depolarization or alter conduction properties (Wybo

et al., 2021). Additionally, axonal bifurcations introduce impedance

mismatches that can change spike initiation and propagation

thresholds, particularly in the presence of spatially nonuniform

extracellular fields (McIntyre et al., 2002; Rattay, 1999). In this

model, we implemented a simplified linear tapering profile aimed

at replicating the general trend observed experimentally while

capturing first-order effects of morphology on excitability.

The integration of 3D EC axons with realistic myelination

and tapering (Bingham et al., 2020; Aberra et al., 2018; Hu et al.,

2009), following accurate anatomical topography, enhances the

model’s ability to predict spatiotemporal responses to extracellular

stimulation. Investigations of the effect of electrical stimulation

often focus on the immediate and local responses of directly

stimulated neurons. For example, they might determine that an

action potential begins at a specific axonal segment near an

electrode. However, these studies typically do not account for how

this activation propagates through the neural network or affects

other connected neurons. In contrast, our hybrid, multi-scale AM-

NEURON model reveals broader activation patterns by simulating

both the local initiation of action potentials and their subsequent

propagation throughout complex neural circuits by taking into

account the statistical properties of the extent of the axonal arbor as

established by Tamamaki and Nojyo (1993). These patterns emerge

from the initial stimulation characteristics, the complex axonal

propagation, the resulting synaptic events and their integration

along the granule cells dendritic tree.

4.2 Computational requirements and
factors

When selecting the modeling method described in this study,

addressing the computational load is a significant challenge.

Simulating extensive networks of intricate neuronal models

demands substantial computational power. For this work, the

model was parallelized and simulated on a high-performance

computing cluster with 4,040 processors available to the authors.

The time needed to generate 3D axonal morphologies, as depicted

in Figures 3C, D, varies significantly depending on branching

features of generated topologies and the number of connections

with the resulting GCs. This process can range from 8 h to

several days on CARC, depending on the complexity and number
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of synaptic connections formed. The voltage matrix produced

by the AM model, illustrated in Figure 4, generates an extensive

dataset exceeding 6 GB for each configuration. Simulations for the

results presented in Figures 7, 8 generated over 450 GB of data to

analyze the response of each granule cell across all configurations

and stimulation amplitudes. The simulations required ∼100 h of

processor time to simulate just under 2 s of network activity using

1,909 processors.

The increasing complexity of parametric models, despite

their interpretability, creates substantial computational challenges.

As future models incorporate more detailed topology, longer

simulated times, intricate stimulation protocols, and feedback

potentials, they will likely demand resources beyond current

capacities that will require further optimization. To alleviate

computational burden, parallel processing of axons using multiple-

input/multiple-output modeling has been implemented to evaluate

the synaptic activation at the GC. There is a pressing need

for algorithms that simplify the complexity of axonal branching

(while retaining sufficient realism and predictive power); the

reimplementation/simulation of these models on GPU technology

may also help reduce the computational burden.

4.3 Energy-e�cient activation of
entorhinal cortex axons

To determine the number of EC axons needed to activate a

GC, it is essential to identify the number of synaptic connections

necessary to reach the activation threshold. Figure 5 indicates that

at least 1,500 synaptic connections from medial entorhinal cortex

(MEC) axons; similarly 2,000 synapses from the lateral entorhinal

cortex (LEC) axons are required. Figure 6 demonstrates the validity

of the granule cell (GC) model, particularly its ability to integrate

synaptic inputs and trigger action potentials in both dendritic and

somatic regions. These simulation results are in close agreement

with experimental findings from Krueppel et al. (2011), supporting

the model’s accuracy in replicating the physiological mechanisms

driving action potential initiation across these regions.

In Figures 7, 8, an extracellular stimulation paradigm was

applied to determine the minimum number of EC axons needed

to activate a GC. The results reveal that ∼1,550 combined MEC

and LEC axons are required for GC activation at the crest

stimulation site (Figures 7A, 8A). However, when stimulating the

infra-pyramidal position at a lower activation threshold, around

1,630 to 1,720 MEC and LEC axons are activated (Figures 7B, 8B).

The findings also indicate that placing the stimulation electrodes

closer to the molecular layer, rather than the cell body layer,

significantly reduces the activation threshold. This reduction is

likely due to the lower electrical resistivity of the molecular layer

and closer proximity to axons.

Unsurprisingly, increasing stimulation amplitude results in

more MEC and LEC axons being activated, leading to a greater

number of synaptic inputs to the GC. Notably, GC activation

thresholds in the six positions required activation of at least 75% of

all axons. As stimulation amplitudes are increased above threshold,

the number of activated axons increases, and eventually plateaus as

it reaches the total number of excitable axons (1,909 axons in total,

with 1,016 MEC and 893 LEC axons). Once past the threshold, the

number of activated axons projecting to the target GC increases

only marginally (particularly for the Molecular Layer positions as

outlined in Figure 8). Although increasing the amplitude further

recruits only a small number of additional axons projecting to the

same GC, it may activate a larger number of axons connected to

other GCs. This particular aspect was not investigated in this study.

Of importance, higher stimulation amplitude could increase the

risk of tissue damage and potentially reduce overall stimulation

efficacy. In addition, an important factor driving differences in

activation thresholds across all stimulation sites appears to be

the variability in activation rate of LEC axons compared to

MEC axons. For example, at the Crest location (Figures 7A,

8A), both configurations show that LEC axon activation reaches

only about 620 axons at threshold (70% of the total number

of LEC axons), while about 90% of MEC axons are activated.

The LEC axons exhibit additional activation potential beyond the

activation threshold, indicating a capacity for further recruitment.

In contrast, a larger portion of MEC axons are activated at the

threshold. This difference is also noticeable in the infra-pyramidal

position, especially when the electrode is situated in the molecular

layer (Figure 8B). At the supra-pyramidal position, the number

of activated LEC axons remains comparable for both electrode

placements (Figures 7C, 8C). Finally, axonal recruitment rates are

higher when the electrode is positioned in the molecular layer,

suggesting that electrode placement in this layer results in higher

overall stimulation efficiency.

When combining observations from Figures 7, 8, the lowest

stimulation amplitude required for activation is achieved when

the electrode is positioned in the molecular layer of the infra-

pyramidal region at 250 µA, followed by the crest position at

350 µA, and finally the supra-pyramidal position at 550 µA.

The difference between electrode placements in the cell body

layer and the molecular layer was most pronounced at the supra-

pyramidal position. Of note, the stimulation amplitudes in this

study are occasionally higher than those typically used in clinical

settings, especially for activation of large and myelinated fibers.

The activation thresholds could be significantly higher for small

unmyelinated axons, which are theoretically less excitable (Nowak

and Bullier, 1998). This study indicates that large evoked potentials

can be elicited with 1 ms pulses at 250 µA. However, not all

stimulation locations in this study exhibited such low excitation

thresholds, and the response curves only began to plateau at much

higher-amplitude pulses, such as those in the cell body layer.

4.4 Future works and limitations

Notably, this study makes use of a limited network of over

8,000 entorhinal cortex (EC) axons that project to 11 granule cells,

representing a small subset of the projections from EC to DG and

DG granule cells. Subsequent studies will expand the investigation

to encompass the entire dentate gyrus (that is, more than 100,000

EC axons and more than 1.2 million granule cells), and cells in

the cornu Ammonis (CA) region, specifically CA1 and CA3. Such

model will enable to characterize the effect of electrical stimulation
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on the spatiotemporal patterns of activity as they propagate in the

entire hippocampal trisynaptic pathway.

Notably, it would be advantageous to extend the methodology

and incorporate local field potentials, ephaptic coupling, and

other activity-dependent extracellular dynamics across different

hippocampal regions (Elbohouty et al., 2013; Fritz and Gardner-

Medwin, 1976; Shifman and Lewis, 2019). Adding these elements

would provide a more comprehensive view of the hippocampal

system, its intricate neural interactions and its response to electrical

stimulation. Importantly, this expanded model would also benefit

from easier validation with respect to experimental observations

(e.g., local field potentials).

This model includes only AMPA-mediated excitatory inputs to

focus on the core dynamics of excitatory propagation following

a single stimulation event while minimizing computational

complexity. NMDA receptors and inhibitory inputs, such as those

from Molecular Layer Perforant Pathway (MOPP) cells, were

excluded due to their relatively limited contribution under single-

pulse conditions and their more prominent role in modulating

responses to repeated or patterned inputs (Li et al., 2013; Ewell and

Jones, 2010). Future work may incorporate these mechanisms to

provide a more complete representation of synaptic and network

integration, particularly in the context of multiple spatiotemporal

stimulation patterns.

Of importance, critical neural components of the dentate gyrus

were not included in the model presented here, particularly

interneurons. DG contains several types of GABAergic

interneurons, including somatostatin-positive interneurons

(SOMIs) and hilar-perforant-path-associated interneurons (HIPP

cells). These interneurons provide different forms of inhibition to

granule cells: feedback inhibition by receiving input from granule

cells and then inhibiting them, or feedforward inhibition by

receiving input from the entorhinal cortex and inhibiting granule

cells before they can activate, thereby modulating population

dynamics. Integration of interneurons into the model should

be prioritized as research focus shifts toward investigating

the propagation of spatiotemporal patterns of activity in the

hippocampal network.

5 Conclusion

This study presents a multiscale computational model that

integrates the admittance method (AM) used to compute the

electric field generated by a stimulating electrode in conjunction

with realistic 3D reconstructions of EC axons and the DG granule

cells onto which they project. The results obtained with this

model highlight the effect of electrode positioning and stimulation

amplitude on neural activation. The results indicate that optimizing

these parameters can greatly affect stimulation efficiency and the

resulting direct and indirect neural activation. The computational

approach presented constitutes a robust framework to help

guide the design of devices such as multi-electrode arrays to

more effectively interface with the brain, thereby presenting an

innovative framework for testing prototypes of prostheses aimed

at interfacing with neural tissue.
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