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Artificial neural networks are limited in the number of patterns that they
can store and accurately recall, with capacity constraints arising from factors
such as network size, architectural structure, pattern sparsity, and pattern
dissimilarity. Exceeding these limits leads to recall errors, eventually leading
to catastrophic forgetting, which is a major challenge in continual learning.
In this study, we characterize the theoretical maximum memory capacity of
single-layer feedforward networks as a function of these parameters. We derive
analytical expressions for maximum theoretical memory capacity and introduce
a grid-based construction and sub-sampling method for pattern generation that
takes advantage of the full storage potential of the network. Our findings indicate
that maximum capacity scales as (N/S)S, where N is the number of input/output
units and S the pattern sparsity, under threshold constraints related to minimum
pattern differentiability. Simulation results validate these theoretical predictions
and show that the optimal pattern set can be constructed deterministically
for any given network size and pattern sparsity, systematically outperforming
random pattern generation in terms of storage capacity. This work offers a
foundational framework for maximizing storage efficiency in neural network
systems and supports the development of data-efficient, sustainable AI.

KEYWORDS
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1 Introduction

Artificial neural networks (ANNs) are increasingly recognized for their capacity to
serve as memory systems capable of storing, retrieving, and restructuring structured
information (Hornik et al., 1989; Kohonen, 1972). In both biological and artificial
systems, memory efficiency—the metric characterizing the quantity and fidelity with which
information can be retained and recalled—has become a central concern due to constraints
on computational cost, scalability, and energy consumption in AI applications (Horowitz,
2014; Strubell et al., 2019; Schwartz et al., 2020). These concerns are particularly acute in
settings requiring continual learning, where new information must be assimilated without
catastrophic interference or forgetting of previously acquired knowledge (Figure 1), a
problem endemic to current machine learning paradigms (French, 1999; McCloskey and
Cohen, 1989; Kirkpatrick et al., 2017).
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FIGURE 1

Neural networks can store and recall information. In a recall task where the desired output pattern is identical to the input pattern, several patterns
can be stored and recalled without error. However, if the memory storage capacity of the network is exceeded, interference between the stored
patterns results in failed recall.

The challenge of maximizing memory capacity within neural
systems intersects with the core goals of the field of sustainable
AI. Specifically, the need to optimize computational systems
for recall accuracy and memory retention must be balanced
against energy usage, data movement, and hardware limitations,
especially in embedded or neuromorphic contexts (Zheng, 2025).
While traditional ANN architectures typically require frequent
retraining and substantial computational overhead, biological
neural systems exhibit exceptional memory efficiency using sparse,
distributed representations and local plasticity mechanisms. These
characteristics have inspired several neuromorphic computing
platforms that aim to replicate such properties in hardware,
emphasizing energy efficiency, local processing, and event-driven
computation (Fountain and Merkel, 2020; Pawlak and Howard,
2025).

Classical models of associative memory, such as the Hopfield
network, define storage capacity as the maximum number of
patterns that can be reliably retrieved above a set error rate
(Hopfield, 1982). Early theoretical studies, particularly by Gardner
(1987); Gardner and Derrida (1988), employed statistical physics
to derive upper bounds on storage in perceptrons and recurrent
architectures under idealized conditions. These seminal studies
primarily focused on how storage capacity scaled with the size of
the network and identified various closed-formed expressions for
capacity bounds in different types of networks. More recent work
(Fusi, 2024) has focused on overcoming catastrophic forgetting
in continual learning scenarios (French, 1999; Parisi et al., 2019),
leading to approaches such as synaptic regularization (Kirkpatrick
et al., 2017), experience replay, and dynamic architectural
expansion (Rusu et al., 2022). However, these strategies frequently
introduce additional memory and energy costs, and few explicitly
address the representational constraints that determine how many

distinct patterns can be stored without degradation (Krauth and
Mézard, 1989).

In this context, sparsity and pattern orthogonality have
emerged as critical determinants of storage capacity (Nadal and
Toulouse, 1990) (Figure 2). Sparse representations, defined as a
low fraction of active input/output units, are known to reduce
interference between stored items and improve capacity in both
artificial and biological systems (Kanerva, 1988; Olshausen and
Field, 1996). Neuromorphic approaches extend this insight by
implementing sparse, event-driven processing in hardware to
reduce energy consumption and latency. Event-driven spiking
neural networks (SNNs), for example, exploit sparse activity
patterns to perform memory-related tasks at ultra-low power
levels, a key advantage for implantable and edge-based AI systems
(Schwartz et al., 2020; Pawlak and Howard, 2025). Pattern
differentiability is known to provide a tradeoff in which more
orthogonal patterns provide a lower risk of interference and recall
error but result in lower capacities for the same network sizes
as there are a fewer candidate patterns that maintain such high
orthogonality. However, unlike with network size, the explicit
dependence of capacity on sparsity and orthogonality is not well
characterized (Krauth and Mézard, 1989).

This study proposes a novel constructive framework for
quantifying and attaining the maximum pattern storage capacity of
single-layer binary feedforward neural networks. This framework
explicitly links representational parameters such as network size,
pattern sparsity, and minimum pattern differentiability to closed-
form capacity expressions derived via combinatorial analysis. In
addition, we introduce an algorithm to construct the full set
of storable patterns through matrix saturation and structured
sub-sampling. This approach is not only analytically grounded,
but also energy- and memory-efficient, as it avoids network
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FIGURE 2

Variables that determine storage capacity of a network. (A) Network parameters. (B) Pattern representation.

retraining or modification of previously stored weights. The
method consistently reaches the derived theoretical maximum,
surpassing random generation strategies that suffer from pattern
overlap and redundancy. It also provides a heuristic for optimizing
pattern reorganization within a sub-optimally initialized network
that cannot reach the theoretical maximum capacity.

2 Methods

Our preliminary analysis was conducted with a simplified
model of a neural network consisting of a single-layer, fully
connected, feedforward architecture with binary weights. The
network contains N input and N output neurons, where the cued
input patterns are assumed to be identical to the corresponding
target output patterns, both represented by binary vectors
(Figure 3A). Let S denote the number of active elements in each
input pattern (i.e., pattern sparsity), and D represent the minimum
required Hamming distance between any two stored patterns,
which ensures distinguishability during recall. An activation
threshold T is used to determine the firing of output neurons based
on the weighted sum of incoming signals.

To evaluate capacity, a set of P input patterns is incrementally
stored in the network. For each individual pattern, a connectivity
matrix containing ones for all connections between the active
input cells and their identical output cells can be constructed. The
total connectivity matrix is created by superimposing all individual
matrices and clipping the result to remain binary (Figure 3B).
During recall, the input pattern is multiplied by the connectivity

matrix, and output activation is determined by comparing the
resulting sums against the threshold T. Patterns are deemed
successfully recalled if the reconstructed output exactly matches the
original pattern.

Patterns are initially generated randomly, and the storage
process continues until no additional pattern can be added without
inducing recall errors. This exhaustive approach frequently fails to
reach theoretical capacity due to the stochastic nature of random
generation and its susceptibility to early pattern correlations, which
lead to premature saturation of the connectivity matrix.

To mitigate this limitation, a heuristic metric termed cross-
pattern activation (CPA) was introduced. CPA measures the
summed pre-threshold activations of output neurons across all
stored patterns and is used to guide the selection of new
candidate patterns. While CPA provided some improvement by
minimizing interference during pattern addition, it ultimately
proved ineffective in scenarios where the initial pattern distribution
was suboptimal or where all candidate patterns yielded equivalent
CPA values. Notably, the ideal capacity-achieving state is
characterized by a fully saturated connectivity matrix in which
the CPA values for all non-pattern output cells lie just below the
activation threshold (i.e., equal to (T - 1)).

An alternative strategy was devised to instead start from a
predefined connectivity matrix that would be deterministically
initialized in this saturated state. A grid-based decomposition
approach is employed that satisfies the constraints at maximum
threshold, where D = 1, and T = S − 1. First, we define
a set of B = N/S orthogonal basis patterns that each activate
a unique subset of S inputs. These basis patterns naturally
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FIGURE 3

(A) For a given pattern set, the input and desired output patterns are defined as identical. (B) The connectivity matrix is constructed by superimposing
the individual connectivity matrices defined by every stored pattern. (C) A fully saturated connectivity matrix can be modularly constructed from valid
sub-matrices. For maximum threshold cases, valid sub-matrices contain one empty cell per row and column, and are appropriately repeated
throughout the outer and inner regions of the connectivity matrix. Patterns that can be recalled without error are the patterns that would not cause
further connections to be made. Thus all valid patterns that can be recalled without error can be obtained by sub-sampling this saturated matrix.
(D) The saturation matrix for different threshold levels can be determined by using a smaller equivalent matrix at the maximum threshold level.

partition the connectivity matrix into a B×B grid of S×S sub-
matrices, where the basis patterns fully saturate the diagonal sub-
matrices. Future patterns added to the pattern set must differ

from these basis patterns by D active cells and thus each sub-
matrix not on the diagonal must have at least one unconnected
cell per row and column. Furthermore, to provide the structural
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FIGURE 4

Patterns are deterministically generated from the saturated connectivity matrix using a recursive backtracking algorithm.

regularity that preserves the maximum number of storable patterns
derivable from the saturated connectivity matrix, all sub-matrices
along the outer boundary should maintain a consistent internal
orientation. Similarly, sub-matrices in the interior region of the
matrix should share a uniform orientation, which may, but need
not, match that of the boundary sub-matrices (Figure 3C). Other
optimal connectivity matrices can be obtained by permuting the
order of the cells within a sub-matrix and then performing
the appropriate permutation across all sub-matrices that share
its orientation.

Valid patterns are then generated by recursively sampling
combinations of S active cells that conform to the fixed matrix. The
sub-sampling algorithm, presented in pseudocode form in Figure 4,
involves a backtracking approach that eliminates combinations of
active cells that would violate the requirements that some elements
in the connectivity matrix must remain unconnected, and thus
ensures that each new pattern does not alter the matrix and avoids
conflicts with previously stored patterns.

The total number of such patterns, corresponding to the
network’s theoretical maximum capacity, is derived from
combinatorial analysis and shown to be:

C =
N
S −1∑
i=0

S∑
j=0

(
S
j

)
ij. (1)

Each iteration of the summation enumerates the unique
combinations in which the i-th block can contain j active elements,
with the rest of the S − j active elements being distributed among
the other blocks. Simplifying using the binomial theorem yields an
expression for the storage capacity of the network

C = (N/S)S, (2)

under the assumption that threshold is set at the maximum Tmax =
S − 1. For thresholds where T = S − D and D > 1, an equivalent
network transformation is performed by redefining the network
size as Neq = N/D and sparsity as Seq = S/D, thus preserving
the saturation condition (Figure 3D).

3 Results

To evaluate the theoretical framework and validate the
constructive approach to capacity maximization, a series of
simulations were conducted across a range of network sizes and
pattern representation parameters. The goal was to determine
how storage capacity scales with network dimensions, sparsity
levels, and pattern differentiability constraints, and to assess the
effectiveness of different pattern generation strategies under these
conditions.

First, the relationship between network size N and maximum
memory capacity was investigated. Networks with sizes ranging
from 102 to 107neurons were analyzed, and the number of storable,
non-overlapping patterns was computed as a function of pattern
sparsity S, expressed as a fraction of N. When (S/N) was held
constant, the observed memory capacity exhibited a logarithmic
increase with respect to N, consistent with the theoretical
prediction derived from combinatorial analysis (Figure 5A). This
trend reinforces the principle that, under fixed sparsity, capacity
grows superlinearly with network size, in agreement with findings
from Gardner.

To explore the trade-offs between sparsity and pattern
differentiability, further simulations were performed with a fixed
network size while systematically varying the minimum Hamming
distance D between stored patterns and the sparsity S. The results
revealed a consistent optimal storage configuration near S ≈
N/3 with deviations above or below this threshold leading
to diminished capacity due to either excessive overlap (high S)
or insufficient representational density (low S) (Figure 5B). As
expected, storage capacity was found to be inversely proportional
to D, indicating that stricter pattern separation constraints reduce
the number of storable patterns. Since higher D effectively raises
the minimum activation threshold T, this result aligns with
theoretical expectations. Importantly, although higher thresholds
consistently improve storage capacity across varying sparsity
levels in our proposed framework, this approach prioritizes one
specific neural function, i.e., pattern separation. Future studies
exploring pattern completion mechanisms would likely reveal
a different relationship—where optimal performance requires
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FIGURE 5

Maximum storage capacity of a network increases with network size. (A) For increasing network size, while keeping the relative pattern sparsity
constant, capacity increases logarithmically. (B) When keeping network size constant, for varying pattern differentiability, the ideal pattern sparsity
occurs around N/3. The maximum capacity achievable for the network is inversely related to differentiability.

balancing threshold levels against the system’s capacity to
accurately reconstruct degraded input patterns.

The practical implications of the constructive algorithm
were evaluated by comparing two pattern generation strategies:
(1) stochastic random generation with sequential pattern
insertion, and (2) deterministic sub-sampling from a saturated
connectivity matrix configured to preserve threshold conditions.
The latter approach consistently achieved 100% of the theoretical
maximum capacity across all tested values of N, S, and D,
where N was set to small integer multiples of S, whereas
random generation exhibited high variance and frequent early
saturation due to unstructured pattern correlations (Figure 6).
These results underscore the inefficiency of trial-and-error
memory formation and demonstrate the clear advantage of
structure-aware pattern synthesis in maximizing information
density, an observation that aligns with proposed benefits of
memory consolidation during sleep (Diekelmann and Born,
2010).

To assess the feasibility of memory reorganization in
suboptimal networks, additional experiments were conducted
wherein a network was first initialized with a random pattern set
whose capacity fell below the theoretical maximum. An optimal
pattern set was then generated using the proposed algorithm, and

the distance between the two sets was quantified by computing
the total Hamming distance between best-matched pattern pairs.
Using this metric, the minimum computational effort required to
transform the suboptimal set into the optimal one was estimated
via two components: (1) bit-flipping operations required to
convert individual patterns, and (2) pattern deletions necessary
to eliminate irreconcilable overlap. The cost of reorganization
was computed as the sum of flipped bits and deleted patterns
required to reach the maximum storable configuration. The
primary goal of this investigation was to determine the optimal
balance between the two reorganization strategies, and as such
the constant computational cost to evaluate the viability of each
pattern within the randomly generated pattern set was excluded
from this analysis.

The transformation trajectory, plotted as a function of
incremental bit-flipping interventions, revealed a nonlinear trade-
off between bit-level edits and pattern removals (Figure 7). This
analysis provides a quantitative measure of memory plasticity
in fixed-architecture systems and suggests an efficient route to
capacity recovery without full retraining. From a sustainability
perspective, this capacity restoration strategy is significant: it
reduces the computational overhead associated with complete
reinitialization or expansion, and thus aligns with the principles
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FIGURE 6

Pattern generation using sub-sampling from the connectivity matrix
is able to consistently achieve the maximum theoretical capacity for
the network at various different network sizes and pattern sparsities,
thus outperforming purely random pattern generation. Results were
averaged for values of N equal to small integer multiples of S
between 12 and 24. Maximum and minimum variability of random
trials are indicated by the envelope.

of energy-efficient memory maintenance in embedded and
neuromorphic systems (Pawlak and Howard, 2025).

Collectively, these results validate the theoretical predictions
and demonstrate that the proposed constructive method offers
both optimal storage performance and operational efficiency. In
contrast to stochastic methods that rely on probabilistic insertion
and fail to guarantee convergence to maximal configurations,
the sub-sampling algorithm provides a deterministic and scalable
route to capacity maximization, making it particularly suitable for
applications in real-time, low-power environments.

4 Discussion

The findings of this study represent both a theoretical and
practical contribution to the understanding of memory capacity in
constrained neural systems. By deriving a closed-form expression
for maximum pattern storage in binary feedforward networks,
we provide a formal characterization of capacity that integrates
both structural and representational constraints into a predictive
framework. Unlike prior probabilistic or heuristic approaches,
the constructive method introduced here achieves theoretical
capacity deterministically, without retraining or modification of
existing weights. This makes the approach particularly suitable for
deployment in settings where computational efficiency and energy
conservation are paramount.

Importantly, the principles developed herein have broader
implications for the design of neuromorphic systems. Constructive
memory optimization aligns with the goals of sustainable AI by
enabling real-time, low-power storage and recall in constrained
environments, such as implantable neurotechnologies where
memory and energy budgets are tightly limited. Recent advances
in neuromorphic platforms such as Loihi and SpiNNaker have
demonstrated the feasibility of deploying SNN-based algorithms

FIGURE 7

Starting from a suboptimal state, the amount of work needed to
achieve the maximum theoretical capacity is compared. Work can
be performed by either flipping a bit or removing an erroneous
pattern entirely, which takes S bits of work for pattern size S. The
minimum amount of work to reach maximum capacity can be
determined by minimizing the sum of bits flipped and bits removed.

for continual learning and efficient memory handling (Davies et al.,
2018; Furber et al., 2014). By contributing both theoretical and
algorithmic tools to this effort, this work addresses an unmet need
at the intersection of memory capacity, representation theory, and
sustainable AI.

The capacity-achieving constructive algorithm developed in
this study complements existing neuromorphic paradigms by
enabling dense and non-overlapping memory storage without
resorting to retraining or architectural expansion. This is
particularly relevant in systems that must support continual
learning across a long time horizon, such as adaptive brain-
computer interfaces or closed-loop implants. In such settings,
the capacity to reorganize stored patterns retroactively and
achieve near-optimal usage of the network’s representational space
offers a compelling alternative to traditional retraining, which
is both computationally and energetically expensive. As shown
in this study, even suboptimal memory configurations can be
transformed into near-optimal ones through selective bit-flipping
and pattern pruning, minimizing both energy expenditure and
memory reinitialization.

This also aligns with recent calls for more sustainable AI,
where algorithmic advances must account not only for accuracy
or generalization but also for operational efficiency, particularly
under constraints of size, latency, and power (Horowitz, 2014;
Strubell et al., 2019; Schwartz et al., 2020). In the context
of neuromorphic implants, where thermal dissipation, battery
life, and biocompatibility impose hard limits on computation,
energy-efficient memory management becomes essential. Notably,
the principles of sparse, structured encoding and interference
minimization described here are also mirrored in biological
systems, where memory traces are believed to be distributed across
sparse assemblies and differentiated by temporal and spatial coding
strategies (Olshausen and Field, 1996; Pawlak and Howard, 2025).
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Furthermore, this study contributes to ongoing discussions
around adaptive learning in dynamic environments. Biological
systems continually modify their internal representations in
response to changing stimuli, while maintaining robust memory
of prior experiences, which is a capability still elusive in artificial
systems. Although spiking neural networks (SNNs) have shown
promise in this direction, many current learning algorithms
for SNNs rely on stochastic gradient descent or plasticity rules
such as spike-timing-dependent plasticity (STDP), which, while
biologically inspired, often fall short of providing memory
guarantees under structural constraints (Indiveri and Liu, 2015;
Subramoney et al., 2024; Zenke and Laborieux, 2025). By contrast,
the approach described here establishes a constructive route to
capacity optimization that can be implemented independently of
learning rules, offering a complementary strategy for memory
consolidation in adaptive systems.

Future work will seek to generalize this framework to multi-
layer and recurrent architectures, which are common in both
cortical models and neuromorphic implementations, as well as
to implement non-binary weights and investigate how synaptic
updates during learning change the patterns that can be derived
from a non-binary weight matrix. Possible approaches could
involve representing patterns generated from non-binary weights
as probabilistic rather than deterministic or implementing a
dynamic threshold on the weight matrix that varies for different
input cells. Additionally, extending the model to incorporate
noise tolerance and strike a balance between pattern completion
and separation would further bridge the gap between idealized
theoretical capacity and real-world neuromorphic deployment.
Such extensions are necessary to align the theoretical insights
of this study with practical challenges encountered in biological
environments, including variability of neural responses, non-
stationary inputs, and the need for real-time learning and recall.

One promising direction to look to is Hyperdimensional
Computing (HDC), which uses randomized, distributed
hypervectors and compositional operations (e.g., bundling
and binding) to store and process information in a robust and
scalable manner (Kanerva, 2009). HDC has been shown to be a
powerful method of pattern representation that increases memory
capacity of networks (Frady et al., 2018). However, in contrast
to our constructive approach that deterministically generates the
maximum number of unique, separable patterns, HDC tends
to prioritize pattern completion and the ability to recall stored
patterns even with noisy or degraded inputs. HDC could provide
a natural direction expand our work by balancing the tradeoff
between pattern separation and pattern completion, while also
potentially providing a solution for generalizing the connectivity
matrix with non-binary weights or by representing the connectivity
matrix as an n-dimensional cube, with the number of dimensions
corresponding to the number of blocks, instead of a 2D matrix.

In summary, by offering a scalable, energy-efficient, and
constructive method for maximizing memory capacity, this
work advances the theoretical foundation and practical viability
of sustainable neural architectures. The proposed approach is
especially suited to neuromorphic applications in which future

intelligent systems must not only learn effectively but also
remember efficiently within the constraints set by their limited
resources.
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