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Burst firing is a neural code in an insect auditory system
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Various classes of neurons alternate between high-frequency discharges and silent intervals. This phenomenon is called burst firing.
To analyze burst activity in an insect system, grasshopper auditory receptor neurons were recorded in vivo for several distinct stimulus
types. The experimental data show that both burst probability and burst characteristics are strongly influenced by temporal modulations
of the acoustic stimulus. The tendency to burst, hence, is not only determined by cell-intrinsic processes, but also by their interaction with
the stimulus time course. We study this interaction quantitatively and observe that bursts containing a certain number of spikes occur
shortly after stimulus deflections of specific intensity and duration. Our findings suggest a sparse neural code where information about
the stimulus is represented by the number of spikes per burst, irrespective of the detailed interspike-interval structure within a burst. This
compact representation cannot be interpreted as a firing-rate code. An information-theoretical analysis reveals that the number of spikes
per burst reliably conveys information about the amplitude and duration of sound transients, whereas their time of occurrence is reflected
by the burst onset time. The investigated neurons encode almost half of the total transmitted information in burst activity.
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INTRODUCTION

Tonic and burst firing encode different aspects of the sensory
world. Specifically, in thalamic relay cells, burst firing has been
reported as more efficient in signal detection than tonic firing
(Grubb and Thompson, 2005; Lesica et al., 2006; Sherman 2001)
and more reliable to repeated presentations of the same stimulus
(Alitto et al., 2005; Denning and Reinagel, 2005). Tonic firing,
in turn, seems to be well suited for encoding the detailed evolu-
tion of time-varying stimuli. Similar results have been obtained
in electric fish (Chacron et al., 2004; Metzner et al., 1998; Oswald
et al., 2004).

Various studies have compared the stimuli that trigger iso-
lated spikes with those that induce burst firing (Alitto et al., 2005;
Denning and Reinagel, 2005; Eggermont and Smith, 1996; Grubb
and Thompson, 2005; Metzner et al., 1998; Oswald et al., 2004;
Reinagel et al., 1999). In these comparisons bursts were taken as
asingle type of event, without further discrimination between
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different burst variants. However, bursts may also encode stimuli
inagraded manner (Kepecset al.,2001; Oswald et al.,2007; Kepecs
et al., unpublished). Bursts with different numbers of spikes can
thus act as compact code-words. Indeed, in neurons from various
sensory systems the number # of spikes within a burst correlates
with particular properties of the external stimulus, such as the
orientation of a drifting sine-wave grating (DeBusk et al., 1997)
and the slope or the amplitude of visual contrast changes (Kepecs
et al., 2001; Kepecs et al., unpublished).

Here, we examine the role of bursts in grasshopper audi-
tory receptor cells. When stimulated with time-dependent
acoustic signals, these neurons fire high-frequency bursts that
are triggered by stimulus deflections of specific intensity and
duration. We quantify the amount of information encoded
by a burst code and characterize the stimulus features repre-
sented by bursts of different duration. Receptor cells, however,
do not generate bursts in response to constant or step stimuli
(Gollisch and Herz, 2004; Gollisch et al., 2002), indicating that
bursts can result from a non-trivial interplay between external
stimuli and intrinsic dynamics. Our analysis leads to the fol-
lowing conclusions: (a) burst-firing constitutes a prominent
feature in the neural code of the investigated auditory neurons,
(b) representing neural responses by intra-burst spike counts
n allows one to estimate the amount and type of transmitted
information in a straightforward manner, (c) the correspond-
ence between code-words and the stimulus features that they
represent may be readily explored with burst-triggered aver-
ages. Most importantly, (d) burst coding is a key element in the
transmission of time-varying stimuli even for cells that are not
intrinsic bursters.
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MATERIALS AND METHODS
ELECTROPHYSIOLOGY AND STIMULUS DESIGN
All experiments were conducted on adult Locusta migratoria.

frequency of the cell, and the minimal intensity inducing spik-
ing constituted the threshold s . The mean threshold across the
population was 58 dB (SD 14 dB). Mimicking behaviorally rel-

evant stimuli, the sound signals used for further analysis con-
sisted of amplitude modulated (AM) carrier sine waves whose
frequency matched the cell’s best frequency. The AM signal
was white up to a certain cutoff frequency and had a Gaussian
amplitude distribution with a given standard deviation (see
Figure 1, for an example). A detailed explanation of the stimulus
construction may be found in Machens et al. (2001). Increasing
the standard deviation results in more pronounced variations
of the amplitude modulations. By varying the cutoff frequency,
instead, the temporal scale of the stimulus excursions is altered,
with higher cutoff frequencies corresponding to more rapid
amplitude deflections.

Different receptors vary in their cellular properties, resulting
in different response characteristics. To identify the effect of the
stimulus on the response (in spite of the cell-to-cell variability)
each cell was presented with two stimuli. One stimulus was the

The animal’s metathoracic ganglion and nerve were exposed.
Spikes were recorded intracellularly from the axons of auditory
receptors located in the tympanal nerve, see Rokem et al. (2006)
for details. The auditory stimulus was played from a loudspeaker
located ipsilateral to the recorded neurons, at 30 cm from the
animal. Thirty-seven receptor cells were recorded, from 23 ani-
mals. Each cell was tested with two or more stimuli, resulting
in 132 data sets in total (one data set, or session, corresponds to
one cell in one stimulus condition). The experimental protocol
complied with German law governing animal care.

Each experiment began with a measurement of the “best”
or “preferred” sound frequency of the receptor, that is, the fre-
quency of a sinusoidal acoustic wave for which the threshold of
the cell is lowest. To that end, the animal was exposed to a pure
tone between 3 and 20 kHz. The frequency that induced spik-
ing with minimal stimulus amplitude was selected as the best
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Figure 1 | Example of an acoustic stimulus and neural response from a single recording session. (4) Wavy line: random amplitude modulation (AM signal)
of a carrier sine wave. The standard deviation of the AM signal is 12 dB, its cutoff frequency is 200 Hz. Vertical lines: elicited spikes. The cell generates either
isolated spikes, or stereotyped patterns consisting of 2—3 spikes separated by a short interval. (B) Raster plot corresponding to the recording shown in (A), for
165 repetitions. Both the timing of individual spikes and the number of spikes in each pattern appear as reliable features, fairly well preserved throughout the
different trials.
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same for all cells: a Gaussian amplitude distribution with 6 dB
standard deviation and 200 Hz cutoff frequency. The other sig-
nal could be one of six different stimulation protocols. In four
of them, the standard deviation of the amplitude modulation
was fixed at 6 dB, and the cutoff frequency was either 25, 100,
400 or 800 Hz. In the other two protocols, the cutoff frequency
was fixed at 200 Hz, whereas the standard deviation was set to
either 3 or 12 dB.

Given that the mean firing rate has a strong effect on the trans-
mitted information (Borst and Haag, 2001), the mean stimulus
was adjusted to obtain an average firing rate of about 100 Hz.
The resulting firing rates had a mean of 113 Hz (SD = 16 Hz),
and they did not show any significant variation in the different
stimulus conditions, as assessed by a one-way ANOVA (p = 0.58).
In addition, given that information measures require stationary
recordings, we only kept those sessions where the trial-to-trial
SD of the firing rate was <35 Hz (the population average of this
SD is 6 Hz). There were 86 out of 132 data sets that fulfilled these
two conditions.

Once the carrier frequency and mean stimulus amplitudes
were determined, N repetitions of each stimulus were presented,
with Nranging between 98 and 503 (average 172), depending on
how long the recording could be sustained. Each stimulus lasted
for 1 s, though in all results presented here, the first 200 msec of
each trial were discarded, to avoid the initial transient response,
where fast adaptation processes take place. Different trials were
separated by pauses of 700 msec to prevent slow adaptation
effects (Benda and Herz, 2003).

BURST IDENTIFICATION

Neural responses were preprocessed to decide which cells had a
natural tendency to generate bursts, and in these cases, to iden-
tify the bursts. With such a procedure, all spikes should either
be classified as isolated spikes (a 1-spike burst), or be grouped
into bursts of two or more discharges (an n-spikes burst). We
therefore searched for a reliable criterion to establish a limit
value of the inter-spike interval (ISI) separating pairs of con-
secutive spikes, such that all those pairs whose intervals lie
below the limit be considered as part of the same burst, and
all those that fall above the limit be classified as belonging to
different bursts. Previous approaches (see, for example, Kepecs
and Lisman, 2003; Metzner et al., 1998; Oswald et al., 2007;
Reich et al., 2000; Reinagel et al., 1999) have determined the
value of the limiting ISI from the shape of the ISI distribution.
In this work, we have taken an alternative approach, based on
the shape of the correlation function.

If a cell shows a tendency to generate bursts, not all intervals
between pairs of spikes are equally probable. We evaluated the
correlation function (also called autocorrelation) of each cell dis-
cretizing the time axis in N, bins, each of duration o0t=0.1 msec.
The spike train p(¢) is represented as a binary string such that,
for any given t, p(t) is either equal to 1/3¢ or to 0, depending
on whether or not a spike is fired inside [t t+ &¢]. The post-
stimulus-time histogram () = {p(2)) is the trial average of p(t).
The mean firing rate 7 =2, 7.(t)/N, is defined as the temporal
average of 7 (t). The correlation function of the spike train is

C.v=[p)-7][p(t+1)-7], (1)

where the horizontal bar represents both trial average and tem-
poral averages over . A large, positive value of C(1) indicates
that there is a high probability of finding two spikes separated
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by a time lag 7, irrespective of whether there are other spikes in
between or not. If C. is near 0, this probability is roughly the one
to be expected from the mean firing rate of the cell. If C(7) is
large and negative, the probability that two spikes be separated
by an interval 7 is low.

Figure 2 shows typical responses from four cells. The left col-
umn depicts the response to 15 identical stimulus presentations
to each cell. The correlation functions C(1) are presented in the
middle column, and for comparison, the ISI distributions cor-
responding to the same spike trains are given in the right col-
umn. In cell Figure 2A, both the correlation function and the ISI
distribution exhibit a prominent peak. This peak constitutes a
clear signature of the tendency of the cell to fire action potentials
about every 3 msec, as can be seen in the raster plot. The width
of this peak can be easily estimated from either the correlation
function or the ISI distribution, since in both cases the peak is
limited on its right-hand side by a minimum whose location can
be clearly identified (marked by the arrow). In such cases, the
limiting value of the ISI defining burst firing may be set as that ISI
where the minimum is located. However, there are more compli-
cated cases, too. The following examples (Figures 2B,C) depict
two cells that also tend to burst, as shown by the raster plots.
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Figure 2 | Examples of neural responses (left), and the corresponding
spike train correlation functions (middle) and ISl distributions (right).
The four rows of panels depict different cells. In the middle and right panels,
the horizontal line represents the zero level of the respective quantity. The
arrows indicate the limiting ISI defining burst generation. The upper three
cells (A, B, G) show a tendency to fire action potentials separated by a fairly
constant ISI, as seen from the raster plots. The correlation functions allow
a clear estimation of the limiting ISI needed to define bursts, even in cases
where this is not possible using ISI distributions (B and C). The last cell (D)
lacks well defined time scales for intra-burst and inter-bursts ISls.
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In Figure 2B, there are frequent doublets or triplets of spikes,
whereas in Figure 2C, each burst typically contains between 6
and 10 spikes. The width of the first peak of the correlation func-
tion can be determined quite easily. However, the temporal span
of the corresponding peak in the ISI distribution is much more
difficult to determine, since the right tail of the peak decreases
essentially monotonically. Moreover, the ISI distribution of cell
Figure 2C completely misses the structure of peaks in the cor-
responding correlation function.

ISI distributions reflect only the interval between two con-
secutive spikes, whereas correlation functions include intervals
between any two spikes. Hence, ISI distributions often show an
almost exponential decay, that conceals some of the structure
exhibited by the correlation functions. For this reason, we shall
base our choice of the limiting ISI defining bursts on the behav-
ior of the correlation function, and not on the ISI distribution.
We have verified that the two methods give different results only
when applied to cells that have a tendency to generate long bursts
(including more than five spikes). In these cases, if our method is
applied to the ISI distributions, it fails to detect the minimum ISI
separating inter-bursts and intra-bursts intervals. The correlation
function, instead, shows a clear multi-peak structure. The exam-
ple cell Figure 2D is once again simple. It has no tendency to gen-
erate bursts, and consequently, both the correlation function and
the ISI distribution reveal rather broad, unspecific structures.

We stipulated that a cell be classified as bursting if its
correlation function contained a first peak that was limited on
the right side by a minimum that could be considered signifi-
cantly different from the maximum. Below, an ad-hoc method to
determine the separability of the maximum is provided. In addi-
tion, the maximum was required to lie below T = 5 msec, and
the minimum to the right of the maximum should be located
below 1.25 times the inverse cutoff frequency of the AM signal.
These criteria reject fluctuations in the correlation function aris-
ing from limited sampling, as could be any of the many small
troughs observed in Figure 2B, and avoid a misclassification
where two consecutive spikes are generated by two consecutive
fluctuations in the stimulus.

To assess whether the correlation function contained a sepa-
rable first peak (in the above sense), an ad-hoc statistical analysis
was performed. To that end, the expected error of the correla-
tion function was estimated, for all times 7. Notice that C(7)
can be interpreted as an average (see Eq. 1). The error bar A of
an average estimated from N samples reads A = o/~/N, where
¢ is the standard deviation of the data to be averaged (Barlow,
1999). The population mean of the temporal average of this esti-
mated error was 3.4% (SD 1.5%) of the total span of C (1) (that
is, the difference between the maximum and the minimum).
Two values of C(7) and C (1) were classified as significantly dif-
ferent if they differed in more than the sum of their estimated
error bars. This is an ad-hoc procedure, since it is based on the
assumption that the estimation errors of C(7) are independent
for different times T, which may not be the case. However, we
have checked that in all cases, the limiting ISI identified with our
method could be easily detected visually.

Not all cells, and not all stimuli, gave rise to correlation
functions that contained a separable first peak (for example,
Figure 2D shows a non-bursting cell). Whenever the peak could
be separated, the domain of the peak was defined as the interval
between 0 and the position of the first minimum after the peak.
In the remaining cases, the domain of the peak was defined as 0.
All spikes in a neural response were assigned to sequences con-

taining 1, 2, or more action potentials, hereafter called bursts of
intra-burst spike count n or, more compactly, n-bursts. An n-burst
was defined as the set of consecutive spikes whose ISIs fell within
the domain of the first peak of the correlation function. In those
sessions where this peak was not separable, all spikes were classi-
fied as 1-bursts, or, as we shall also call them, as isolated spikes.

The present method of identifying bursts differs from other
criteria employed previously (Gourévitch and Eggermont, 2007;
Kepecs and Lisman, 2003; Metzner et al., 1998; Oswald et al.,
2007; Reich et al., 2000) in two aspects. First, we use ad-hoc sta-
tistical techniques to prevent small fluctuations, caused by lim-
ited sampling, from hampering burst identification. Second, our
approach is based on the correlation function, and not the ISI
distribution. Both quantities are closely related under various
conditions. In fact, for stationary renewal processes, the cor-
relation function can be derived through convolution from the
ISI distribution (Perkel et al., 1967). A clear minimum of the
correlation function can therefore be expected if the standard
deviation of the ISI distribution is sufficiently smaller than the
mean ISL. On the other hand, it is more convenient to identify
bursting neurons by analyzing their correlation function. If the
minimum in the correlation function is significant, its location
provides the value of the limiting ISI that is needed to segment a
given spike train into sequences of bursts.

MODEL NEURONS

To assess whether complex neural dynamics are needed to
obtain burst-like responses to time-dependent stimuli, we mod-
eled the firing probability density r(#) of a measured cell as a
simple, threshold-linear function of the stimulus, with added
refractoriness, namely

r ()= { [ hfs -0 -5 ]dr}@)(t St —t), 2)

where s*(t) is defined as
# (1) {s(t) if  s(t)> sy,
s

o I s(B) < sy,

s(t) is the AM signal extending throughout the interval [0, T,
sF= J g s¥(¢)dt/ T is the temporal mean value of s*(#), h(t) stands
for the filter of the cell, £, is the time at which the previous spike
was fired, ¢ is the refractory period, s, is the threshold of the
cell, and O is Heaviside step function [O(f) =0, if <0, and
O(1) =1, if t=0). Note that the stimulus is thresholded before it
is filtered. Gollisch and Herz (2005) disclosed the detailed proc-
esses involved in sound transduction. They showed that the input
current entering the auditory receptor after acoustic stimulation
is a non-linear (quadratic) function of the sound intensity. Thus,
low stimulus amplitudes are ineffective in generating ionic cur-
rents, whereas large intensities have an amplified effect. In Eq. 2,
for simplicity, we have assumed that the non-linearity involved
in sound transduction is a thresholding operation, represent-
ing ionic channels that only open when the AM signal surpasses
a certain characteristic value that we can actually measure. This
model, although simplified, correctly reproduces the threshold-
linear dependence of firing frequency vs. stimulus amplitude that
we have observed experimentally for the stimulus intensities in
this study. In Eq. 2, the current is further filtered to represent the
capacitive properties of the cell membrane (Gollisch and Herz,
2005). For each modeled cell, the linear filter h(t) was obtained
from a cross-correlation analysis of the spike train and s*(#) (Koch
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and Segev, 1998), whereas the refractory period ¢ , was defined as
the minimal ISI of the cell, and s, was measured experimentally
(see Electrophysiology and Stimulus Design). Finally, spike gen-
eration was modeled as a Poisson process with time-dependent
rate 7(). Note that the model contains no free fit parameters.

INFORMATION THEORETICAL ANALYSIS

Brenner et al. (2000) have calculated the mean amount of infor-
mation I\ transmitted by an event E, where E is a pre-defined
combination of spikes and silent intervals. Such an event is either
present or absent, in one given trial, at one particular time. When
the event Eis a single spike

Ig) =J‘T@log2 [@}dt, (3)
¢z r

where the event rate r(#) is the probability density of a spike
at time t (Brenner et al., 2000; Rieke et al., 1997), and T is the
temporal average of r(1). In Eq. 3, the upper index (1) denotes
the mean information transmitted by each event. Notice that I\
is proportional to the dissimilarity between the spiking prob-
ability density r () and a uniform density 7, as measured by the
Kullback—Leibler divergence (Cover and Thomas, 1991).

We now extend this analysis to encompass events that are
not just binary (present or absent), but appear in one of several
possible alternatives. In our case, a burst may contain 0, 1, .. or
n spikes. For each stimulus stretch s extending during the time
interval [¢—t, ], the cell generates a response in the time bin
[t, ¢+ Ot] that may either be “no spike” (n = 0), or the initiation
of an n-burst (1> 0). The length of the interval ¢ is assumed to
be sufficiently large as to contain all structures in the stimulus
that are causally related to the response of the neuron at time ¢.
The mutual information PP between stimuli and n-bursts within
[t, t+ 6t] is (Cover and Thomas, 1991)

19— z P(s)i P(n|s)log, [%:I, (4)

where P(s) is the prior probability of the stimulus segment s,
P(nls) is the probability of response n whose first spike falls in
the interval [t, t+ 81] conditional to the stimulus s, and

P(m)=Y P(n|s)P(s) (5)

is the prior probability of response n. In Eqs 4 and 5 the sums
in s include all possible stimulus stretches spanning the interval
[t—t, 1], each one of them with its probability P(s).

If 8t is sufficiently small, then for all #> 0 the probability
P(nls) may be approximated by r (s5)8t, where r (s) is the n-burst
rate conditional on the stimulus s, and is proportional to the
fraction of trials where an n-burst was initiated in [t, t+ 6¢],
in response to stimulus s. Similarly, P(0|s)=1-8t2'7 r,(s).
Replacing these expressions in Eq. 4 results in

=38y P(s)i rn(S)log[r"Es)}

A
where

7= P(s)r,(s). (6)

If the stimulus is stationary, all possible stimulus stretches s will
eventually be found as time goes by, each one of them with a fre-
quency that is proportional to P(s). Therefore, for long enough
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stimuli, averaging over s with the probability distribution P(s)
may be replaced by time averaging. That is,

I %i [/ rﬂ(t)log[@}dt, 7

T

n

where now the n-burst rate r (t) is expressed as a function of
time, and

__1gr
1;,—?.[0 r (t)dt.

Equation 7 provides a first estimate of the mutual informa-
tion between stimuli and responses in a short interval [, ¢+ t].
The aim is now to extend this result to the whole response
interval [0, T], which can be thought of a concatenation of small
intervals [0, &t], [, 20¢], ... [(k—1)dt, kdt], where k= T/t
This extension, however, can only be done if the response in
one time interval does not depend on the response in another
time interval. Consider the response vector 7i(t) = (n(t), n(t + ot),
n(t+208¢), ..., [t + (k—1)3t]), where n(t) represents the number
of spikes contained in the burst whose first spike fell in [, T + 81]
(n = 0 means that the cell remained silent). If different time bins
are independent, then

Plii(t)]=T1,P{n(t +idt)]. (8)

This means that that responses in different time bins are inde-
pendent from one another, given a fixed stimulus history. Full
independence of time bins, however, implies that the factoriza-
tion of Eq. 8 should not only hold for each stimulus history, but
also for the marginal probabilities

IR Y . . 1r )
P(i)= ?L PL(1)}dt, and Pin(id1)] = jo Pln(t +idt)]dt.
These quantities represent the probability of the word 7 and
the i-th bit » inside the word at any temporal location within
the spike train. Then, if different time bins are independent, in
addition to Eq. 8, we must also have

P(7i) = T1,P[n(idt)], )

implying that independence also holds for arbitrary stimulus
histories. When these two conditions are fulfilled, and given the
additive properties of information (Cover and Thomas, 1991),
the mutual information I between stimuli and responses in
[0, T] is the sum of the mutual information between stimuli and
responses in each sub-interval [(j— 1)t jot]. Hence,

I=kxI" = iJ.OT rn(t)logz[r"_(t)]dt = ETJLU = i I,
n=0 n n=0

r n=0

(10)

where the last two equivalences serve as definitions of the average
information I'" transmitted by each single n-burst, and the infor-
mation I transmitted by all the bursts of a given #, respectively.
Finally, the information per unit time I’ (also called information
rate), and the rates I’ are obtained by dividing the corresponding
expressions in Eq. 10 by the total time interval T.

We emphasize that Eq. 10 is only valid under the independ-
ence assumption, that is, if Eqs 8 and 9 hold. In this work,
we assume that all correlations in the spike train of third or
higher order can be neglected. Under this approximation,
different time bins are independent, if they are uncorrelated.
This means that the probability distribution of a binary string
ii=(n,...,n,)" is well approximated by a Gaussian function
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P(ii) = exp [-(7i — (7)) T7' (7 — (7i))/2)/r/(2m)" det T, where Z
{(n,— {n))( n— (n))) This approximation should hold both for
strings 7 startlng at a fixed time #, and also for any time. The
Pearson correlation coefficient between time bins

<n* (On*(t+ ’E)>
<[n * (t)]2>m<[n * (f + ‘C)]2>1/2

quantifies the correlations between #(f) and n(t+ 1) for a fixed
stimulus history, and hence may be used to test whether Eq. 8
is valid. In Eq. 11, n*(¢) = n(¢) — (n(t)), and the angular brack-
ets represent trial averages. In order to make Eq. 11 well defined
even at times when the response of the neuron has no variability
(that is, {[n*(£)]*) = 0 or {[n*(t+1)]*) = 0), we set ¢,(,T) =0 if
both the numerator and the denominator vanish.

In the absence of higher-order correlations, whenever
¢,(t,1) =0 for all ¢ and 7, one can assert that Eq. 8 holds. To
assess whether burst identification succeeded in decreasing the
correlations in the spike train, ¢,(t, T) should be compared with
a similar correlation coefficient c(t, T) calculated from a binary
representation of the spike train including the whole collection
of spikes. c(t, 7) is defined by a formula analogous to Eq. 11, but
with the integer variable 7 replaced by a binary variable indicat-
ing the presence or absence of a spike in each time bin. To quan-
tify the total amount of correlations in a given domain t € [¢,, t,]
and t € [T, T'], we use the mean square value of the Pearson cor-
relation coefficient [¢,(t, T) or ¢ (t,T)] in the selected domain.

The Pearson correlation coefficient between n(t) and n(t+ 1)
for any stimulus history is

¢ t,1)= (11)

[n* (t)] [n* (t+ ‘C)]
{[n*(t)]z [n*(t+‘c)]2}

where the bar represents both a trial and a temporal (f) average.
In the absence of higher-order correlations, whenever ¢,(1) = 0
for all T, one can assert that Eq. 9 holds. To compare the correla-
tions between bursts with the correlations between spikes, Eq. 12
should be compared with ¢ (), defined by a formula analogous
to Eq. 12, but with the integer variable » replaced by a binary
variable representing individual spikes.

(12)

Cb(T) =

ESTIMATION OF BURST-TRIGGERED AVERAGES
The spike-triggered average (STA) was calculated as the mean
stimulus preceding a spike, namely,

—Z s(t, +1),

0 ty

STA(T)

where s(t) is the time-dependent stimulus, N, is the total number
of spikes, and the sum ranges over all spike times ¢. In every
investigated cell, STA(t) showed a pronounced peak. The time
between the maximum of the peak and T =0 (spike genera-
tion) is the average latency between upward stimulus deflections
and spike occurrences. As an extension, the n-burst triggered
averages (nBTAs) were introduced to represent the mean stimu-
lus preceding an n-burst (Kepecs and Lisman, 2003; Lesica et al.,
2006; Oswald et al., 2007), that is,

nBTA(T) = NLZ s(t, +7T),

n t,

(13)

where now, the sum ranges over all times ¢ at which an n-burst
begins (that is, the time of the first spike), and N is the total
number of n-bursts. The time T_between the maximum of #BTA
and T = 0 (burst generation) is the average latency of the n-burst.

The nBTA at a particular T is the arithmetical average of a
collection of values, whose standard deviation reads

3 [s(r, +1) - nBTA(T)] .

1
0,(T)=
n( ) \/Nn_l -

To determine whether the nBTAs corresponding to different n-
values differed significantly, an ANOVA was conducted. The
test was performed in the frequency domain, to avoid temporal
correlations. The nBTA in the time interval ranging from —25
to +15 msec from burst generation was Fourier transformed
and a two-way ANOVA was separately conducted on the real
and imaginary parts of the frequency representation of the sig-
nal (since these constitute two comparisons, Bonferroni’s cor-
rection for multiple hypothesis testing was incorporated), with
frequency band and the order of the burst as factors in the
analysis. The null hypothesis was 1BTA = 2BTA = 3BTA = 4BTA.
The corrected significance level was set at 0.01. Cells showing a
significant difference (either as a main effect, or an interaction)
were further tested in the time domain, to determine the intervals
where the difference was observed. This was done using independ-
ent t-tests, for each point in time. In this case, the null hypothesis
was that at time t, nBTA(¢) differed from at least one of the other
#'BTA(t), for any #n’ # n. In this analysis, n and #’ ranged between
1 and 4. Hence, to reject the null hypothesis for a given # and ¢,
three comparisons with different #’-values are needed.

For n 22, we also compared the nBTAs with a combination
of n 1BTAs interleaved with the same ISIs found in the real data.
For every n-burst in the experimental data, we calculated the
function

(14)

f.()= 2 IBTA(t—t,),

i=1

(15)

where the times ¢, indicate the location of each spike within the
burst. Each n-burst, hence, produces a function f (¢). By averag-
ing the f () obtained for all bursts with the same spike count n,
we calculated the averaged convolved 1BTA. We estimated the
variability of the convolved 1BTA as the standard deviation of
the averaged data. To test whether the real nBTA was signifi-
cantly different from the reconstructed f, we first carried out a
two-way ANOVA. The null hypothesis was nBTA = f in a time
interval extending between the two minima at each side of the
central maximum of the #BTA. To avoid temporal correlations,
the comparisons were performed in Fourier space, testing real
and imaginary parts separately. A Bonferroni correction for mul-
tiple comparisons was incorporated. The corrected significance
level was set at 0.01. Cells showing a significant difference (either
as a main effect or an interaction) where further tested in the
time domain, to determine whether the difference was observed
in an extended fraction of the time interval. This was done with
an independent t-test, for each point in time. In this case, the
null hypothesis was that at time £, nBTA(¢) = f (£). We reported
the number of cells for which the null hypothesis was rejected
in 70% of the times ¢ within an interval extending between the
two minima at each side of the central maximum of the nBTA.
As a check, the whole procedure was also carried out replacing
the 1BTA(#) in Eq. 15 with STA(#). Recall that the 1BTA is the
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average stimulus preceding 1-bursts, or isolated spikes. The STA,
in turn, is the average stimulus preceding all action potentials in
the spike train.

For completeness, we mention that the amount of jitter
(Rokem et al., 2006) is defined as the trial-to-trial standard
deviation of the time of the first spike in a burst, and the average
estimated error bar in jitter estimation is 0.2 msec.

RELATING BURST PROBABILITIES TO THE HEIGHT OF

STIMULUS EXCURSIONS

To calculate the probability P(nlh) of obtaining a burst with n
spikes after a stimulus deflection of maximal height h, we went
through all local maxima of the stimulus, one at a time, and for
each one we searched whether there was a burst in the response
that could be associated with the maximum. This was done in
the following way. Each n-burst in the response was first shifted
backwards T milliseconds. Next, for a given stimulus maxi-
mum located at time ¢, we searched for (shifted) n-bursts inside
a window [t — T, t + T], where T was the width of the most
prominent peak of the STA of the whole collection of spikes
(prior to burst identification). In other words, T was the interval
where a given response can be expected to be correlated with
a maximum in the stimulus. If within that interval no bursts
were found, then the maximum located at ¢, was said not to be
associated with any response. If the first spike of an n-burst fell
within the window, then the maximum in the stimulus was asso-
ciated with that n-burst. If there was more than one burst inside
the window, then a single burst was selected, by choosing that
one whose first spike lay closest to ¢. Next, if a given burst was
associated to more than a single maximum, the closest maxi-
mum was assigned to the burst (and not the others).

This algorithm allows one to associate each maximum in
the stimulus with either no response, or with an n-burst. Note,
however, that so far we have no reason to claim that there is a
causal connection between the maximum and the associated
burst. In principle, given that we do not actually know what fea-
ture in the stimulus induces burst generation (it could be the
height of the stimulus amplitude, the size of its derivative, the
width of an upward excursion, and so forth) this association
between stimuli and responses could represent no more than a
completely arbitrary connection. Only if we can show that the
association contains non-trivial features that would be unlikely
between randomly connected events can we suspect that it could
indeed contain some predictive value.

To reveal those features, we estimated P(nlhe [h —Ah,
h,+ Ah)), i.e., the probability of obtaining a burst of # spikes, given
that the height of the stimulus maximum A fell in [k, — Ah,
h, + Ah]. The width Ah was chosen as 5% of the span of values
of h. P(nlh) is depicted in Figure 10 for an example cell. The par-
tial segregation between the different curves shows that the height
of the maximum h can tell something about the stimulus. Even
though one still cannot guarantee a causal relationship between
each maximum and its associated n-burst, this result ensures that
the intra-burst spike count n provides information about the
height of the stimulus deflection preceding it — not excluding that
it may also provide information about other stimulus features.

RESULTS

STIMULUS CHARACTERISTICS MODULATE BURST PROBABILITY
Depending on the characteristics of the ionic channels that com-
pose the cellular membrane and temporal properties of their

Burst firing is a neural code

activation and inactivation variables, different neurons respond
to the same stimulus with different firing patterns. In particu-
lar, some neurons have a tendency to alternate between periods
of high-frequency discharges and silent intervals. This is called
burst firing. The mathematics of burst firing has been studied
extensively in the computational neuroscience literature (see, for
example, Izhikevich, 2000; Izhikevich and Hoppensteadt, 2004;
Wang and Rinzel, 1995). Irrespective of the particular mecha-
nisms underlying the generation of bursts, here we explore their
role in the transmission of sensory information. To that end, we
quantify the reliability with which bursts correspond to specific
stimulus features.

In principle, the possibility to generate bursts would allow a
neuron to construct a non-trivial temporal code, in which both
the time at which the burst initiates and the number of spikes
within a burst carry specific information. In order to assess
whether this is the case in a classic insect model system (Gollisch
and Herz, 2005; Hill, 1983; Machens et al., 2001, 2005; Romer,
1976; Ronacher and Romer, 1985; Sippel and Breckow, 1983; von
Helversen and von Helversen, 1994), the activity of grasshopper
auditory receptor neurons was recorded in vivo during acoustic
stimulation. Figure 1A depicts an example stimulus (wavy line),
together with the elicited spikes (vertical lines). This cell some-
times generates isolated action potentials, whereas at other times
it fires spike doublets or triplets. In this particular recording,
responses typically appear after stimulus upstrokes with an delay
of 3.4 msec, including both acoustic and axonal time lags. The
data suggest that whereas fairly shallow stimulus excursions are
followed by, at most, a single action potential, deflections that
are more pronounced (either in height or in width) are often
accompanied by short sequences of multiple spikes. Figure 1B
depicts the response of the same neuron to 165 identical repeti-
tions of the stimulus. Clearly, the bursting pattern of this cell is
highly reproducible across trials.

These observations suggest that short sequences of high-
frequency firing appear with higher probability in response to
particular types of stimulus deflections. This raises the ques-
tion whether the probability of generating bursts depends on
the statistical properties of the sound wave. We therefore cal-
culated the correlation function C(t) of the neural response
(see Materials and Methods). The upper subpanels of Figure 3
show C for a sample cell that was tested with the whole set of
stimuli (the middle and lower subpanels correspond to simu-
lated data discussed later on). Increasing the standard deviation
of the amplitude distribution (from Figure 3A to D to G) results
in correlation functions that exhibit progressively sharper
peaks. This is the signature of a high probability of generating
sequences of two or more spikes separated by a fairly constant
ISI. Moreover, a somewhat rippled pattern can be observed in
the right tail of the distribution in Figure 3G. Decreasing the
typical time scale of the stimulus fluctuations (going right from
Figure 3B to F) leads from multi-modal (Figure 3B) to single-
peaked (Figures 3C,D) to increasingly shallower and broader
correlation functions (Figures 3E,F).

Some correlation functions exhibit a pronounced first
peak, easily distinguishable from the rest of the function (as in
Figures 3B-D,G), and spanning a finite and fairly clear tempo-
ral domain. In these cases, spikes are either closely packed with
ISIs falling in the domain covered by the first peak, or they are
loosely spread apart. The presence of a minimum between the
first peak and the rest of the correlation function allows one to
establish a natural upper limit to the range of preferred ISIs.
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Figure 3 | Spike-train correlations for a sample cell, and different stimulus conditions. Each sound stimulus consisted of a carrier wave with random
Gaussian amplitude modulations that had a specific standard deviation and cutoff frequency. Upper subpanel: Experimental data. Middle subpanel: Threshold-
linear model, with refractory period. Lower subpanels: Linear model. Neither model contains free fit parameters. Comparisons between the experimental data
and the two models demonstrate that the combination of threshold and refractoriness captures the qualitative shape of the measured correlation functions.
(A,D,G) Cutoff frequency = 200 Hz, and standard deviation 3 dB (4), 6 dB (D) and 12 dB (G). (B—F) Standard deviation = 6 dB, and cutoff frequency 25 Hz (B),

100 Hz (C), 200 Hz (D), 400 Hz (E), and 800 Hz (F).

Sometimes, this minimum is also present in the ISI distribu-
tion. In these cases, the cell has a tendency to fire with a typical
“short” ISI that is clearly separated from other long ISIs. If the
minimum only appears in the correlation function, but not in
the ISI distribution, then the separation between these two time-
scales cannot be achieved directly using the ISI distribution (see
Materials and Methods). However, the tendency of the cell to fire
sequences of three or more spikes with one typical ISI can still
be clearly revealed by the correlation function. Finally, there are
yet other cases where the correlation function is of an essentially
unimodal nature, exhibiting no more than one broad, unspecific
structure (Figures 3A,E,F). In these cases, singling out a range
of ISIs as “typical” would be questionable.

We define a burst as a sequence of spikes whose ISIs fall
within the domain of the first peak of the correlation function,
whenever such peak can be isolated (see Materials and Methods,
for the statistical techniques used to assess the separability of
this peak). This sequence of # spikes will be called a burst of
intra-burst spike count n or, more compactly, an n-burst. In what
follows, the temporal location of a burst is assigned to the time
when its first spike occurs. Cells showing unimodal correla-
tion functions are classified as non-bursting, and in the analysis
below, all their spikes are considered as 1-bursts.

To underscore the differences between the n-burst code
investigated in this study and the more conventional firing-rate
codes, Figure 4 illustrates alternative representations of a sam-
ple spike train. Here, rate code is used whenever the stimulus

is encoded by the firing rate, which is evaluated either instan-
taneously (as in Figure4C), or in extended time windows
(Figures 4D,E). In Figure 4A, each vertical line represents an
action potential of a cell that tends to generate high-frequency
bursts with intra-burst ISIs of 2-3 msec. Figure 4B depicts the
n-burst representation of this spike train. Here, each time ¢ is
associated with an integer n that denotes the number of spikes
contained in the burst starting at time . The height of the ver-
tical lines in Figure 4B represents the value of #, and the grey
arrows link each burst in Figure 4A with the corresponding
n-value in Figure 4B. For comparison, three firing-rate codes
are shown in Figures 4C-E. Figure 4C illustrates the time-
dependent instantaneous firing rate which is obtained from
the sequence of inverse ISIs. Figures 4D,E depict two alternative
smoothed firing-rate representation. In Figure 4D, each spike
from Figure 4A was convolved with a narrow bell-shaped kernel
(Gaussian, 5 msec SD); in Figure 4E, the SD is 20 msec.

For invertible kernels, the firing-rate representations of
Figures 4C—E contain all information needed to reconstruct the
full spike train in Figure 4A. This is clearly not the case for the
n-burst representation in Figure 4B. Here, small variations of
the intra-burst ISIs in Figure 4A are no longer present. On the
other hand, the number of spikes within a burst provided by the
n-burst code is not locally available from the firing rate-codes in
Figures 4C-E. For these two reasons, the n-burst code is qualita-
tively different from a firing-rate code. The reduced information
capacity of the n-burst code could severely limit its potential
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Figure 4 | Graphical representation of different coding schemes. (4) Sample
spike train. For this example, all consecutive spikes separated by <3 msec
are considered as part of the same burst. (B) n-burst representation of the
spike train. Each point in time ¢ is associated with an integer » representing
the number of spikes in a burst (if any) initiated at ¢ The height of the verti-
cal lines represents », and the arrows indicate the association between each
burstin (4) and the corresponding n-value in (B). (C) Instantaneous firing rates,
defined as inverse ISls. (D) Smoothed-firing-rate representation, defined as the
convolution of the spike train with a Gaussian function of 5 msec SD. (E) same
as (D), but using a Gaussian function of 20 msec SD. Unlike traditional firing-
rate codes (C-E), the n-burst code provides a reduced representation of the
spike train — all ISIs shorter than the ISI cutoff used for burst definition are
treated equally. In addition, the number of spikes in a burst can be directly read
off from the n-burst representation whereas it is not locally available within
firing-rate codes.

Burst firing is a neural code

role for neural systems. It may, however, also provide a highly
compact and thus most useful neural code. The present study
aims at elucidating these alternatives.

Table 1 lists all stimulation protocols, together with a sum-
mary of the bursting properties of the investigated cell popula-
tion. The fraction of bursting sessions, the percentage of isolated
spikes (1-bursts), and the maximum n-value depend strongly
on the standard deviation and cutoff frequency of the stimulus.
Notice, however, that in all cases, isolated spikes are more fre-
quent than any other burst of n> 1.

Different cells have different firing thresholds, and may there-
fore respond to the same stimulus with different mean firing
rates. Both the burst statistics and the transmitted information
depend on the firing rate. In order to be able to compare the
results obtained for different cells, in all experiments reported
here the mean stimulus amplitude was adjusted so as to obtain
a mean firing rate near 100 Hz (see Materials and Methods). We
also checked that the firing rate practically has no effect on the
value of the limiting ISI defining bursts. More specifically,a 50 Hz
increase in firing rate shifts the limiting ISI by <0.4 msec, which
is comparable to its estimated error bar. The average intra-burst
spike count #, in turn, shows an increase of <25%.

Stimulus statistics strongly influence the probability of gen-
erating specific bursts, as shown in Figure 5. Here, the prob-
ability of an n-burst is depicted as a function of the cutoff
frequency of the AM signal (Figure 5A) and its standard devia-
tion (Figure 5B). The probability of generating isolated spikes is
minimal for large amplitude fluctuations and cutoff frequencies
around 100 Hz. For the sake of clarity, only data corresponding
to n=1, 2, and 3 are depicted.

In the present approach, a spike sequence is classified as an
n-burst by analyzing the statistical properties of the response.
There are no dynamical explanations in terms of specific ionic
currents. Actually, though we lack a detailed characterization of
the ionic currents involved in action potential generation, pre-
vious studies suggest that grasshopper receptors do not burst
intrinsically; cells fire tonically for time-independent stimuli
(Gollisch et al., 2002) and do not show burst activity at the onset
of step-like stimuli (Gollisch and Herz, 2004). In addition, adap-
tation effects as well as spike-time variability can be explained
on a quantitative level with models that do not contain intrinsic
burst mechanisms (Benda et al., 2001; Gollisch and Herz, 2004;
Schaette et al., 2005). These results underscore that in the pres-
ence of time-dependent stimuli, even cells that do not burst by
themselves may generate responses whose statistical properties

Table 1| Summary of the recorded data. Each column represents a different stimulation protocol. Stimulus f - cutoff frequency of the AM signal. Stimulus SD:
standard deviation of the AM signal. Recorded sessions: number of data sets with that particular protocol. Sessions with n > 1: number of sessions with bursts
with n > 1. Percentage of isolated spikes: ratio of the number of 1-bursts to the total number of bursts, in all bursting sessions. Highest n: highest value of n.
Average n: All bursting sessions are pooled together, and for each #, the ratio of the number of n-bursts to the total burst number is calculated. This ratio serves
as an estimation of the probability of finding a given n-value. With this probability, the average n-value is estimated, and presented together with its standard

deviation. Most probable n: the n-value with highest probability.

Stimulus protocol 1 2 3 4 5 6 7
Stimulus f. (Hz) 200 200 200 25 100 400 800
Stimulus SD (dB) 6 3 12 6 6 6 6
Recorded sessions 43 6 7 7 8 7 8
Sessions with 7> 1 40 0 7 6 7 3 0

% Isolated spikes 74 100 62 60 55 96 100
Highest n 9 1 8 15 9 3 1
Average n 1.3+£1.3 1+0 15+1.6 210+ 3.67 1.7+£138 1.04 £ 0.42 10
Most probable » 1 1 1 1 1 1
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Figure 5 | Population average of the probability of generating n-bursts,
as a function of the stimulus cutoff frequency, for all SD = 6 dB stimuli
(A) and as a function of standard deviation, for all stimuli with a cutoff
frequency of 200 Hz (B). Error bars represent the standard deviation in the
population. High-»-bursts appear most frequently for stimuli with large ampli-
tude modulations and cutoff frequencies around 100 Hz. Stimulus properties
thus have a noticeable influence on the probability of generating bursts.

are highly reminiscent of intrinsically bursting cells. Agiiera y
Arcas et al. (2003) and Keat et al. (2001) present similar exam-
ples in simulated data. In these cases, burst-like responses arise
as a consequence of the interplay between the dynamical prop-
erties of the neuron and particular temporal structures in the
stimulus. To assess whether even cells with very simple dynamics
can exhibit burst activity when driven by the proper stimulus, we
modeled the time evolution of a threshold-linear Poisson neu-
ron with added refractoriness (see Materials and Methods). The
middle subpanels of Figure 3 depict the correlation functions
for a model cell with the same filter characteristics, threshold
and refractory period as the data shown in the upper subpanels
(see Materials and Methods). These correlation functions exhibit
similar qualitative features as those of the real cell. Recall that the
modeled cells contain no free fit parameters. In both real (upper
subpanels) and simulated (middle subpanels) data, the sessions
that are classified as bursting (or non-bursting) coincide. When
the analysis is extended to the whole population of cells, this
agreement is observed in 86% of all sessions. Moreover, in those
sessions where both real and simulated data are classified as
bursting, the limiting ISI calculated with real and simulated data
differ by <1 msec in 81% of the cases. However, the multiple
peaks typically caused by slow stimuli (see, e.g., Figure 3B) are

only partially reproduced, indicating that the high temporal pre-
cision of subsequent spikes in multiple bursts is not captured by
the simulations. Notice that refractoriness needs to be included
in the model, otherwise the first peak in the correlation function
shifts to T = 0. Moreover, if the stimulus is not thresholded, the
statistics of the modeled cell differs markedly from the real one.
This is shown in the lower subpanels of Figure 3, where the cor-
relation function of a purely linear model with the same filter
characteristics as the real cell is depicted. This model completely
fails to capture the basic statistics of the experimental data, as
can be judged from the absence of both the refractory period
and the sharp peak in the correlation function.

QUANTITATIVE DESCRIPTION OF THE INFORMATION

TRANSMITTED BY BURSTS

Since the stimulus characteristics have a strong effect on the
probability of burst generation, the number of spikes in a burst
may encode specific stimulus aspects. If this hypothesis is indeed
true, even a reduced burst representation of the spike train
should carry information about the stimulating sound wave.
The purpose of the present section is to translate this general
idea into a quantitative information-theoretical analysis.

We represent the spike train as a sequence of non-negative
integer numbers 7, each number indicating the intra-burst spike
count of the burst whose first spike falls in a small time window
[t, £+ O1] (see Figure 4B, for an example). This representation
should be compared to the more typical binary representation
(Figure 4A), where each digit in the sequence indicates the pres-
ence or absence of a spike in the relevant time bin. As shown
in some of the examples of Figure 2, the binary representation
often contains strong temporal correlations. The very defini-
tion of an n-burst aims at bundling highly correlated spikes into
a single burst event. Hence, the representation in terms of bursts
necessarily reduces the statistical dependence between different
time bins, as seen in Figure 6. In Figure 6A we show the Pearson
correlation coefficient c(#, T) between spikes at times t and
t+ 7T (see Materials and Methods), in an example cell. For com-
parison, Figure 6B exhibits the correlation coefficient ¢,(t )
between bursts at times tand t+ T (see Materials and Methods),
of the same spike train. For small T-values, the plot in Figure 6A
shows a number of peaks, that are absent in Figure 6B. For the
cell shown in Figure 6, the mean value of ¢?(t,T) averaged over
all e [200, 990 msec] and T € [0, 10 msec] is 2.94 times larger
than the corresponding mean of c; (¢,7). The population average
of this ratio on all bursting sessions is 2.89 (SD 1.49).

Figure 6C depicts the Pearson correlation coefficient ¢ (1),
averaged both over all trials and all times ¢ (see Materials and
Methods). For comparison, the Pearson correlation coefficient
¢,(T) obtained with an n-burst representation of the spike train
is shown in Figure 6D. The most prominent peak of ¢ appears
markedly diminished in c,. This reduction demonstrates that
bursts are more independent from each other than individual
spikes.

Given the additive properties of information (Cover and
Thomas, 1991), if in one particular case, a collection of events
can be shown to contain independent elements only, then the
information transmitted by the collection is the sum of the
information transmitted by the individual events. Figure 6
shows that the correlations between bursts are not strictly 0.
Yet, if they can be assumed to be negligible, and if there are no
higher order correlations, then the mutual information trans-
mitted by the train of bursts can be easily calculated from the
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Figure 6 | Pearson correlation coefficient for a sample cell. (4) Coefficient
c(t,7) between spikes generated at times rand ¢ + 7. The scale [also valid for
(B)] is given in the upper-right corner. (B) Coefficient c (7, 1) between bursts
generated at times ¢ and ¢+ 1. (C,D) Coefficients c(t) and c,(t) between
spikes and bursts, respectively. In (4) and (C), a pronounced peak is seen for
c,ataround T = 3 msec. In (C), there is also an initial negative plateau. These
structures are markedly reduced in ¢, (B) and (D), underscoring that generic
spikes are more correlated than classified bursts.

information in small time bins (see Materials and Methods, and
Brenner et al., 2000).

In Figure 7, the information transmitted by burst firing is
depicted for a sample cell, the left half of the figure correspond-
ing to the experimental data, the right half to the threshold-linear
model with refractoriness. Figure 7A depicts the average infor-
mation I'" provided by each n-burst. The higher the intra-burst
spike count 7, the more informative the event is. To evaluate the
significance of this trend, we fitted the data with a straight line,
and evaluated the sign of the resulting slope, taking the esti-
mated error bar of the fit into account. In the upper right corner
of Figure 7A, the value of the slope and its estimated error bar
is indicated. Since 7 is dimensionless, slopes are also measured
in bits. To assess how often I, was increasing at the population
level, the analysis was repeated for all recorded bursting cells. All
sessions had significantly positive slopes. Figure 7B shows the
distribution of slopes throughout the population. The average
slope across the 59 bursting cells was 1.5 bits (SD 0.7 bits).

The information per burst I'” is proportional to the dissimi-
larity between the time-dependent probability density r () of
an n-burst (see Materials and Methods) and a time-independent
distribution of the same mean rate 7 . As such, it is large when-
ever r (t) is a highly uneven function of time, almost always
equal to 0, and only seldom exhibiting a sharp peak at a single,
or at most a few, particular values of t. A burst is therefore a
good candidate to transmit a large amount of information per
event if it happens rarely (in each single trial), reliably (in a
large fraction of the trials), and with high temporal accuracy.
Figures 7C,E depict the frequency of occurrence 7 /3. 7 and the
amount of jitter of different n-bursts, respectively. Figure 7C

Burst firing is a neural code

shows that high-# bursts occur seldom. This result was also
observed in all other recorded cells: the frequency of occur-
rence always decreased significantly with n. The population data
in Figure 7D had an average slope of —2.6, with SD of 0.7. In
Figure 7E, the amount of jitter in the first spike of the burst is
shown to be fairly constant with n. At the population level, in
80% of the bursting sessions the amount of jitter was roughly
independent from # (the best linear fit had a slope that was not
significantly different from 0). The remaining 20% showed a
mild dependence, but with no uniform trend, as shown by the
population data in Figure 7F. The mean slope was —0.03 msec
(SD 0.2 msec). The combined effect of an event probability that
diminishes strongly with n (Figure 7C) and a jitter that is fairly
constant with n (Figure 7E) results in an information per event
I Ll) that increases with # (Figure 7A).

The mutual information rate I of all n-bursts is proportional
to the product of the rate of n-bursts 7, and the mean informa-
tion transmitted by each n-burst I (see Materials and Methods).
I’ strongly decreases with n (Figure 7G). Similar results were
obtained in all other recorded sessions (Figure 7H), with an
average slope of —11 bits/s (SD 16 bits/s). The total information
rate I’ transmitted by the cell in Figure 7 is, under the independ-
ence assumption, the sum of all the columns in Figure 7G, i.e.,
220 bits/s. Although isolated spikes are the events transmitting
information at the highest rate, the collection of all n > 1 bursts,
taken together, provide no <69% of the total information. The
population average of this fraction among all bursting cells
was 47%. Bursts, therefore, constitute an important part of the
neural code employed by grasshopper auditory receptors.

The right half of Figure7 shows the results obtained for
threshold linear model neurons with added refractoriness.
For each recorded cell a simulation was carried out, with the
same threshold, refractory period, and filter characteristics as
the real neuron. A comparison between the left and right pan-
els of Figure 7 reveals that the model reproduces the general
trends observed in the experimental data, both at the single-
cell and population level. Note that the model has no free fit
parameters.

The procedure introduced here allows one to calculate mutual
information rates between time-dependent stimuli and burst
responses in a straightforward fashion. However, apart from
assuming independence, the method contains one additional
assumption. We have grouped all bursts with » spikes into one
single type of event, even if among those n-bursts there might be
subtle differences in the size of the ISIs. The first peak in the cor-
relation function has a certain width, so not all the spike doublets
classified as a 2-burst are separated by exactly the same interval
(see Figure 4 for an example), and the same holds for all n> 1.
If those differences were systematic, they could transmit addi-
tional information about the stimulus. This type of information
would be lost through our procedure. We have, however, verified
that subsequent spikes inside a burst have larger amounts of jit-
ter than the first spike (data not shown). This suggests that the
fine temporal resolution in the spiking times of the subsequent
spikes is not crucial to information transmission.

In order to assess whether this is actually the case, we have
compared the information rates obtained with our procedure
with those resulting from the so-called direct method (Strong
etal., 1998). In this method, the spike train is segmented into
binary strings where the presence of a spike in a given time bin
is indicated by a 1, and silence is denoted by 0. A word is then
defined as a finite sequence of binary digits. The direct method
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Figure 7 | Information transmitted in burst firing. Left half of the figure: Experimental data. Right half of the figure: Threshold linear model with refractori-
ness. Left column: Data from the example cell of Figure 3, with best linear fits. Their slopes are given in the upper-right corner, with their errors. Right column:
Population data showing the distribution of slopes of the linear fits for the quantities of the left column. (4) Average information transmitted by each n-burst. The
information transmitted per burst increases monotonously with ». (B) For all cells in the population, the information per burst increases with ». (€) Number of
occurrences of each n-burst. The larger the intra-burst spike count », the more rarely it appears. (D) For all cells in the population, low-# bursts appear more
frequently than high-» bursts. (E) Mean amount of jitter of the first spike of each n-burst. (F) The population data demonstrate that for some cells, the amount
of jitter is a slowly increasing function of », whereas for other cells, it is decreasing. (G) Rate of transmitted information for all #-bursts. Although isolated spikes
(n = 1) are the most frequent events [see (B)] a large fraction of the transmitted information is carried by bursts. (H) For all cells in the population, the informa-
tion rate decreases with n. As shown by these data, the model captures the coding trends of the investigated neurons.

estimates the mutual information between stimuli and responses
from the probability distributions of all words of the spike train,
in the limit of large word lengths. This method has the advantage
of making no a priori assumptions about the neural code. The
drawback is that the size of the response space grows exponen-
tially with the length of the coding words. Due to sampling
problems, in our case it was therefore not possible to extend
the maximal word length beyond 3.2 msec (this includes no
more than 2-bursts), with a temporal precision equal to 0.4 msec.
The sampling bias was corrected using the NSB approach
(Nemenman et al., 2004). The information measures obtained
by our method and by the direct method were highly correlated
(R = 0.95, using all sessions). The population average obtained
with the direct method is 222 + 69 bits/s. With our method,

instead, this average was 191 £ 72 bits/s. In all cases but one, the
information obtained with the direct method was higher than
the one obtained with our method, the average difference being
31 £ 16 bits/s. It is still not clear whether the remaining discrep-
ancies are due to the cogency of the assumptions raised by our
method, or due to the limited word length used in the direct
method. If the direct method can be taken as a reliable estima-
tion, then by ignoring (a) the internal temporal structure inside
bursts and (b) the temporal correlations between bursts, we are
losing 14% of the information. We emphasize, however, that in
contrast to the direct method, our procedure to calculate infor-
mation rates allows one to discriminate which n-bursts are the
most informative ones, and thereby, to gain a better insight into
the neural code.
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QUALITATIVE DESCRIPTION OF THE INFORMATION

TRANSMITTED BY BURSTS

The previous section shows that when the stimulus statistics is
varied, the probability of generating bursts of # spikes varies con-
currently. To quantify the relevance of n-bursts for neural coding,
the mutual information rate associated with burst spiking was
calculated. Since bursts transmit information about the stimulus,
it should be possible to associate different stimuli with different
n-values. We now analyze this correspondence in detail.

There are two quantities of interest (Rieke et al., 1997). The
first one is the probability P[nls(t)] of finding an n-burst in
response to the stimulus s(t). This quantity constitutes a natural
target in experimental studies that systematically explore a given
stimulus space. The second quantity is the probability P[s(1)In]
that a stimulus s(t) was presented, given that the cell generated
an n-burst. This quantity is relevant for reading out a neural
code based on intra-burst spike numbers.

We begin by characterizing P[s(t)ln]. As an example,
Figure 8A depicts 300 msec of an acoustic stimulus (upper
panel) and the corresponding neural (middle) and simulated
(lower panel) responses. The simulated threshold-linear neu-
rons are clearly less precise than the real receptor cells (see also
Figure 7E). We then collected all stimulus segments inducing
burst generation, and aligned them such that burst initiation was
at t=0. The nBTA is defined as the mean value of the aligned
segments. In Figures 8B,C, nBTAs(t) are depicted for the experi-
mental and simulated data, respectively. The grey areas represent
the SD of the average. Height and width of the n-BTA increase
with n. To determine whether this trend is significant, the collec-
tions of stimulus segments corresponding to different n-values
were compared with a two-way ANOVA test (see Materials and
Methods). All recorded and simulated bursting cells exhibited
significantly different n-BTAs, for n ranging between 1 and 4.
We therefore determined the time intervals in which the dif-
ferent nBTAs differed significantly from one another. For each
point in time a t-test was performed, assessing whether a given
nBTA(t) was different from the #’BTA(#) corresponding to other
1’ # n. The result is shown in Figure 8D. For those times t where
significant differences are found, the #nBTA is represented with
a thick line. Most of the central peak in each #nBTA is signifi-
cantly different from the other three curves. Notice that both
the height and the width of the most pronounced peak in the
nBTA increase systematically with n. Moreover, the mean delay
between stimulus upstroke and burst generation decreases sys-
tematically with n. This implies that stimulus deflections that
are either high or wide tend to produce prompt responses, with
high-n bursts. In what follows, the delay T, between the maxi-
mum in each #nBTA and the generation of an n-burst is called
burst latency.

The standard deviation © (1) of all stimuli generating
n-bursts provides a measure of the dissimilarity between the
stimulus segments. If there is a particular T for which ¢ (1)
becomes markedly small, then, for that time 1, the stimuli
preceding an n-burst are noticeably similar to each other. In
Figure 8E, ¢ (1) is depicted. There is a clear minimum ~7 msec
before burst generation, coinciding with the sharp upstroke in
the nBTA. This delay includes sound propagation (=1 msec)
and axonal delays (=2 msec). Notice that the position of this
minimum remains roughly unchanged, as # is varied. Its stand-
ard deviation for different n-values is 0.33 msec, for this cell.
The constancy of the location of the minima also holds at the
population level. The mean standard deviation of the position
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Figure 8 | Definition and characteristics of the »BTA. (4) Acoustic stimulus
(top) and the first 30 (out of 100) trials of the recorded (middle) and simulated
(bottom) neural responses. The AM signal had a standard deviation of 6 dB
and a cutoff frequency of 100 Hz. (B,C) All stimulus segments generating
bursts of a given n were collected together and aligned with respect to the
time of burst initiation to obtain the nBTAs, shown for real (B) and simulated
(C) data. Grey areas represent the SD. (D) nBTAs as a function of time, for
four different values of ». Thick lines mark the segments where each nBTA is
significantly different from the other three, as assessed with a Student’s #test
(p<0.01). (E) The standard deviation of each #BTA as a function of time (see
Eq. 14). Approximately 7 msec before the first spike of a burst is recorded,
the standard deviation shows a minimum, implying that at this moment the
different stimuli preceding an n-burst are most similar. This time lag was
similar for all n.

of the minima of &, (1) was roughly 0.05 times the inverse cut-
off frequency. Its average among all bursting cells is 0.4 msec
(SD 0.7 msec) considering 1 <n<4.

For 98% of the bursting cells and for all #-values, ¢ (1) was
smaller than the standard deviation 6(t) of the stimuli preced-
ing all spikes (prior to any classification). The population aver-
age of the ratio of the minimum value of 6(1) to the n-average
of the minimum values of 6(t) was 1.62 (SD 0.56). The set of
stimuli preceding all spikes thus constitutes a more heterogene-
ous collection than the set of stimuli preceding an n-burst. This
is not surprising. If, say, a burst of three spikes is systematically
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generated after one particular stimulus feature, the STA includes
three time-shifted copies of the relevant feature. This threefold
collection of stimuli has a larger standard deviation than the
set of stimuli preceding a 3-burst. In a related study (Gollisch,
2006), spike-time jitter was shown to broaden the STA. Our data
demonstrate that burst firing, although not necessarily accom-
panied by jitter, gives rise to a similar effect. Therefore, whenever
the tendency to fire bursts is high, the collection of stimuli pre-
ceding spike generation may show a large variance, rendering the
interpretation of the STA of little use. In these cases, the burst-
triggered average may provide additional insight.

Not all bursting cells display #nBTAs as those shown in
Figure 8D. In some cases, for example, the central peak of the
4BTA is slightly lower than that of the 3BTA, though markedly
wider. These differences reflect individual properties of different
neurons. However, out of the 58 sessions where bursting cells
were found, 50 exhibit #nBTAs whose central peaks were signifi-
cantly different from one another — except, of course, at those
points where the curves cross. The remaining eight sessions cor-
responded to cases where bursts appeared only seldom, thereby
contributing with a number of samples that was too small to
assess significant differences.

A burst is a sequence of shortly interleaved spikes. Could
the nBTAs obtained for high n-values shown in Figure 8D have
been obtained by combining a sequence of n interspaced 1BTAs,
or even STAs? To answer this question, in Figure 9A we compare
the same 4BTA depicted in Figure 8D with a curve obtained by
combining four 1BTAs interspaced with the ISIs found in the
real data. The shaded areas represent the SD of the averaged data.
We see that the two curves are clearly different from each other,
the real 4BTA being markedly higher and wider than the com-
bined 1BTAs. This implies that the stimulus deflections trigger-
ing bursts of n = 4 are significantly higher than those required to
generate four spikes of n= 1.

To test other cells in the population for the same effect, for
each n we determined the fraction of sessions for which the
nBTA differed significantly from the combined 1BTAs (or STAs)
in an interval extending between the two minima at each side of
the central maximum of the #BTA. This comparison was done
by means of a two-way ANOVA (see Materials and Methods).
Black bars depict the fraction of cells where a significant dif-
ference was found. Among the cells that exhibited significant
differences, we tested whether the difference could be observed
in a substantial fraction of the tested interval. To that end, we
carried out a Student’s t-test for each time point within the
time interval between the two minima at each side of the maxi-
mum of the nBTA (see Materials and Methods). We counted
the cells showing significant differences in more than the 70%
of the tested interval. The results are depicted in grey bars in
Figure 9B. A large fraction of the cells show a significant differ-
ence, for both real and simulated data. Hence, also at the popu-
lation level, the nBTAs differ significantly from the convolved
1BTAs. As n increases, the number of sessions with significant
differences diminishes. This is a consequence of the fact that for
larger n, there are fewer n-bursts, and therefore, the error bar of
the estimation of the nBTA increases. As an additional check, we
repeated the analysis by convolving n shifted copies of the STA,
instead of the 1BTA, obtaining similar results.

Finally, we checked that for the same stimulus, the nBTAs of
different cells showed a similar trend, as # varied. The population
average was taken after subtracting the mean stimulus to each
nBTA because different receptors were recorded with different
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Figure 9 | Analysis of the nBTAs. (A) Comparison between the 4BTA obtained
for the cell depicted in Figure 8D and the function that results from convolving
four 1BTAs interspaced by the ISIs found in the real data. Thick lines denote
segments that differ significantly between the two cases. Shaded areas rep-
resent the standard deviation of the averaged data. The estimated error of
the 4BTA and the convolved 1BTA is ~10 times smaller than the SD of the
averaged data. (B) Black bars: Percentage of cells for which the real nBTA
differs from the convolved 1BTA anywhere inside the time interval between
the two minima at each side of the maximum in the #BTA, as assessed by a
two-way ANOVA test. Grey bars: percentage of cells where a significant dif-
ference was found in at least 70% of the tested time interval, as assessed by
a point-by-point Student’s +test. (C) Population average of the 1BTA, 2BTA,
and 3BTA for the seven cells driven with an AM signal with 100 Hz cutoff
frequency and 6 dB standard deviation. Shaded areas represent the SD of
the average. Black: SD of the 1BTA. Grey: SD of the 2BTA. Light grey: SD of
the 3BTA. (D) Same as (C), but obtained from simulated threshold-linear cells
with refractory period.

mean stimuli (see Materials and Methods). In addition, since
different cells showed different latencies T , all stimulus segments
were shifted by T_before averaging, and then shifted back after-
wards. Figure 9C demonstrates that also at the population level,
high-# bursts are associated with either higher or wider stimu-
lus deflections (or both). The large error bars indicate that there
is no absolute value of a stimulus fluctuation that uniquely trig-
gers bursts of a given n-value, throughout the population. The
qualitative behavior is also reproduced by the threshold-linear
model with refractory Period (Figure 9D). We conclude that
both in real and modeled data, high-# bursts are associated with
high or wide stimulus deflections.

Let us turn to the analysis of P[nls(t)] and describe how this
quantity varies with the height of the deflections in s(t). The
shape of the nBTAs (Figure 8D) demonstrates that the aver-
age stimulus preceding an n-burst always contained a promi-
nent up-and-down excursion, whose maximum was located
some T, milliseconds before burst initiation. This indicates that
there is an association between upward stimulus excursions and
burst generation. Can we assert that the probability of generat-
ing a burst of n spikes at a given time depends on the size of
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spike (black, solid line), a spike doublet (dark grey) or triplet (grey), or
a burst with four spikes (light grey line) as a function of the height of
the stimulus deflection, for an example cell. The uncertainties of these
probabilities have been estimated (Samengo, 2002), and the absolute error
was always below 0.025. The segregation between the lines indicates that
the number of spikes in a burst contains information about the height of the
stimulus upward excursion preceding the burst.

the upward stimulus excursion? In order to explore this ques-
tion, we estimated the probabilities P(nlh) of obtaining bursts
of n spikes following an upward stimulus excursion of height h
(see Materials and Methods). For an example cell, Figure 10
shows a marked segregation between the responses elicited by
deflections of different heights. Whereas fairly low excursions
produce either no response (dotted line) or an isolated spike
(black, solid line), large deflections are associated with dou-
blets (dark grey), triplets (grey), or bursts with four spikes (light
grey line). All cells showing a bursting behavior exhibited this
phenomenon.

DISCUSSION

The role of burst firing for neural coding has been studied
extensively in systems where individual neurons have an intrin-
sic tendency to burst. Typical examples are electrosensory neu-
rons of electric fish (Metzner et al., 1998; Oswald et al., 2004)
and thalamic relay cells in the visual systems of cat (Alitto et al.,
2005; Denning and Reinagel, 2005; Lesica etal., 2006) and
mouse (Grubb and Thompson, 2005). For downstream neu-
rons, however, it is irrelevant how bursts are generated. All that
matters is their representational properties, i.e., their structure
and coding capability. Therefore, we have focused on the cod-
ing properties of cells that lack intrinsic burst mechanisms. In
particular, we wanted to know how much sensory information is
transmitted and which symbols in the neural code are associated
with each stimulus feature. To that end, we analyzed the activ-
ity of grasshopper auditory receptor neurons and simulated
neurons, both lacking intrinsic bursting mechanisms. We first
introduced a criterion that allowed us to determine the cases
where a neural response could be considered as a sequence of
bursts. Next, we explored a code based on the intra-burst spike
count n. We estimated the information transmitted by this code,
and characterized the correspondence between specific stimulus
features and specific n-values. We observed that long bursts are
associated with particularly high or long stimulus excursions,
and that this effect could not be reproduced by concatenating

Burst firing is a neural code

the stimuli generating short bursts. In the following subsections,
we discuss our results in the context of previous studies.

BURST IDENTIFICATION BENEFITS FROM CONSIDERING

NEURAL RESPONSE STATISTICS

In previous analyses, burst identification typically relied on
strict boundaries on the ISIs (see, for example, Alitto et al., 2005;
Denning and Reinagel, 2005; Lesica and Stanley, 2004; Oswald
et al., 2004). This is appropriate for cells that have intrinsic burst
mechanisms with fairly rigid time constants. However, neurons
that do not burst intrinsically exhibit intra-burst ISIs of variable
duration, depending on the temporal properties of the stimulus
as shown by a comparison of the peak widths in Figures 3B,G.
Hence, in this work the criterion used to determine whether two
consecutive spikes were or were not part of a burst was uniquely
tailored for each session. Note that if a cell is classified as non-
bursting, this does not imply that it does not generate bursts at
all, but rather, that the intra-burst ISIs (if present) cannot be
cleanly separated from the inter-burst ISIs. In these cases it is not
possible to interpret the neural code in terms of distinct words
formed by closely spaced spikes.

BURST CODING DOES NOT REQUIRE INTRINSIC BURST DYNAMICS
Not all cells investigated in this study were bursters: Some cells
bursted in response to some stimuli, and responded tonically
to other stimuli. Indeed, grasshopper receptors do not burst
when driven with constant or step stimuli (Gollisch and Herz,
2004; Gollisch et al., 2002). In other studies, the time-scales of
stimuli eliciting bursts have often been related to the particular
ionic currents involved in burst generation (Alitto et al., 2005;
Denning and Reinagel, 2005; Dorion et al., 2007; Krahe and
Gabbiani, 2004; Lesica et al., 2006). Oswald et al. (2004) also
presented a mathematical model in which bursts were only
able to support efficient feature detection when a specific active
dendritic backpropagation was present. Our results, however,
demonstrate that burst-coding does not require complex intrin-
sic neural dynamics, as shown by our minimal computational
model (see Keat etal., 2001, for another example). Although
simulated neurons were in general less precise than real neu-
rons, they showed similar correlation functions (Figure 3), and
coding properties (Figures 7 and 8). These findings underscore
that the tendency to burst does not need to be an intrinsic pro-
pensity of the cell per se, but may arise as a consequence of how
its cellular properties interact with the temporal characteristics
of the external stimulus. Our system, therefore, is an example
of stimulus-induced bursting as previously reported by Neiman
et al. (2007).

COMPARISON WITH OTHER NEURAL CODES

We have assumed that the relevant code symbols are the time
at which a burst is initiated, and the intra-burst spike count n.
There are, however, other burst-based neural codes that have
been explored previously. For example, Kepecs etal. (2002,
unpublished) reported that the relevant information can be
encoded in the total duration of a burst. In the cells of our
study, n was proportional to burst duration (data not shown).
This implies that for those neurons a code based on the intra-
burst spike count # is equivalent a burst-duration code. On the
other hand, in electrosensory neurons of electric fish, ISIs in
bursts with two spikes depend on the amplitude of electric-field
upstrokes was encoded in the duration of ISIs of bursts of n =2
(Oswald et al., 2007). Grasshopper auditory receptors, however,
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have rather narrow ISI range of at most 3 msec, to be compared
with the typical range of 8 msec in electric fish. We have there-
fore not explored a code utilizing the intra-burst ISI length.

Previous studies have also reported n-based neural codes
in different sensory modalities. In visual cortex, for example,
n depends on stimulus orientation, as shown by DeBusk et al.
(1997), Martinez-Conde et al. (2002) and others. In the verte-
brate retina, n carries information about the stimulus history
preceding burst initiation (Berry et al., 1997). Experimental data
from cat LGN (Kepecs et al., 2001; Kepecs et al., unpublished)
and computational models (Kepecs et al., 2002) demonstrate
that n can encode the slope of stimulus upstrokes.

We would like to emphasize that an n-burst code differs from
a firing-rate code. Within a firing-rate code, each point in time
is associated with a specific time-dependent firing rate. This rate
may be computed as an instantaneous firing rate from local ISIs,
or by convolving the spike train with a certain filter function.
In either case, the precise time course of the original spike train
may be fully recovered. This is not true for the n-burst code,
where information about the exact spike times within each burst
is lost — in essence, the code only looks at whether there is a spike
within the time interval defined through the correlation func-
tion, or not. Thus, the n-burst code provides a highly reduced
representation, and not a full firing-rate code.

Our analysis shows, however, that in spite of this reduction
the n-burst code still contains a large fraction (~85%) of the total
transmitted information, as deduced from comparing our results
with the direct method. In addition, by parsing the responses
into code-words, the code is amenable for read-out. Our results
show significant differences between the stimuli encoded by dif-
ferent n-values and reveal those stimuli explicitly.

IMPLICATIONS FOR THE NEURAL CODE

We have also derived a procedure to calculate the mutual infor-
mation rate between stimuli and responses if different bursts
can be assumed to be independent from each other. This tech-
nique should be extended with caution to other systems since
the small size of inter-burst correlations found in grasshopper
auditory receptors may not be shared by other sensory systems.
In addition, vanishing inter-burst correlations do not guarantee
that the bursts be independent. Higher-order correlations could
still be present. Our approximation assumes that those terms
can be neglected when computing information measures.

The consequence of assuming that different n-bursts are
independent from one another is that the total transmitted
information may be decomposed into the sum of the informa-
tion transmitted by each n-burst. This allows one to quantify
which n-values are most relevant. Our data show that n-bursts
with 1> 1 can transmit at least the same amount of information
as isolated spikes (n=1).

To analyze the relation between particular n-values and the
stimuli represented by these bursts, we calculated burst-triggered
averages for each n. The set of stimuli preceding different n-values
differed significantly from one another. Specifically, n was shown
to be reliably associated to the height of the stimulus upstroke
preceding burst generation. In some cells, a weak dependence on
the width of the amplitude deflection, its slope, and its integral
was observed, too (data not shown). However, at the population
level, the stimulus feature that most reliably co-varied with n was
the maximal height of the AM signal.

The two aspects that seem to be most relevant for informa-
tion transmission, i.e., the time at which a burst is initiated and

the intra-burst spike count #n, would also be good candidates to
represent what in the literature has been distinguished as the
when and the what in a stimulus (Berry et al., 1997; Borst and
Theunissen, 1999; Theunissen and Miller, 1995). In our data,
bursts containing different numbers of spikes are associated with
sound fluctuations of different heights and widths. The n-value
thus provides qualitative information about two key stimulus
aspects. In addition, the time at which a burst begins indicates
when the corresponding acoustic feature occurred. Notice
that both aspects are interwoven, because the response latency
decreases with increasing n. To decode the precise arrival time
of an acoustic signal, downstream neurons therefore also need
to read out the intra-burst spike count n. This provides addi-
tional independent evidence for the usefulness of the n-burst
code investigated in this study.
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