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Introduction: It has become increasingly common to record brain activity

simultaneously at more than one spatiotemporal scale. Here, we address a

central question raised by such cross-scale datasets: do they reflect the same

underlying dynamics observed in different ways, or different dynamics observed

in the same way? In other words, to what extent can variation between

modalities be attributed to system-level versus observer-level effects? System-

level effects reflect genuine differences in neural dynamics at the resolution

sampled by each device. Observer-level effects, by contrast, reflect artefactual

differences introduced by the nonlinear transformations each device imposes

on the signal. We demonstrate that noise, when incorporated into generative

models, can help disentangle these two sources of variation.

Methods: We apply this noise-based approach to simultaneously recorded

high-frequency broadband signals from macroelectrodes and microwires in the

human hippocampus.

Results: Most subjects show a complex mixture of system- and observer-level

contributions to their time series. However, in one subject, the cross-scale

difference is statistically attributable to an observer-level effect—i.e., consistent

with the same dynamics at both microwire and macroelectrode scales.

Discussion: This study shows that noise can be used in empirical datasets

to determine whether cross-scale variation arises from differences in neural

dynamics or differences in observer functions.

KEYWORDS

multimodal neuroimaging, cross-scale integration, generative modeling, observer-
system disambiguation, high-frequency broadband activity, stochastic differential
equations, Bayesian model comparison
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1 Introduction 

Patterns of electrical activity propagate through networks 
of the brain over a wide range of spatial and temporal 
scales (Engel et al., 2021). This activity can be recorded 
by dierent types of neuroimaging devices, each of which 
captures electrical signals at a specific resolution–much like a 
microscope only reveals one level of magnification, depending 
on the properties of its lens. Electrophysiological experiments 
increasingly take advantage of this by combining recordings from 
microwires and macroelectrodes–which dier in spatial sampling 
and sensitivity (Keles et al., 2024)–and analyzing their high-
frequency broadband (HFB) signals. In this study, we refer to 
micro-HFB and macro-HFB as the power extracted from microwire 
and macroelectrode recordings, which approximately correspond 
to local field potentials (LFP) and intracranial EEG (iEEG), 
respectively. 

When signals from micro- and macro-HFB are recorded 
simultaneously, they oer complementary views of neural 
dynamics across scales, raising the question of how to compare 
or combine the information they provide. However, cross-scale 
measurements are complicated by the fact that every imaging 
device invariably distorts the brain’s electrical signals in unique 
and often nonlinear ways (Frank et al., 2024). These device-specific 
distortions introduce an ambiguity as to whether the variation 
between multimodal signals arises from dierences across scales 
in the brain, or from dierences in the properties of the devices. 
The challenge of addressing this ambiguity can be framed in terms 
of a question conceptually related to identifiability problems in 
dynamical systems theory (Bellman and Åström, 1970): when we 
observe multimodal signals, are we measuring the same dynamics 
viewed in dierent ways, or rather dierent dynamics in the 
same way? 

Numerous latent-variable models have been proposed 
for analyzing neural data, including nonlinear state-space 
models, hidden Markov models, and deep generative approaches 
(Pandarinath et al., 2018; Sussillo et al., 2016; Yu et al., 2008). While 
powerful, such models often involve high-dimensional latent spaces 
and observation functions that are less interpretable. In contrast, 
our approach emphasizes interpretability by explicitly modeling 
system- versus observer-level contributions in low-dimensional 
generative frameworks. 

Specifically, we introduce a framework that can be used to solve 
this ambiguity by leveraging the addition of noise, which reveals 
additional terms that depend only on the properties of the observer, 
and not of the system. These noise-induced terms can be used 
as diagnostic tools to determine whether multimodal time series 
reflect dierences in neural dynamics or in observer functions. This 
strategy aligns with a broader movement in systems neuroscience 
toward integrative, cross-scale inference (Breakspear, 2017), and 
theoretical proposals that advocate hierarchical generative models 
for capturing multiscale neural dynamics (Friston, 2008; Marreiros 
et al., 2009). 

We lay out this work in three main stages: First, we build the 
theoretical foundation by demonstrating how Stratonovich calculus 
helps to break system-observer ambiguity. Second, we validate 
this approach by showing that we can successfully distinguish 
ground-truth synthetic timeseries generated using forward models. 

Third, we apply the framework to simultaneous recordings from 
microwires and macroelectrodes in the human hippocampus. 

2 Materials and methods 

In this section, we outline our approach to disambiguating 
system- and observer-dependent dierences in multimodal 
recordings. We first describe the nature of the problem and a 
simple generative model that accommodates the key dierences 
in model structure. We describe how this model was used to 
both generate synthetic data and explain empirical data by 
using Bayesian model comparision in assessing observer vs. 
system-dependent dierences. Finally, we introduce a stochastic 
state-space model–using a Stratonovich formulation of random 
fluctuations–under which the model comparison procedures were 
reapplied. This allows us to quantify the extent to which noise 
assists in separating system and observer eects. 

2.1 System/observer degeneracy 

Consider a neural system (Figure 1A) observed simultaneously 
by two dierent imaging devices. A small spatial region (Figure 1B) 
generates neural signals recorded by one device (Figure 1C), while 
a larger region (Figure 1D) generates signals recorded by another 
device (Figure 1E), with each device operating at a dierent spatial 
and temporal resolution. Both regions are driven by a common 
external input (Figure 1F), such as a stimulus or experimental 
condition that modulates activity across scales. 

We model the small-scale region with microscopic state 
variables xµ (t) that evolve under a function fµ 

� 
xµ,υ 

 
, where 

υ (t) is an exogenous input. The larger region is described by 
macroscopic states xM (t) evolving under fM 

� 
xM, υ 


. This gives: 

ẋµ = fµ 
� 
xµ,υ 

 
, ẋM = fM (xM,υ) . (1) 

Each device applies an observer function to convert latent 
neural activity into a measurable signal. The small-scale device 
uses gµ (x) to produce a signal hµ (t), while the large-scale device 
uses gM (x) to produce hM (t). In other words, each device applies 

FIGURE 1 

(A) The surface of a neural system. (B) Small spatial region within 
the system. (C) Neuro-imaging device recording states from region 
(B). (D) Larger spatial region within the same system. (E) Second 
device recording states from region (D). (F) External input (dashed 
arrow) driving activity in both regions. 

Frontiers in Computational Neuroscience 02 frontiersin.org 

https://doi.org/10.3389/fncom.2025.1693279
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-19-1693279 October 14, 2025 Time: 18:11 # 3

Fagerholm et al. 10.3389/fncom.2025.1693279 

its own observer function to convert latent neural states into a 
measurable signal: 

hµ (t) = gµ 
 
xµ (t) 

 
, hM (t) = gM [xM (t)] . (2) 

Taking time derivatives of Equations 1, 2 and applying the chain 
rule, we obtain: 

ḣµ = gµ 
 � xµ 

 
fµ 
� 
xµ,υ 

 
, ḣM = gM 

 (xM) fM (xM,υ) . (3) 

Omitting dependent variables for clarity, the dierence  
between the observed time derivatives Equation 3 becomes: 

 = ḣµ − ḣM = gµ 
fµ − gM 

 fM (4) 

This expression reveals an ambiguity: without additional 
constraints we cannot know whether dierences in measured 
activity across scales arise more from dierences in the underlying 
system dynamics 

� 
fµ, fM 

 
, as opposed to dierences in the 

measurement process itself 
�
gµ, gM 

 
. This ambiguity arises because 

the dierence  in Equation 4 is expressed in terms of a product 
between the observer sensitivity and the system dynamics, hence 
creating a degeneracy – dierences cannot be uniquely attributed 
to either system or observer without further constraints. This 
is a key motivation for introducing structured noise in later 
sections, as it enables these multiplicative components to be 
statistically disentangled. 

2.2 Generative model 

To explore system-observer degeneracy in practice, we define 
a simple generative model, in which the dynamics of each region 
are governed by a linear time-invariant (LTI) (Oberst et al., 2020) 
system: 

ẋµ = axµ + bυ , ẋM = (a + δa) xM + bυ, (5) 

Here, a governs intrinsic dynamics (Hespanha, 2018), b the 
stimulus gain (Salinias and Sejnowski, 2001), and δa encodes 
deviations in the macroscopic dynamics system. 

Note that, although real neural dynamics are nonlinear, we 
model both the micro- and macro-scale latent dynamics in 
Equation 5 using linear approximations. We do this to simplify the 
process of isolating system- versus observer-level eects. However, 
we ensure that the generative model allows for nonlinearities via 
sigmoidal observer functions: 

gµ = c · tanh 
 
kxµ 

 
, gM = c · tanh 

� 
k + δk 

 
xM 
 
, (6) 

Here, c defines the degree of nonlinearity; k sets the 
input gain, and δk represents macroscopic deviations in the 
observation process. 

2.3 Identical observer/system edge cases 

Based on the generative model in Equations 5, 6, we now 
consider two reduced models: 

Reduced model 1 – identical observers: To model pure system-
level dierences, we fix the observation mappings 

� 
δk = 0 


so that 

all variation arises from dynamics: 

ẋµ = axµ + bυ , gµ = c · tanh 
� 
kxµ 

 
, 

ẋM = (a + δa) xM + bυ , gM = c · tanh 
� 
kxM 

 
, (7) 

Reduced model 2 – identical systems: To model pure observer-
level dierences, we fix the dynamics (δa = 0) and allow the 
observation mappings to vary: 

ẋµ = axµ + bυ , gµ = c · tanh 
� 
kxµ 

 
, 

ẋM = axM + bυ , gM = c · tanh 
�� 

k+δk 
 

xM 
 
, (8) 

We then generate synthetic time series from each reduced 
model in Equations 7, 8. These serve as ground truth datasets for 
Bayesian model inversion, where we ask whether one can correctly 
infer if observed dierences originate from system or observer-level 
variation. 

2.4 Breaking system/observer 
degeneracy with noise 

We now introduce the central hypothesis of this paper: that 
adding stochastic input (i.e., state or system noise) to the model can 
improve model identifiability. To illustrate this, let us return to the 
equations of motion for the micro and macroscopic states xµ and 
xM from Equation 1 and augment them with stochastic inputs: 

ẋµ = fµ + σµdW , ẋM = fM + σMdW (9) 

where σµ, σM are volatility constants, and dW an increment of 
a Wiener process. This transforms the generative model from 
an ordinary dierential equation (ODE) form into the stochastic 
dierential equation (SDE) form in Equation 9. 

Following Equations 3, 4 [but now using Stratonovich calculus 
(Mauri and Mauri, 2013)], the dierence Strat between observed 
time derivatives becomes: 

Strat = gµ 
 fµ−gM 

 fM| {z } + σµξµgµ 

−σMξMgM 

 | {z } 
degenerate observers only (10) 

Here, ξ (t) = ˙ W is formally read as a white noise process. 
This highlights the same ambiguity described earlier in 

Equation 4, where dierences in observed activity may arise from 
either system or observer eects. 

We see from Equation 10 that the first dierence (i.e., between 
the first two terms on the right-hand side of the equation) 
reflects the degenerate overlap between system and observer 
eects, while the second dierence is attributable exclusively to 
observer sensitivity to noise. These pure observer-based terms 
arise from dierential responses of the observer functions to the 
same stochastic input. Crucially, these observer-only terms break 
the degeneracy present in the noise-free model by introducing 
variability that is independent of the system dynamics fµ, fM . 
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To empirically test whether state noise can help in 
disambiguating system vs. observer eects, we apply this stochastic 
augmentation to the deterministic model used in Equation 5: 

ẋµ = axµ + bυ + σµξ , ẋM = (a + δa) xM +b υ + σMξ, (11) 

In all models, including the deterministic and stochastic variants, 
observation noise was also included as an additive term on the 
observer output, capturing variability in the measurement process. 

2.5 Empirical data 

We analyzed intracranial recordings from 16 human 
participants (Keles et al., 2024), acquired using Behnke-Fried 
hybrid depth electrodes (Carlson et al., 2018) while participants 
passively viewed an 8-min movie excerpt. Each electrode contained 
8 microwires (Einevoll et al., 2013) and 8 macroelectrodes 
(Lachaux et al., 2003), recording broadband field potentials 
at 32 kHz and 2 kHz, respectively. From these recordings, we 
extracted HFB power in the 70–170 Hz range, which we refer to 
throughout as micro-HFB (from microwires) and macro-HFB 
(from macroelectrodes). A shared movie stimulus clock was 
synchronized across systems using TTL pulses to ensure precise 
temporal alignment of neural signals with the audiovisual stimulus. 

Data were pre-processed using a standard pipeline: notch 
filtering at 60 Hz and harmonics to remove line noise, high-pass 
filtering at 0.1 Hz to remove slow drifts, and re-referencing to the 
common average. Time-frequency decomposition was performed 
using Morlet wavelets (Cohen, 2019) across the 70–170 Hz range, 
and the resulting high-frequency broadband (HFB) power was 
averaged across frequencies to produce a single HFB time course 
per channel. 

We analyzed the simultaneously acquired micro- and macro-
HFB signals, averaged within the right hippocampus, downsampled 
from 1 kHz to 250 Hz and z-scored independently. Each time 
series was truncated to a common 4-s window (1000 time 
points) to ensure equal length across modalities. To model 
exogenous input, we constructed a design matrix encoding scene 
structure using annotated movie cuts: each scene was assigned 
a unique value, producing a piecewise constant signal that 
tracked stimulus transitions. The subjects’ datasets are shown in 
Supplementary Figure 1. 

2.6 Synthetic data 

We generated synthetic data that mimicked the empirical 
HFB signal profile by tuning model parameters to approximate 
the empirical signal statistics. This involved first constructing an 
exogenous input to replicate stimulus structure, and second fitting 
model dynamics to the empirical signal. 

The exogenous input υ (t) was constructed to emulate the 
structure of the movie stimulus by assigning a constant value to 
each scene. We used annotated scene cut times from the original 
experiment and defined a piecewise constant signal in which each 
scene was assigned a random value between 0 and 1 (Figure 2A). 
To better approximate the complexity of real neural input, we 
then added Gaussian noise and applied light temporal smoothing, 
yielding a final driver signal with both slow transitions and fast 

FIGURE 2 

(A) Scene-based input signal (v, arbitrary units) constructed by 
assigning a random value to each annotated scene segment. (B) 
Final driver used in simulations, obtained by adding Gaussian noise 
and smoothing the signal in panel (A), introducing fast fluctuations 
alongside the structured scene transitions. 

fluctuations (Figure 2B). This driver served as the shared input to 
both the microscopic and macroscopic systems in all simulations. 

To generate synthetic data resembling empirical HFB activity, 
we performed a grid search over key model parameters: the intrinsic 
dynamics a, observer nonlinearity c, and input gain k. For each 
parameter combination, we simulated time series using the forward 
model and compared the resulting synthetic output to empirical 
data (truncated to a 4-s window) using mean squared error. 
This procedure yielded synthetic time series that preserved the 
qualitative features of the empirical recordings while retaining 
explainability under a known generative model. 

2.7 Bayesian model inversion 

We begin with the full model in Equations 5, 6 with two free 
parameters δa and δk. We assigned standard normal priors (mean 
zero, unit variance) to both parameters and used Dynamic Causal 
modeling (DCM) (Friston et al., 2003) to invert the model, with the 
ground truth datasets generated from the two reduced models in 
Equations 7, 8. This inversion yields estimates of the posterior over 
δa and δk for each dataset. 

We then apply post-hoc Bayesian model reduction (Friston 
and Penny, 2011) to determine which reduced model (identical 
observers vs. identical systems) best explains the data. Specifically, 
to test for observer-level dierences, we fix the δa parameter to 
zero by setting both its prior expectation and variance to zero, 
i.e., Var (δa) = 0. This evaluates whether a model with identical 
system dynamics can explain the data. Similarly, to test for system-
level dierences, we collapse the prior variance over observer 
deviations: Var 

� 
δk 
 

= 0. This now evaluates whether a model 
with identical observer mappings can explain the data. 

The log of the model evidence (a.k.a., marginal likelihood) 
was approximated using the variational free energy (VFE) (Friston, 
2010) (a.k.a., evidence lower bound), which quantifies the balance 
between accuracy and complexity. The preferred model is the one 
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with the higher VFE following model inversion and reduction. This 
allows us to determine whether Bayesian model comparison can 
correctly associate each reduced model with its known generative 
process. Once this proof of principle has been established, we then 
apply the same technique to each subject’s empirical micro/macro 
HFB recordings, to determine whether observer- or system-level 
eects are more prevalent in each. 

See the Supplementary Appendix for details on the DCM used. 

2.8 Multiplicative noise extension 

As a supplementary analysis, we test whether the 
disambiguation eect observed with additive noise also holds 
when using multiplicative (state-dependent) noise. This involves 
replacing the additive terms σµξ and σMξ in Equation 11 with 
multiplicative terms: 

ẋµ = axµ + bυ + σµxµξ , ẋM = (a + δa) xM + bυ + σMxMξ, (12) 

This formulation increases the variance of fluctuations with state 
magnitude, consistent with empirical findings in motor control 
and neurodynamics (Faisal et al., 2008). Synthetic time series were 
generated using the model in Equation 12, and Bayesian model 
inversion and reduction were performed as with the previous 
additive noise data. 

2.9 Model fit evaluation 

To assess model fit quality, we computed the coeÿcient of 
determination R2 between the predicted and empirical macro-HFB, 

as well as two residual diagnostics: skewness and autocorrelation at 
lag 1 (AC1). R2 values quantify explained variance, with negative 
values indicating worse-than-baseline fits. Skewness was included 
to detect non-Gaussian residuals that might indicate unmodeled 
noise structure, and autocorrelation was used to identify temporal 
dependencies in the residuals. All metrics were computed after 
z-scoring the predicted and empirical signals, and residuals were 
computed as their dierence. Subjects were excluded if R2 < 0.1 
and/or if skewness > 3. 

3 Results 

All results below can be reproduced using the 
accompanying code. 

3.1 Synthetic data 

We begin by creating two synthetic datasets–one with identical 
observers as in Equation 7 (Figure 3A), and the second with 
identical systems as in Equation 8 (Figure 3B). We then perform 
Bayesian model inversion on these two synthetic datasets by 
employing the full model in Equations 5, 6. We find that both 
the identical observers (Figure 3C), as well as the identical systems 
(Figure 3D) ground truth datasets can be correctly identified using 
Bayesian model reduction. 

We then repeat the same process, but this time the identical 
observers (Figure 4A) and identical systems (Figure 4B) data 
are generated with a white noise driving input. Preserving this 

FIGURE 3 

(A) Normalized signal strength as a function of time for synthetic data, with the small-scale system shown in black and the large-scale system shown 
in red. The forward generative model constrains the observer functions to be identical, so that all variation between the two signals is due to 
differences between systems (i.e., between equations of motion). (B) Same as panel (A), except now the systems are identical, and all variation 
between the two signals is due to differences between observer functions. (C) Variational free energy (VFE) for the two reduced models in which (1) 
observers and (2) systems are identical. VFE values are plotted relative to the minimum within each comparison, such that the lower evidence model 
is set to zero. In this case, the model selection correctly identifies the “identical observers” reduced model as the one responsible for the generation 
of the timeseries in panel (A). The inset shows probabilities derived from the VFE, showing a significance level of p < 0.05. (D) Same as panel (C), 
except here the model selection is applied to the timeseries in B), which is correctly identified as the reduced model in which systems are 
constrained to be identical. The probabilities shown in the inset indicate a high significance of p < 0.001. 

FIGURE 4 

Same layout as Figure 3, except both forward generative models and model inversions now include stochastic terms. 
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stochastic element in the model inversion process, we find that 
the inclusion of noise facilitates improved disambiguation by 
increasing the dierence between variational free energy (model 
evidence) for both the identical observers (Figure 4C) and identical 
systems (Figure 4D) timeseries. 

Synthetic tests with multiplicative noise (Supplementary 
Figure 2) showed similar disambiguation between system and 
observer eects. This suggests that the framework is robust to 
dierent noise structures and not contingent on linearity or 
additive noise assumptions. 

This synthetic data analysis validates the premise that the 
inclusion of state noise in the models help in breaking system-
observer degeneracy. Having established the face validity of this 
Bayesian model comparison procedure, we can now apply it to 
empirical data and ask whether micro and macro HFB signals are 
best explained by observation or system level dierences. 

3.2 Empirical data 

Model fit diagnostics were calculated for all 16 subjects 
(Supplementary Figure 3). Overall, the model accounted for a 
substantial portion of variance in most subjects (median R2 is 
0.66), with low residual skewness (median skewness 0.02) and 
moderate autocorrelation (median AC1 is 0.52). However, four 
subjects (IDs 4, 7, 13, 16) exhibit negative R2 values and/or absolute 
value skewness larger than 3, suggesting the model failed to capture 
meaningful structure in these subjects. Upon applying model 
inversion and reduction to the remaining 12 subjects, one (subject 
ID 2) presents significantly higher evidence for the “identical 
systems” compared with the “identical observers” hypothesis. This 
suggests that the variation between the micro- and macro-HFB 
recordings in this subject are driven by dierences in the observer 
functions, rather than by the equations of motion governing the 
two scales (Figure 5). 

We show complementary results with multiplicative, instead of 
additive, noise in Supplementary Figure 4. This shows that the data 

FIGURE 5 

The variational free energy (VFE) is shown on the vertical axis for the 
two models with (1) identical observers and (2) identical systems for 
the one subject (ID 2) surviving statistical correction. VFE values are 
plotted relative to the subject-level minimum, such that the lower 
bound is set to zero. The inset shows probabilities derived from the 
VFEs. The “identical systems” model has higher evidence. 

pertaining to the single subject surviving statistical correction (ID 
11) is also driven by dierences in the observer function. 

4 Discussion 

This study demonstrates that the inclusion of noise in 
generative models of neural activity can act as a diagnostic 
tool, allowing for improved disambiguation between system-
vs. observer-induced variation between cross-scale neuroimaging 
datasets. This disambiguation occurs when nonlinear observer 
functions are combined with stochastic system dynamics, which 
results in interaction terms that introduce dependencies specific to 
the observer only (i.e., and not to the system). 

Using synthetic data, we validated this framework by generating 
ground truth time series under conditions where the systems 
diered but the observers were identical, and vice versa. In both 
cases, Bayesian model inversion recovered the correct underlying 
model more accurately when stochastic inputs were included. 
This finding formalizes the core point addressed here: system 
and observer eects are degenerate in the absence of structured 
noise. As such, without stochastic perturbations passing through 
nonlinear mappings, the two sources of variation remain less 
statistically distinguishable. While it might seem intuitive that 
stochastic models better explain stochastic data, our results go 
beyond improved fit: they show that noise interacts with nonlinear 
observer functions in a way that amplifies otherwise latent 
distinctions between system- and observer-level structure. In this 
sense, noise is not simply a source of variance, but a probe that 
reveals model-specific dependencies. 

We extended our synthetic tests to include multiplicative 
noise, in which the amplitude of fluctuations scales with the 
magnitude of the state variable. The results confirm that our key 
conclusion – that noise improves disambiguation between system 
and observer contributions – remains valid. This supports the 
generality of the approach beyond specific assumptions of linearity 
or constant volatility. 

We then applied this approach to empirical data from 
16 human subjects with simultaneous micro- and macro-
HFB recordings from the hippocampus. The results indicate a 
complicated mixture of system and observer eects in all subjects 
except one – which demonstrated statistically significant evidence 
of observer-based variation. A dierent single subject showed the 
same result when using an assumption of multiplicative, rather than 
additive, noise. This finding suggests the possibility that micro-
and macro-HFB are in some cases observing the same underlying 
neural processes, just with dierent observer functions (Buzsáki 
et al., 2012; Kajikawa and Schroeder, 2011). It should be stressed 
however, that our method does not assume that such a distinction 
will always emerge, but rather that detection is enabled when such 
a distinction is present. 

This interpretation aligns with previous work suggesting that 
micro- and macro-HFB, while often treated as separate levels of 
analysis, may tap into overlapping neural generators (Mukamel and 
Fried, 2012), particularly when recorded from the same anatomical 
region. More speculatively, the results may reflect a broader 
principle in neuroimaging: that device-level transformations can 
dominate the dierences seen across modalities, especially when 
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those devices are sampling from overlapping regions (Daunizeau 

et al., 2009). In such cases, modeling those observer functions 
explicitly–and leveraging noise to expose their structure–may be 

more fruitful than assuming fundamentally distinct neural sources. 
Micro- and macro-HFB signals both originate from 

spatiotemporally synchronized synaptic potentials, reflecting 

the evolution of neural activity at dierent spatial scales (Buzsáki 
et al., 2012). These synaptic potentials generate approximately 

dipolar fields, for which the observed polarity depends on electrode 

placement. Similar recordings in macaque visual cortex showed 

that the spatial spread of iEEG (∼3 mm) is roughly three times 
that of LFP, and that iEEG can be modeled as a spatial average of 
LFP signals over this ∼3 mm radius (Ray, 2023). Consequently, 
iEEG and LFP are expected to capture similar underlying synaptic 

dynamics, and dierences between their signals can be largely 

attributed to dierences in electrode locations. 
It should be noted that the generative models presented do not 

aim to explicitly model the physical characteristics of electrodes 
or recording pipelines. Rather, the observer functions serve as 
mathematical stand-ins for the fact that dierent devices impose 

distinct, often nonlinear, transformations on the underlying signals. 
Our results therefore do not provide a literal mapping between 

device and model, but rather illustrate a more general principle: 
that structured noise serves to assist in uncovering the relative 

contributions of system and observer. In this sense, our findings 
complement prior work on the role of precision in the identifiability 

of model components, particularly within the context of dynamic 

causal modeling (Daunizeau et al., 2009). This builds on prior 

theoretical work suggesting that noise can enhance inference by 

breaking model symmetries (Seung and Sompolinsky, 1993). 
It should be noted that our method relies upon an appropriately 

chosen observer function for a given dataset. Otherwise, incorrect 
assumptions about e.g., nonlinearities could lead to potential 
confounds that mimic system-level eects. This underscores the 

need for careful model selection procedures (Daunizeau et al., 2011; 
Friston, 2009; Razi et al., 2015). 

Future implementations of our methodology could involve 

more complex scenarios, such as the simultaneous acquisition of 
EEG and fMRI data. The neural mechanisms at the microscopic 

level that give rise to fMRI BOLD signals remain an open question 

(Ekstrom, 2010). EEG captures spatiotemporally synchronized 

synaptic inputs on the millisecond timescale, whereas fMRI 
measures local changes in blood flow occurring over several 
seconds. Accurate interpretation of these signals would require 

more sophisticated modeling of the corresponding observer 

functions – biologically realistic models for EEG to account for 

volume conduction, and hemodynamic models for fMRI. 
As neuroimaging datasets increasingly span spatial and 

temporal scales–from cellular-resolution imaging to whole-brain 

recordings–the challenge of comparing signals across modalities 
becomes more pressing. Our results suggest that, rather than 

treating noise as an element, to be eliminated, it can be exploited as 
a structured source of information–as a diagnostic tool for resolving 

ambiguity in multimodal signals. 
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