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The brain’s faculty to assimilate and retain information, continually updating its
memory while limiting the loss of valuable past knowledge, remains largely a
mystery. We address this challenge related to continuous learning in the context
of associative memory networks, where the sequential storage of correlated
patterns typically requires non-local learning rules or external memory systems.
Our work demonstrates how incorporating biologically inspired inhibitory
plasticity enables networks to autonomously explore their attractor landscape.
The algorithm presented here allows for the autonomous retrieval of stored
patterns, enabling the progressive incorporation of correlated memories. This
mechanism is reminiscent of memory consolidation during sleep-like states
in the mammalian central nervous system. The resulting framework provides
insights into how neural circuits might maintain memories through purely local
interactions and takes a step forward toward a more biologically plausible
mechanism for memory rehearsal and continuous learning.
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1 Introduction

Continuous learning (CL) refers to a system’s ability to maintain performance
across multiple tasks when operating in environments that evolve over time, requiring
adaptation to changing data distributions. To do so, the learning mechanism should
avoid uncontrolled forgetting of previously acquired knowledge when adapting to new
information or contexts. In associative memory networks, this challenge arises when
storing new activity patterns sequentially deteriorates existing memory representations, a
phenomenon called catastrophic forgetting.

It is important to note that this work specifically addresses catastrophic forgetting
in the context of sequential learning. This approach addresses a different challenge than
the well-studied spin glass phase transitions that occur in Hopfield networks at high
memory loads.

Memory rehearsal is a method that addresses the challenge of catastrophic forgetting
by periodically retraining the model on previously stored patterns. This process reinforces
older memory representations, preventing their degradation when new information
is incorporated (Robins, 1995; McCallum, 1998). In the mammalian nervous system,
spontaneous memory replays occur during sleep (Robins, 1995; Louie and Wilson,
2001; Peyrache et al., 2009; Fauth and Van Rossum, 2019; Tononi and Cirelli, 2014),
suggesting a biological mechanism analogous to rehearsal techniques in artificial networks
(Robins, 1995). This parallel raises a fundamental question: what mechanisms enable these
autonomous memory replays in biological systems?
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Previous research on bioinspired neural networks demonstrates
that short-term synaptic depression can facilitate spontaneous
rehearsal of neural assemblies (Fauth and Van Rossum, 2019).
However, a significant constraint of this approach is its dependence
on minimal overlap between neural assemblies. The neuronal
populations in these studies share few neurons, resulting in
effectively decorrelated memory representations. By contrast,
classical associative memory networks like Hopfield Networks
can effectively store uncorrelated memories that share many
units. Some learning algorithms even allow the storage of highly
correlated patterns that share a majority of their units (Diederich
and Opper, 1987). From a biological perspective, understanding
how networks implement the rehearsal of correlated populations
is crucial as neural representations found in the cortex generally
recruit extensively overlapping assemblies (Haxby et al., 2001;
Kriegeskorte, 2008). The maintenance of overlapping assemblies
is widely considered essential for cortical computation, as it
supports stimulus generalization and the emergence of invariant,
high-level concepts in which individual neurons participate in
multiple but related representations (Haxby et al., 2001; Quiroga
et al., 2005; Kriegeskorte, 2008). This problematic is of similar
importance in neuromorphic engineering contexts as highly
correlated representations are an emerging feature of artificial
neural networks (Kothapalli, 2023).

How the rehearsal of correlated memories takes place
autonomously on neural substrates remains a largely unaddressed
question. In this work, we focus on this issue and explore
its potential application for continuous learning (CL). For
the sake of bio-plausibility and potential implementation in
neuromorphic substrates, we shall demand that our system
exhibits the following features: 1) It stores memory states that
can be highly correlated; 2) During the pattern recovery, the
network does not converge toward strange attractors which
would constitute false memories; 3) Plasticity rules are local,
meaning that the modification of synaptic efficacy can be
computed in terms of its pre- and post-synaptic neuron states;
4) It is autonomous, namely, it should retrieve all previously
stored patterns from its own dynamics. The network does
not have access to an external list of previously recorded
memory states. For the sake of requirements (1) and (3),
we shall adopt a perceptron-like algorithm, inspired by the
work of Diederich and Opper (1987). On the other hand, for
requirement (2), we shall use continuous Hopfield Networks
(CHNs) (Hopfield, 1984). Our work demonstrates that, kept
under a certain memory load, CHNs converge exclusively to
stored patterns during the retrieval. This approach avoids both
the spurious state proliferation common in Discrete Hopfield
Networks (DHNs) and the shortcomings of temperature parameter
fine-tuning inherent to Stochastic Hopfield Networks (SHNs)
(Amit et al., 1985a).

The main contribution of the present work is to introduce
an algorithm to address the requirement (4). A crucial feature of
our approach is the use of self-inhibition to shrink the basin of
attraction of previously visited attractor states, thus allowing for
a sequential and thorough search and recovery of all previously
stored correlated memory states. This recovery effectively allows
the rehearsal of the stored pattern for CL purposes. The dynamic
of plastic recurrent inhibition is inspired by computational

neuroscience work based on actual neurophysiological data (Vogels
et al., 2011).

2 Methods

2.1 Continuous Hopfield Network (CHN)

In contrast with the conventional DHN model (Hopfield,
1982), where neural states are defined as binary variables, in a CHN
they are continuous (Hopfield, 1984). The dynamics of the network
is defined by a set of differential equations with each neuron unit
described as a leaky integration:

c
dui

dt
=

∑
j

Wijvj − ui

r
(1)

where ui is the membrane potential of neuron i, c is the membrane
capacitance, r is the leak resistance of each neuron, Wij is the
synaptic efficacy between neurons j and i, and vi is the activity (or
firing rate) of neuron i that depends solely on the potential as

vi = σ (ui)

where σ is a monotonically increasing function of u with saturation
to prevent runaway dynamics. We adopt σ (x) = 1

1+exp(−x) .
Therefore, as σ (0) = 0.5, each unit has a positive output at
the resting state, allowing the network to have a baseline activity
without external input. We shall refer to either the vector v(t) or
u(t) as “states”, which should be clear from the context.

The convergence of the flow to stable states for the case of
symmetric synaptic weights Wij has been demonstrated (Hopfield,
1984). Throughout this work, whenever we integrate these
equations using Euler method, we do so until the network reaches
convergence, defined as | du

dt |∞ < ε, where ε = 10−6.

2.2 Pattern storage and reading

The states v(t) of the CHN evolve on [0, 1]N through
continuous dynamics, with N the number of neurons. Any state in
this space may represent a stored pattern. For simplicity, we restrict
ourselves to store binary patterns for which active neurons have
a high firing rate, vi ≈ 1, and inactive neurons have a low firing
rate, vi ≈ 0.

Hence, a pattern xμ is defined as a binary vector such that
xμ = (xμ

1 , xμ
2 , . . . , xμ

N ) where xμ
i ∈ {0, 1} for each unit i. A pattern

is read from the state of the network at time t using a threshold:

xμ
i =

{
1 if vi(t) > 0.5

0 otherwise.
(2)

Given a binary pattern xμ, it is convenient to define target
potentials ũμ as

ũμ
i =

{
+uμ

target if xμ
i = 1

−uμ
target if xμ

i = 0
(3)
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We adopt here utarget = 6 to ensure proper pattern reading
following the thresholding procedure.

Inspired by previous work on DHN (Diederich and Opper,
1987), we introduce, in Algorithm 1, a perceptron-inspired learning
algorithm for efficient storage of correlated patterns in CHNs. The
algorithm minimizes the error between the target states and the
network’s equilibrium states, ensuring that each memory becomes
a stable state. Gradient descent methods typically require small
step sizes to prevent the optimization process from becoming
unstable and to reduce oscillations around local minima. In our
implementation, we select α = 0.0001 as the learning rate
to ensure stable convergence of weight updates. The derivation
of the weight update rule can be found in the Appendix 1.
Although a rigorous proof of convergence for the algorithm
is beyond the scope of this work, we expect that arguments
demonstrating the convergence of the gradient descent algorithm
(GDA) in the context of DHN could be adapted for this purpose
(Diederich and Opper, 1987). Here, we rely on numerical evidence
showing the network’s ability to successfully query and revisit
stored patterns.

Following the network training with the GDA, each activity
vector ũμ becomes an attractor. The network can now be
queried as the system reliably converges to the nearest stored
state from a partial cue. The corresponding binary patterns
x̃μ can then be accurately retrieved by thresholding at time tf
(Equation 3) when the system reaches convergence. The querying
procedure is detailed in Algorithm 1 (Appendix 2) and illustrated
in Figure 1.

It is worth emphasizing that despite the continuous nature of
our model, which theoretically allows for a richer state space, we
deliberately restrict ourselves to binary patterns. The interest of
using a CHN is the simplicity it allows when implementing our
pattern recovery mechanism (Section 2.4), limiting the appearance
of false memories as spurious states, which are often encountered
in DHNs (Amit et al., 1985b). A variant of the DHN with
stochastic units, the SHN (Amit et al., 1985b), would be a possible
candidate to implement our algorithm, as they tend to visit only the
stored patterns by properly controlling the annealing temperatures.
However, the stochastic properties of these networks would require
a more complex setup.

1: Initialize Wij = 0 for all i,j
2: repeat
3: for each pattern μ do
4: for each neuron i do
5: Compute the target potential ũμ

j
(Equation 3) for each neuron j with
j �= i

6: Compute the expected potential: ûμ

i =
r

∑
j Wijσ(ũ

μ

j)
7: Update weights: Wij ← Wij−α(ũμ

i − ûμ

i)rσ(ûμ

j)
8: end for
9: end for
10: until ‖�W‖∞ < ε

Algorithm 1. Gradient descent for the storage of correlated patterns (GDA)

2.3 Continuous incorporation of correlated
memories

While the GDA effectively enables the storage of correlated
memories, its implementation in Algorithm 1 reveals a significant
limitation: It requires multiple iterations over the entire set of
patterns to achieve convergence. Without the ability to reprocess
all patterns, the network would suffer from catastrophic forgetting,
where learning a new pattern in isolation rapidly erodes previously
stored memories (McCloskey and Cohen, 1989; Robins, 1995;
Kirkpatrick et al., 2017; Shen et al., 2023). By repeatedly processing
all patterns, the algorithm can find a weight matrix W that properly
separates the patterns, despite their correlations (Diederich and
Opper, 1987). Adding a new pattern, therefore, requires access to
all previously stored patterns from an external source.

This requirement for external access to the complete memory
dataset stands in contrast to biological learning systems, which
must incorporate new information while maintaining past
memories without relying on an explicit external copy of the
already stored data. To overcome this external dependency and
move toward more biologically plausible learning, a solution is to
develop a mechanism that allows the network to internally recover
its stored memories.

The development of such an autonomous retrieval mechanism
would allow us to exploit the GDA’s ability for the continuous
incorporation of correlated memories. The continuous learning
algorithm is formally defined in Algorithm 2. The act of retraining
the network on the whole set is called a rehearsal. Recovering the
whole set from the network to allow rehearsal is called retrieval.

2.4 Autonomous retrieval

In this section, we present the autonomous retrieval (AR)
mechanism allowing the recovery of stored correlated patterns in
a network.

Given a trained network initialized at the “neutral” state,
ui = 0 for each unit i, the network dynamics described by
Equation 1 converge deterministically to a given stored attractor,
which is thus “retrieved”. This attractor can be seen as the dominant
attractor from the neutral state. The goal now is to allow for the
exploration of other states to permit a complete recovery of the
stored memories. To do so, we introduce the adaptation terms Ai.

c
dui

dt
=

∑
j

Wijvj − Aivi − ui

r
(4)

Ai ← Ai + βvi(tf ) (5)

with vi(tf ) the firing rate of neuron i after convergence of the
dynamics. β represents the adaptation strength and is chosen to
be small, typically below 0.1. Adaptation terms could correspond
to various components commonly observed in the mammalian
central nervous system. On short time scales, spike frequency
adaptation (SFA) of excitatory neurons functions as plastic self-
inhibition (Ha and Cheong, 2017; Peron and Gabbiani, 2009).
Repeated stimulation progressively reduces firing activity in the
neuron, mirroring the dynamics produced by our adaptation
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FIGURE 1

Querying of two binary-pattern representation of the handwritten digit “3” and “4” from the MNIST dataset. The network is of size 20 × 16 as each
neuron codes for a pixel. From black to white, the color represents the rate vi(t) of each unit. At t = 0, the network is initialized with the part of the
units set to the target value as described in Appendix 2. The figure displays snapshots of the evolution of the rates in time for each unit of the
network. The network is queried two times, for the first query Q1 the network gradually settles to the nearest stored state corresponding to the digit
“3”. For Q2, the network settles to the stored state corresponding to the digit “4”.

1: Input: CHN trained on p patterns using the GDA
2: Given: New pattern xp+1 to be stored
3: Retrieve set {x} of stored patterns through

autonomous retrieval (AR) introduced in
Section 2.4

4: Update pattern set: {x} ← {x} ∪ {xp+1}
5: Apply GDA to store updated pattern set

Algorithm 2. Continuous incorporation of correlated patterns through
rehearsal of the whole memory set

Ai. Alternatively, Ai can be interpreted as recurrent inhibition
mediated by local inter-neurons, which frequently exhibit Hebbian
plasticity (Kodangattil et al., 2013; D’amour and Froemke, 2015).

After each visited attractor, i.e., memory retrieved, its basin of
attraction is made smaller by the update of the adaptation term
(Equation 5). Once a pattern has been inhibited, the probability for
the network to converge into it from the neutral state is reduced.
By resetting the network to the neutral state after each convergence-
inhibition cycle, we allow the sequential recovery of stored patterns.

Figure 2 illustrates the sequential recovery of two stored
patterns and the modification of their attractor basin during the
procedure. The geometry of these attractor basins explains why
a minimal inhibitory influence, resulting from a small β value, is
sufficient to alter the trajectory. The neutral state resides near the
separatrix that divides the attractor basins. Consequently, even a
slight modification of the separatrix position, caused by inhibitory
potentiation, can significantly redirect the network’s trajectory.

The increase in adaptation tends to distort the stable states
associated with stored patterns. As this distortion is minimal
for small β , it is mainly compensated for by the thresholding
mechanism used to read the network output (Section 2.2). To
further reduce the impact of this distortion, we divide the
convergence dynamic into two phases, the “biased” phase and the
“free” phase. The biased phase guides the network to converge

toward states that have not been retrieved. It corresponds to
the simulation of the network with adaptation, Equation 4, until
convergence. The optional free phase then allows the network
to complete its convergence to an undistorted stored state. It
corresponds to the simulation of the network without inhibitory
synapses (Equation 1) until convergence. The whole procedure is
detailed in Algorithm 3.

Figure 3 provides a visualization of AR for binary-pattern
representation of handwritten digits from the MNIST dataset
(LeCun et al., 1998). For the first iteration, the inhibitory drive is
null as no pattern has been retrieved. The pattern corresponding
to the binary picture of a 3 is recovered. The network state is
reinitialized with the updated adaptation (A). The network now
inhibits the recovery of a 3, which induces convergence toward
a second pattern, here a 4. Adaptation is updated again and now
inhibits both the 3 and the 4 together. Inhibition of the 3 and the 4
combined allows the recovery of the 5 and so on. For the recovery
of MNIST binary digits, as a large inhibitory coefficient β has been
chosen, the free phase is mandatory to reduce the distortion of the
stored pattern.

The order in which patterns will be visited is an emerging
feature of the learning algorithm that has not been studied in
this work. With each iteration of the AR algorithm, inhibitory
synapses undergo potentiation. This growth is constrained only by
the number of iterations and the value of β . Theoretically, such
an unbounded growth could cause the adaptation Ai to disrupt
the attractor dynamics induced by W. However, in practice, this
potential issue can be managed by adjusting the value of β based
on the number of iterations. Specifically, when more iterations are
required, using a smaller β is sufficient to maintain robust pattern
retrieval without compromising attractor dynamics.

In Figure 4, we illustrate the dynamics of the CHN during
the retrieval of stored memory patterns in networks with various
loads. The load corresponds to M/N, with M the number of stored
memories, and N the size of the network. For low loads (see
Figure 4 top), the system converges sequentially to the attractors
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FIGURE 2

Stream plots of the CHN in a 2D subspace spanned by two pattern states. We examine a network with two stored patterns, labeled “1” and “2”, and
their stable states ũ1 and ũ2; these define a two-dimensional subspace parametrized by ũ(λ1, λ2) = λ1 ũ1 + λ2 ũ2. At each point ũ(λ1, λ2) in this
subspace, we compute the full N-dimensional time derivative via Equation 4 and project it back onto the {ũ1, ũ2}-plane to obtain the plotted flow. ũ1

and ũ2 have minimal correlation as they are generated from random binary patterns x1 and x2 ∈ {0, 1}N. (left) Before training. (middle) After storing
the two patterns using the GDA, each pattern state (small red dots) becomes a stable attractor; the neutral state uN = 0 (large red dot) is on an
unstable manifold. The red line corresponds to the trajectory of the network projected on the subspace. The trajectory follows the unstable manifold
before arbitrarily falling into one of the two stored patterns. (right) Adaptation A is updated to apply enhanced inhibition to pattern 1 which shrinks its
basin of attraction. This induces a shift in the position of the separatrix, favoring the flow to pattern 2. An exaggerated large inhibitory coefficient
β = 0.5 is used to illustrate the modification of the vector field. Similar stream plots are obtained from networks storing patterns with various degrees
of correlation using the GDA.

1: Input: Trained network weights Wij, number of
iterations k, plasticity rate β

2: Initialize: Ai = 0, {x} = ∅
3: while j < k do
4: Set neutral initial conditions: u(t = 0) = 0

5: Biased phase: Integrate Equation 4 until
convergence to the state u(tb) = ub

6: Free phase: from the state u(tb), integrate
Equation 1 until convergence 
 optional

7: Read pattern xμ from final state v(tf) via
thresholding (Equation 3)

8: Update retrieved pattern set: {x} ← {x} ∪ {xμ}
9: Update inhibitory weights: Ai ← Ai + βvi(tf)
10: j ← j+ 1
11: end while
12: Return: {x}

Algorithm 3. Autonomous retrieval (AR)

corresponding to the stored patterns. Once every memory has
been recovered, if the simulation is not ended, the network falls
back into the stored states without showing any false memories.
The lower the value of β , the longer this dynamic can proceed
without encountering spurious states. The free phase has no utility
in this scenario, the attractors are well separated, and the disruption
of the energy landscape by adaptation is minimal. For critical
loads (see Figure 4 middle), the retrieval process becomes more
challenging. The attractors exhibit reduced separation, and the
network struggles to converge to the stored states once inhibition
is applied. In this scenario, the free phase demonstrates its utility.
At the end of the biased phase, during the second iteration of

FIGURE 3

Recovery of three binary-patterns representations of handwritten
digits from the MNIST dataset, “3”, “4”, “6”, “5”. The network is of size
20 × 16 as each neuron codes for a pixel. Left (in red): Evolution of
adaptation of each neuron Ai. Right (blue and yellow): snapshots of
the evolution of the rates vi(t) for each unit of the network. Each row
corresponds to the start of a new memory retrieval in the CHN. The
free phase corresponds to the removal of the inhibitory drive biasing
the activity of each neurons as described in Algorithm 3. The panels
illustrate how the biased phase “orients” the evolution, and then, the
free phase provides the precise convergence to a stored pattern. An
exaggerated large inhibitory coefficient β = 2 is used to illustrate the
stable state deformation at the end of the biased phase, highlighting
the need of the free phase.
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FIGURE 4

Visualization of AR (Algorithm 3). The x-axis shows the number of time steps for simulations of the CHN, with all query iterations of AR concatenated.
The y-axis shows the correlation between the state of the network and any stored state, with each color corresponding to a specific memory.
Vertical red dashed lines separate successive memory retrieval sequences. At the beginning of a memory recall adaptation A is updated and the initial
state is the neutral one. The yellow dashed lines indicate the end of the biased phase. Between yellow and red lines is the free phase, during which
self-inhibition is removed, to converge precisely into a stored state. Considered patterns have minimal correlation as they are generated from random
binary vectors. (Top) Recovery dynamics for a low-load network: 5 patterns for a network of 60 units. (Middle) Recovery dynamics for a critical-load
network: 5 stored patterns for a network of size 30. (Bottom) Recovery dynamics for a high-load network: 16 stored patterns for a network of size 60.

the AR, the network remains in a mixed state characterized by
ambiguous correlations with multiple stored patterns. The free
phase enables the network to resolve this ambiguity and ultimately
converge to a stored state. At high loads (see Figure 4 bottom),
the network successfully retrieves some stored states but mostly
fall into spurious attractors. Under these conditions, even the free
phase cannot rescue the recovery dynamics.

These autonomous recovery dynamics are reminiscent of
memory replays observed in the central nervous system of
mammals during quiescent states, such as sleep or rest. This process
is believed to function as a consolidation mechanism that mitigates
or modulates memory forgetting (Robins, 1995; Louie and Wilson,
2001; Peyrache et al., 2009; Fauth and Van Rossum, 2019; Tononi
and Cirelli, 2014).
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FIGURE 5

Recovery capacity of AR for various correlations, modulated by ρ. Data are averaged over 20 simulations with different pattern sets. Correlated
patterns are generated using Algorithm 5 (Appendix 3). For networks of various sizes and numbers of stored patterns, we employ Algorithm 3 until all
patterns are recovered or until a spurious state is found. (Top row) The percentage of ‘full retrieval’, i.e., simulation runs where no spurious state
occurs before recovering all stored patterns. (Bottom row) Number of iterations required to recover all patterns. Recovery is best for ρ = 0.5, which
denotes equal number of correlated and uncorrelated bits. For small ρ values with few correlated bits, performance worsens. For highly correlated
sets, only very low loads are recovered without false memories.

The use of recurrent plastic inhibitory synapses has been tested
and shows the same qualitative dynamics as that observed for
networks with units that undergo adaptation. The results and the
model are detailed in Appendix 4. As implementing adaptation
requires less computation and parameters, the following work
focuses only on the adaptation model.

3 Results

In this section, we evaluate the ability of our algorithm to
retrieve correlated patterns from a given network. We will consider
the retrieval of pattern sets with various amounts of correlation.
Each set gets assigned a random binary pattern, the parent pattern.
Each pattern of a given set is generated by randomly choosing
and randomizing a fraction (1 − ρ) of bits from the parent
pattern as described in Algorithm 2 (Appendix 3). Therefore, a
higher ρ induces more correlation, while a lower ρ results in less
correlation. Networks with various loads will be tested. All retrieval
dynamics are considered without free phases as it has been observed
that, for the retrieval of random binary patterns and the use of
small inhibitory potentiation values β , the free phase does not
significantly improve retrieval performance.

Figure 5 illustrates, for various correlations, the loads for
which AR allows systematic recovery of all stored patterns
without external cues or memory lists. This property enables
the continuous incorporation of new correlated memories, as

described in Algorithm 2. The retrieval improves with network
size—larger networks can reliably retrieve more stored patterns
without encountering false memories. We can observe the rather
surprising feature that a moderate amount of correlation (ρ ≈ 0.5)
tends to improve pattern retrieval compared to highly correlated
and minimally correlated pattern sets. In fact, this finding contrasts
with traditional associative memory models, where correlation
typically degrades performance (Fontanari and Theumann, 1990).

Our interpretation is that an intermediate amount of
correlation helps the system to be driven in the “good” direction
in early stages of the evolution, i.e., while still rather close to the
neutral state, and the energy landscape is rather featureless. Once
driven to a point of the state space proximal to all the stored
patterns, the system can finish the convergence. As illustrated
in Appendix 5, Appendix Figure 3, this push toward the good
direction can be measured through the average correlation between
the synaptic drive of each unit and the stored patterns.

As emerges from our simulations, to limit the appearance of
false memories, the values of β must be relatively small compared
to the target potential utarget. In our case, we found it convenient
to keep β smaller than 0.1. By keeping the nudging of the
convergence dynamic small, the emergence of false memories that
might otherwise result from deformations in the energy landscape
is reduced. Figure 6 indicates the existence of a trade-off: Smaller
β values require more iterations to retrieve all patterns but provide
greater stability, while larger values accelerate pattern retrieval at
the cost of increasing the probability of encountering a spurious
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FIGURE 6

Similar to Figure 5 but for various β values. Correlated patterns are generated with a ρ of 0.5. Lower β values require more iterations to recover the
complete set of stored patterns. Higher β values diminish the number of iteration needed but increase the probability of finding spurious state when
the load is important.

FIGURE 7

Convergence time of the GDA. Color intensity shows the number of iterations required to store a given number of patterns using GDA (Algorithm 1).
Data are averaged over 20 simulations for various pattern sets.

state. Higher values of β than those considered in this study lead to
catastrophic degradation of recovery dynamics for which no stored
patterns are recovered. Lower values of β only lead to the need for
more iterations when recovering the pattern set.

We shall now describe some qualitative information on
the efficiency of our algorithm. As expected, the number of
iterations required to successfully store patterns using Algorithm 1
increases with the memory load (Figure 7). Moreover, the higher
the correlation between patterns, the higher the number of
iterations needed for storage. Overall, our method requires
significantly more iterations than previously documented for
associative memory tasks in DHNs (Diederich and Opper, 1987).

We can argue that this increase in computational cost may
come from two factors. First, training a CHN through GDA
(Algorithm 1) inherently requires more iterations than training
DHNs. Second, we observed that a smaller convergence parameter
ε in Algorithm 1, while computationally more demanding, yields
superior retrieval performance. We hypothesize that this tighter
convergence criterion induces stronger competition between
pattern attractors at the neutral state. This competition results
in enhanced network responsiveness to subtle modifications of
attractor basins induced by W’ during retrieval. These observations
led to the adoption of a very small ε = 10−6, which demanded
more iterations when performing the GDA.
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4 Discussion

Our work introduces a biologically inspired mechanism
for the continuous incorporation of correlated patterns in
associative networks. CL is made possible through the autonomous
recovery of all stored patterns during a retrieval phase. By
systematically retrieving memories, the network can incorporate
new patterns while mitigating the forgetting of the ones
already stored. Autonomous retrieval is made possible by
adaptation, avoiding the necessity of recalling patterns from an
external list.

Previous work in computational neurosciences indicates
that inhibitory circuits may play a critical role in the regulation
of neural activity and plasticity (Vogels et al., 2011; Barron
et al., 2016). Here, we demonstrate that inhibitory plasticity
or SFA could be one of the key mechanisms that allow the
sequential reactivation of memories observed during sleep
and resting states (Wilson and McNaughton, 1994; Peyrache
et al., 2009). A property of associative networks highlighted
by our approach is that subtle changes in self-inhibition can
drive substantial shifts in network dynamics without disrupting
the fundamental structure of stored attractors. Inhibition,
therefore, allows context-dependent activity of the network
as observed in experimental setups (Kuchibhotla et al., 2017).
Biological neural circuits might, therefore, employ similar
mechanisms to navigate complex, correlated, memory spaces.
Our results indicate that larger networks experience fewer
spurious state visits, suggesting improved reliability with
scale. However, understanding how these dynamics extend
to networks of biologically relevant sizes would require
further investigation.

Traditional associative memory models typically suffer
from decreased capacity when storing correlated patterns
(Amit et al., 1985b). However, our findings revealed the rather
unexpected feature that moderate correlation levels actually
improve pattern retrieval in the context of autonomous
retrieval. We argue how this result may arise from the
way that correlated structures influence the geometry of
the attractor basins and the ensuing flow toward them. A
more thorough theoretical analysis of this phenomenon
could provide information on the factors that influence
the robustness of recovery dynamics in both artificial and
biological systems.

5 Conclusion

In this work, we demonstrate how adaptation can
enable autonomous exploration of attractor landscapes in
continuous Hopfield networks. Our key finding reveals that,
under a critical load, inhibitory plasticity allows networks
to systematically retrieve the entire set of stored memories,
even for highly correlated sets. This property allowed us
to propose and test an algorithmic scheme for continuous
learning leveraging the ability of gradient descent to store
correlated patterns. The capacity for self-directed pattern
exploration, emerging from inhibitory modulation, offers
insights for both biological memory consolidation and
neuromorphic computing.
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