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The energy demands of modern AI systems have reached unprecedented 

levels, driven by the rapid scaling of deep learning models, including large 

language models, and the inefficiencies of current computational architectures. 

In contrast, biological neural systems operate with remarkable energy efficiency, 

achieving complex computations while consuming orders of magnitude less 

power. A key mechanism enabling this efficiency is subthreshold processing, 

where neurons perform computations through graded, continuous signals 

below the spiking threshold, reducing energy costs. Despite its significance 

in biological systems, subthreshold processing remains largely overlooked in 

AI design. This perspective explores how principles of subthreshold dynamics 

can inspire the design of novel AI architectures and computational methods 

as a step toward advancing TinyAI. We propose pathways such as algorithmic 

analogs of subthreshold integration, including graded activation functions, 

dendritic-inspired hierarchical processing, and hybrid analog-digital systems 

to emulate the energy-efficient operations of biological neurons. We further 

explore neuromorphic and compute-in-memory hardware platforms that could 

support these operations, and propose a design stack aligned with the efficiency 

and adaptability of the brain. By integrating subthreshold dynamics into AI 

architecture, this work provides a roadmap toward sustainable, responsive, and 

accessible intelligence for resource-constrained environments. 

KEYWORDS 

dendritic processing, energy efficiency, graded activations, hybrid analog-digital 
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1 Introduction 

The accelerating development of artificial intelligence (AI) systems, particularly large-
scale models such as large language models (LLMs), has led to remarkable advancements 
in machine learning and automation. However, these advancements have come at a 
significant cost: the energy demands of AI systems are escalating at an unsustainable rate. 
For instance, the training of state-of-the-art models like GPT-3 required an estimated 
1,287 megawatt-hours of electricity, equivalent to the annual energy consumption of over 
100 average households (Probst, 2023; Wang Q. et al., 2024). Such high energy usage 
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highlights the ineÿciencies inherent in current AI computational 
architectures and raises critical environmental concerns. The 
environmental impact of AI goes beyond energy consumption. 
Large-scale AI models often require extensive water resources for 
cooling and contribute to significant carbon emissions (Crawford, 
2024; Wang Q. et al., 2024). As global eorts intensify to 
address climate change, AI’s burgeoning energy footprint risks 
undermining sustainability goals. The convergence of these 
challenges necessitates a paradigm shift in AI design, one that 
prioritizes energy eÿciency without compromising computational 
performance. 

In contrast to artificial systems, biological neural networks 
operate with unparalleled energy eÿciency. For example, the 
human brain consumes approximately 20 watts of power (Racker 
and Kabat, 1942; Zador et al., 2023), yet it outperforms many 
AI systems in tasks requiring generalization and adaptability 
(Cohen et al., 2022). One critical mechanism underpinning 
this eÿciency is subthreshold processing. This mode of neural 
computation involves continuous, graded signals below the spiking 
threshold, allowing neurons to perform complex calculations 
with minimal energy expenditure (Loyez et al., 2021; Cohen 
et al., 2022; Padamsey et al., 2022). Subthreshold processing 
enables biological systems to function eectively in energy-
constrained environments, making it a compelling model for 
designing energy-eÿcient artificial systems. Despite its prominence 
in biology, subthreshold processing remains underexplored in 
AI architectures. This oversight represents a missed opportunity 
to leverage a proven, low-energy computational strategy for 
advancing AI (Loyez et al., 2021; Editorial, 2023). 

In this work, we use the term “subthreshold regime” in a 
generalized and cross-disciplinary sense. Biologically, it refers to 
graded changes in membrane potential below the spiking threshold, 
enabling energy-eÿcient integration of information. In hardware, 
particularly in analog or neuromorphic designs, subthreshold 
operation often refers to transistor-level functioning at voltages 
below threshold, where current varies exponentially with gate 
voltage. In digital and algorithmic contexts, where physical voltage 
thresholds do not directly apply, operating in a subthreshold 
regime denotes adopting design principles that emulate this graded, 
low-power computation: smooth activation functions, limited 
dynamic ranges, sparse and localized processing, and event-driven 
logic. These strategies mirror the analog integration and selective 
activation seen in biological neurons. Thus, across system levels, 
“subthreshold” becomes a unifying principle guiding the shift 
toward energy-proportional, context-sensitive AI. The potential 
of subthreshold processing to revolutionize AI extends beyond 
energy savings; by incorporating graded activation functions, 
inspired by the smooth, continuous nature of biological signals, 
AI systems could achieve more nuanced computations (Cohen 
et al., 2022). While some AI systems use smooth activations like 
sigmoid or softplus in specific contexts, subthreshold-inspired 
designs oer a new avenue for more biologically realistic and 
energy-eÿcient mechanisms. From an algorithmic standpoint, 
subthreshold processing can be abstracted as smooth, continuous 
transformations of input signals, captured through activation 
functions that avoid hard thresholds and instead reflect graded, 
contextual responsiveness. This conceptual bridge enables AI 
models to emulate the analog computation of neurons, even when 
implemented in digital substrates. Such designs could reduce the 

reliance on binary or threshold-based activations like rectified 
linear unit (ReLU), which dominate current AI architectures, 
while simultaneously decreasing energy costs (Loyez et al., 
2021; Editorial, 2023). Additionally, the hierarchical processing 
observed in dendrites, a hallmark of neuronal computation, 
oers a blueprint for creating sparse and localized networks 
that minimize redundancy (Loyez et al., 2021; Cohen et al., 
2022). This could further enhance the computational eÿciency 
and scalability of AI systems, particularly in edge computing 
applications (Loyez et al., 2021; Wang Q. et al., 2024). Hybrid 
analog-digital systems also stand out as a promising direction. 
These systems, which blend the continuous nature of analog 
computation with the precision of digital processing, could emulate 
subthreshold dynamics more eectively than traditional digital 
architectures (Loyez et al., 2021; Editorial, 2023). Recent advances 
in neuromorphic hardware and AI design, such as spiking neural 
networks (SNNs) operating in subthreshold regimes, underscore 
the feasibility of implementing these principles in real-world 
systems (Loyez et al., 2021). The exploration of subthreshold-
inspired computation aligns seamlessly with the goals of TinyAI, 
a paradigm that emphasizes compact, eÿcient, and sustainable 
AI systems. TinyAI is particularly critical for the proliferation of 
AI in energy-constrained environments such as mobile devices, 
IoT sensors, and remote edge systems (Wang Q. et al., 2024). 
Unlike their large-scale counterparts, which rely on centralized data 
centers and extensive computational resources, TinyAI systems aim 
to decentralize and distribute intelligence in a resource-eÿcient 
manner. This transition could mitigate the environmental costs 
associated with traditional AI while expanding its accessibility and 
applicability (Editorial, 2023; Crawford, 2024). Furthermore, the 
integration of subthreshold principles into AI design could redefine 
the hardware-software co-design landscape. Neuromorphic chips, 
which mimic the architecture and functionality of biological neural 
networks, are poised to play a pivotal role in this transformation 
(Schuman et al., 2022; Nakhle, 2024). These chips, operating 
at ultra-low power, are designed to leverage the energy-eÿcient 
properties of subthreshold dynamics (Loyez et al., 2021). Advances 
in materials science, such as memristive devices and van der 
Waals materials, oer additional avenues for creating hardware 
optimized for subthreshold computation (Editorial, 2023). These 
innovations not only enhance computational eÿciency but also 
open doors for novel applications, including real-time processing in 
embedded systems and adaptive learning algorithms for dynamic 
environments (Nakhle, 2024; Nirmal et al., 2024; Wang S. et al., 
2024). 

This perspective delves into the untapped potential of 
subthreshold processing as a transformative framework for 
advancing TinyAI. We go beyond isolated techniques and 
propose a cohesive, hierarchical design framework that 
aligns biological principles with computational abstractions 
and hardware implementations. This framework integrates 
pathways such as graded activation functions, dendritic-
inspired hierarchical processing, and hybrid analog-digital 
computation to emulate the energy-eÿcient operations of 
biological neurons. Additionally, we highlight the critical role 
of neuromorphic and compute-in-memory (CIM) hardware in 
realizing these strategies, emphasizing their potential to reduce 
energy consumption and enable scalable, sustainable AI. Drawing 
from neuroscience, computer science, and hardware engineering, 
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this cross-disciplinary synthesis presents a clear roadmap for 
developing biologically grounded TinyAI systems that are both 
energy-eÿcient and adaptable to real-world constraints. While 
our focus is on TinyAI systems, many of the energy-saving 
strategies explored here could also help address the unsustainable 
energy scaling of large models, oering benefits at both ends of 
the AI deployment spectrum. Ultimately, we envision a future 
where biologically inspired principles guide the design of AI 
architectures, enabling the creation of compact, scalable, and 
environmentally responsible technologies to meet the demands of 
the 21st century. 

2 The hidden secret of subthreshold 
processing 

Subthreshold processing, a mechanism ubiquitously observed 
in biological neural systems operates through continuous, graded 
changes in membrane potential below the spiking threshold unlike 
spiking activity, which involves discrete, energetically expensive 
action potentials. These subtle fluctuations are critical for the 
overall computational eÿciency of biological systems, enabling 
neurons to integrate vast amounts of synaptic inputs with minimal 
metabolic cost (Zendrikov et al., 2023; Amsalem et al., 2024). 
The membrane potential of a neuron, even when not generating 
action potentials, is influenced by the summation of excitatory 
and inhibitory synaptic inputs. This subthreshold activity allows 
neurons to perform complex computations, such as integrating 
spatially and temporally distributed inputs, without expending the 
energy required for spiking. Dendrites, the branching structures 
of neurons, are particularly important in this regard. They 
process incoming signals locally through subthreshold dynamics, 
enabling tasks like coincidence detection, signal amplification, 
and non-linear integration. These local computations are crucial 
for higher-order brain functions, including decision-making 
and sensory processing (Thakar et al., 2023; Amsalem et al., 
2024). Subthreshold processing also underpins the eÿciency of 
cortical networks, which often operate in a fluctuation-driven 
regime. In this state, neurons remain below the threshold 
for spiking most of the time, relying on the balance of 
excitatory and inhibitory inputs to modulate their activity. 
This balance not only conserves energy but also enhances 
the network’s ability to encode and transmit information with 
high fidelity. Such mechanisms are particularly evident in 
areas like the anterior lateral motor cortex, where subthreshold 
dynamics contribute to preparatory activity and decision-making 
processes (Amsalem et al., 2024). Subthreshold activity also 
facilitates a seamless integration of sensory inputs, allowing 
organisms to respond eectively to subtle environmental changes 
(Sumner et al., 2006). 

In computers, traditional architectures like Von Neumann-
based systems rely heavily on discrete, digital computations, 
which are both energy-intensive and constrained by bottlenecks in 
data transfer between memory and processors (Zendrikov et al., 
2023). Subthreshold-inspired designs, by contrast, oer a paradigm 
shift toward hybrid analog-digital systems capable of processing 
information more eÿciently. Thus, translating the principles 
of subthreshold processing into AI presents a transformative 

opportunity to address the escalating energy demands of modern 
AI systems. 

3 Neuron diversity and the scope of 
subthreshold processing 

While subthreshold integration oers a biologically grounded 
pathway toward energy-eÿcient computation, it represents only 
one mode within a broader spectrum of neuronal processing 
strategies. The brain is composed of a diverse array of neuron 
types, each with unique morphologies, ion channel compositions, 
and firing behaviors that support specialized computational roles. 
These include fast-spiking interneurons, bursting pyramidal 
neurons, resonant thalamic cells, and neuromodulatory systems 
such as dopaminergic and cholinergic neurons, each contributing 
distinct energy-computation trade-os (Llinás, 1988; Marder 
and Goaillard, 2006; Sterling and Laughlin, 2015). For instance, 
fast-spiking interneurons, such as parvalbumin-positive cells, 
exhibit narrow action potentials and high-frequency discharge, 
essential for network synchrony and gamma oscillations, but 
rely heavily on rapid above-threshold dynamics. In contrast, 
bursting neurons, common in the thalamus and hippocampus, 
alternate between quiescent and high-frequency states based on 
intrinsic membrane properties and input frequency (Izhikevich, 
2000). These neurons are thought to play a pivotal role in 
salience detection, signal amplification, and sleep-wake transitions; 
functions that extend beyond pure energy minimization. Resonant 
neurons, such as thalamocortical relay cells, preferentially 
respond to inputs at specific frequencies due to membrane 
resonance, a mechanism critical for temporal filtering and 
phase-locked responses (Hutcheon and Yarom, 2000). Similarly, 
neuromodulatory systems influence circuit function by altering 
cellular excitability and synaptic plasticity over longer timescales, 
often through volume transmission and subthreshold modulations 
(Marder and Goaillard, 2006). 

Despite this rich heterogeneity, the present focus on 
subthreshold processing stems from its central role in energy 
eÿciency. Subthreshold dynamics avoid the metabolic costs of 
action potentials and enable continuous, analog-like computation, 
making them highly compatible with TinyAI’s low-power 
objectives. Furthermore, current neuromorphic and CIM 
platforms are increasingly capable of emulating subthreshold 
regimes, while faithfully reproducing fast-spiking or resonant 
dynamics remains more challenging due to thermal noise, timing 
precision, and material constraints (Du et al., 2020; Yao et al., 
2020). Subthreshold-inspired activation functions also oer a 
tractable and dierentiable pathway to integrate biological insights 
into gradient-based learning, a major advantage for hybrid 
analog-digital systems. By acknowledging the broader landscape 
of neuronal diversity, we underscore that subthreshold processing 
is not an exclusive or exhaustive paradigm but rather a strategic 
design anchor. Yet, it serves as an entry point for translating 
biological principles into practical, scalable AI systems. Future 
work may incorporate dynamics from resonant, bursting, or 
neuromodulated neurons to further enrich the architectural design 
of TinyAI. 
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4 Energy challenges in modern AI 

The rapid scaling of AI technologies, particularly the race 
of LLMs that we are currently witnessing, presents profound 
energy sustainability challenges. These models, while revolutionary, 
demand substantial computational resources for their training 
and operation. For instance, training GPT-4 consumed over 50 
GWh of electricity, equivalent to about 0.02% of California’s 
annual electricity usage, and marked a 50-fold increase from 
its predecessor GPT-3, which itself required approximately 1,287 
MWh (De Vries, 2023; Li et al., 2024) Such energy demands 
underscore the unsustainable trajectory of current AI growth, 
especially as the computational requirements of AI models 
continue to double approximately every 10 months (Li et al., 2024). 

Beyond electricity consumption, the environmental footprint 
of AI models includes substantial water usage, often overlooked 
in sustainability discussions. Training GPT-3 in Microsoft’s 
advanced data centers, for instance, resulted in the evaporation 
of approximately 700,000 liters of freshwater (Li P. et al., 2023). 
Moreover, global AI operations are projected to account for a 
staggering 4.2–6.6 billion cubic meters of water withdrawal by 
2027, a figure surpassing the annual water withdrawal of several 
European countries (Li P. et al., 2023). This water-intensive nature 
of AI is exacerbated by the cooling demands of data centers, which 
not only utilize significant water volumes but frequently compete 
with local communities for scarce freshwater resources (Mytton, 
2021). 

A critical concern arises from the disruptive impact of AI-
induced transient power demands on energy grids. Large-scale 
LLM training workloads can spike from cold starts to peak loads of 
tens of megawatts almost instantaneously, a scale previously unseen 
and unmanageable by traditional grid designs (Li et al., 2024). Such 
rapid fluctuations pose substantial threats to power grid stability, 
highlighting an urgent need for improved grid infrastructure and 
dynamic energy management solutions to accommodate these 
sudden and significant energy demands. Economic factors also 
interplay significantly with AI’s energy consumption. While AI 
technologies promise productivity gains, their high energy costs 
could ultimately constrain accessibility, limiting such powerful 
tools to resource-rich entities and exacerbating existing inequities 
in technological advancement (Schwartz et al., 2020; Strubell 
et al., 2020). The environmental and economic impacts of AI 
underscore a critical juncture: without substantial improvements 
in computational eÿciency, hardware sustainability, and energy 
sourcing, the benefits of AI may become increasingly skewed 
toward those with substantial financial resources, undermining 
broader social and environmental sustainability goals (Bourzac, 
2024). 

Despite these daunting challenges, the situation presents 
significant opportunities for innovation. The development of 
energy-eÿcient hardware architectures such as neuromorphic 
computing, hybrid analog-digital systems, and specialized AI 
accelerators oers promising pathways to mitigate AI’s growing 
energy footprint (Bourzac, 2024; Nakhle, 2024). In addition, 
algorithmic advancements in model compression, pruning, 
quantization, and knowledge distillation techniques are becoming 
increasingly critical to reducing the resource intensity of AI 
models (Strubell et al., 2020; Nakhle, 2024). On top of those, this 

perspective highlights the promising role of biologically inspired 
approaches, such as subthreshold processing, as potential pathways 
to significantly further enhance energy eÿciency in AI systems and 
address sustainability concerns. 

5 Subthreshold-inspired pathways 
to advance TinyAI 

Despite their common goal, i.e., processing information, 
biological neurons and silicon chips that run artificial neural 
networks (ANNs) operate with profoundly dierent energy 
strategies. Biological neurons, particularly cortical types, 
accumulate thousands of graded inputs in a metabolically 
eÿcient manner, emitting a spike only when the integrated voltage 
crosses a threshold. This enables predominantly analog, low-power 
computation within dendrites. In contrast, most modern digital 
processors, including the edge accelerators used to host and run 
TinyAI models, perform arithmetic using full-swing digital signals, 
operating well above the point where their transistors begin to 
conduct. These above-threshold transitions are simple to engineer 
but inherently energy-ineÿcient. 

The field of TinyAI has already achieved impressive reductions 
in model size and compute cost through pruning, quantization, 
and knowledge distillation (Nakhle, 2024). Yet, these algorithmic 
savings often sit atop digital hardware that remains energy-
hungry at the physical layer. Much of the latent eÿciency 
observed in biological computation, particularly the ability to 
process information in the subthreshold regime, is still absent in 
the design of AI models and hardware. To close this gap and 
move closer to the energy proportionality observed in biology, 
we propose a subthreshold-aware approach that treats low-
voltage operation not as a hardware constraint to be tolerated, 
but as a design dimension to be deliberately explored. The 
perspective developed here suggests that by integrating principles 
of subthreshold computation into the core of AI design, at the 
levels of activation dynamics, computational structure, hardware 
substrate, compilation tooling, and time-dependent information 
encoding, we can open a complementary region of the eÿciency 
landscape that current methods only brush against (Figure 1). 
This framework is particularly well-suited for TinyAI: systems 
that must operate at the edge, under tight energy and resource 
constraints, but still deliver capable and intelligent inference. 
What follows are five design strategies that connect biological 
mechanisms to computational techniques and implementation 
pathways, aiming to guide future model design toward radical, 
biologically inspired eÿciency. To anchor this framework visually, 
we introduce Figures 1, 2, which synthesizes these pathways into a 
hierarchical design stack inspired by subthreshold computation. 

5.1 Smooth activation dynamics for 
low-voltage computation 

As discussed previously, most biological computations occur 
below the spiking threshold, in the form of small voltage 
fluctuations across the neuronal membrane. These continuous, 
analog responses are not only essential for temporal integration and 

Frontiers in Computational Neuroscience 04 frontiersin.org 

https://doi.org/10.3389/fncom.2025.1638782
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-19-1638782 July 30, 2025 Time: 19:31 # 5

Nakhle et al. 10.3389/fncom.2025.1638782 

FIGURE 1 

Subthreshold-inspired design stack for energy-efficient AI design. This multi-layered framework illustrates how biologically inspired mechanisms 
can be systematically translated into increasingly concrete computational, architectural, and hardware components for sustainable TinyAI. The top 
layer, Biological inspiration, draws from principles of neuronal computation observed in the brain, including subthreshold membrane potential 
integration, dendritic computation, inhibitory balancing, and graded responses to stimuli. These mechanisms enable high energy efficiency and 
context-sensitive information processing in biological systems. The second layer, Computational abstractions, translates these biological features 
into machine learning techniques such as smooth, non-threshold activation functions (e.g., Swish, Softplus), hierarchical sparsity, temporal coding 
for efficient representation, and population coding for noise tolerance. These abstractions allow artificial systems to maintain low energy usage and 
noise robustness while preserving expressive power. The third layer, System architecture, incorporates these abstractions into the design of AI 
models. Key features include event-driven or conditionally activated layers that reduce idle computation; task-specific micro-networks that localize 
processing; mixed-precision and noise-tolerant pathways that enable resilience in resource-constrained conditions; and asynchronous, selective 
computation strategies that mimic the dynamic routing capabilities of biological circuits. These elements enable TinyAI models to operate 
responsively with minimal energy overhead, especially in embedded or edge settings. The bottom layer, Hardware layer, consists of physical 
implementations that support subthreshold-compatible computation. This includes compute-in-memory arrays (e.g., memristors) that integrate 
memory and processing to eliminate energy-intensive data movement; low-voltage analog circuits that exploit subthreshold transistor operation for 
energy savings; hybrid analog-digital neuromorphic chips that combine biological realism with programmable control; and substrate heterogeneity, 
allowing components to be matched to their ideal physical medium (e.g., analog for static filters, digital for classifiers, photonic for high-throughput 
inference). Together, these hardware strategies form the physical foundation for building responsive, low-power TinyAI systems suited for 
real-world, energy-constrained applications. 

contextual modulation, but also highly energy-eÿcient, avoiding 

the metabolic cost of firing an action potential. In contrast, 
ANNs typically rely on activation functions like the ReLU, which 

abruptly zeroes out negative inputs and transmits positive inputs 
linearly. While ReLU supports fast model training and stable 

gradient flow, it introduces sharp discontinuities that lead to wide 

internal voltage swings, making it poorly matched to low-power 

hardware. Replacing ReLU with smooth, continuous functions such 

as Swish, defined as Swish = x Sigmoid(βx), where β represents 
a constant or trainable parameter, provides activation dynamics 
that more closely mirror subthreshold biological integration. 
Algorithmically, these functions model how neurons accumulate 
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FIGURE 2 

From collaboration to impact: a layered framework for sustainable TinyAI. The top layer represents interdisciplinary collaboration, with each domain 
contributing essential foundations such as subthreshold dynamics, hybrid hardware design, energy efficiency, and equitable access. These inputs 
converge into the central system layer: sustainable TinyAI, characterized by biologically inspired mechanisms like graded activation functions, 
hierarchical sparsity, and hybrid analog-digital hardware. This design stack enables ultra-low power, explainable, and locally adaptive intelligence. 
From this foundation emerge core system capabilities, such as on-device inference, energy proportionality, responsiveness, and explain ability which 
in turn power a diverse range of real-world applications. These include wearable medical devices, point-of-care diagnostics, environmental 
monitoring sensors, edge robotics, and assistive technologies. 

input in a continuous fashion, encoding stimulus intensity over 
time rather than responding in a binary all-or-nothing manner. 
This allows neural networks to express graded sensitivity to 
features, reflecting the analog computation of biological neurons in 
software. Notably, Swish not only improves optimization in deep 
networks but also enhances final accuracy, raising top-1 ImageNet 
performance by approximately 0.9 percentage points in otherwise 
identical architectures (Ramachandran et al., 2017). Crucially, its 
narrow dynamic range enables inference engines to operate at 

lower voltages, reducing energy per operation without loss of 
representational fidelity. However, implementing these smooth 
functions on analog or CIM hardware introduces challenges such 
as device mismatch, thermal noise, and limited signal resolution, 
which can distort narrow dynamic ranges. These issues must 
be managed through noise-tolerant training and activation-range 
calibration. 

This compatibility becomes even more critical when deploying 
models to analog or mixed-signal CIM architectures, where the 
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energy cost of signal transitions and data movement dominates 
total power consumption. By physically integrating computation 
into the memory array, CIM eliminates the need to shuttle 
activations and weights between memory and processor, a 
hallmark ineÿciency of traditional von Neumann systems. Smooth 
activation functions play a central role in this context; their 
bounded, continuous nature aids in gradient propagation and 
training stability, while simultaneously reducing the dynamic 
range of intermediate signals, enabling inference systems to 
operate reliably at lower voltages and tolerate quantization and 
noise. These characteristics align naturally with the operational 
principles of analog circuits, where power scales quadratically 
with voltage, and with the signal constraints of CIM substrates, 
which often function under stringent voltage and resolution 
limits. In particular, CIM systems based on resistive RAM 
(RRAM) exemplify this synergy. In a pioneering demonstration, 
Yao et al. (2020) built a fully hardware-implemented five-layer 
convolutional neural network using one-transistor–one-memristor 
(1T1R) RRAM arrays, achieving more than two orders of 
magnitude improvement in energy eÿciency over state-of-the-
art GPUs while maintaining high classification accuracy on the 
Modified National Institute of Standards and Technology (MNIST) 
dataset. Similarly, Zhang et al. (2020) introduced an 8-bit CIM core 
using binary RRAM cells with shared successive approximation 
register analog-to-digital converters (SAR ADCs), reaching an 
eective number of bits (ENOB) of 7.26 and energy eÿciency up to 
0.61 tera operations per second per WATT (TOPS/W), illustrating 
the feasibility of inference under modest resolution and bit depth. 
More recently, Li Y. et al. (2023) extended this direction with M3D-
LIME, a monolithically integrated 3D architecture combining 
analog RRAM-based CIM, digital memory, and control logic. 
Their system demonstrated eÿcient matrix–vector multiplication 
for feature extraction, coupled with ternary content-addressable 
memory (TCAM) for matching, enabling one-shot learning with 
96% accuracy on the Omniglot dataset. Notably, the chip achieved 
an 18.3 × improvement in energy eÿciency and a 2.73 × speedup 
over GPU baselines. These results reinforce the value of in situ 
analog computing and vertical memory-compute integration for 
subthreshold-compatible inference. While these implementations 
demonstrate strong energy savings, they also highlight analog 
constraints, including variability across memory cells and the need 
for robust calibration mechanisms. 

Importantly, smooth activation functions further simplify 
hardware deployment of quantized networks. Continuously 
dierentiable activations have been shown to outperform 
non-smooth counterparts like ReLU in noisy, low-precision 
environments typical of analog systems. This makes it feasible to 
compress architectures such as MobileNet-V3 using quantization-
aware training and structured pruning, then deploy them directly 
onto analog CIM arrays with minimal loss in accuracy. The co-
design of compression algorithms and analog-friendly activations 
thus forms a crucial step toward energy-scalable inference. 

Beyond energy eÿciency, subthreshold-inspired dynamics 
also enhance computational expressivity. In biological systems, 
subthreshold activity supports temporal integration of synaptic 
inputs, enabling neurons to encode not just the presence of 
a stimulus, but also its timing and context. This continuous 
signal modulation allows for richer, non-binary decision-making 
and probabilistic inference; capacities that are vital for robust 

perception and adaptive behavior. Algorithmically, smooth 
activation functions mirror this capability by enabling fine-grained, 
dierentiable transformations that capture subtle input variations. 
These activations improve gradient flow during training, increase 
function smoothness, and expand the network’s capacity for 
learning complex mappings. Thus, subthreshold computation is 
not merely an energy-saving mechanism; it fundamentally expands 
the computational toolkit of neural systems. 

5.2 Hierarchical sparsity and inhibitory 
balancing for localized efficiency 

In biological neural systems, computation is not uniformly 
distributed across all inputs or regions of a cell. Instead, it 
is spatially distributed and context-dependent. Dendritic arbors, 
which are branch-like extensions of neurons, act as semi-
autonomous processing units that filter, amplify, or suppress 
synaptic inputs before those signals reach the soma (Huang et al., 
2022). This structure allows for input-dependent, subthreshold 
computation that reduces energy expenditure by confining 
processing to local regions of the neuron. Even passive dendrites, 
lacking active ion channels, can implement non-linear operations 
such as eXclusive OR (XOR), demonstrating that complex logic 
can emerge from spatial integration alone (Cazé et al., 2013). 
This energy-aware architecture enables neurons to avoid costly 
spikes unless inputs cross a carefully integrated threshold, making 
it a foundational mechanism for biological eÿciency. Critically, 
inhibitory interneurons play a key role in controlling signal 
propagation and shaping the excitatory-inhibitory (E-I) balance 
in cortical networks. By modulating neuronal excitability and 
gating dendritic inputs, these inhibitory units prevent runaway 
activation and sharpen the spatial focus of computation. Inhibitory 
dynamics have been shown to support sparse, eÿcient coding 
in biological systems by suppressing redundant responses and 
enhancing selectivity. 

This idea translates naturally into the design of ANNs, 
where structured pruning can emulate the selective refinement of 
dendritic computations. Instead of uniformly removing weights, 
structured pruning eliminates entire filters, blocks, or branches 
based on their contribution to the network’s performance. For 
example, Taylor-based importance estimation has demonstrated 
that as much as 40% of filters in ResNet-101 can be pruned 
with only a 0.02% top-1 accuracy loss (Molchanov et al., 
2019). Such structured sparsity reduces not only the number of 
parameters but also the number of activations that need to be 
computed or stored, thus, bringing computational flows into closer 
alignment with localized, low-traÿc pathways. The impact on 
energy consumption is especially significant for deployment on 
edge devices. When pruned branches are never activated, their 
intermediate computations can remain entirely within on-chip 
static random access memory (SRAM), avoiding the expensive 
o-chip dynamic RAM (DRAM) transfers that dominate the 
power budget of conventional architectures (Horowitz, 2014). This 
localization of memory access mimics the neuron’s own strategy of 
minimizing communication overhead through spatial filtering and 
inhibition. That said, structured pruning can introduce challenges 
in hardware mapping where irregular sparsity patterns may be 
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diÿcult to exploit on certain edge accelerators without dedicated 
support. Compiler-level sparsity-aware scheduling is essential to 
translate these theoretical gains into practical energy savings. 

Interestingly, the parallels with neurodevelopment extend 
even further. During early brain development, the nervous 
system undergoes a phase of exuberant synaptogenesis, creating a 
highly overconnected network, followed by synaptic pruning that 
eliminates redundant or ineÿcient connections. This exuberance-
refinement cycle allows the system to first explore a broad 
functional space and then optimize for eÿciency and specificity 
(Innocenti and Price, 2005). A similar phased approach in artificial 
networks, where dense training is followed by periodic structured 
pruning, can yield compact models with minimal accuracy loss 
while benefiting from initial overparameterization. 

Incorporating hierarchical sparsity from the outset redefines 
pruning as a design principle, not a post hoc optimization. It 
enables networks to reduce computational complexity, memory 
bandwidth, and energy consumption, all while maintaining 
expressive power. When paired with smooth activations 
and subthreshold-compatible hardware, this approach oers 
a biologically grounded and practically viable path toward 
high-eÿciency TinyAI. 

5.3 Graded-activation micro-networks 
and temporal coding 

In biological systems, temporal structure is integral to 
computation. Subthreshold changes in membrane potential 
influence the timing of action potentials, enabling neurons to 
encode information not only in firing rates but also in spike 
timing. Mechanisms such as spike-timing-dependent plasticity 
(STDP), phase coding, and delay-based synaptic integration 
highlight the importance of time-dependent dynamics. These 
subthreshold-driven modulations support fine-grained, context-
sensitive responses that underlie learning, prediction, and rapid 
adaptation. Analogously, in artificial systems, integrating graded 
activation functions into modular micro-networks can emulate 
these biological strategies. Micro-networks (i.e., compact, semi-
independent subnetworks embedded within larger architectures) 
can specialize in specific tasks or input contexts. When equipped 
with smooth, subthreshold-like activations, such as Swish or 
softplus, these micro-networks operate with controlled voltage 
swings and minimal activation entropy, making them highly 
compatible with analog and mixed-signal systems. 

Architectural modularity enables selective activation: only 
relevant subnetworks respond to a given input, suppressing 
unnecessary computation. This principle mirrors the brain’s 
selective activation of dendritic subdomains and is especially 
useful for low-power edge AI applications. For instance, 
Konstantaropoulos et al. (2025) demonstrated dynamic activation 
within spiking SNN ensembles, achieving a 20 × reduction 
in computation with negligible accuracy loss on CIFAR-10. 
Datta et al. (2021) introduced a hybrid input encoding scheme 
that combined analog and spike-based signals, resulting in up 
to 125 × lower compute energy on CIFAR-100 compared to 
conventional approaches. Moreover, event-driven models inspired 
by these biological principles can maintain low idle power and 

initiate computation only upon detecting relevant signals, akin 
to the way sensory systems filter stimuli. This strategy is ideal for 
latency-sensitive applications like gesture recognition, anomaly 
detection in sensors, and auditory scene analysis. The integration 
of temporal coding principles into TinyAI models further expands 
the energy-performance trade space and enables real-time 
responsiveness in energy-constrained settings. Yet, designing 
micro-networks with dynamic routing presents trade-os: the 
control overhead for activation gating can oset some energy 
benefits unless carefully optimized. Moreover, temporal coding 
architectures require precise timing and synchronization, which 
remain diÿcult to guarantee on analog substrates with high device 
variability. 

5.4 Heterogeneous substrates and 
robustness to noise 

Biological brains do not rely on a single type of neuron, 
signal, or circuit architecture to process information. They are 
constructed from a diverse array of neurons and signaling 
modalities, combining analog subthreshold processing, discrete 
spiking, neuromodulation, and local plasticity across dierent 
timescales. Subthreshold integration occurs continuously in 
dendrites, while action potentials represent discrete, all-or-none 
spikes that communicate over long distances. Ion channels vary 
in density and kinetics across compartments, and synapses operate 
on a wide range of transmission modes, from analog modulation 
to spike-triggered release. This intrinsic heterogeneity is not just 
a product of evolutionary happenstance; it is a design strategy 
that allows biological systems to balance energy eÿciency with 
robustness to noise, and adaptability (Sterling and Laughlin, 2015). 
This distributed division of labor provides a compelling analog 
for future AI systems which currently operate with homogeneous 
logic blocks and uniform clocking, leading to ineÿciencies in 
both computation and communication. Translating this biological 
heterogeneity to AI systems suggests a design approach in which 
dierent components operate on dierent substrates tailored to 
their function. For instance, compute-heavy and static layers 
(e.g., early convolutional filters) can be implemented using analog 
CIM arrays, while highly plastic or decision-critical layers (e.g., 
classifiers or attention heads) may be better suited to digital 
or spiking substrates. This division allows each computational 
unit to optimize for precision, energy, or speed depending on 
its role. A key challenge in hybrid systems lies at the interface: 
how to encode and decode information when passing from a 
subthreshold analog component to a suprathreshold digital one. In 
biological systems, this translation is handled by spike generation 
mechanisms that convert continuous membrane potentials into 
discrete action potentials; in engineered systems, an equivalent 
interface must preserve critical information while balancing 
energy and fidelity. Several strategies exist for this purpose. One 
approach is level-crossing encoding, where changes in the analog 
signal beyond a certain delta trigger a digital event, mimicking 
event-driven spikes. Another method uses time-based encoding 
(e.g., pulse-width modulation or time-to-first-spike schemes), 
where signal amplitude is converted into timing characteristics. 
Conversely, decoding analog signals from digital inputs often 
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involves digital-to-analog converters (DACs) or lookup-based 
interpolation to restore continuous representations. Importantly, 
such interfaces must be co-designed with activation functions and 
signal ranges to ensure compatibility and minimal information 
loss. This encoding-decoding boundary is where biological fidelity 
meets engineering constraint, and optimizing it is central to 
realizing functional hybrid systems. These encoding strategies, 
however, must operate within the constraints of analog substrates, 
which present unique challenges, including thermal noise, device 
variability, and signal drift. Biological systems manage these 
issues through population coding, synaptic redundancy, error-
corrective dynamics, and homeostatic plasticity. These principles 
can be adapted in AI systems via probabilistic encoding schemes, 
redundancy-aware training, and architectural noise tolerance. 
Emerging neuromorphic platforms illustrate these concepts in 
action. For example, Intel’s Loihi processor uses subthreshold 
digital logic and sparse, event-driven communication, achieving 
23.6 pJ per synaptic event and 1.7 pJ per spike within a tile (Davies 
et al., 2018). Materials innovation is also enabling energy-eÿcient 
subthreshold firing. For instance, dual-gated MoS2 transistors 
oer synaptic-like behavior at ultra-low energy consumption of 
approximately 12.7 femtojoules per spike, demonstrating long-
term potentiation, paired-pulse facilitation, and spike-timing-
dependent plasticity (Du et al., 2020). These devices demonstrate 
capabilities such as excitatory postsynaptic current, paired-pulse 
facilitation, and spike-timing-dependent plasticity, highlighting 
their potential in neuromorphic computing applications (Du et al., 
2020). Meanwhile, photonic accelerators have also demonstrated 
ultra-fast inference by performing convolutional inference at over 
2 tera-operations per second with energy consumption as low as 
2.5 × 10−19 joules per operation (Wang et al., 2022). 

Yet it is not just the substrate itself that matters; it is how 
computation is mapped onto it. Layers with static, low-entropy 
weights (e.g., embeddings or early convolutions) can be evaluated 
in analog or photonic domains with minimal overhead. In contrast, 
highly plastic components such as classifiers or online learners 
should reside on digital or spiking substrates, where precision 
and rewritability are essential. To systematically exploit substrate 
heterogeneity, we propose a “volatility score” metric that quantifies 
the update frequency and sensitivity of each model component 
during training. Layers with high volatility would be mapped to 
adaptive or rewritable substrates, while stable components could be 
optimized on low-power analog hardware. This co-design approach 
mirrors the brain’s functional allocation of stable routines to 
hardwired pathways and fast-changing tasks to plastic circuits. 

5.5 Energy-aware compilation, 
simulation, and co-design toolchains 

Achieving the potential of subthreshold-compatible TinyAI 
requires not just new architectures and hardware, but also 
a supporting ecosystem of software tools that are optimized 
for energy eÿciency. Traditional compiler optimizations often 
prioritize execution speed or throughput, overlooking energy 
implications. However, recent work has demonstrated that energy-
aware compilation can produce significant eÿciency gains. For 
instance, energy-aware register allocation using evolutionary 

heuristics has reduced dynamic energy consumption by up to 
17.6% in real-world applications on very long instruction word 
(VLIW) architectures (Stuckmann et al., 2024). Selective enabling 
of compiler passes, rather than relying on default optimization 
levels, has achieved execution time reductions of 2.4% and 
5.3% on ARM Cortex-M0 and M3 processors, respectively, by 
avoiding unnecessary transformations that increase energy use 
(Georgiou et al., 2018). At the runtime level, dynamic voltage 
and frequency scaling (DVFS) combined with task scheduling, 
as in the joint exploration of CPU-memory DVFS and task 
scheduling (JOSS) framework, has yielded up to 21.2% energy 
savings by co-optimizing both processor and memory energy 
budgets (Chen et al., 2023). These advances point to a broader 
opportunity: aligning the software toolchain with the physics of 
subthreshold and analog computation. This requires simulators 
and modeling tools capable of capturing non-ideal analog 
behaviors, mixed-precision logic, and hierarchical architectures. 
Frameworks like NeuroSim and AnalogNet represent early eorts 
in this direction, enabling co-simulation of neural network 
workloads and device-level analog properties. Expanding these 
frameworks into comprehensive design environments will be 
crucial for guiding model training, placement, and deployment. 
Yet, simulation and compiler tooling remain underdeveloped for 
analog and mixed-signal systems. Modeling noise, non-idealities, 
and mixed-precision behavior with suÿcient fidelity remains a key 
limitation in accurately guiding design-space exploration. 

On the other hand, evaluating and guiding energy-aware 
optimizations necessitates the adoption of metrics that accurately 
reflect trade-os between energy consumption and performance. 
One widely used measure is the energy-delay product (EDP), 
defined as the product of energy consumed and execution time 
(EDP = Energy × Time). While EDP oers a simple composite 
view, it treats energy and delay as equally significant and may 
fail to highlight situations where a small gain in one leads to a 
disproportionate cost in the other. For example, two optimization 
strategies might yield the same EDP, yet one may halve energy 
at the cost of increased latency, while the other improves speed 
but with minimal energy savings—making EDP ill-suited as a 
standalone guide in many real-world settings (Roberts et al., 2017). 
To address these limitations, alternative metrics such as the energy-
delay sum (EDS) and energy-delay distance (EDD) have been 
proposed. EDS expresses energy and delay as a weighted sum, 
allowing developers to tune the relative importance of each term 
according to specific application constraints, whether optimizing 
for edge inference, latency-critical control, or battery longevity. 
EDD, by contrast, measures the Euclidean distance from the origin 
in an energy-delay space, oering a geometric interpretation of 
how far a system is from the ideal (zero energy and zero delay). 
This framing enables a more intuitive comparison across models 
and configurations, encouraging selections that consistently move 
toward the optimal balance (Roberts et al., 2017). Integrating these 
metrics into cost functions for neural architecture search, training 
objectives, and compiler decision trees allows for principled 
tradeos between accuracy, energy, and response time. In doing 
so, AI systems can evolve to exhibit energy-proportional behavior 
more closely aligned with biological computation, completing the 
transition from theoretical inspiration to practical design. However, 
integrating these metrics into mainstream toolchains still requires 
broader community consensus and tool support, especially for 
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balancing heterogeneous objectives across latency, accuracy, and 
energy domains. 

5.6 Beyond efficiency: functional 
advantages of subthreshold-inspired 
designs 

While energy savings are the central promise of subthreshold-
inspired AI, this design philosophy also oers compelling 
functional benefits that extend its appeal beyond sustainability 
alone. For instance, analog subthreshold dynamics enable graceful 
handling of signal variability, leading to improved robustness 
under noisy or uncertain conditions. Recent work has shown 
that noise-aware training on analog accelerators can yield over 
2 × higher resilience to non-stationary perturbations compared 
to conventional models, even in edge environments (Wang 
et al., 2025). Subthreshold integration also naturally supports 
temporal encoding and continuous-time computation, providing a 
hardware-eÿcient alternative to traditional recurrent architectures. 
Analog memristive systems and physical neural networks have 
demonstrated high temporal acuity in tasks such as arrhythmia 
detection and gesture recognition, achieving accuracies above 96% 
with minimal energy overhead (Stenning et al., 2022). Furthermore, 
subthreshold-inspired architectures oer a promising path toward 
few-shot learning and rapid adaptation. Neuromorphic analog 
networks, such as nanomagnetic reservoir systems, have recently 
been shown to generalize from extremely limited training 
data across diverse task domains, suggesting that subthreshold 
dynamics support meta-learning capabilities at the hardware 
level (Stenning et al., 2024). At the algorithmic level, smooth 
activations and sparse, context-sensitive pathways also enhance 
generalization by enforcing low-capacity representations that better 
resist overfitting in small-data regimes. This mirrors biological 
strategies that prioritize robust, low-energy computation under 
uncertainty. Altogether, these findings reinforce that subthreshold-
inspired AI is not merely an energy-minimization strategy; it is 
a multidimensional design approach that enhances robustness, 
temporal sensitivity, few-shot generalization, and eÿciency in 
integrated form, particularly suited for TinyAI applications in 
real-world, dynamic environments. 

6 Challenges, future directions, and 
conclusion 

While this paper outlines a compelling vision for subthreshold-
inspired TinyAI, several key challenges must be addressed before 
these ideas can reach mainstream adoption. One of the foremost 
obstacles is the gap between biological computational strategies 
and their artificial counterparts. Subthreshold processing, although 
fundamental to the energy eÿciency of biological systems, has 
not yet been eectively translated into scalable AI architectures. 
Current AI models remain anchored in digital logic, dominated 
by abrupt, high-power operations that run counter to the graded, 
low-voltage signaling observed in nature. Integrating subthreshold 
principles into artificial systems requires a fundamental redesign 

of activation functions, computational hierarchies, and hardware 
architectures. Hardware readiness is another limiting factor. While 
neuromorphic systems and hybrid analog-digital platforms have 
shown promise, they are not yet widely accessible or mature 
enough for deployment at scale. The analog components that are 
essential for subthreshold-compatible systems pose engineering 
challenges, including susceptibility to noise, signal degradation, 
and the absence of standard development environments. Moreover, 
there is a lack of robust simulation tools, compilers, and co-
design frameworks that can support the nuanced requirements of 
subthreshold computation, further slowing adoption. 

Nonetheless, these challenges open the door for innovative 
research and development. This perspective proposes that 
subthreshold dynamics should not be treated as a peripheral 
curiosity, but rather as a central design principle that can radically 
redefine how we build energy-eÿcient and context-sensitive 
AI systems. Our aim is to shift the conversation from isolated 
optimizations to a broader rethinking of AI architecture; one 
that aligns with the inherent eÿciency of biological computation. 
Future research directions include the development of smooth, 
dierentiable activation functions that mimic the continuous 
membrane fluctuations seen in neurons, allowing models to 
operate eectively at low voltages. New network architectures 
must incorporate spatially localized processing and hierarchical 
sparsity inspired by dendritic computation, reducing energy use 
by focusing computation only where it is most relevant. Modular, 
temporally sensitive micro-networks should be explored to allow 
for selective activation, enabling systems to respond intelligently 
while minimizing idle power consumption. In parallel, the creation 
of analog and mixed-signal CIM hardware, based on emerging 
memory technologies, oers a path to implement these ideas 
physically with drastically lower energy budgets. Although we 
frame this work around TinyAI, the underlying design principles 
are also relevant for improving the energy proportionality of 
large-scale AI systems, even if they do not render them “tiny.” 
Beyond the model and hardware levels, progress also depends on 
the development of energy-aware simulation platforms, training 
strategies, and compiler toolchains that can accurately model 
the behavior of subthreshold and mixed-signal components. 
The introduction of new metrics, such as energy-delay sum and 
energy-delay distance, will be crucial for evaluating trade-os in 
real-world deployment scenarios, where latency and energy are 
often more critical than raw accuracy. 

Importantly, this paper underscores the need for coordinated, 
interdisciplinary collaboration. This vision is reflected in Figure 2, 
which outlines how collaborative foundations across disciplines 
yield system-level eÿciency and social impact through Sustainable 
TinyAI. Realizing the potential of subthreshold-inspired TinyAI 
will require tight integration between neuroscience, computer 
science, information systems, computer and electrical engineering, 
materials science, and equally, the engagement of ethicists 
and policymakers. As AI continues to proliferate into mobile, 
embedded, and edge systems, the demand for energy-eÿcient, 
explainable, and equitable solutions becomes increasingly urgent. 
This perspective contributes by oering a comprehensive, 
biologically informed framework that connects the theoretical 
benefits of subthreshold processing to actionable strategies in AI 
design. It advocates a departure from the status quo and calls for 
a new generation of systems that are not only computationally 
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capable but also sustainable, deployable, and aligned with the 
energy constraints of our world. 
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