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The role of IP3 receptors and
SERCA pumps in restoring
working memory under amyloid
β induced Alzheimer’s disease: a
modeling study

Ziyi Huang and Lei Wang*

Scholastic Excellence Research Center, Wuxi Dipont School of Arts and Science, Wuxi, China

Memory impairment is a prevalent symptom in patients with Alzheimer’s disease

(AD), with working memory loss being the most prominent deficit. Recent

experimental evidence suggests that abnormal calcium levels in the Endoplasmic

Reticulum (ER) may disrupt synaptic transmission, leading to memory loss in

AD patients. However, the specific mechanisms by which intracellular calcium

homeostasis influences memory formation, storage, and recall in the context of

AD remain unclear. In this study, we investigate the e�ects of intracellular calcium

homeostasis on AD-related working memory (WM) using a spiking network

model. We quantify memory storage bymeasuring the similarity between images

during the training and testing phases. The model results indicate that ∼90% of

memory can be stored in the WM network under normal conditions. In contrast,

the presence of amyloid beta (Aβ), associated with AD, significantly reduces

this similarity, allowing only 54%-58% of memory to be stored, this alteration

trend is consistent with previous experimental findings. Further analysis reveals

that downregulating the activation of inositol triphosphate (IP3) receptors and

upregulating the activation of the sarco-endoplasmic reticulum Ca2+ ATPase

(SERCA) pumps can enhance memory performance, achieving about 78% and

77%, respectively. Moreover, simultaneously manipulating both IP3 and SERCA

activations can increasememory capacity to around 81%. These findings suggest

several potential therapeutic targets for addressing memory impairment in

Aβ aggregation induced AD patients. Additionally, our network model could

serve as a foundation for exploring further mechanisms that modulate memory

dysfunction at the genetic, cellular, and network levels.
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1 Introductions

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the
leading cause of dementia worldwide. It is affecting more than 40 million people globally,
as this number is constantly increasing (Kim et al., 2024). AD is commonly associated
with the accumulation of amyloid-beta (Aβ) plaques and tau tangles. Cognitive symptoms
such as working memory (WM) loss are often detected before these pathological hallmarks
(Breijyeh and Karaman, 2020). The early dysfunction of working memory (i.e., the ability
to temporarily store and process information) shows that defects in neuronal pathways
may result in the initial cognitive deficits before the major neurodegenerations occur.
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Recent advances in neuroscience research demonstrate that
astrocyte, the previously considered supporting cell (Kimelberg
and Nedergaard, 2010; Farhy-Tselnicker and Allen, 2018), plays
an important role in WM via synapse modulations (Gordleeva
et al., 2021). Astrocytes respond to neuronal activities by producing
intracellular inositol triphosphate (IP3), causing calcium (Ca2+)
release from internal stores. The Ca2+ elevation triggers the
increase of gliotransmitters release, which enhances the synaptic
connections, forming the basis of short-term memory formation.
This feedback loop has been tested to successfully model the
encoding and retrieval of WM under a biologically plausible
network (Gordleeva et al., 2021).

However, this intricate mechanism became vulnerable in
the situation of AD. Aβ oligomers is studied to interfere with
intracellular Ca2+ homeostasis by enhancing membrane leak, over-
activating IP3 receptors and suppressing the activity of sarco-
endoplasmic reticulum Ca2+ ATPase (SERCA) pumps, leading to
persistent intracellular Ca2+ elevation and signaling irregularities
(Latulippe et al., 2018). This abnormality leads to the unstable
intracellular environment while also impairs the astrocytic capacity
on modulating working memory, which might be the reason of
WM damage.

Most research on the causes and treatments of AD has
been conducted through experimental methods, which are often
rigorous and time-consuming. Given this challenge, computational
approaches have emerged as a viable alternative (Moravveji et al.,
2024). In recent decades, numerous network models have been
developed to explore potential mechanisms related to the causes
and treatments of AD, addressing areas such as disease progression
(Chamberland et al., 2024; Bertsch et al., 2017), pathogenesis
(Puri and Li, 2010), the effects of specific proteins (Helal et al.,
2019, 2014), and mitochondrial dysfunction (Toglia et al., 2018).
Many of these studies have utilized non-spiking neuron models;
however, spiking signals are intrinsic to neurons and can be
reliably transmitted over long distances in brain regions affected
by AD. Therefore, this study employs spiking neuron models as the
primary functional units in constructing the network.

In this study, we construct a computational network model
to examine how intracellular calcium homeostasis affects the
formation, impairment, and restoration of WM under Aβ-
induced AD conditions. The network comprises two cell types:
spiking excitatory neurons and non-spiking astrocytes. The
neurons are primarily responsible for generating population
spiking activity, while the astrocytes are mainly involved in
producing various calcium signals. Model results indicate that
the presence of Aβ impairs WM performance by significantly
increasing Ca2+ concentrations. Conversely, downregulating IP3
activation and upregulating SERCA activation, either separately or
simultaneously, can help restore WM performance to some extent.

2 Model descriptions

In this study, we introduce a biologically plausible spiking
neuron-astrocyte network that simulates WM through local
synaptic modulations. Neurons generate spikes in response to
external stimuli, releasing glutamates into the extracellular space.
Surrounding astrocytes detect these glutamates, activating internal

IP3 and Ca2+ signaling cascades. When astrocytic Ca2+ exceeds
a critical threshold, gliotransmitters are released, transiently
enhancing synaptic weights in the stimulated neuronal subnetwork.
This temporary potentiation supports cue-based memory retrieval
during test phases. In the following subsections, we detail themodel
components responsible for simulating this loop, including the
neuron dynamics, astrocyte calcium signaling, Aβ modulation, and
memory performance metrics.

Architecture and cell units of our network model are inspired
and adapted from Gordleeva et al. (2021). Based on the spiking
network, we employed three additional elements: Aβ-dependent
calcium flows, calcium-dependent variations of synaptic weight
combined with Aβ modulations, and negative components in
describing the activation of IP3. The first two elements are used
to introduce the influence of Aβ. The larger the Aβ value, the
more severe the AD and the worse the WM performance. The last
element is used to balance the variation of IP3.

2.1 Neuron model

Spiking dynamics of single neuron is described using the
Izhikevich model (Izhikevich, 2003). Due to its simplicity and
computational efficient, this neuron model has been widely used
to study population activities of neurons, e.g., synchronization and
oscillation (Khoshkhou and Montakhab, 2018).

Mathematical expressions of the Izhikevich model are:
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Here, V represents the transmembrane potential, while U

denotes a membrane recovery variable that provides negative
feedback toV . The indices

(

i, j
)

indicate the corresponding neuron.
c is the resting potential, and a, b, d are dimensionless parameters.
Iapp refers to the applied currents to the respective neurons, which
will be explained further below.

Synaptic currents that neurons receive is expressed as
Gordleeva et al. (2021):

Isyn
(

i, j
)

=

N(i,j)
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gsyn
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i, j
) (

Esyn − V
(

i, j
))

1+ exp
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−
Vk
pre
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) (3)

Here, N is the total number of presynaptic neurons, Esyn is
the reversal potential for the synapse, Vpre denotes the membrane
potential of the presynaptic neuron, and ksyn is slope of the synaptic
activation function. The parameter gsyn describes the synaptic
strength (Gordleeva et al., 2021):

gsyn
(

i, j
)

= η + vca (m, n) (4)

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2025.1643547
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Huang and Wang 10.3389/fncom.2025.1643547

TABLE 1 Parameter values in the neuron model.

Parameter Description Value

a Time scale of the recovery variable 0.1

b Sensitivity of the recovery variable to the
subthreshold fluctuation of membrane
potential

0.2

c After-spike reset value of the membrane
potential

−65 mV

d After-spike reset of the recovery variable 2

N Number of input connections per each
neuron

40

η Synaptic weight without astrocyte inputs 0.025

Esyn Synaptic reversal potential for excitatory
synapse

0 mV

ksyn Slope of the synaptic activation function 0.2 mV

Here (m, n) denotes the index of the corresponding astrocyte
that modulates the synaptic currents of neuron

(

i, j
)

. η represents
the synaptic weight without astrocyte influence, while vca denotes
the astrocyte-induced modulation of synaptic strength.

Specific values of these parameters are given in Table 1.

2.2 Astrocyte model

As mentioned above, astrocytes in our network primarily
generate various calcium signals. Following the method used in the
previous study (Gordleeva et al., 2021), a mean-field approach is
employed to describe the emergence of Ca2+ signals, as shown in
Equation 5 and Figure 1.

d
[

Ca2+
]

(m, n)

dt
= JER (m, n)− Jpump (m, n)+ Jleak (m, n)
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)

Here Ca2+ indicate the intracellular calcium concentration, h
is the fraction of the activated IP3 receptors on the ER surface.
Detailed expressions of each flux are:
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FIGURE 1

Schematic diagram of intracellular calcium exchanges.

Here JER represents the Ca2+ flux from the ER to the cytoplasm
through IP3 receptors and ryanodine receptors (RyR). Jpump

denotes the Ca2+ flux pumped back into the ER via the SERCA,
while Jleak indicates the leakage flux from the ER to the cytoplasm.
Jin and Jout describe the calcium exchange with extracellular space.

Activation dynamics of IP3 is expressed as Gordleeva et al.
(2021) and Wagner et al. (2004):

dIP3(m, n)

dt
=

IP∗3 − IP3(m, n)

τIP3
+ λ

(

JPLCδ(m, n)+ Jglu(m, n)

+ dfIP3 (m, n)
)

− kv4
JKinase(m, n)− JPhosphatase(m, n)

λ

(7)

Here IP∗3 denotes the steady-state concentration of the IP3
receptors, while τIP3 is the rate constant for IP3 loss. λ is a control
parameter used to regulate various elements in IP3 dynamics.
JPLCδ describes the production of IP3 by phospholipase Cδ (PLCδ),
expressed as Gordleeva et al. (2021):

JPLCδ =
v4
([

Ca2+
]

+ (1− α) k4
)

[

Ca2+
]

+ k4
(8)

Jglu describes the production of IP3 induced by glutamate in
response to neuronal activities, which is modeled as Gordleeva et al.
(2021):

Jglu =

{

Aglu, if t0 < t ≤ t0 + tglu
0, otherwise

(9)

Here Aglu represents the amplitude of glutamate contributing
to the production of IP3, while tglu denotes the periods when the
total level of glutamate from all synapses reaches a given threshold:





1

Na

∑

(i,j)∈Na

[

G
(

i,j
)

>Gthr

]



>Fact (10)

Here Na represents the number of neurons connected to a
single astrocyte, Gthr = 0.7 is the threshold, and [x] denotes the
Iverson bracket. Fact = 0.5 indicates the fraction of synchronously
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spiking neurons within the total neuronal ensemble associated with
the astrocyte. G refers to the amount of glutamate, which will be
explained further below.

JKinase and JPhosphatase are currents for IP3 degradation, which
are expressed as Wagner et al. (2004):

JKinase = (1− ρ) kv1
IP3

IP3 + 2.5
+ ρ · kv2

IP3

IP3 + 0.5
(11)

JPhosphatase = kv3
IP3

IP3 + 30
(12)

ρ =

[

Ca2+
]

[

Ca2+
]

+ 0.39
(13)

The currents dfCa in Equation 5 and dfIP3 in Equation 7
represent the diffusion of Ca2+ ions and IP3 molecules via gap
junctions between astrocytes, expressed as follows (Gordleeva et al.,
2021):

dfCa (m, n) = dCa
(

1
[

Ca2+
])

(m, n)

dfIP3 (m, n) = dIP3 (1IP3) (m, n) (14)

Here dCa and dIP3 represent the diffusion rate of the Ca2+

and IP3, respectively. Following a previous study (Gordleeva et al.,
2021), we assume that each astrocyte is diffusively coupled only
with its four nearest neighbors:

(
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+ (1IP3) (m, n+ 1)+ (1IP3) (m, n− 1)

− 4 (IP3) (m, n) (16)

Specific values of these parameters are given in Table 2.

2.3 Neuron-astrocyte network

As described in Gordleeva et al. (2021), the network
model for WM comprises three layers: the input layer, the
neurons layer, and the astrocytes layer. The input layer
consists of two types of stimuli: (1) image signals labeled
{

“0′′, “1′′, “2′′, “3′′, “4′′, “5′′, “6′′, “7′′, “8′′, “9′′
}

(Figure 2),
which are responsible for memory training and testing,
and (2) background noise signals, that generate low-rate
spontaneous spikes.

The neurons layer contains 79 × 79 neurons, which receive
stimuli from the input layer and project to the astrocytes layer.
The third layer consists of 26 × 26 astrocytes, with each astrocyte
projecting back to neurons in the second layer.

The architecture of synaptic connections among neurons is
random; specifically, each neuron connects to N = 40 local
postsynaptic target neurons via excitatory chemical synapses, with
these neurons chosen randomly from the neurons layer. In contrast,
the synaptic connections among astrocytes are deterministic, with

TABLE 2 Parameter values in astrocyte model.

Parameter Description Value

v1 Max Ca2+ flux 6 s−1

v2 Ca2+ leak flux constant 0.11 s−1

v3 Max Ca2+ uptake 2.2 µM/s

v4 Max rate of IP3 production 0.3 µM/s

v6 Max rate of activation-dependent Ca2+ influx 0.2 µM/s

vx Ca2+ influx scaling factor 0.025 µM/s

c0 Total Ca2+ in the cytoplasm 2.0 µM

c1 Ratio of ER volume to cytoplasm volume 0.185

d1 Dissociation constant for IP3 0.13 µM

d2 Dissociation constant for Ca2+ inhibition 1.049 µM

d3 Receptor dissociation constant for IP3 943.4 nM

d5 Ca2+ activation constant 82 nM

k1 Rate constant of Ca2+ extrusion 0.5 s−1

k2 Half-saturation constant for
agonist-dependent Ca2+ entry

1 µM

k3 Activation constant for ATP − Ca2+ pump 0.1 µM

k4 Dissociation constant for Ca2+ stimulation of
IP3 production

1.1 µM

kv1 Max rate constant at low Ca2+ 0.001 µM/s

kv2 Max rate constant at high Ca2+ 0.005 µM/s

kv3 Max rate constant (phosphatase) 0.02 µM/s

kv4 IP3 production rate scaling factor 10/0.083

IP∗

3 Steady state concentration of IP3 0.16 µM

dca Ca2+ diffusion rate 0.05 s−1

dIP3 IP3 diffusion rate 0.1 s−1

Aglu Rate of IP3 production through glutamate 5 µM/s

FIGURE 2

Image stimulus patterns.

each astrocyte connecting to its four nearest neighbors via gap
junctions (Gordleeva et al., 2021).

Additionally, each astrocyte connects with Na =

16 (i.e., 4× 4) neurons through reciprocal excitatory chemical
synapses. Thus, the synaptic strength in Equation 4 has a Ca2+

dependent component vCa, which can be expressed as:

vCa = v∗Ca2
(

[

Ca2+
](m,n)

−
[

Ca2+
]

thr

)

(17)

Here v∗Ca denotes the strength of astrocyte-induced modulation
of synaptic weight, 2 (x) is the Heaviside step-function, and
[

Ca2+
]

thr
is the threshold.
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In Equation 10, the amount of glutamate G is characterized as
Gordleeva et al. (2021):

dG
(

i, j
)

dt
= −αgluG

(

i, j
)

+ kglu2
(

V
(

i, j
)

− 30
)

(18)

Here αglu represents the glutamate clearance constant, while
kglu indicates the efficacy of the release. Similar to Equation 17,
2 (x) is the Heaviside step-function.

Specific values of relevant parameters are given in Table 3.

2.4 Stimulation protocol

Our stimulation protocol follows the delayed match-to-sample
task (DMS), which is commonly used in experimental studies of
memory formation and recall. During the training phase, an image
labeled with a specific digit is presented for 200ms (500ms-700ms),
followed by a 700ms break (700ms-1,400ms). After this, two non-
match images are displayed, each for 150 ms (1,400 ms-1,550 ms

and 1,800ms-1,950ms), with a 250ms break in between (1,550ms-
1,800 ms and 1,950 ms-2,200 ms). Finally, the matching stimulus
appears for 150 ms (2,200 ms-2,350 ms) to test the network’s
memory recall capability. The total duration of the simulation
experiment is 3,000 ms. Detailed stimulus information during
training and testing phases can refer to Gordleeva et al. (2021). A
demonstration of a sample stimulus current and the corresponding
neuronal activities during the training and test phases is presented
in Supplementary Figure 17.

2.5 Memory performance matrices

To quantify the amount of memory that can be stored, we use a
measure calculated based on the similarity between a recalled image
and the sample image. The similarity ranges from 0 to 1, with larger
values indicating better WM performance.

Mij (t) = I









t
∑

k=t−w

I
[

Vij

(

k
)

> thr
]



 > 0





C (t) =
1

2

( 1

|P|

∑

(i,j)∈P

Mij (t)+
1

W ·H − |P|

∑

(i,j)/∈P

(1

− Mij (t))
)

(19)

TABLE 3 Parameter values in neuron-astrocyte network.

Parameter Description Value

Na Number of neurons connecting with one
astrocyte

16

αglu Glutamate clearance constant 10 s−1

kglu Efficacy of glutamate release 600 µM/s

v∗

ca Strength of astrocyte–induced modulation of
synaptic weight

0.5

[Ca2+]thr Threshold concentration of Ca2+ for the
astrocytic modulation of synapse

0.15 µM

CP =
1

|TP|
max
t∈TP

C (t)

Here w = 1ms represents the time step, thr denotes the spiking
threshold of the neuron, P is the set of pixels belonging to the
sample image, and W and H are the network dimensions. I is the
indicator function, and TP is the set of frames within the tracking
range of pattern P. For more details (see Gordleeva et al., 2021).

2.6 Introduction of Aβ to calcium flows

The effect ofAβ on calcium dynamics is reflected in its influence
on the currents Jin and JER. Following a previous study (Latulippe
et al., 2018), Jin and JER with the addition of Aβ are expressed as:

Jin =
v6IP

2
3

k22 + IP23
+ vx + A4

β

JER = c1v1
[

Ca2+
]3
h3IP33

(

c0/c1 − (1+ 1/c1)
[

Ca2+
])

((

IP3 + d1
) ([

Ca2+
]

+ d5 + 0.02Aβ

))3

(20)

Here Aβ represents a fixed level of Aβ concentration.

2.7 Calcium-dependent change of synaptic
weights with Aβ modulations

Previous experimental results indicate that high concentrations
of Ca2+ can promote the release probability of neurotransmitters,
thereby strengthening synaptic connections between neurons
(Neher and Sakaba, 2008). However, excessive levels of Ca2+ can
disrupt synaptic connections by inducing irreversible excitotoxic
injury (Vermma et al., 2022). In our model, Equation 21 is
employed to prevent exaggerated Ca2+ concentrations.

wa =
1.2

1+ exp
(

1−12.1[Ca2+]
0.2

) exp
(

−
[

Ca2+
])

(21)

Another experiment demonstrated that the accumulation of
Aβ negatively affects Ca2+ levels (Toglia et al., 2018). Therefore,
Equation 22 is introduced to simulate this variation.

wb =

{

1+ exp
(

−2Aβ

)

wa if
[

Ca2+
]

≤ 0.15
exp

(

−2Aβ

)

wa else
(22)

Here Aβ represents a fixed level of Aβ concentration. Based on
the value of wb, we have v

∗
Ca = wb ∗ v

∗
Ca.

All simulations were performed using the Matlab software
(Matlab R2021a), and the fourth-order Runge-Kutta algorithm was
employed to calculate the values of different variables with a time
integration step of 0.1ms.

3 Model results

In this section, we present the functional outcomes of the
neuron-astrocyte network model under both normal and AD-
like conditions. We begin by illustrating how the intact system
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FIGURE 3

Neuronal responses in WM network under normal conditions. (A) Raster plots of spikes for all the neurons during di�erent phases; (B, C) Average

frequencies of stimulus-specific and unspecific neurons using di�erent time windows, respectively (bin = 20 ms).

encodes, maintains, and successfully retrieves a single stimulus,
highlighting the role of astrocyte-mediated synaptic modulation
in WM. Next, we analyze memory performance metrics across
varying levels of Aβ pathology and under parameter modulations
targeting IP3 production and SERCA activity. These results provide
valuable insights into the effects of calcium dysregulation on WM
and emphasize potential strategies for restoring cognitive function
in Aβ-induced AD.

3.1 WM network performance under
normal conditions

In the absence of Aβ (indicating no AD symptoms), the
WM network performs effectively. Results shown in Figure 3
illustrate that the training stimulus “1” can be successfully recalled
during the testing period after two non-match stimuli (“0”
and “7”). Quantitative results in terms of similarity and peak
frequency indicate that the similarity of neuronal responses to
the sample stimulus and the match stimulus reaches ∼0.9195.
Additionally, the peak frequency of neurons responding to the
match stimulus is comparable to that of neurons responding to the
sample stimulus.

The dotted pink line in Figure 3B is determined
by evaluating each stimulus from the set
{“0′′, “2′′, “3′′, “4′′, “5′′, “6′′, “7′′, “8′′, “9′′} as the match stimulus
and calculating the maximum peak frequency among these stimuli
(see Supplementary Figure 18). If the peak frequency of neurons
under the match stimulus “1” exceeds this line, we consider
neuronal activity under “1” to be distinguishable from the activities
elicited by the other stimuli.

Results presented in Figures 4A, B illustrate the spiking
sequence of a stimulus-specific neuron along with the amount
of glutamate (G) it releases, demonstrating comparable spiking
activities for both the sample and match stimuli. Figures 4C, D
display the Ca2+ signal and IP3 levels in an astrocyte that is that
is synaptically connected to the stimulus-specific neuron. It is
evident that once the glutamate release from the neuron reaches
a certain threshold (“0.7”, as indicated in Equation 10), the IP3
level rises rapidly. This continuous increase in IP3 concentration
gradually elevates the Ca2+ levels, ultimately enhancing neuronal
responses. These findings highlight the critical role of Ca2+-
mediated modulation in sustaining working memory, aligning with
previous research (Mongillo et al., 2008).

3.2 WM network performance in the
presence of Aβ

Accumulation of Aβ has been linked to memory loss in
AD in numerous studies (Hampel et al., 2021; Ma and Klann,
2012; Poling et al., 2008). In our research, we simulate Aβ

accumulation by varying the Aβ parameter and observe changes in
memory performance. Figure 5 illustrates how similarity and peak
frequency vary with respect to Aβ levels, showing that increased
Aβ significantly impairs WM performance. Specifically, the peak
frequency decreases from over 200Hz (Aβ = 0) to 93.87Hz
(Aβ = 1.6), while similarity drops from 0.9195 (Aβ = 0) to 0.541
(Aβ = 1.6), indicating a substantial loss of memory recall fidelity.

In the following sections, we will separately analyze how
memory performance is disrupted and the potential for restoration
at Aβ = 1.2 (mild AD) and Aβ = 1.6 (severe AD).
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FIGURE 4

Responses of a stimulus-specific neuron and corresponding astrocyte. (A, B) Spike train of a specific neuron and the amount of glutamate (G) it

releases, respectively; (C, D) Ca2+ signals and IP3 value of an astrocyte which has synaptic connection with the specific neuron.

FIGURE 5

Peak frequencies and similarities with the increase of Aβ. (A) Peak Frequency vs. Aβ; (B) Similarity vs. Aβ.

3.2.1 Working memory impairment under mild Aβ

accumulation
Results shown in Figure 6 indicate that the addition of a small

amount of Aβ significantly impairs WM performance. Specifically,
similarity decreases from 0.9195 to 0.5832, representing a reduction
of∼36.6%, while peak frequency drops from 204.87Hz to 98.98Hz,
reflecting a 51.7% reduction.

Figures 7A, B illustrate the spiking response of a stimulus-
specific neuron, and the amount of glutamate released, further
highlighting the negative modulatory effect of Aβ. Additionally,
the Ca2+ signal and IP3 levels in an astrocyte that is connected
to the neuron are demonstrated in Figures 7C, D, in which the
amplitude of Ca2+ signal shows an increasing trend, rising from
about 0.7 (as seen in Figure 4D) to ∼1.4 (as shown in Figure 7D).
This finding aligns with previous studies indicating that Aβ

accumulation disrupts calcium homeostasis, leading to increased

Ca2+ concentrations in the intracellular space (Fani et al., 2021;
Toglia et al., 2018).

3.2.2 Working memory impairment under severe
Aβ accumulation

Results presented in Figure 8 indicate that the addition of
a large amount of Aβ to the network severely impairs WM
performance. Specifically, similarity decreases from 0.9195 to
0.5380, representing a reduction of ∼41.5%, while peak frequency
declines from 204.87Hz to 92.80Hz, reflecting a 54.7% reduction.
These decreases are more pronounced than those observed at
Aβ = 1.2.

Figures 9A, B illustrate the spiking response of a stimulus-
specific neuron along with the amount of glutamate released,
further emphasizing the negative modulatory effect of Aβ.
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FIGURE 6

Neuronal responses in WM network in the presence of Aβ (Aβ = 1.2). (A) Raster plots of spikes for all the neurons during di�erent phases; (B, C)

Average frequencies of stimulus-specific and unspecific neurons using di�erent time windows, respectively (bin = 20 ms).

FIGURE 7

Responses of a stimulus-specific neuron and corresponding astrocyte in the presence of Aβ (Aβ = 1.2). (A, B) Spike train of a specific neuron and the

amount of glutamate (G) it releases, respectively; (C, D) Ca2+ signals and IP3 values of an astrocyte which has synaptic connection with the specific

neuron.

Additionally, the Ca2+ signal and IP3 levels in an astrocyte that
is connected to the neuron are demonstrated in Figures 9C, D,
in which the amplitude of Ca2+ signal shows significant growth,
reaching∼5 (as shown in Figure 9D).

3.3 Restoring WM network performance by
downregulating IP3 activation

The results in Section 3.2 indicate that excessive levels of
Ca2+ induced by Aβ play a crucial role in disrupting the memory

performance of WM network. In this section, we investigate
whether downregulation of IP3 can partially restore WM under

pathological conditions by reducing intracellular calcium levels, as
IP3 positively influences intracellular calcium concentration (see

Equations 5, 6).
In Figure 10, we analyze two cases under the condition of

Aβ = 1.2 (mild AD): (1) When λ = 0.1 (see Equation 7),

similarity increases from 0.5832 to 0.7752, a rise of ∼32.9%, and

peak frequency increases from 98.98Hz to 115.36Hz, reflecting
a 16.5% increase; (2) When λ = 0.05, similarity rises from
0.5832 to 0.7808, representing a 33.9% increase, while peak
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FIGURE 8

Neuronal responses in WM network in the presence of Aβ (Aβ = 1.6). (A) Raster plots of spikes for all the neurons during di�erent phases; (B, C)

Average frequencies of stimulus-specific and unspecific neurons using di�erent time windows, respectively (bin = 20 ms).

FIGURE 9

Responses of a stimulus-specific neuron and corresponding astrocyte in the presence of Aβ (Aβ = 1.6). (A, B) Spike train of a specific neuron and the

amount of glutamate (G) it releases, respectively; (C, D) Ca2+ signals and IP3 values of an astrocyte which has synaptic connection with the specific

neuron.

frequency increases from 98.98Hz to 117.74Hz, showing a 19.0%
increase. These findings suggest that downregulation of IP3
activation can significantly enhance WM performance under mild
AD conditions.

However, in Figure 11, under the condition of Aβ = 1.6 (severe

AD), both λ = 0.1 and λ = 0.05 show minimal effects on

similarity and peak frequency. This indicates that downregulating

IP3 activation does not improve WM performance in severe AD,

underscoring the necessity for a dual-target modulation strategy to

achieve full recovery in severe AD patients.

3.4 Restoring WM network performance by
downregulating IP3 activation and
upregulating SERCA activation

The effects of upregulating SERCA activation on WM
performance are illustrated in Figure 12. In mild AD conditions,
when γ = 1.25, similarity increases from 0.5832 to 0.6132,
reflecting a ∼5.1% increase, and peak frequency rises from
98.98Hz to 101.58Hz, a ∼2.6% increase. However, when γ =

2.0, similarity increases from 0.5832 to 0.7710, representing a

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2025.1643547
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Huang and Wang 10.3389/fncom.2025.1643547

FIGURE 10

Modulation of memory performance by downregulating IP3 when Aβ = 1.2. (A, B) and (E, F) Raster plot, average frequency of neurons, Ca2+ and IP3

of a specific astrocyte (λ = 0.1); (C, D) and (G, H) Raster plot, average frequency of neurons, Ca2+ and IP3 of a specific astrocyte (λ = 0.05).

FIGURE 11

Modulation of memory performance by downregulating IP3 when Aβ = 1.6. (A, B) and (E, F) Raster plot, average frequency of neurons, Ca2+ and IP3

of a specific astrocyte (λ = 0.1); (C, D) and (G, H) Raster plot, average frequency of neurons, Ca2+ and IP3 of a specific astrocyte (λ = 0.05).

∼32.2% increase, while peak frequency rises from 98.98Hz to
114.06Hz, a ∼ 15.2% increase (see Supplementary Figure 19). The
corresponding variations in the Ca2+ signal for γ = 1.25 is shown
in Figure 12B.

Moreover, simultaneously altering the activations of IP3 and
SERCA significantly enhances WM performance. Specifically,
similarity rises from 0.5832 to 0.8105, a ∼39.0% increase,
and peak frequency increases from 98.98Hz to 124.06Hz,
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FIGURE 12

Modulation of memory performance by downregulating IP3 and upregulating SERCA activations. Average frequency of neurons and Ca2+ signal of a

specific astrocyte: (A, B) γ = 1.25; (C, D) λ = 0.1, γ = 1.25; (E, F) γ = 4.0; (G, H) λ = 0.1, γ = 4.0.

reflecting a ∼25.3% increase. These findings suggest that
concurrently downregulating IP3 activation while upregulating
SERCA activation plays a crucial role in restoring WM under mild
AD conditions.

In Figures 12E–H, the model results for severe AD conditions
indicate that upregulating SERCA activation has minimal impact
on WM performance. Additionally, simultaneous changes to the
activations of IP3 and SERCA show only slight improvements
in WM performance. These results imply that simply regulating
intracellular calcium levels is insufficient to effectively restore WM
performance in severe AD conditions.

3.5 Test the modulatory roles of IP3 and
SERCA using other two sample stimuli

To evaluate the general applicability of our network model,
we conducted two additional experiments by changing the sample
stimulus to two other digit stimuli: “2” and “7”.

3.5.1 Model evaluation using digit “2” as sample
stimulus

Results demonstrated in Figure 13 indicate that the similarity
of neuronal responses to the sample and match stimuli reaches
∼0.8975, with the peak frequency of neurons responding to the
match stimulus being comparable to that of neurons responding
to the sample stimulus.

The effects of downregulating IP3 activation and upregulating
SERCA activation on WM performance are illustrated in
Figures 14A–D. In mild AD conditions, when λ = 0.1, similarity
increases from 0.5680 to 0.7559, representing a ∼33.1% increase,

and peak frequency rises from 107.80Hz to 125.24Hz, a ∼16.2%
increase. When γ = 1.25, similarity increases from 0.5680
to 0.5991 (∼5.5 increase), and peak frequency rises from
107.80Hz to 111.06Hz (∼3.0% increase). When both λ = 0.1
and γ = 1.25 are applied, similarity increases from 0.5680 to
0.8016 (∼41.1%), and peak frequency rises from 107.80Hz to
136.29Hz (∼26.4%). These findings suggest that simultaneously
downregulating IP3 activation and upregulating SERCA

activation plays a crucial role in restoring WM under mild AD
conditions, consistent with the results observed under the sample
stimulus “1”.

In severe AD conditions, the model results shown in
Figures 14E–H demonstrate that manipulating the activation
of IP3 and SERCA, either separately or simultaneously, does
not significantly improve memory performance. These findings
imply that the WM performance in severe AD cannot be
effectively restored solely by regulating intracellular calcium
levels, aligning with the conclusions drawn under the sample
stimulus “1”.

3.5.2 Model evaluation using digit “7” as sample
stimulus

The trends in similarity and peak frequency under sample
stimulus “7” are consistent with those observed for sample stimuli
“1” and “2”. Specifically, under sample stimulus “7”, the similarity
of neuronal responses to the sample and match stimuli reaches
∼0.8629, with the peak frequency of neurons responding to the
match stimulus being comparable to that of neurons responding
to the sample stimulus (Figure 15).

The effects of downregulating IP3 activation and upregulating
SERCA activation on WM performance are illustrated in
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FIGURE 13

Neuronal responses in the WM network when the sample stimulus image is “2”. (A) Raster plots of spikes for all the neurons during di�erent phases;

(B) Average frequencies of stimulus-specific neurons using di�erent time windows, respectively (bin = 20 ms).

FIGURE 14

Modulation of memory performance when the sample stimulus image is “2”. Average frequency of neurons: (A) AD condition (Aβ = 1.2); (B) λ = 0.1;

(C) γ = 1.25; (D) λ = 0.1, γ = 1.25; (E) AD condition (Aβ = 1.6); (F) λ = 0.1; (G) γ = 4.0; (H) λ = 0.1, γ = 4.0.

Figures 16A–D. In mild AD conditions, when λ = 0.1, similarity
increases by ∼29.3% (from 0.5504 to 0.7117), and peak frequency
shows an ∼11.9% increase (from 96.42Hz to 107.94Hz). When
γ = 1.25, there is a small increase of ∼2.5% in similarity (from
0.5504 to 0.5643) and ∼1.2% in peak frequency (from 96.42Hz to
97.56Hz). When both λ = 0.1 and γ = 1.25 are applied, similarity

increases significantly by∼37.7% (from 0.5504 to 0.7577), and peak
frequency rises by ∼18.0% (from 96.42Hz to 113.76Hz). These
results suggest that simultaneously downregulating IP3 activation
and upregulating SERCA activation plays a crucial role in restoring
WM in mild AD conditions, consistent with the findings under
sample stimulus “1”.
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FIGURE 15

Neuronal responses in the WM network when the sample stimulus image “7”. (A) Raster plots of spikes for all the neurons during di�erent phases; (B)

Average frequencies of stimulus-specific neurons using di�erent time windows, respectively (bin = 20 ms).

FIGURE 16

Modulation of memory performance when the sample stimulus image is “7”. Average frequency of neurons: (A) AD condition (Aβ = 1.2); (B) λ = 0.1;

(C) γ = 1.25; (D) λ = 0.1, γ = 1.25; (E) AD condition (Aβ = 1.6); (F) λ = 0.1; (G) γ = 4.0; (H) λ = 0.1, γ = 4.0.

Model results for severe AD conditions, shown in Figures 16E–
H, demonstrate that manipulating the activations of IP3 and
SERCA, either separately or together, does not significantly
impact memory performance. There results indicating that WM
performance in severe AD cannot be effectively restored by
merely regulating intracellular calcium levels, aligning with the
conclusions drawn from sample stimulus “1”.

4 Discussions

In this study, we developed a computational model comprising
spiking neurons and non-spiking astrocytes to explore how
intracellular calcium homeostasis affects WM performance under
Aβ-induced AD conditions. Quantitative measures, represented
by similarity and peak frequency, indicate that manipulating IP3
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receptor activation and SERCA pump activity can significantly
enhance memory performance in mild AD conditions. However,
minimal effects on performance are observed in severe AD
conditions when altering IP3 and SERCA activation. Evaluations
using two additional sample stimuli further confirm the general
applicability of our network model.

Several previous experimental findings support our proposed
modulation strategies of downregulating IP3 and upregulating
SERCA as physiologically realistic (Green et al., 2008; Krajnak and
Dahl, 2018; Kumar et al., 2015). For instance, mGluR5 antagonists,
such as MPEP and fenobam, can pharmacologically reduce IP3
production by blocking metabotropic glutamate receptor 5 (Kumar
et al., 2015). These drugs have been shown to effectively reduce
synaptic hyperexcitability and improve memory deficits in mouse
models of AD, aligning with our model predictions. Additionally,
enhancing SERCA pump efficiency has been explored through
SERCA2a gene therapy in cardiac disease models (Kranias and
Hajjar, 2012), where improved calcium handling restores cellular
function. While SERCA upregulation has not been extensively
tested in neuronal contexts, pharmacological activators and gene
delivery vectors present promising avenues. Together, these
strategies offer a translationally relevant approach to restore
calcium homeostasis and potentially reverse early WM damage in
Aβ-induced mild AD conditions.

Despite the effectiveness of our model in characterizing
WM formation and restoration, several limitations still need to
be addressed.

4.1 Model components in the network

First, our network model includes only excitatory neurons,
overlooking the crucial role of inhibitory interneurons, which
are essential for synchronizing network rhythms and preventing
overexcitability. Future studies should incorporate inhibitory
interneurons to enhance the realism of the memory model. Second,
the astrocyte model is based on mean-field approximations,
averaging calcium responses across compartments (Bazargani
and Attwell, 2016). This approach simplifies the intricate
spatial signaling seen in actual astrocytes, particularly in
presynaptic domains. Integrating spatially distinct, cell-type-
specific mechanisms would enhance the model’s fidelity and
biological relevance for future laboratory research.

4.2 Aβ and other hypotheses

In recent decades, the pathogenesis of AD has received
considerable attention, leading to several prominent hypotheses:
(1) Amyloid Hypothesis (Aβ): This hypothesis suggests that
neuronal damage in AD patients arises from abnormalities
in the processing of amyloid precursor protein (APP) and
the subsequent accumulation of Aβ (Hampel et al., 2021). (2)
Cholinergic Hypothesis: Supported by experimental observations,
this hypothesis highlights a significant reduction in choline
acetyltransferase, the enzyme responsible for synthesizing
acetylcholine (ACh), in the amygdala, cortex, and hippocampus

of postmortem brains from AD patients (Chen et al., 2022).
(3) Glutamate Toxicity Hypothesis: This hypothesis is based on
evidence of a marked reduction in the binding of 1-[3H] glutamate
in the brains of individuals with AD (Maragos et al., 1987). (4)
Tau Hypothesis: This hypothesis is grounded in the observation of
aggregates of misfolded tau proteins present in the brains of AD
patients (Frost et al., 2009).

While these four hypotheses aim to elucidate the
pathophysiological basis of AD, it is important to recognize
that the triggers associated with these hypotheses likely do not
operate in isolation and may interact synergistically (Patow et al.,
2023). In this study, we focused solely on AD conditions induced
by Aβ accumulation. Future research should also examine AD
conditions triggered by other significant factors.

4.3 Synaptic plasticity in WM network

Plasticity is a well-documented phenomenon at nearly all
synapses in the brain, encompassing various types such as
short-term plasticity, long-term plasticity (including long-term
potentiation and long-term depression), Hebbian learning, and
spike-timing-dependent plasticity (STDP). Moreover, synaptic
plasticity is believed to play a critical role in the formation
and storage of WM (Froudist-Walsh et al., 2018; Huang and
Wei, 2021). In this study, however, the performance of the WM
network is driven solely by intracellular calcium dynamics, without
incorporating mechanisms of synaptic plasticity. Therefore, a
potential extension of our network model could involve integrating
plasticity mechanisms to explore changes in synaptic weights
among cells.

4.4 Functions of Aβ at the genetic level

Our network model operates at the cellular level, while the
specific mechanisms of Aβ function predominantly occur at
the genetic level. For example, Hao and Friedman developed
a mathematical model that outlines the Aβ aggregation process
in detail, including production, clearance, and degradation (Hao
and Friedman, 2016). Mustafa et al. created a two-compartment
diffusion model to examine the effects of Aβ on the acetylcholine
neurocycle, incorporating a differential equation to characterize
changes in Aβ levels (Mustafa et al., 2021). Similarly, Chamberland
et al. proposed a multiscale model consisting of 19 ordinary
differential equations to analyze the progression of AD, introducing
equations for both intracellular and extracellular Aβ (Chamberland
et al., 2024). Models that focus onAβ at the genetic level may offer a
more accurate representation of its dynamic variations. Therefore,
future modeling studies on Aβ-related AD generation and
progression should incorporate more genetic-level components.

4.5 Other types of memory impairments

Memory impairments are common symptoms observed in
the brains of AD patients. Alongside deficits in WM, other
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types of memory, such as short-term, episodic, and semantic
memories (Jahn, 2013), are also affected during the progression of
AD. Furthermore, various memory-related symptoms, including
sleep disturbances (Pathmanathan et al., 2025) and accelerated
long-term forgetting (Stamate et al., 2020), have been observed.
Recent years have seen the development of computational models
addressing these symptoms. For example, Horn et al. constructed
a biologically motivated Hopfield model to investigate how the
interplay between synaptic deletion and compensation influences
memory deterioration patterns (Horn et al., 1993). Razi et al.
built a network model of coupled cortical columns to explore the
propagation modes between sleep and wakefulness (Razi et al.,
2021). Additionally, Murre et al. introduced a mathematical model
to analyze the dynamics of forgetting and amnesia, applying their
findings to experimental observations frommice, rats andmonkeys
(Murre et al., 2013). Given this context, future computational
studies could integrate these model explorations with our spiking
network model to investigate potential therapeutic targets for these
symptoms under AD conditions.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

ZH: Writing – review & editing, Software, Writing –
original draft, Conceptualization, Visualization, Data curation,
Methodology. LW: Validation, Conceptualization, Investigation,
Writing – review & editing, Supervision, Resources.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
constructed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2025.1643547/full#supplementary-material

References

Bazargani, N., and Attwell, D. (2016). Astrocyte calcium signaling: the third wave.
Nat. Neurosci. 19, 182–189. doi: 10.1038/nn.4201

Bertsch, M., Franchi, B., Marcello, N., Tesi, M. C., and Tosin, A. (2017). Alzheimer’s
disease: a mathematical model for onset and progression.Math. Med. Biol. 34, 193–214.
doi: 10.1093/imammb/dqw003

Breijyeh, Z., and Karaman, R. (2020). Comprehensive review on Alzheimer’s
disease: causes and treatment.Molecules 25:5789. doi: 10.3390/molecules25245789

Chamberland, É., Moravveji, S., Doyon, N., and Duchesne, S. (2024). A
computational model of Alzheimer’s disease at the nano, micro, and macroscales.
Front. Neuroinform. 18:1348113. doi: 10.3389/fninf.2024.1348113

Chen, Z. R., Huang, J. B., Yang, S. L., and Hong, F. F. (2022). Role of cholinergic
signaling in Alzheimer’s disease.Molecules 27:1816. doi: 10.3390/molecules27061816

Fani, G., Mannini, B., Vecchi, G., Cascella, R., Cecchi, C., Dobson, C. M.,
et al. (2021). Aβ oligomers dysregulate calcium homeostasis by mechanosensitive
activation of AMPA and NMDA receptors. ACS Chem. Neurosci. 12, 766–781.
doi: 10.1021/acschemneuro.0c00811

Farhy-Tselnicker, I., and Allen, N. J. (2018). Astrocytes, neurons,
synapses: a tripartite view on cortical circuit development. Neural Dev. 13:7.
doi: 10.1186/s13064-018-0104-y

Frost, B., Jacks, R. L., and Diamond, M. I. (2009). Propagation of tau misfolding
from the outside to the inside of a cell. J. Biol. Chem. 284, 12845–12852.
doi: 10.1074/jbc.M808759200

Froudist-Walsh, S., López-Barroso, D., Torres-Prioris, M. J., Croxson, P. L., and
Berthier, M. L. (2018). Plasticity in the working memory system: life span changes and
response to injury. Neuroscientist 24, 261–276. doi: 10.1177/1073858417717210

Gordleeva, S. Y., Tsybina, Y. A., Krivonosov, M., Ivanchenko, M. V., Zaikin,
A. A., Kazantsev, V. B., et al. (2021). Modeling working memory in a spiking
neuron network accompanied by astrocytes. Front. Cell Neurosci. 15:631485.
doi: 10.3389/fncel.2021.631485

Green, K. N., Demuro, A., Akbari, Y., Hitt, B. D., Smith, I. F., Parker, I., et al. (2008).
SERCA pump activity is physiologically regulated by presenilin and regulates amyloid
β production. J. Cell Biol. 181, 1107–1116. doi: 10.1083/jcb.200706171

Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S. H., et al.
(2021). The amyloid-β pathway in Alzheimer’s disease.Mol. Psychiatry 26, 5481–5503.
doi: 10.1038/s41380-021-01249-0

Hao, W. R., and Friedman, A. (2016). Mathematical model on Alzheimer’s disease.
BMC Syst. Biol. 10:108. doi: 10.1186/s12918-016-0348-2

Helal, M., Hingant, E., Pujo-Menjouet, L., and Webb, G. F. (2014). Alzheimer’s
disease: analysis of a mathematical model incorporating the role of prions. J. Math.
Biol. 69, 1207–1235. doi: 10.1007/s00285-013-0732-0

Helal, M., Igel-Egalon, A., Lakmeche, A., Mazzocco, P., Perrillat-Mercerot, A., Pujo-
Menjouet, L., et al. (2019). Stability analysis of a steady state of a model describing
Alzheimer’s disease and interactions with prion proteins. J. Math. Biol. 78, 57–81.
doi: 10.1007/s00285-018-1267-1

Frontiers inComputationalNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fncom.2025.1643547
https://www.frontiersin.org/articles/10.3389/fncom.2025.1643547/full#supplementary-material
https://doi.org/10.1038/nn.4201
https://doi.org/10.1093/imammb/dqw003
https://doi.org/10.3390/molecules25245789
https://doi.org/10.3389/fninf.2024.1348113
https://doi.org/10.3390/molecules27061816
https://doi.org/10.1021/acschemneuro.0c00811
https://doi.org/10.1186/s13064-018-0104-y
https://doi.org/10.1074/jbc.M808759200
https://doi.org/10.1177/1073858417717210
https://doi.org/10.3389/fncel.2021.631485
https://doi.org/10.1083/jcb.200706171
https://doi.org/10.1038/s41380-021-01249-0
https://doi.org/10.1186/s12918-016-0348-2
https://doi.org/10.1007/s00285-013-0732-0
https://doi.org/10.1007/s00285-018-1267-1
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Huang and Wang 10.3389/fncom.2025.1643547

Horn, D., Ruppin, E., Usher, M., and Herrmann, M. (1993). Neural network
modeling of memory deterioration in Alzheimer’s disease. Neural Comput. 5, 736–749.
doi: 10.1162/neco.1993.5.5.736

Huang, Q. S., and Wei, H. (2021). A computational model of working memory
based on spike-timing-dependent plasticity. Front. Comput. Neurosci. 15:630999.
doi: 10.3389/fncom.2021.630999

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Jahn, H. (2013). Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci. 15,
445–454. doi: 10.31887/DCNS.2013.15.4/hjahn

Khoshkhou, M., and Montakhab, A. (2018). Beta-rhythm oscillations and
synchronization transition in network models of Izhikevich neurons: effect of topology
and synaptic type. Front. Comput. Neurosci. 12:59. doi: 10.3389/fncom.2018.00059

Kim, A. Y., Jerdi, S. A., MacDonald, R., and Triggle, C. R. (2024). Alzheimer’s disease
and its treatment – yesterday, today and tomorrow. Front. Pharmacol. 15:1399121.
doi: 10.3389/fphar.2024.1399121

Kimelberg, H. K., and Nedergaard, M. (2010). Functions of astrocytes
and their potential as therapeutic targets. Neurotherapeutics. 7, 338–353.
doi: 10.1016/j.nurt.2010.07.006

Krajnak, K., and Dahl, R. (2018). A new target for Alzheimer’s disease:
a small molecule SERCA activator is neuroprotective in vitro and improves
memory and cognition in APP/PS1 mice. Bioorg. Med. Chem. Lett. 28, 1591–1594.
doi: 10.1016/j.bmcl.2018.03.052

Kranias, E. G., and Hajjar, R. J. (2012). Modulation of cardiac contractility
by the phospholamban/ SERCA2a regulatome. Circ. Res. 110, 1646–1660.
doi: 10.1161/CIRCRESAHA.111.259754

Kumar, A., Dhull, D. K., and Mishra, P. S. (2015). Therapeutic potential of mGluR5
targeting in Alzheimer’s disease. Front. Neurosci. 9:215. doi: 10.3389/fnins.2015.00215

Latulippe, J., Lotito, D., and Murby, D. (2018). A mathematical model for
the effects of amyloid beta on intracellular calcium. PLoS ONE 13:e0202503.
doi: 10.1371/journal.pone.0202503

Ma, T., and Klann, E. (2012). Amyloid β: linking synaptic plasticity failure
to memory disruption in Alzheimer’s disease. J. Neurochem. 120, 140–148.
doi: 10.1111/j.1471-4159.2011.07506.x

Maragos, W. F., Chu, D. C., Young, A. B., D’Amato, C. J., and Penney Jr, J. B.
(1987). Loss of hippocampal [3H]TCP binding in Alzheimer’s disease. Neurosci. Lett.
74, 371–376. doi: 10.1016/0304-3940(87)90326-0

Mongillo, G., Barak, O., and Tsodyks, M. (2008). Synaptic theory of working
memory. Science 319, 1543–1546. doi: 10.1126/science.1150769

Moravveji, S., Doyon, N., Mashreghi, J., and Duchesne, S. (2024). A scoping review
of mathematical models covering Alzheimer’s disease progression. Front. Neuroinform.
18:1281656. doi: 10.3389/fninf.2024.1281656

Murre, J. M., Chessa, A. G., and Meeter, M. (2013). A mathematical model of
forgetting and amnesia. Front. Psychol. 4:76. doi: 10.3389/fpsyg.2013.00076

Mustafa, I., Awad, A., Fgaier, H., Mansur, A., and Elkamel, A. (2021).
Compartmental modeling and analysis of the effect of β-amyloid on acetylcholine
neurocycle via choline leakage hypothesis. Comput. Chem. Eng. 145:107165.
doi: 10.1016/j.compchemeng.2020.107165

Neher, E., and Sakaba, T. (2008). Multiple roles of calcium ions in the regulation of
neurotransmitter release. Neuron 59, 861–872. doi: 10.1016/j.neuron.2008.08.019

Pathmanathan, J., Westover, M. B., Sivakumaran, S., Donoghue, J., and Puryear,
C. B. (2025). The role of sleep in Alzheimer’s disease: a mini review. Front. Neurosci.
19:1428733. doi: 10.3389/fnins.2025.1428733

Patow, G., Stefanovski, L., Ritter, P., Deco, G., and Kobeleva, X. (2023).Whole-brain
modeling of the differential influences of amyloid-beta and tau in Alzheimer’s disease.
Alzheimers Res. Ther. 15:210. doi: 10.1186/s13195-023-01349-9

Poling, A., Morgan-Paisley, K., Panos, J. J., Kim, E., O’Hare, E., Cleary, J. P.,
et al. (2008). Oligomers of the amyloid-beta protein disrupt working memory:
confirmation with two behavioral procedures. Behav. Brain Res. 193, 230–234.
doi: 10.1016/j.bbr.2008.06.001

Puri, I. K., and Li, L. W. (2010). Mathematical modeling for the pathogenesis of
Alzheimer’s disease. PLoS ONE 5:e15176. doi: 10.1371/journal.pone.0015176

Razi, F., Moreno-Bote, R., and Sancristóbal, B. (2021). Computational modeling
of information propagation during the sleep-walking cycle. Biology 10:945.
doi: 10.3390/biology10100945

Stamate, A., Logie, R. H., Baddeley, A. D., and Sala, S. D. (2020). Forgetting in
Alzheimer’s disease: is it fast? Is it affected by repeated retrieval? Neuropsychologia
138:107351. doi: 10.1016/j.neuropsychologia.2020.107351

Toglia, P., Demuro, A., Mak, D. D., and Ullah, G. (2018). Data-driven modeling
of mitochondrial dysfunction in Alzheimer’s disease. Cell Calcium 76, 23–35.
doi: 10.1016/j.ceca.2018.09.003

Vermma, M., Lizama, B. N., and Chu, C. T. (2022). Excitotoxicity, calcium and
mitochondria: a triad in synaptic neurodegeneration. Transl. Neurodegener. 11:3.
doi: 10.1186/s40035-021-00278-7

Wagner, J., Fall, C. P., Hong, F., Sims, C. E., Allbritton, N. L., Fontanilla, R. A.,
et al. (2004). A wave of IP3 production accompanies the fertilization Ca2+ wave in the
egg of the frog, Xenopus laevis: theoretical and experimental support. Cell Calcium 35,
433–447. doi: 10.1016/j.ceca.2003.10.009

Frontiers inComputationalNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fncom.2025.1643547
https://doi.org/10.1162/neco.1993.5.5.736
https://doi.org/10.3389/fncom.2021.630999
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.31887/DCNS.2013.15.4/hjahn
https://doi.org/10.3389/fncom.2018.00059
https://doi.org/10.3389/fphar.2024.1399121
https://doi.org/10.1016/j.nurt.2010.07.006
https://doi.org/10.1016/j.bmcl.2018.03.052
https://doi.org/10.1161/CIRCRESAHA.111.259754
https://doi.org/10.3389/fnins.2015.00215
https://doi.org/10.1371/journal.pone.0202503
https://doi.org/10.1111/j.1471-4159.2011.07506.x
https://doi.org/10.1016/0304-3940(87)90326-0
https://doi.org/10.1126/science.1150769
https://doi.org/10.3389/fninf.2024.1281656
https://doi.org/10.3389/fpsyg.2013.00076
https://doi.org/10.1016/j.compchemeng.2020.107165
https://doi.org/10.1016/j.neuron.2008.08.019
https://doi.org/10.3389/fnins.2025.1428733
https://doi.org/10.1186/s13195-023-01349-9
https://doi.org/10.1016/j.bbr.2008.06.001
https://doi.org/10.1371/journal.pone.0015176
https://doi.org/10.3390/biology10100945
https://doi.org/10.1016/j.neuropsychologia.2020.107351
https://doi.org/10.1016/j.ceca.2018.09.003
https://doi.org/10.1186/s40035-021-00278-7
https://doi.org/10.1016/j.ceca.2003.10.009
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	The role of IP3 receptors and SERCA pumps in restoring working memory under amyloid β induced Alzheimer's disease: a modeling study
	1 Introductions
	2 Model descriptions
	2.1 Neuron model
	2.2 Astrocyte model
	2.3 Neuron-astrocyte network
	2.4 Stimulation protocol
	2.5 Memory performance matrices
	2.6 Introduction of Aβ to calcium flows
	2.7 Calcium-dependent change of synaptic weights with Aβ modulations

	3 Model results
	3.1 WM network performance under normal conditions
	3.2 WM network performance in the presence of Aβ
	3.2.1 Working memory impairment under mild Aβ accumulation
	3.2.2 Working memory impairment under severe Aβ accumulation

	3.3 Restoring WM network performance by downregulating IP3 activation
	3.4 Restoring WM network performance by downregulating IP3 activation and upregulating SERCA activation
	3.5 Test the modulatory roles of IP3 and SERCA using other two sample stimuli
	3.5.1 Model evaluation using digit ``2'' as sample stimulus
	3.5.2 Model evaluation using digit ``7'' as sample stimulus


	4 Discussions
	4.1 Model components in the network
	4.2 Aβ and other hypotheses
	4.3 Synaptic plasticity in WM network
	4.4 Functions of Aβ at the genetic level
	4.5 Other types of memory impairments

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References




