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Introduction: It has become increasingly common to record brain activity
simultaneously at more than one spatiotemporal scale. Here, we address a
central question raised by such cross-scale datasets: do they reflect the same
underlying dynamics observed in different ways, or different dynamics observed
in the same way? In other words, to what extent can variation between
modalities be attributed to system-level versus observer-level effects? System-
level effects reflect genuine differences in neural dynamics at the resolution
sampled by each device. Observer-level effects, by contrast, reflect artefactual
differences introduced by the nonlinear transformations each device imposes
on the signal. We demonstrate that noise, when incorporated into generative
models, can help disentangle these two sources of variation.

Methods: We apply this noise-based approach to simultaneously recorded
high-frequency broadband signals from macroelectrodes and microwires in the
human hippocampus.

Results: Most subjects show a complex mixture of system- and observer-level
contributions to their time series. However, in one subject, the cross-scale
difference is statistically attributable to an observer-level effect—i.e., consistent
with the same dynamics at both microwire and macroelectrode scales.

Discussion: This study shows that noise can be used in empirical datasets
to determine whether cross-scale variation arises from differences in neural
dynamics or differences in observer functions.

KEYWORDS

multimodal neuroimaging, cross-scale integration, generative modeling, observer-
system disambiguation, high-frequency broadband activity, stochastic differential
equations, Bayesian model comparison
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1 Introduction

Patterns of electrical activity propagate through networks
of the brain over a wide range of spatial and temporal
scales (Engel et al., 2021). This activity can be recorded
by different types of neuroimaging devices, each of which
captures electrical signals at a specific resolution-much like a
microscope only reveals one level of magnification, depending
on the properties of its lens. Electrophysiological experiments
increasingly take advantage of this by combining recordings from
microwires and macroelectrodes—which differ in spatial sampling
and sensitivity (Keles et al., 2024)-and analyzing their high-
frequency broadband (HFB) signals. In this study, we refer to
micro-HFB and macro-HFB as the power extracted from microwire
and macroelectrode recordings, which approximately correspond
to local field potentials (LFP) and intracranial EEG (iEEG),
respectively.

When signals from micro- and macro-HFB are recorded
simultaneously, they offer complementary views of neural
dynamics across scales, raising the question of how to compare
or combine the information they provide. However, cross-scale
measurements are complicated by the fact that every imaging
device invariably distorts the brain’s electrical signals in unique
and often nonlinear ways (Frank et al., 2024). These device-specific
distortions introduce an ambiguity as to whether the variation
between multimodal signals arises from differences across scales
in the brain, or from differences in the properties of the devices.
The challenge of addressing this ambiguity can be framed in terms
of a question conceptually related to identifiability problems in
dynamical systems theory (Bellman and Astrém, 1970): when we
observe multimodal signals, are we measuring the same dynamics
viewed in different ways, or rather different dynamics in the
same way?

Numerous latent-variable models have been proposed
for analyzing neural data, including nonlinear state-space
models, hidden Markov models, and deep generative approaches
(Pandarinath et al., 2018; Sussillo et al., 2016; Yu et al., 2008). While
powerful, such models often involve high-dimensional latent spaces
and observation functions that are less interpretable. In contrast,
our approach emphasizes interpretability by explicitly modeling
system- versus observer-level contributions in low-dimensional
generative frameworks.

Specifically, we introduce a framework that can be used to solve
this ambiguity by leveraging the addition of noise, which reveals
additional terms that depend only on the properties of the observer,
and not of the system. These noise-induced terms can be used
as diagnostic tools to determine whether multimodal time series
reflect differences in neural dynamics or in observer functions. This
strategy aligns with a broader movement in systems neuroscience
toward integrative, cross-scale inference (Breakspear, 2017), and
theoretical proposals that advocate hierarchical generative models
for capturing multiscale neural dynamics (Friston, 2008; Marreiros
et al., 2009).

We lay out this work in three main stages: First, we build the
theoretical foundation by demonstrating how Stratonovich calculus
helps to break system-observer ambiguity. Second, we validate
this approach by showing that we can successfully distinguish
ground-truth synthetic timeseries generated using forward models.
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Third, we apply the framework to simultaneous recordings from
microwires and macroelectrodes in the human hippocampus.

2 Materials and methods

In this section, we outline our approach to disambiguating
system- and observer-dependent differences in multimodal
recordings. We first describe the nature of the problem and a
simple generative model that accommodates the key differences
in model structure. We describe how this model was used to
both generate synthetic data and explain empirical data by
using Bayesian model comparision in assessing observer vs.
system-dependent differences. Finally, we introduce a stochastic
state-space model-using a Stratonovich formulation of random
fluctuations—under which the model comparison procedures were
reapplied. This allows us to quantify the extent to which noise
assists in separating system and observer effects.

2.1 System/observer degeneracy

Consider a neural system (Figure 1A) observed simultaneously
by two different imaging devices. A small spatial region (Figure 1B)
generates neural signals recorded by one device (Figure 1C), while
a larger region (Figure 1D) generates signals recorded by another
device (Figure 1E), with each device operating at a different spatial
and temporal resolution. Both regions are driven by a common
external input (Figure 1F), such as a stimulus or experimental
condition that modulates activity across scales.

We model the small-scale region with microscopic state
variables x, (t) that evolve under a function f, (x,,v), where
v (¢) is an exogenous input. The larger region is described by
macroscopic states xy (£) evolving under fys (xp,v). This gives:

k,u = f/t (xyav) 5 XM = fM (stU)~ (1)

Each device applies an observer function to convert latent
neural activity into a measurable signal. The small-scale device
uses g, (x) to produce a signal h,, (t), while the large-scale device
uses gy (x) to produce hy (¢). In other words, each device applies

FIGURE 1

(A) The surface of a neural system. (B) Small spatial region within
the system. (C) Neuro-imaging device recording states from region
(B). (D) Larger spatial region within the same system. (E) Second
device recording states from region (D). (F) External input (dashed
arrow) driving activity in both regions.
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its own observer function to convert latent neural states into a
measurable signal:

h,u ® = 8u [x,u (t)] , hm () = gmlxm O] (2)

Taking time derivatives of Equations 1, 2 and applying the chain
rule, we obtain:

I:l,u = g,u/ (x,u)fy (x,u,v) 5 ];lM = gM/ (xM)fM (xpm,0). (3)
Omitting dependent variables for clarity, the difference A
between the observed time derivatives Equation 3 becomes:

A= iqlt _];‘M = g,u,fy _gM/fM (4)

This expression reveals an ambiguity: without additional
constraints we cannot know whether differences in measured
activity across scales arise more from differences in the underlying
system dynamics (fy,fu), as opposed to differences in the
measurement process itself (g,,, gv). This ambiguity arises because
the difference A in Equation 4 is expressed in terms of a product
between the observer sensitivity and the system dynamics, hence
creating a degeneracy — differences cannot be uniquely attributed
to either system or observer without further constraints. This
is a key motivation for introducing structured noise in later
sections, as it enables these multiplicative components to be
statistically disentangled.

2.2 Generative model

To explore system-observer degeneracy in practice, we define
a simple generative model, in which the dynamics of each region
are governed by a linear time-invariant (LTI) (Oberst et al., 2020)
system:

Xy = ax,+bv , iy = (a+da)xy + bo, (5)

Here, a governs intrinsic dynamics (Hespanha, 2018), b the
stimulus gain (Salinias and Sejnowski, 2001), and da encodes
deviations in the macroscopic dynamics system.

Note that, although real neural dynamics are nonlinear, we
model both the micro- and macro-scale latent dynamics in
Equation 5 using linear approximations. We do this to simplify the
process of isolating system- versus observer-level effects. However,
we ensure that the generative model allows for nonlinearities via
sigmoidal observer functions:

gu = c-tanh [kx/,] , gu = c-tanh [(k + 5k) xM] , (6)

Here, ¢ defines the degree of nonlinearity; k sets the
input gain, and Jk represents macroscopic deviations in the
observation process.

2.3 Identical observer/system edge cases

Based on the generative model in Equations 5, 6, we now
consider two reduced models:
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Reduced model 1 - identical observers: To model pure system-
level differences, we fix the observation mappings (6k = 0) so that
all variation arises from dynamics:

Xy = ax,+bv , g, =¢c -tanh(kxﬂ),

iy = (@a+da)xy+bv , gy = c -tanh (kxM), (7)

Reduced model 2 - identical systems: To model pure observer-
level differences, we fix the dynamics (da = 0) and allow the
observation mappings to vary:

Xy = ax,+bv , g, =¢c -tanh(kx#),

v = axy+bo . gu = c -tanh ((k+5k) xM), (8)

We then generate synthetic time series from each reduced
model in Equations 7, 8. These serve as ground truth datasets for
Bayesian model inversion, where we ask whether one can correctly
infer if observed differences originate from system or observer-level
variation.

2.4 Breaking system/observer
degeneracy with noise

We now introduce the central hypothesis of this paper: that
adding stochastic input (i.e., state or system noise) to the model can
improve model identifiability. To illustrate this, let us return to the
equations of motion for the micro and macroscopic states x,, and
xym from Equation 1 and augment them with stochastic inputs:

Xy = fu + 0, dW iy = fu + opdW 9)

where o, o) are volatility constants, and dW an increment of
a Wiener process. This transforms the generative model from
an ordinary differential equation (ODE) form into the stochastic
differential equation (SDE) form in Equation 9.

Following Equations 3, 4 [but now using Stratonovich calculus
(Mauri and Mauri, 2013)], the difference Agqr between observed
time derivatives becomes:

Dsirat = gu'fu—gv'fn + onugn’ —omémgn’

degenerate observers only (10)

Here, & (1) = W is formally read as a white noise process.

This highlights the same ambiguity described earlier in
Equation 4, where differences in observed activity may arise from
either system or observer effects.

We see from Equation 10 that the first difference (i.e., between
the first two terms on the right-hand side of the equation)
reflects the degenerate overlap between system and observer
effects, while the second difference is attributable exclusively to
observer sensitivity to noise. These pure observer-based terms
arise from differential responses of the observer functions to the
same stochastic input. Crucially, these observer-only terms break
the degeneracy present in the noise-free model by introducing
variability that is independent of the system dynamics f,, far.
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To empirically test whether state noise can help in
disambiguating system vs. observer effects, we apply this stochastic
augmentation to the deterministic model used in Equation 5:

kg = ax, +bo+o,é , km= (a+da)xy +bo+oué, (11)

In all models, including the deterministic and stochastic variants,
observation noise was also included as an additive term on the
observer output, capturing variability in the measurement process.

2.5 Empirical data

We analyzed intracranial recordings from 16 human
participants (Keles et al, 2024), acquired using Behnke-Fried
hybrid depth electrodes (Carlson et al., 2018) while participants
passively viewed an 8-min movie excerpt. Each electrode contained
8 microwires (Einevoll et al, 2013) and 8 macroelectrodes
(Lachaux et al, 2003), recording broadband field potentials
at 32 kHz and 2 kHz, respectively. From these recordings, we
extracted HFB power in the 70-170 Hz range, which we refer to
throughout as micro-HFB (from microwires) and macro-HFB
(from macroelectrodes). A shared movie stimulus clock was
synchronized across systems using TTL pulses to ensure precise
temporal alignment of neural signals with the audiovisual stimulus.

Data were pre-processed using a standard pipeline: notch
filtering at 60 Hz and harmonics to remove line noise, high-pass
filtering at 0.1 Hz to remove slow drifts, and re-referencing to the
common average. Time-frequency decomposition was performed
using Morlet wavelets (Cohen, 2019) across the 70-170 Hz range,
and the resulting high-frequency broadband (HFB) power was
averaged across frequencies to produce a single HFB time course
per channel.

We analyzed the simultaneously acquired micro- and macro-
HEFB signals, averaged within the right hippocampus, downsampled
from 1 kHz to 250 Hz and z-scored independently. Each time
series was truncated to a common 4-s window (1000 time
points) to ensure equal length across modalities. To model
exogenous input, we constructed a design matrix encoding scene
structure using annotated movie cuts: each scene was assigned
a unique value, producing a piecewise constant signal that
tracked stimulus transitions. The subjects’ datasets are shown in
Supplementary Figure 1.

2.6 Synthetic data

We generated synthetic data that mimicked the empirical
HFB signal profile by tuning model parameters to approximate
the empirical signal statistics. This involved first constructing an
exogenous input to replicate stimulus structure, and second fitting
model dynamics to the empirical signal.

The exogenous input o (tf) was constructed to emulate the
structure of the movie stimulus by assigning a constant value to
each scene. We used annotated scene cut times from the original
experiment and defined a piecewise constant signal in which each
scene was assigned a random value between 0 and 1 (Figure 2A).
To better approximate the complexity of real neural input, we
then added Gaussian noise and applied light temporal smoothing,
yielding a final driver signal with both slow transitions and fast
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0 time (s)
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FIGURE 2
(A) Scene-based input signal (v, arbitrary units) constructed by
assigning a random value to each annotated scene segment. (B)
Final driver used in simulations, obtained by adding Gaussian noise
and smoothing the signal in panel (A), introducing fast fluctuations
alongside the structured scene transitions.

fluctuations (Figure 2B). This driver served as the shared input to
both the microscopic and macroscopic systems in all simulations.

To generate synthetic data resembling empirical HFB activity,
we performed a grid search over key model parameters: the intrinsic
dynamics a, observer nonlinearity ¢, and input gain k. For each
parameter combination, we simulated time series using the forward
model and compared the resulting synthetic output to empirical
data (truncated to a 4-s window) using mean squared error.
This procedure yielded synthetic time series that preserved the
qualitative features of the empirical recordings while retaining
explainability under a known generative model.

2.7 Bayesian model inversion

We begin with the full model in Equations 5, 6 with two free
parameters da and dk. We assigned standard normal priors (mean
zero, unit variance) to both parameters and used Dynamic Causal
modeling (DCM) (Friston et al., 2003) to invert the model, with the
ground truth datasets generated from the two reduced models in
Equations 7, 8. This inversion yields estimates of the posterior over
da and Jk for each dataset.

We then apply post-hoc Bayesian model reduction (Friston
and Penny, 2011) to determine which reduced model (identical
observers vs. identical systems) best explains the data. Specifically,
to test for observer-level differences, we fix the da parameter to
zero by setting both its prior expectation and variance to zero,
i.e., Var (da) = 0. This evaluates whether a model with identical
system dynamics can explain the data. Similarly, to test for system-
level differences, we collapse the prior variance over observer
deviations: Var (6k) = 0. This now evaluates whether a model
with identical observer mappings can explain the data.

The log of the model evidence (a.k.a., marginal likelihood)
was approximated using the variational free energy (VFE) (Friston,
2010) (a.k.a., evidence lower bound), which quantifies the balance
between accuracy and complexity. The preferred model is the one
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with the higher VFE following model inversion and reduction. This
allows us to determine whether Bayesian model comparison can
correctly associate each reduced model with its known generative
process. Once this proof of principle has been established, we then
apply the same technique to each subject’s empirical micro/macro
HFB recordings, to determine whether observer- or system-level
effects are more prevalent in each.

See the Supplementary Appendix for details on the DCM used.

2.8 Multiplicative noise extension
As a supplementary analysis, test whether the
disambiguation effect observed with additive noise also holds
when using multiplicative (state-dependent) noise. This involves
replacing the additive terms ¢,¢ and op¢ in Equation 11 with
multiplicative terms:

we

Xy = ax, +bo+oux,¢ , Xy = (a+da)xy + bo +opyxpé, (12)

This formulation increases the variance of fluctuations with state

magnitude, consistent with empirical findings in motor control
and neurodynamics (Faisal et al., 2008). Synthetic time series were
generated using the model in Equation 12, and Bayesian model
inversion and reduction were performed as with the previous
additive noise data.

2.9 Model fit evaluation

To assess model fit quality, we computed the coefficient of
determination R? between the predicted and empirical macro-HFB,

10.3389/fncom.2025.1693279

as well as two residual diagnostics: skewness and autocorrelation at
lag 1 (AC1). R? values quantify explained variance, with negative
values indicating worse-than-baseline fits. Skewness was included
to detect non-Gaussian residuals that might indicate unmodeled
noise structure, and autocorrelation was used to identify temporal
dependencies in the residuals. All metrics were computed after
z-scoring the predicted and empirical signals, and residuals were
computed as their difference. Subjects were excluded if R> < 0.1
and/or if skewness > 3.

3 Results

All
accompanying code.

results below can be reproduced wusing the

3.1 Synthetic data

We begin by creating two synthetic datasets—one with identical
observers as in Equation 7 (Figure 3A), and the second with
identical systems as in Equation 8 (Figure 3B). We then perform
Bayesian model inversion on these two synthetic datasets by
employing the full model in Equations 5, 6. We find that both
the identical observers (Figure 3C), as well as the identical systems
(Figure 3D) ground truth datasets can be correctly identified using
Bayesian model reduction.

We then repeat the same process, but this time the identical
observers (Figure 4A) and identical systems (Figure 4B) data
are generated with a white noise driving input. Preserving this
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FIGURE 3

(A) Normalized signal strength as a function of time for synthetic data, with the small-scale system shown in black and the large-scale system shown
in red. The forward generative model constrains the observer functions to be identical, so that all variation between the two signals is due to
differences between systems (i.e., between equations of motion). (B) Same as panel (A), except now the systems are identical, and all variation
between the two signals is due to differences between observer functions. (C) Variational free energy (VFE) for the two reduced models in which (1)
observers and (2) systems are identical. VFE values are plotted relative to the minimum within each comparison, such that the lower evidence model
is set to zero. In this case, the model selection correctly identifies the “identical observers” reduced model as the one responsible for the generation
of the timeseries in panel (A). The inset shows probabilities derived from the VFE, showing a significance level of p < 0.05. (D) Same as panel (C),
except here the model selection is applied to the timeseries in B), which is correctly identified as the reduced model in which systems are
constrained to be identical. The probabilities shown in the inset indicate a high significance of p < 0.001.

FIGURE 4

Same layout as Figure 3, except both forward generative models and model inversions now include stochastic terms.
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stochastic element in the model inversion process, we find that
the inclusion of noise facilitates improved disambiguation by
increasing the difference between variational free energy (model
evidence) for both the identical observers (Figure 4C) and identical
systems (Figure 4D) timeseries.

Synthetic tests with multiplicative noise (Supplementary
Figure 2) showed similar disambiguation between system and
observer effects. This suggests that the framework is robust to
different noise structures and not contingent on linearity or
additive noise assumptions.

This synthetic data analysis validates the premise that the
inclusion of state noise in the models help in breaking system-
observer degeneracy. Having established the face validity of this
Bayesian model comparison procedure, we can now apply it to
empirical data and ask whether micro and macro HFB signals are
best explained by observation or system level differences.

3.2 Empirical data

Model fit diagnostics were calculated for all 16 subjects
(Supplementary Figure 3). Overall, the model accounted for a
substantial portion of variance in most subjects (median R? is
0.66), with low residual skewness (median skewness 0.02) and
moderate autocorrelation (median AC1 is 0.52). However, four
subjects (IDs 4, 7, 13, 16) exhibit negative R? values and/or absolute
value skewness larger than 3, suggesting the model failed to capture
meaningful structure in these subjects. Upon applying model
inversion and reduction to the remaining 12 subjects, one (subject
ID 2) presents significantly higher evidence for the “identical
systems” compared with the “identical observers” hypothesis. This
suggests that the variation between the micro- and macro-HFB
recordings in this subject are driven by differences in the observer
functions, rather than by the equations of motion governing the
two scales (Figure 5).

We show complementary results with multiplicative, instead of
additive, noise in Supplementary Figure 4. This shows that the data
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FIGURE 5

The variational free energy (VFE) is shown on the vertical axis for the
two models with (1) identical observers and (2) identical systems for
the one subject (ID 2) surviving statistical correction. VFE values are
plotted relative to the subject-level minimum, such that the lower
bound is set to zero. The inset shows probabilities derived from the
VFEs. The “identical systems” model has higher evidence.
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pertaining to the single subject surviving statistical correction (ID
11) is also driven by differences in the observer function.

4 Discussion

This study demonstrates that the inclusion of noise in
generative models of neural activity can act as a diagnostic
tool, allowing for improved disambiguation between system-
vs. observer-induced variation between cross-scale neuroimaging
datasets. This disambiguation occurs when nonlinear observer
functions are combined with stochastic system dynamics, which
results in interaction terms that introduce dependencies specific to
the observer only (i.e., and not to the system).

Using synthetic data, we validated this framework by generating
ground truth time series under conditions where the systems
differed but the observers were identical, and vice versa. In both
cases, Bayesian model inversion recovered the correct underlying
model more accurately when stochastic inputs were included.
This finding formalizes the core point addressed here: system
and observer effects are degenerate in the absence of structured
noise. As such, without stochastic perturbations passing through
nonlinear mappings, the two sources of variation remain less
statistically distinguishable. While it might seem intuitive that
stochastic models better explain stochastic data, our results go
beyond improved fit: they show that noise interacts with nonlinear
observer functions in a way that amplifies otherwise latent
distinctions between system- and observer-level structure. In this
sense, noise is not simply a source of variance, but a probe that
reveals model-specific dependencies.

We extended our synthetic tests to include multiplicative
noise, in which the amplitude of fluctuations scales with the
magnitude of the state variable. The results confirm that our key
conclusion - that noise improves disambiguation between system
and observer contributions - remains valid. This supports the
generality of the approach beyond specific assumptions of linearity
or constant volatility.

We then applied this approach to empirical data from
16 human subjects with simultaneous micro- and macro-
HFB recordings from the hippocampus. The results indicate a
complicated mixture of system and observer effects in all subjects
except one — which demonstrated statistically significant evidence
of observer-based variation. A different single subject showed the
same result when using an assumption of multiplicative, rather than
additive, noise. This finding suggests the possibility that micro-
and macro-HFB are in some cases observing the same underlying
neural processes, just with different observer functions (Buzsdki
et al., 2012; Kajikawa and Schroeder, 2011). It should be stressed
however, that our method does not assume that such a distinction
will always emerge, but rather that detection is enabled when such
a distinction is present.

This interpretation aligns with previous work suggesting that
micro- and macro-HFB, while often treated as separate levels of
analysis, may tap into overlapping neural generators (Mukamel and
Fried, 2012), particularly when recorded from the same anatomical
region. More speculatively, the results may reflect a broader
principle in neuroimaging: that device-level transformations can
dominate the differences seen across modalities, especially when
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those devices are sampling from overlapping regions (Daunizeau
et al, 2009). In such cases, modeling those observer functions
explicitly-and leveraging noise to expose their structure-may be
more fruitful than assuming fundamentally distinct neural sources.

Micro- and macro-HFB signals both originate from
spatiotemporally synchronized synaptic potentials, reflecting
the evolution of neural activity at different spatial scales (Buzsaki
et al., 2012). These synaptic potentials generate approximately
dipolar fields, for which the observed polarity depends on electrode
placement. Similar recordings in macaque visual cortex showed
that the spatial spread of iEEG (~3 mm) is roughly three times
that of LFP, and that iEEG can be modeled as a spatial average of
LFP signals over this ~3 mm radius (Ray, 2023). Consequently,
iEEG and LFP are expected to capture similar underlying synaptic
dynamics, and differences between their signals can be largely
attributed to differences in electrode locations.

It should be noted that the generative models presented do not
aim to explicitly model the physical characteristics of electrodes
or recording pipelines. Rather, the observer functions serve as
mathematical stand-ins for the fact that different devices impose
distinct, often nonlinear, transformations on the underlying signals.
Our results therefore do not provide a literal mapping between
device and model, but rather illustrate a more general principle:
that structured noise serves to assist in uncovering the relative
contributions of system and observer. In this sense, our findings
complement prior work on the role of precision in the identifiability
of model components, particularly within the context of dynamic
causal modeling (Daunizeau et al., 2009). This builds on prior
theoretical work suggesting that noise can enhance inference by
breaking model symmetries (Seung and Sompolinsky, 1993).

It should be noted that our method relies upon an appropriately
chosen observer function for a given dataset. Otherwise, incorrect
assumptions about e.g., nonlinearities could lead to potential
confounds that mimic system-level effects. This underscores the
need for careful model selection procedures (Daunizeau et al., 2011;
Friston, 2009; Razi et al., 2015).

Future implementations of our methodology could involve
more complex scenarios, such as the simultaneous acquisition of
EEG and fMRI data. The neural mechanisms at the microscopic
level that give rise to fMRI BOLD signals remain an open question
(Ekstrom, 2010). EEG captures spatiotemporally synchronized
synaptic inputs on the millisecond timescale, whereas fMRI
measures local changes in blood flow occurring over several
seconds. Accurate interpretation of these signals would require
more sophisticated modeling of the corresponding observer
functions - biologically realistic models for EEG to account for
volume conduction, and hemodynamic models for fMRI.

As neuroimaging datasets increasingly span spatial and
temporal scales—from cellular-resolution imaging to whole-brain
recordings-the challenge of comparing signals across modalities
becomes more pressing. Our results suggest that, rather than
treating noise as an element, to be eliminated, it can be exploited as
astructured source of information-as a diagnostic tool for resolving

ambiguity in multimodal signals.
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