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In particular, count correlations computed for time bins larger than 
the intrinsic temporal scale of correlations can vanish for some 
functional forms of input correlations. These potential ambigui-
ties were not reported in previous studies of leaky integrate and 
fi re models which focused on the analytically accessible choice of 
white noise input currents (de la Rocha et al., 2007; Shea-Brown 
et al., 2008).

The paper is organized as follows: we fi rst introduce several 
common spike count measures (Section “Materials and Methods”) 
and the statistical framework (Section “Results”). Then we study the 
zero time lag correlations (Section “Spike Correlations with Zero 
Time Lag”) and the infl uence of the temporal structure of input 
correlations on measures of spike correlations (Section “Temporal 
Scale of Spike Correlations”). We show that spike count correla-
tions can vanish despite the presence of input cross correlations 
(Section “Vanishing Count Covariance in the Presence of Cross 
Correlations”). Finally, we discuss potential consequences of our 
fi ndings for the design of population models and the experimen-
tally measured spike correlations.

MATERIALS AND METHODS
MEASURES OF CORRELATION
The spike train s

i
(t) of a neuron i is completely described by the 

sequence of spike times t
i
. This description is often simplifi ed using 

discrete bins of size T (Figure 1). To describe pairwise spike correla-
tions, several competing measures are used (Perkel et al., 1967; Svirskis 
and Hounsgaard, 2003; Schneidman et al., 2006; de la Rocha et al., 
2007; Shea-Brown et al., 2008; Roudi et al., 2009). Here, we focus on 
the most commonly used measures of spike correlations: conditional 

INTRODUCTION
Coordinated activity of neural ensembles contributes a multitude 
of cognitive functions, e.g., attention (Steinmetz et al., 2000), 
encoding of sensory information (Stopfer et al., 1997; Galan et al., 
2006), stimulus anticipation and discrimination (Zohary et al., 
1994; Vaadia et al., 1995). Novel experimental techniques allow 
simultaneous recording of activity from a large number of neurons 
(Greenberg et al., 2008) and offer new possibilities to relate the 
activity of neuronal populations to sensory processing and behav-
ior. Yet, understanding the function of neural assembles requires 
reliable tools for quantifi cation, analysis and interpretation of mul-
tiple simultaneously recorded spike trains in terms of underlying 
connectivity and interactions between neurons.

As a fi rst step beyond the analysis of single neurons in isola-
tion, much attention has focused on the pairwise spike correlations 
(Schneidman et al., 2006; Macke et al., 2009; Roudi et al., 2009), their 
temporal structure and the infl uence of topology (Kass and Ventura, 
2006; Kriener et al., 2009; Ostojic et al., 2009; Tchumatchenko et al., 
2010). Pairwise neuronal correlations are traditionally quantifi ed 
using count correlations, e.g., correlation coeffi cients (Perkel et al., 
1967). However, it remains largely elusive how correlations present 
in the input to pairs of neurons are refl ected in the count correlations 
of their spike trains. What are the signatures of input correlations 
in the count correlations? And vice versa, what conclusions about 
input correlations and interactions can be drawn on the basis of 
count correlations and their changes?

Here we address these questions using a framework of Gaussian 
random functions. We fi nd that correlation coeffi cients can be a poor 
indicator of input synchrony for some cases of input  correlations. 
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fi ring rate, correlation coeffi cient, normalized correlation coeffi cient 
and count covariance. We will consider the relation between these 
measures and their dependence on (1) the underlying input correla-
tion strength, (2) fi ring rate, (3) temporal structure of spike trains, 
and (4) size of the time bin used to compute count correlations.

The spike timing correlations of two spike trains s
i
(t) and s

j
(t) are 

often quantifi ed using the conditional fi ring rate function ν
cond,ij

(τ) 
(Binder and Powers, 2001; Tchumatchenko et al., 2010):

ν ν νcond,ij i j i js t s t( ) ( ) ( ) /τ τ= 〈 + 〉  (1)

ν τ ν τ τ νcond cond,( ) ( ) ( ) ( ) / .= = 〈 + 〉ii i i is t s t  (2)

Here ν
i
 and ν

j
 are the mean fi ring rates of neurons i and j, respec-

tively. Correlations within a spike train are described by the auto 
conditional fi ring rate ν

cond
(τ).

An alternative measure based on count correlations is the 
 correlation coeffi cient ρ

ij
 (Perkel et al., 1967; de la Rocha et al., 

2007; Greenberg et al., 2008; Shea-Brown et al., 2008; Tetzlaff 
et al., 2008):

ρ =
⋅

ij

i j

i i j j

n T n T

n T n T n T n T

Cov ( ), ( )

Var ( ), ( ) Var ( ), ( )
,

( )
( ) ( )

 

(3)

where n
i
(T) and n

j
(T) are spike counts of neuron i and j measured in 

synchronous time bins of width T, see Figure 1. A related measure 
of pairwise correlations is the normalized correlation coeffi cient 
c

ij
 (Roudi et al., 2009). It determines pairwise interactions J

ij
 in 

maximum entropy models of networks of N neurons with average 
fi ring rate ν (Schneidman et al., 2006; Roudi et al., 2009):

c
n T n T

n T n T

n T n T

Tij

i j

i j

i j

i j

=
( )

=
( )Cov Cov( ), ( )

( ) ( )

( ), ( )

ν ν 2

 

(4)

J c O N Tij ij= +( ) +log ( ).1 ν  (5)

Covariance can be obtained via the integration of cross condi-
tional fi ring rate ν

cond,ij
 (τ) over the time bin T:

Cov n T n T n T n n T n

s x dx

i j i j i j

T

i

( ), ( ) ( ), ( ) ( ) ( )

( )

( ) = 〈 〉 − 〈 〉 〈 〉

= 〈∫

T T

0 1 11 0 2 2
2∫ 〉 −T

j i js x dx T( ) ν ν

 

(6)

       

= −( ) −
−∫ ν ν ν ν νi j ij i jT

T

t T t dtcond, ( ) ( | |) .  (7)

The count variance can be obtained from the auto conditional 
fi ring rate ν

cond
(τ):

Var condn T n T T t T t dti i i i i

T

( ), ( ) ( ) ( | |) .( ) = ⋅ + ⋅ −( ) −∫ν ν ν ν2
0

 (8)

For bin sizes smaller than the intrinsic time constant (T < τ
s
, see 

Eq. 14), we can directly relate conditional fi ring rate ν
cond,ij

(τ) and 
the correlation coeffi cient ρ

ij

ρ
ν ν ν ν ν

ν ν ν ν
ντij T

i j ij i j

i j i i

s

T

T T T
,

, ( )
< ≈
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=
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c
1

0

1

2
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c
T
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i j

ij i j

s,

cond,
2

2

cond,
(0) (0)

<

( ) −
τ ≈

⋅ ν −
=

νν ν ν ν

ν ν
ν ν

νii jν
.  (10)

In this limit, the properties of ρ
ij
, c

ij
 are largely determined 

by ν
cond,ij

(0). Several experimental studies used bin sizes ranging 
from T = 0.1 to 1 ms, which are compatible with this T-regime 
of  correlation coeffi cients (e.g., Lampl et al., 1999; Takahashi and 
Sakurai, 2006).
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0 0  000
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FIGURE 1 | Generation of spike trains and transformation to spike counts. 

(A) Generation of spike trains from correlated voltage traces of two neurons 
with common presynaptic partners. (B) Red and blue vertical bars indicate the 
spike trains of two neurons. Squares show the boundaries of bins with duration 

T. ni(T,t) and nj(T,t) illustrate corresponding binned spike trains. (C) Firing rate vs. 
input current in the LIF model (fi rst order solution) and the threshold model 
(Eq. 11) computed for σI = 0.25 (top), I0 = 0.6 (bottom) and ψ0 = 1, Vr = 0, 
τM = 15 ms and τI = 5 ms.
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The quantities presented here all measure different aspects of 
spike correlations and can potentially have different computational 
properties. Furthermore, each of the quantities can exhibit a non-
linear dependence on fi ring rate, input statistics or bin size. Below, 
we consider these measures of spike correlations, as well as their 
dependence on fi ring rate, input statistics and bin size.

RESULTS
To access spike correlations in a pair of neurons, we use the frame-
work of correlated, stationary Gaussian processes to model the voltage 
potential V(t) of each neuron. This approach generates voltage traces 
with statistical properties consistent with cortical neurons (Azouz and 
Gray, 1999; Destexhe et al., 2003). The simplest conceivable model of 
spike generation from a fl uctuating voltage V(t) identifi es the spike 
times t

j
 with upward crossings of a threshold voltage (Rice, 1954; Jung, 

1995; Burak et al., 2009). The times t
j
 determine the spike train:

s t t t V t V t V tj j( ) ( ) | ( )| ( ) ,= ∑ −( ) = −( ) ( )δ δ ψ θ0
& &  (11)

where ψ
0
 is the threshold voltage, and δ(·) and θ(·) are the Dirac delta 

and Heaviside theta functions, respectively. Each neuron has a sta-
tionary fi ring rate ν = 〈s(t)〉. We model V(t) by a random realization 
of a stationary continuous correlated Gaussian process V(t) (Azouz 
and Gray, 1999; Destexhe et al., 2003) with zero mean and a temporal 
correlation function C(τ), which decays for larger time lags τ.

C V t V t V V V t( ) ( ) ( ) ( ) ( ) , ( )τ τ τ= + = =0 0  (12)

〈·〉 denotes the ensemble average. We assume a smooth C(τ) such 
that Cn(0) exist for n ≤ 6 and the rate of threshold crossings is 
fi nite (Stratonovich, 1964). All other properties of C(τ) can be 
freely chosen. This makes our formal description applicable to a 
large class of models, each of which is characterized by a particular 
choice C(τ). For simulations using digitally synthesized Gaussian 
processes (Prichard and Theiler, 1994) and numerical integration 
of Gaussian integrals (e.g., Wolfram Research, 2009) we used a cor-
relation function compatible with power spectra of cortical neurons 
(Destexhe et al., 2003):

C V s( ) cosh / .τ σ τ τ= ( )−2 1  (13)

In cortical neurons in vivo the temporal width of C(τ) can from 10 
to 100 ms (Azouz and Gray, 1999; Lampl et al., 1999). We characterize 
the temporal width of C(τ) using the correlation time constant τ

s
:

τs C C= ′′( )/ | ( )|.0 0  (14)

Note, that the correlation time τ
s
 as defi ned in Eq. 14 is close to a 

commonly used defi nition of autocorrelation time τ τ σa VC= ∫
∞
0

2( )/ .  
For C(τ) as in Eq. 13 τ

a
 = πτ

s
/2. The correlation time τ

s
 and the 

threshold ψ
0
 determine the fi ring rate ν:

ν
ψ σ

πτ
=

− ( )⎡⎣ ⎤⎦exp /
.

0
2 2

2

2 V

s  
(15)

The fi ring rate ν is the rate of positive threshold crossings, 
which is equivalent to half of the Rice rate of a Gaussian proc-
ess (Rice, 1954). For non-Gaussian processes the rate of threshold 

 crossings can deviate from Eq. 15 and there is no general approach 
for  obtaining ν in this case (Leadbetter et al., 1983). We note, that 
the fi ring rate ν of a neuron depends only on two parameters: the 
correlation time and the threshold-to-variance ratio, but not on 
the specifi c functional choice of the correlation function. Hence, 
processes with the same correlation time but with a different func-
tional form of C(τ) will have the same mean rate of spikes, though 
their spike auto and cross correlations can differ signifi cantly. Our 
framework can be expected to capture neural activity in the regime 
where the mean time between the subsequent spikes is much longer 
than the decay time of the spike triggered currents. This occurs if the 
spikes are suffi ciently far apart and the spike decision is primarily 
determined by the stationary voltage statistics rather than spike 
evoked currents. Therefore, this model should only be used in the 
fl uctuation driven, low fi ring rate ν < 1/(2πτ

s
) regime, which is 

important for cortical neurons (Greenberg et al., 2008).
The leaky integrate and fi re (LIF) model (Brunel and Sergi, 

1998; Fourcaud and Brunel, 2002) has a similar spike generation 
mechanism. To compare both models, we study the transformation 
of input current to spikes. The LIF neuron driven by Ornstein–
Uhlenbeck current I(t) with time constant τ

I
 can be described by

τ τMV V I I t&( ) ( ),= − + +0
 (16)

where τ
M

 is the membrane time constant and I
0
 is the mean input 

current. When V(t) reaches the threshold ψ
0
, the neuron emits a 

spike, and V(t) is reset to V
r
. The LIF model mainly differs from 

our framework by the presence of reset after each spike. For low 
fi ring rates, where the reset has little infl uence on the following 
spike, the threshold model and the LIF model can be expected to 
yield equivalent results. In Figure 1C we compare the fi rst order 
fi ring rate approximation (fi rst order in τ τI M/ ) of a LIF neu-
ron driven by colored noise, which can be obtained via involved 
Fokker–Planck calculations (Brunel and Sergi, 1998; Fourcaud 
and Brunel, 2002) and the fi ring rate of the corresponding thresh-
old neuron ν π τ τ ψ τ τ σ τ= − − +−( ) ( ) ( )/( )2 21

0 0
2 2

I M I M I IIexp( ). 
In general, the details of the spike generating model can have a 
strong effect on current susceptibility and spike correlations (Vilela 
and Lindner, 2009). However, we fi nd that both models have a very 
similar current susceptibility for a range of input currents and spike 
correlations derived in the forthcoming sections are consistent with 
the corresponding correlations in the LIF model, e.g., fi ring rate 
dependence of weak cross correlations (de la Rocha et al., 2007; 
Shea-Brown et al., 2008), the infl uence of noise mean and variance 
on the fi ring rates and spike correlations (Brunel and Sergi, 1998; 
de la Rocha et al., 2007; Ostojic et al., 2009), sublinear dependence 
of correlation coeffi cients on input strength (Moreno-Bote and 
Parga, 2006; de la Rocha et al., 2007).

We include cross correlation between two spike trains i and j 
via a common component in V

i
(t) and V

j
(t), r > 0:

V

V t

i i c

j j c

t r t r t

t r t r

( ) ( ) ( )

( ) ( ) ( ).

= − +

= − +

1

1

ξ ξ

ξ ξ

 

(17)

where ξ
c
 denotes the common component and ξ

i
, ξ

j
 are the indi-

vidual noise components. In a Gaussian ensemble any expecta-
tion value is determined by pairwise covariances only. Thus 
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all pairwise correlations are determined by the joint Gaussian 
probability density p k k C k CT( ) exp( / )/( )

r r r
= − −1 22 4π Det  of r

& &k V V V Vi i j j= ( ( ), ( ), ( ), ( ))0 0 τ τ , where

C

C C

C C

C C

V ij ij

V ij ij

ij ij V

i

=
− −

−

σ τ τ
σ τ τ

τ τ σ

2

2

0

0

( ) ( )

( ) ( )

( ) ( )

′

′ ″

′

&
i

ii

C Cij ij V

2

2

0

0′ ″( ) ( )

.

τ τ σ−

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟&

j

 (18)

Matrix entries are covariances C
xy

 = 〈k
x
k

y
〉 with C

ij
 = rC(τ). Below, 

we calculate the conditional fi ring rate ν
cond,ij

(τ) (Eqs 1 and 11) for 
several important limits.

SPIKE CORRELATIONS WITH ZERO TIME LAG
The above framework allows one to derive an analytical expression 
for the cross conditional fi ring rate with zero time lag, ν

cond,ij
(0). Via 

Eqs 5, 9 and 10 ν
cond,ij

(0) can be related to c
ij
, ρ

ij
 and J

ij
. For a pair of 

statistically identical neurons with (ν = ν
1
 = ν

2
). ν

cond,ij
(0) in Eq. 1 

can be solved by transforming the correlation matrix C (Eq. 18) 
into a block diagonal form via a variable transformation:

∑ = +
+

∑ = +
− ′′

Δ =

V V

rC

V V

r

V

V

1 2 1 2

1

0

2

0

2

( ) ( )

( )
,

( ) ( )

( )
,

τ
σ τ

τ
σ τ2 2

&
& &

&V
C
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( )
,

( ) ( )

( )
.

0

2

0

2

2 1 2−
−

Δ = −
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V

rC

V V

rCV V

τ
σ τ

τ
σ τ2 2

&
& &

&

The matrix C is then the identity matrix for τ = 0, and 
∑ = + Δ =2 0ψ σ σ0

2 2/ , .V Vr  We obtain:

ν ψ
σc

0
2

2ond ,, ( ) exp
( )ij

V

d d
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1 2

2 2
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Equation 19 (Figure 3A) shows, as expected, that ν
cond,ij

(0) 
increases with increasing strength of input correlations r. Since both 
correlation coeffi cients ρ

ij
, and normalized correlation coeffi cient 

c
ij
 are proportional to ν

cond,ij
(0) (Eqs 9 and 10), both measures also 

increase with increasing r, which is consistent with experimen-
tal fi ndings (Binder and Powers, 2001; de la Rocha et al., 2007). 
However, the functional form of r-dependence and the sensitivity 
to the fi ring rate ν of c

ij
 and ρ

ij
 are different (Figure 2). The nor-

malized correlation coeffi cient c
ij
 and pairwise coupling J

ij
 are both 

inversely proportional to ν, and thus decrease with increasing ν for 
any value of r (Eqs 4 and 5; Figure 2B). Notably, we fi nd that c

ij
 can 

be normalized to c
ij
 → c

ij
· (νT) to yield a less ambiguous measure 

of the input correlation strength (Eqs 4 and 10; Figures 3C,D). 
Additionally, we fi nd that the fi ring rate dependence of ρ

ij
 is dif-

ferent for the weak and strong correlations.
Equation 19 further exposes one important feature of ν

cond,ij
(0), 

and thus of c
ij
 and ρ

ij
 for small time bins: all three measures depend 

on the temporal scale of the input correlations (τ
s
), but not on the 

functional form of input correlation C(τ). Thus, changes in ν
cond,ij

(0) 
and correlation coeffi cient ρ

ij
 can be interpreted as a change of the 

strength of underlying input correlation strength, if a fi ring rate 
modifi cation can be excluded.

In the linear r-regime, the analytical expression for ν
cond,ij

(0) can 
be further simplifi ed:

ν ν πcond  1
2

4|log( 2 )|, ( ) .ij s0 ≈ ( )⎛
⎝⎜

⎞
⎠⎟+ + ν πτr

 (20)

In this limit, ν
cond,ij

(0) shows a strong dependence on the fi r-
ing rate ν (Figure 3A, right, Figure 2A, top). This dependence is 
remarkably similar to the fi ring rate dependence found previously 
in vitro and in vivo in cortical neurons and LIF models (de la Rocha 
et al., 2007; Greenberg et al., 2008; Shea-Brown et al., 2008).

In the limit of strong input correlations, Eq. 19 can be simpli-
fi ed to:

ν
τcond, ( ) .ij

sr
0

1

2 2 1
≈

−
 (21)

In this regime, ν
cond,ij

(0) does not depend on the fi ring rate ν 
(Amari, 2009). Furthermore, for strong input correlations and 
small bin sizes T the correlation coeffi cient ρ

ij
 also changes only 

J i
j

A B

FIGURE 2 | Dependence of correlation coeffi cient ρ
ij
 and conditional rate 

ν
cond,ij

(0) on fi ring rate and correlation strength. (A, top) ρij vs. ν, (A, bottom) 
νcond,ij(0) vs. ν, as in Eq. 19. (B, top) Pairwise couplings Jij vs. ν, as in Eq. 5. (B, 

bottom) cij vs. ν. All quantities are computed for τs = 10 ms, C(τ) as in Eq. 13 and 
ν = ν1 = ν2; circles denote the corresponding simulation results. ρij, cij and Jij are 
computed for T = τs/4.
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marginally over a range of fi ring rates (0 < ν < 15 Hz, Figure 2A), 
since it depends linearly on ν

cond,ij
(0). Note, as r is approaching 1 the 

temporal width of ν
cond,ij

(τ) is approaching 0 and the peak ν
cond,ij

(0) 
diverges, corresponding to the delta peak in the autoconditional fi r-
ing rate ν

cond
(τ) which results from the self-reference of a spike. For 

r ≈ 1, almost every spike in one train has a corresponding spike in 
the other spike train, however these two are jittered. The temporal 
jitter of the spikes can be characterized by the peak of the condition-
al fi ring rate ν τ τ τ τcond,12  ( ) /( ) /( ( ) )/= − − − +1 2 2 1 3 8 2 12 3 2 3r rs s  

O[( /( )) ]τ 1 4− r sτ  and its temporal width ∝ 2 1− r sτ , both 
of which are threshold and fi ring rate independent in this 
limit. Notably, the threshold independence and the depend-
ence on temporal scale of input correlations are consistent with 
 previous  experimental fi ndings on spike reliability (Mainen and 
Sejnowski, 1995).

TEMPORAL SCALE OF SPIKE CORRELATIONS
So far we considered only spike correlations occurring with zero 
time lag. However, spike correlations can also span across signifi -
cant time intervals (Azouz and Gray, 1999; Destexhe et al., 2003). 
The temporal structure of spike correlations, as refl ected in the 
conditional fi ring rate ν

cond,ij
(τ), can induce temporal correlations 

within and across time bins and could potentially alter count 
correlations. To capture correlations with a non-zero time lag, 
spike correlation measures are calculated for time bins T span-
ning tens to hundreds of milliseconds, e.g., 20 ms (Schneidman 
et al., 2006), 30–70 ms (Vaadia et al., 1995), 192 ms (Greenberg 
et al., 2008) and 2 s (Zohary et al., 1994). For time bins longer 
than the time constant of the input correlations, measures of cor-
relations become sensitive to the temporal structure of ν

cond,ij
(τ). 

Moreover, the values of ρ
ij
 and c

ij
 depend on the bin size T used 

for their calculation. Figure 3 shows how dependence of ρ
ij
 and 

c
ij
 on the fi ring rate is altered by a change in bin size. Increasing 

the bin size leads to the increase of the calculated correlation 
coeffi cient ρ

ij
, and also increases the sensitivity of ρ

ij
 to the fi ring 

rate. The fact that increasing T brings the calculated correlation 
coeffi cient closer to the underlying input correlation r could 
justify the use of long time bins in the above studies. But do cor-
relation coeffi cients always increase with increasing time bins? 
To further clarify how the temporal structure of input correla-
tions infl uences the temporal correlations within and across spike 
trains, we investigate the covariance of spike counts recorded at 
different times

Cov , , +

cond

n T t n T t n T n T Ti j i j i j

i j ij

( ), ( ) ( , ) ( , )

(,

τ τ ν ν

ν ν ν

( ) = −

=

0 2

ττ ν ν + t T t dti jT

T

) | | ,−( ) −( )
−∫

 

(22)

where n
i
(T, t) and n

i
(T, t + τ) are the spike counts of neurons i, j 

measured in time bins of the same duration T, but shifted by the 
time lag τ. For each time lag τ, covariance of the spike counts can 
be calculated using ν

cond,ij
(τ) (Eq. 1). Below, we will fi rst address the 

temporal structure of auto correlations in a spike train, and then 
consider the cross correlations between spike trains.

The auto conditional fi ring rate νcond(τ)
For large time lags τ we expect the auto conditional fi ring rate to 
approach the stationary rate but to deviate from it signifi cantly 
for small time lags. Of particular importance for population 
models is the limit of small but fi nite τ, which determines the 
time scale on which adjacent time bins are correlated. At τ = 0, the 
auto conditional fi ring rate has a δ-peak refl ecting the trivial auto 
correlation of each spike with itself. In the limit of small but fi nite 
time lag (0 < τ < τ

s
) we fi nd a period of intrinsic silence, where 

the leading order ∝τ4 is independent of a particular  functional 

.. .. . .

. .

A B

C

c ij.

D

FIGURE 3 | Dependence of spike correlation measures on fi ring rate ν and 

correlation strength r. (A) νcond,ij(0) vs. r (B) ρij vs. r for bin widths T = 30τs (red), 
T = τs (blue), T = τs/4 (black). (C) cij νT vs. r. (D) cij vs. r. All quantities are 

computed for C(τ) as in Eq. 13, correlation time τs = 10 ms and three fi ring rates 
ν = 2, 4, 6 Hz, ν = ν1 = ν2; circles denote simulation results for the 
corresponding parameters.
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choice of C(τ). We solve ν
cond

(τ) (Eq. 2) by transforming the 
correlation matrix in Eq. 18 into a block diagonal form using 
new variables
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Then only few elements of the corresponding symmetric density 
matrix C

∑ Δ, , ,& &∑ Δ
 remain non-zero: the diagonal elements C

ii∑ Δ, , ,
,& &∑ Δ

= 1  
i ∈ {1, 2, 3, 4} and the non-diagonal elements

C
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For C(τ) as in Eq. 13 we obtain a simple analytical expression 
in the limit of 0 < τ < τ

s
:

ν τ ν
πτ

τ τcond

1/4

/( ) ( ) .=
⋅( )

⋅
3 2

3
4

4

s

s  (23)

This equation shows that ν
cond

(τ) depends on the temporal struc-
ture of a neuron’s input and fi ring rate, Figure 4B. Respectively, the 
silence period after each spike depends on the functional form and 
time constant of the voltage correlation function C(τ) and fi ring 
rate (Figures 4B and 5A). Figure 4B illustrates ν

cond
(τ) obtained 

using numerical integration of Gaussian probability densities (e.g., 
Wolfram Research, 2009), ν

cond
(τ) obtained from simulations of 

digitally synthesized Gaussian processes (Prichard and Theiler, 

1994) and the τ < τ
s
 approximation in Eq. 23. In this framework, 

the silence period after each spike mimics the refractoriness present 
in real neurons (Dayan and Abbott, 2001).

Count correlations within a spike train
Here we study how the input correlations shape the temporal struc-
ture of spike autocorrelations. In particular, we focus on how the 
input correlations and spike autocorrelations are refl ected in count 
correlations within a spike train. The silence period after a spike is 
refl ected in vanishing ν

cond
(τ) for 0 < τ < τ

s
 and results in negative 

covariation of spike counts in adjacent time bins. We fi nd that the 
relation between ν

cond
(τ) and spike count covariance is most salient 

for higher fi ring rates (Figure 4C, 10 Hz). For small time bins, the 
covariance mimics the functional form of ν

cond
(τ) for time bins 

covering several time constants. Plots of spike count covariance 
calculated for increasing bin sizes T reveal an important feature 
of count correlations: covariance of adjacent bins persists even 
when the bin size is increased well over the time scale of intrinsic 
correlations (T >> τ

s
), Figure 4. This suggests that avoiding sta-

tistical dependencies associated with neuronal refractoriness by 
choosing longer time bins (Shlens et al., 2006) might not be pos-
sible, particularly for higher fi ring rate neurons. We conclude that 
temporal count correlations within a spike train generally need to 
be considered in the design of population models.

Cross conditional fi ring rate νcond,ij(τ)
We explore the temporal structure of spike correlations in a weakly 
correlated pair of statistically identical neurons (ν = ν

1
 = ν

2
). This is 

an important regime for cortical neurons in vivo (Greenberg et al., 
2008; Smith and Kohn, 2008). To solve ν

cond,ij
(τ) (Eq. 1), we expand 

the probability density p V t V t V t V t( ( ), ( ), ( ), ( ))1 1 2 2
& &+ +τ τ using a von 

Neumann series of the correlation matrix C in Eq. 18. We obtain 
ν

cond,ij
(τ) up in linear order
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FIGURE 4 | Spike correlations and count correlations within a spike train. 

(A) Example of a binned spike train si(t), bins numbered with respect to a 
reference time bin. (B) νcond(τ) vs. τ for τ = 10 ms, numerical solution and 
simulations for the fi ring rates ν = 1 Hz (black), 5 Hz (blue) and ν = 10 Hz (red) 
are superimposed. Dotted lines denote the corresponding solutions for small 

τ (Eq. 23). (C) Cov(ni(T,0),nj(T,τ))/T vs. τ for τs = 10 ms, time bin T = τs/2 = 5 ms 
(left), T = 10 ms = τs (middle), T = 5τs = 50 ms (right). Circles denote the 
corresponding simulation points, adjacent time bins are denoted by the 
fi rst points on the time axis. All spike correlations are computed for C(τ) as 
in Eq. 13.
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where %c C kV V( ) ( )/ /τ τ σ ψ σ= =2
0and . Equation 24 shows that 

weak spike correlations are generally fi ring rate dependent and 
directly refl ect the structure of input correlations C(τ). Figure 5A 
shows three examples of voltage correlations which have the same 
τ

s
, but different functional form. All three functional dependencies 

are refl ected in the cross conditional fi ring rate ν
cond,ij

, but result 
in markedly different shapes of auto conditional rate ν

cond
(τ) 

(Figures 5A,B). In the next section we study how the functional 
choice of C(τ) affects the correlation coeffi cient.

Count correlations across spike trains
We now use the spike correlation function obtained above to study 
the pairwise count covariance.
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which allows to obtain the correlation coeffi cient for a weakly cor-
related pair of neurons:
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This offers the opportunity to study how changes in the input 
structure affect spike count correlations. Figure 5 shows that corre-
lation coeffi cient ρ

ij
 depends on both bin size T and the functional 

form of input correlation function C(τ). Figure 5C illustrates that 
different functional form of underlying membrane potential cor-
relations can lead to a strikingly different dependence of ρ

ij
 on the 

bin size. After an initial increase for all three voltage correlation 

functions, correlation coeffi cient continues increasing slowly for 
C

1
, remains at the same level for C

2
, but decreases dramatically 

for C
3
. This latter type of behavior was not observed in previous 

studies of LIF models (de la Rocha et al. (2007), Suppl.), which 
focused on the analytically accessible choice of white noise cur-
rents and reported a monotonously increasing correlation coef-
fi cient in the limit of large T. Below we will further consider how 
dependence of ρ

ij
 on T is infl uenced by the choice of the form of 

voltage correlations C(τ). We will show that some voltage correla-
tion functions can lead to vanishing correlation coeffi cients in the 
limit of large bin size T.

Vanishing count covariance in the presence of cross correlations
Count covariances and correlation coeffi cients rely on the inte-
gral of the spike correlation function (Eqs 3 and 7). In cortical 
neurons, the spike correlation functions can exhibit oscillations 
and  signifi cant undershoots in addition to a correlation peak 
(Lampl et al., 1999; Galan et al., 2006), this may alter the correla-
tion coeffi cients and their dependence on bin size T. In the weak 
correlation regime we obtained an analytic expression for ν

cond,ij
(τ) 

(Eqs 24 and 26). This allows us to explore analytically how a change 
in the functional choice of voltage correlations will infl uence count 
correlations. To qualify as a reliable measure of synchrony, count 
cross correlations between two neurons should refl ect primarily 
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FIGURE 5 | Infl uence of temporal structure on pairwise spike correlations. 

(A) Spike cross correlations νcond,ij(τ) and auto correlations νcond(τ) for three 
voltage correlation functions Ci(τ). (B) Voltage correlations C V s1

2 1( ) ( / )τ σ τ τ= −cosh  
(blue), C V s s2

2 12 2( ) cosh( /( )) cos( / )τ σ τ τ τ τ= −  (red), C V s3
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τ τ τ τ2 3/( )exp( /( ))]s s
2 2 26− (black). Note, all voltage correlations Ci(τ) share the same 

correlation time τs but have a different functional form. (C) ρij vs. T for voltage 
correlation functions Ci(τ). For all fi gures the correlation time τs = 10 ms, 
ν = 5 Hz, ν = ν1 = ν2; circles denote the corresponding simulation points.

(26)

correlation strength and be independent of the functional form 
of input correlations. Our framework offers the possibility to test 
this hypothesis and explore whether previously reported fi nite 
correlation coeffi cients obtained for LIF model using white noise 
approximation (Shea-Brown et al., 2008) can be generalized to a 
larger class of input correlations.
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Here we consider spike correlations generated by a voltage cor-
relation function with a substantial undershoot (e.g., as in Figure 1E 
in Lampl et al., 1999). For illustration, we could use any voltage 
correlation function with a large undershoot and vanishing long-
timescale variability (∫ =−∞

∞
C d( )τ τ 0). Besides variance and correla-

tion time, the variability as quantifi ed by ∫−∞
∞

C d( )τ τ  is an important 
characteristic of every noise process. For analytical tractability we 
chose the voltage correlation function C

3
(τ) as the normalized sec-

ond derivative of the function %C s s3
2 2 23 6( ) /( ) :τ τ τ τ= − −exp( )

C V
s s s
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2

2

2

2

2

2
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Defi ned this way, the correlation time of C
3
(τ) is τ

s
 and 

∫ =−∞
∞

C d3 0( )τ τ , which is equivalent to vanishing spectral power 
for zero frequency. Figure 5 illustrates functional form of C

3
(τ) and 

the corresponding spike cross and auto correlations. The functional 
form of C

3
(τ) fulfi lls limT T

T C t T t Tdt→∞ −∫ − =3 0( )( | |)/ . This leads 
to a vanishing count covariance and spike correlation coeffi cient 
for T >> τ

s
 (Eq. 26):
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We note that the correlation coeffi cients and count covariances 
calculated for this functional form of input correlations can be 
arbitrarily small if T >> τ

s
. This means that the absence of long-

timescale variability in the inputs (∫ =−∞
∞

C d3 0( )τ τ ) is equivalent 
to an absence of long-timescale co-variability in the spike counts. 
Notably, despite vanishing cross covariance, the variability of 
the single spike train is maintained and count variance of the 
single spike train (Eq. 8) is fi nite for C

3
(τ) in infi nite time bins. 

Equation 28 implies that experimental correlation coeffi cients cal-
culated for large time bins are most susceptible to the infl uence of 
temporal structure of correlations, and experimental studies focus-
ing on large bin sizes [e.g., T = 192 ms (Greenberg et al., 2008) 
or T = 2 s (Zohary et al., 1994)] could potentially underestimate 
the correlation strength. For the important regime of low fi ring 
rates (Greenberg et al., 2008), where the reset has little infl uence 
on the following spike, the threshold model and the LIF model 
can be expected to yield equivalent results. In this case, Eq. 28 
and Figure 5 suggest that fi nite correlation coeffi cients, which are 
increasing with bin size T as reported for the LIF model (de la 
Rocha et al., 2007) might be limited to the subset of input cor-
relation functions without sizable undershoots. To obtain fi nite 
count cross correlations, the voltage correlation functions need to 
fulfi ll ∫ >−∞

∞
C d( )τ τ 0, as C

1
(τ),C

2
(τ) in Figure 5 do.

Notably, spike count correlations of cortical neurons in vivo 
can decrease or increase as the length of the time bin increases 
(Averbeck and Lee, 2003; Smith and Kohn, 2008). These results are 
consistent with our fi ndings (Figure 5C). Thus, in contrast to the 

correlation coeffi cients computed for small T which are independ-
ent of C(τ) (Eqs 9 and 19), the count correlations computed for 
T ≥ τ

s
 are a potentially unreliable measure of synchrony.

DISCUSSION
Unambiguous and concise measures of spike correlations are needed 
to quantify and decode neuronal activity (Abbott and Dayan, 1999; 
Greenberg et al., 2008; Krumin and Shoham, 2009). Pairwise spike 
count correlations are frequently used to describe interneuronal 
correlations (Averbeck and Lee, 2003; Kass and Ventura, 2006; 
Greenberg et al., 2008) and many population models are based 
on these measures (Schneidman et al., 2006; Shlens et al., 2006; 
Roudi et al., 2009). However, quantitative determinants of count 
correlations so far remained largely elusive. Here, we used a sim-
ple statistical model framework based on the threshold crossings 
and the fl exible choice of temporal input structure to study the 
signatures of input correlations in count correlations. In general, 
the details of the spike generating model can have a strong effect 
on spike correlations, f.e. depending on the dynamical regime, two 

(28)

quadratic integrate and fi re neurons or two LIF neurons can be 
more strongly correlated (Vilela and Lindner, 2009). Notably, we 
found that our statistical framework can replicate many important 
aspects of neuronal correlations, e.g., nonlinear dependence of spike 
correlations on the input correlation strength (Binder and Powers, 
2001) (Eq. 19), fi ring rate dependence of weak spike correlations 
(Svirskis and Hounsgaard, 2003; de la Rocha et al., 2007) (Eq. 20), 
and independence of spike reliability of the threshold (Mainen and 
Sejnowski, 1995) (Eq. 21). Furthermore, spike correlations derived 
here are consistent with many recent results in the commonly used 
LIF model, e.g., fi ring rate dependence of weak cross correlations (de 
la Rocha et al., 2007; Shea-Brown et al., 2008) (Eqs 20 and 24), the 
infl uence of noise mean and variance on the fi ring rates and weak 
spike correlations (Brunel and Sergi, 1998; de la Rocha et al., 2007; 
Ostojic et al., 2009) (Eqs 15, 20 and 24), or sublinear dependence of 
correlation coeffi cients on input strength (Moreno-Bote and Parga, 
2006; de la Rocha et al., 2007) (Eq. 19, Figure 3). While the analytical 
accessibility of the LIF model is limited by the technically demanding 
multi dimensional Fokker–Planck equations and provides solutions 
only in special limiting cases (Brunel and Sergi, 1998; de la Rocha 
et al., 2007; Shea-Brown et al., 2008), the framework presented here 
allows for an analytical description of spike correlations.

Measurements of correlation coeffi cients under different 
experimental conditions often aim to compare the input cor-
relation strength in pairs of neurons (Greenberg et al., 2008; 
Mitchell et al., 2009). But is a change in count correlations always 
indicative of a change in input correlations? The tractability of 
our framework revealed that spike count correlations can be a 
poor indicator of input synchrony for some cases of input corre-
lations. Count correlations computed for time bins smaller than 
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the intrinsic scale of temporal correlations could be independent 
of the functional form of input correlations but depend on the 
fi ring rate and input correlation strength. This suggests that a 
change in the correlation coeffi cient can be related to a change 
in the input correlation strength, if a fi ring rate change and a 
change of intrinsic time scale can be excluded. On the other 
hand, a change in correlation coeffi cients computed for large 
time bins is indicative of a change in input correlation strength 
only if a change in fi ring rate, time scale and functional form 
of input correlations can be excluded. Furthermore, count cor-
relations computed for large time bins can either increase or 
decrease with increasing time bin or even vanish in a correlated 
pair. This seemingly contradictory behavior is consistent with 
the functional dependence of spike count correlations observed 
in cortical neurons (Averbeck and Lee, 2003; Kass and Ventura, 
2006; Smith and Kohn, 2008).

Our results suggest that emulating neuronal spike trains, build-
ing effi cient population models or determining potential decoding 
algorithms requires the analysis of full spike correlation functions 

in order to compute unambiguous spike count correlations. In 
 particular, spike count coeffi cients computed for time bins larger 
than intrinsic timescale of correlations can be an ambiguous 
estimate of input cross correlations in a neuronal population 
with potentially heterogeneous distribution of input structures. 
Furthermore, the details of the spike generation model can be very 
infl uential for the transfer of current correlations to spike cor-
relations, and the analytical results obtained here could facilitate 
quantitative comparisons between different types of models and 
between models and real neurons, by providing a maximally trac-
table limiting case for future studies.
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