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Behavioral observations suggest that multiple sensory elements can be maintained for a short time, 
forming a perceptual buffer which fades after a few hundred milliseconds. Only a subset of this 
perceptual buffer can be accessed under top-down control and broadcasted to working memory 
and consciousness. In turn, single-cell studies in awake-behaving monkeys have identifi ed two 
distinct waves of response to a sensory stimulus: a fi rst transient response largely determined by 
stimulus properties and a second wave dependent on behavioral relevance, context and learning. 
Here we propose a simple biophysical scheme which bridges these observations and establishes 
concrete predictions for neurophsyiological experiments in which the temporal interval between 
stimulus presentation and top-down allocation is controlled experimentally. Inspired in single-cell 
observations, the model involves a fi rst transient response and a second stage of amplifi cation and 
retrieval, which are implemented biophysically by distinct operational modes of the same circuit, 
regulated by external currents. We explicitly investigated the neuronal dynamics, the memory 
trace of a presented stimulus and the probability of correct retrieval, when these two stages were 
bracketed by a temporal gap. The model predicts correctly the dependence of performance with 
response times in interference experiments suggesting that sensory buffering does not require a 
specifi c dedicated mechanism and establishing a direct link between biophysical manipulations 
and behavioral observations leading to concrete predictions.
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primary visual cortex is delayed 60–100 ms relative to the outset 
of the neuronal response, itself unaffected by the saliency of the 
contour or attentional state (Li et al., 2006). Similarly, during a 
memory-guided visual search task, cells in infero-temporal cor-
tex elicit an early response and only after about 150–200 ms this 
response bifurcates showing an enhanced response for targets com-
pared to distractors (Chelazzi et al., 1993, 1998).

In all these experiments, the latency of the second wave is deter-
mined by the intrinsic timing of the allocation of attention. The bio-
physical mechanisms involving this second wave are debated, and 
it has been argued that they involve, top-down control by feedback 
connections, but also, local-competition and recurrent connections 
within the same cortical modules (Gilbert and Sigman, 2007).

The consequences of bracketing the stimulus presentation and 
the allocation of attention in an experimentally controlled tem-
poral interval have been extensively explored in behavioral and 
neurophysiological experiments in human subject. Sperling and 
colleagues discovered that while only a few (3–5) elements from 
a stimulus array can be remembered, many more items can be 
reported when subjects are required to identify a cued subset of 
items at a short (less than a second) interval after the removal of 
the visual display (Loftus et al., 1992; Sperling, 1960), indicating 
the existence of a transient high-capacity initial memory – referred 
in the vision literature as iconic memory (Averbach and Coriell, 
1961; Chow, 1986; Coltheart, 1980; Loftus et al., 1992; Lu et al., 
2005; Sperling, 1960; Turvey and Kravetz, 1970).

INTRODUCTION
Multiple stimuli are continuously being processed in parallel by the 
sensory systems, eliciting a brief transient sensory response which in 
most cases fades after few hundred milliseconds, without reaching 
working memory, executive control and consciousness. Theoretical 
and computational models have proposed two-stage or workspace 
models of information fl ow in perceptual tasks. The fi rst stage involves 
an effortless parallel processing of multiple sensory elements and is 
available to the system only for a short-time. At a second stage, only a 
subset of the iconic buffer is amplifi ed under top-down control, sus-
tained and broadcasted to become accessible for conscious processing 
(Baars, 1989; Chun and Potter, 1995; Dehaene et al., 1998).

Support for this idea comes from single-cell physiology in awake-
behaving monkeys which have shown that a visual stimulus evokes 
a rapid transient response (the feed-forward sweep) followed by 
a second wave of activity, which is thought to involve recurrent 
processing (Lamme and Roelfsema, 2000; Lamme et al., 2000; Lee 
et al., 2002; Li et al., 2006; Roelfsema et al., 2000). In absence of 
prior stimulus expectation or specifi c task-setting context, the fi rst 
transient response is largely determined by stimulus properties and 
is unaffected by fi gure-ground signals, the presence of a concurrent 
mask or the behavioral relevance of the stimulus. On the contrary, 
the second wave is modulated by contextual aspects affecting the 
visibility of the stimulus such as fi gure-ground signals and is sup-
pressed by anesthetics (Lamme et al., 1998). For example, during 
a contour detection task the neural signal for contour  saliency in 
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A second experimental strategy to separate experimentally the 
timing of stimulus presentation and top-down control involves 
dual-task interference experiments (Duncan et al., 1994; Pashler 
and Johnston, 1998; Raymond et al., 1992). When two tasks are 
presented in rapid succession, and the second stimulus is unmasked, 
a systematic delay is observed in the execution of the second stage 
of the second task, a phenomenon referred as psychological refrac-
tory period (PRP) (Pashler and Johnston, 1989; Smith, 1967). If the 
second stimulus is masked, its visibility diminishes severely, even 
with moderate masking, a phenomenon referred as the attentional 
blink (AB, Raymond et al., 1992). These two forms of interference 
have been combined in a common experiment (Jolicoeur, 1999; 
Wong, 2002), and it has been shown that visibility of the second 
stimulus decreases exponentially as the response time to the fi rst 
task increases (Jolicoeur, 1999). The temporal constant of this decay 
is of a few hundred milliseconds, suggesting that it may be related 
to the decay of iconic memory, however, the nature and biophysical 
specifi city of this sensory memory is not understood and requires 
theoretical and experimental investigation.

Here we establish a biophysical model intended to bridge the 
partial retrieval of sensory information – as determined in par-
tial report and AB experiments – to the two-stage organization of 
responses in visual areas of awake-behaving monkeys. We show that 
a simple model, involving a fi rst initial transient response followed 
by a forced competition set out by top-down currents can account 
for these observations implying that there is no need to postu-
late a specifi c region or circuit for sensory buffering. The model 
establishes concrete predictions of the duration of this memory 
and of the probability of correct retrieval as experimental (the 
time between stimulus and top-down control, masking, stimulus 
strength…) and biophysical (the strength of recurrent connections 
and top-down currents) parameters are varied.

MATERIALS AND METHODS
The cortical model used in this work has been developed by XJ 
Wang and collaborators (Brunel and Wang, 2001; Wang, 2002; 
Wong and Wang, 2006). Unless mentioned, all parameters are set 
as in these previous studies. The external currents are varied to 
simulate the different experiments of interest in this study.

SPIKING NETWORK
The spiking neural network (Wang, 2002) is composed of 2,000 (N) 
leaky integrate and fi re neurons, N

e
 (total 1,600, 80%) pyramidal 

and N
i
 (total 400, 20%) inhibitory neurons. From the N

e
 excitatory 

neurons, f × N
e
 neurons are selective to target 1 and a non overlap-

ping group composed of f × N
e
 neurons are selective to target 2. The 

rest of the excitatory cells [N
e
 × (1 − 2 × f)] are not selective to any of 

the two targets. Thus the network is divided in four homogeneous 
populations: two excitatory selective, one excitatory non-selective, 
and one inhibitory.

In the simulations, N = 2,000, N
e
 = 1,600, N

i
 = 400, f = 0.15.

Both pyramidal cells and interneurons are described by leaky 
integrate-and-fi re neurons. The sub-threshold membrane potential 
evolves according to:

C
V

t
g V t V I tm L L syn

d

d
= − − −( ( ) ) ( )

where I
syn

(t) represents the total synaptic current fl owing into the 
cell, C

m
 is the membrane capacitance (0.5 nF for pyramidal cells 

and 0.2 nF for interneurons), V
L
 = −70 mV is the resting potential, 

and g
L
 is the membrane leak conductance (25 nS for pyramidal cells 

and 20 nS for interneurons). When the membrane potential reaches 
the threshold V

tresh
 = −50 mV a spike is emitted, and V(t) is reset to 

V
res

 = −55 mV. Post-spike refractory period τ
ref

 is 2 ms.
The network is endowed with all-to-all connectivity. All external 

currents including background noise, top-down and bottom-up 
currents are mediated exclusively by fast AMPA receptors. Recurrent 
excitatory currents within the module are mediated by AMPA and 
NMDA receptors, while inhibition is mediated by GABA receptors. 
The total synaptic input to each cell is given by:
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∑
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V
E
 = 0 mV and V

I
 = −70 mV are reversal potentials for excitatory 

and inhibitory neurons. The concentration of Mg2+ controlling the 
voltage dependence of NMDA currents is set to 1 mM. The sum 
over j represents a sum over the synapses formed by presynaptic 
neurons j. The dimensionless weights w

j
 determine the structure 

of excitatory recurrent connections (see below).
Gating variables (fraction of open channels) are described as 

follows. For AMPA channels:

d

d

AMPA AMPAS t

t

S t
t tj j

AMPA
j
k

k

( ) ( )
( )= − + −∑τ

δ

where τ
AMPA

 = 2 ms. t j
k is the time of the spike k emitted by presy-

naptic neuron j.
Each neuron receives large amounts of external noise, simulated 

as spikes arriving to each cell independently at an average frequency 
of 2.4 kHz, which simulates a neuron receiving input from 800 neu-
rons fi ring at a spontaneous rate of 3 Hz, independent from cell 
to cell. As a result of this noisy input (assumed Poisson), neurons 
inside the module fi re at a spontaneous rate of ∼3 Hz.

As described in the “Results” section, we submit the model to 
a series of two stages, defi ned by the particular confi guration of 
external currents (top-down, bottom-up) These two stages are 
separated (bracketed) in time by an experimentally controlled 
variable which we refer to as the buffer. In the fi rst stage, which 
corresponds to the bottom-up stimulation generated by stimulus 
presentation, external inputs are increased for both populations 
of selective neurons, in 240 Hz for the population with higher 
selectivity and in 120 Hz for the population with lower selectivity. 



Zylberberg et al. Decay and retrieval of sensory information

Frontiers in Computational Neuroscience www.frontiersin.org March 2009 | Volume 3 | Article 4 | 3

This stimulation lasts 100 ms and is followed by a mask, which is 
modeled as an increase in the external inputs to the non-selective 
cells from the spontaneous rate of 2.4 to 2.88 kHz, also during 
100 ms. In the second stage top-down control is directed to the 
network, modeled as a constant increase to the external input to 
all excitatory cells (both selective and non-selective) from 2,400 
to 2,544 Hz.

NMDA channels are described by

d

d

d

NMDA NMDA

NMDA,decay

NMDA
S t

t

S t
x t S t

x

j j
j j

j

( ) ( )
( )[ ( )]

(

= − + −
τ

α 1

tt

t

x t
t tj

j
k

k
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( )

d NMDA,rise

= − + −∑τ
δ

where the decay time of NMDA currents is τ
NMDA,decay

 = 100 ms, 
α = 0.5 ms−1, and τ

NMDA,rise
 = 2 ms. The GABA synaptic variable 

follows:

d

d

GABA GABA

GABA

S t

t

S t
t tj j

j
k

k

( ) ( )
( )= − + −∑τ

δ

where the decay time constant of GABA currents is τ
GABA

 = 5 ms. 
All synapses have a latency of 0.5 ms.

The synaptic conductances adopted are (in nS): for pyramidal 
cells, g

ext,AMPA
 = 2.1, g

rec,AMPA
 = 0.05, g

NMDA
 = 0.165, and g

GABA
 = 1.3; 

for interneurons, g
ext,AMPA

 = 1.62, g
rec,AMPA

 = 0.04, g
NMDA

 = 0.13, 
and g

GABA
 = 1.0. These values are the same as those used by Wang 

(2002).
The network is endowed with all-to-all connectivity. 

Connections are structured according to a “Hebbian” learning 
rule: coupling strength between pairs of neurons is considered to 
be high for neurons inside a selective population, and low when 
connecting neurons from competing populations. Specifi cally, for 
synapses connecting neurons within the same selective population, 
a potentiated weight w

j
 = w+ was adopted, where w+ is a number 

larger than one, here set to w+ = 1.66. For connections between 
distinct selective populations, and from non-selective to selective 
populations, w

j
 = w−, where w− is a number smaller than one, is 

a measure of the strength of the synaptic depression. In order to 
maintain the spontaneous activity of the network as w+ is varied 
(Amit and Brunel, 1997), w− = 1 − f(w+ − 1)/(1 − f). For all other 
connections w = 1.

REDUCTION TO THE TWO-NODE MODEL
The simplifi ed model used in this work is derived by (Wong and 
Wang, 2006), where a “mean-fi eld” approach was followed to reduce 
the 2,000 spiking-neurons model just described to one with only 
two coupled differential equations capturing central aspects of the 
original model. Details on this derivation can be found in their 
original publication (Wong and Wang, 2006).

In the two-node network, each node represents the activity of 
one of the two selective populations. This activity is described by the 
output synaptic gating variables (“proportion of open  channels”), 
whose dynamics follows:

d

d

S

t

S
S Hi i

s
i i= − + −

τ
γ( )1

where i = 1, 2 identifi es the selective population. τ
s
 = 100 ms, and 

γ = 0.641. H
i
 is the simplifi ed input–output function for neuron i 

(Abbott and Chance, 2005):

H
ax b

d ax bi
i

i

= −
− − −1 exp[ ( )]

x J S J S I I I IN N1 11 1 12 2 0 1 1= − + + + +, , , ,stim td noise

x J S J S I I I IN N2 22 2 21 1 0 2 2= − + + + +, , , ,stim td noise

During stimulus presentation, bottom-up currents are increased 
during 50 ms according to:

I Ji istim A ext stim, , ,= μ

where i = 1,2 identifi es the population being stimulated. Bottom-up 
currents are step-functions and are set 100 ms after the beginning 
of the trial.

Also just as in the spiking model, top-down control is modeled 
as an increase in external currents, equally for both populations:

I Jtd A,ext td= μ

Top-down currents are also step-functions, and the temporal 
gap (buffer) between stimulus and top-down control is calculated 
as follows in the speeded AB simulations (Figure 4):

Buffer RT SOA= − −max( , )0 1 P

The perceptual latency of the fi rst task (P) is fi xed at 50 ms. 
RT

1
 is the response time to the fi rst task. Each of the four curves 

in Figure 4A was constructed by adopting four different values for 
RT

1
, according to the averaged response times observed experimen-

tally after binning trials in quartiles (Jolicoeur, 1999): RT
1
 = [492, 

592, 673, 827] ms. The stimulus onset asynchrony (SOA) is the 
time between the onsets of the fi rst and second stimulus in the 
AB experiment. In Figure 4, SOA = [100, 200, 300, 400, 500, 600, 
700, 800] ms.

Noise is added as an additional current, described by:

τ η τ σnoise
noise

noise noise noise

d

d

I t

t
I t ti

i i
,

,

( )
( ) ( )= − + 2

where η
i
 is Gaussian white noise with zero mean and unit variance.

Parameters have been slightly adjusted from those in previous 
studies (Wong and Wang, 2006) to replicate Jolicoeur’s (1999) 
experiment.

The remaining parameter set is: a = 270(VnC)–1, b = 108 Hz, 
d = 0.154 s, τ

noise
 = 2 ms, J

N,11
 = J

N,22
 = 0.22 nA, J

N,12
 = J

N,21
 = 0.08 nA, 

J
A,ext

 = 5.2 × 10–4 nA Hz−1, I
0
 = 0.3255 nA, µ

stim,1
 = 96 Hz. µ

stim,2
 = 

64 Hz, µ
td

 = 70 Hz, σ
noise

 = 0.026 nA.
Numerical solutions were calculated with fi rst-order Euler’s 

method, with a time step of 0.5 ms. Results were verifi ed for time 
steps of 0.05 ms, with similar results.

PARTIAL REPORT
In the partial report experiment the set of competing responses 
is composed of 26 letters. We constructed a simple model where 
each of these letters is represented by a variable with a normalized 
output in the range (0, 1). For simplicity, we neglect any interaction 
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between letters in different positions of the stimulus array and thus 
the eight different locations are modeled independently.

The activity of neural populations describing each of the N = 26 
possible letters in a given location is described by x

j
:

τ
d

d
noise

x

t
x F c j k x u I Ij

j k j
k

N

j= − + − + + +
⎛
⎝⎜

⎞
⎠⎟

+
=

−

∑ ( ) 0
0

1

where I
j
 is the external input to population j, u is a global inhibitory 

input that depends on the total excitation, I
0
 = 0.22 is a constant 

input bias, and τ = 100 ms. Coeffi cient c(i) specify the weight of 
excitatory interactions between nodes of the network. We assume 
that c(n + N) = c(n) and that c(n) = c(−n). Each excitatory popu-
lation is entailed with self-excitation and mild excitatory connec-
tions to other populations in the network with weights: c(0) = 5, 
c(1) = 0.4, c(2) = 0.2, and c(i) = 0 for i > 2.

F and u are sigmoid activation functions:

F y

u
x jj

N

( )
exp( ( . ))

.
exp[ ( . )]

=
+ − −

= −
+ − −=
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∑
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y

The noise term evolves according to:

τ τ σnoise noise noise

dnoise

d
noisej

j j

t

t
t t

( )
( ) ( )= +− η 2

where τ
noise

 = 2 ms, σ
noise

 = 0.2, and η is a Gaussian white noise with 
zero mean and unit variance.

As in the AB simulations, external currents are step functions. 
Only the stimuli presented in the visual display receive non-zero 
external currents during stimulus presentation (100 ms). After cue 
onset, which identifi es the location of the target, all excitatory con-
nections in the target location receive excitatory input. A constant 
delay of 230 ms is assumed between cue presentation and top-down 
control. We used the following amplitudes for external inputs:

I t

I

j

j

(

(

( )

.

.=

≠

=
⎧
⎨
⎪
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target)
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0
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.
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⎧
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⎩
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0

The solid curve in Figure 5D was obtained by fi tting the model 
simulations to an exponential distribution (R2 > 0.995). Data for 
the fi t was obtained by averaging 3,000 simulations at each of 
43 inter-stimulus-cue intervals (from 0 to 1,050 ms at intervals 
of 25 ms).

At long stimulus-cue delays performance reaches a plateau of 
around p∞ = 0.45 (Graziano and Sigman, 2008) (Figure 5D). In our 
simulations, in which we strictly model the gain of iconic memory, 
the visual-display decays exponentially, yielding a performance 
p(t) which results in chance performance for long stimulus-cue 
intervals and thus cannot explain the asymptotic performance to 
a non-chance level.

To account for this fact, we chose the simplest model of attention 
distribution in which a subject spontaneously allocates top-down 

to a random portion of the visual fi eld and then shifts if the cue did 
not coincide with the chosen location. The probability that the cued 
location falls inside the spontaneous window of attention (p

w
) can 

be estimated from performance at long stimulus-cue delays:

p p
p

Nw = − −
−∞

∞1

1

where N = 26 is the number of alternative responses and p∞ = 0.45 
is the experimental plateau performance at long inter-stimulus-cue 
intervals. This measure can be used to correct p(t) – i.e. to relate 
the iconic memory gain to true performance in the partial report 
paradigm experiment, according to:

p t p t p p tw
∗ = + −( ) ( ) [ ( )]1

RESULTS
BRACKETING STIMULUS PRESENTATION AND TOP-DOWN 
CONTROL: MOTIVATION AND OBJECTIVES
We simulated the dynamics of sensory information in a neuronal 
circuit which is submitted to a sequence of two stages, each defi ned 
by a distinct operational mode of the same circuit. The fi rst stage 
(Load) corresponds to the stimulus presentation. In the second 
stage (Retrieval) the system receives top-down currents which 
amplify the response forcing a decision.

We studied a network similar to the one proposed by Wang 
(2002), composed of 2,000 leaky integrate and fi re neurons (80%) 
pyramidal and (20%) inhibitory neurons. The excitatory neurons 
are divided in those selective to target 1, to target 2, and non-
 selective (selective to other targets not explored in the simula-
tions). The network is endowed with all-to-all connectivity. All 
external currents including background noise, top-down and bot-
tom-up currents are mediated exclusively by fast AMPA receptors. 
Recurrent excitatory currents within the module are mediated 
by AMPA and NMDA receptors, while inhibition is mediated by 
GABA receptors. Coupling strength between pairs of neurons is 
higher between neurons inside a selective population. We decided 
to implement and study a detailed biophysical model to explore 
the relation between biophysical parameters and behavioral 
observations. Unless otherwise noted, the results reported in this 
paper are robust to parameter manipulations and did not require 
explicit parameter fi ne-tuning. We thus decided to use the set 
of parameters which have been previously used in the literature 
(Wang, 2002).

We performed a simulation of the network in which load and 
retrieval are separated by a brief temporal interval. This represents 
a very simple model of visual experiments in which relevant and 
irrelevant information compete in the visual scene. As described in 
the introduction, contour grouping and visual search are examples 
of such tasks (Figures 1A,B). We did not intend here to model the 
specifi c architecture of these tasks but rather to provide a general 
framework for the interaction between bottom-up information 
and top-down control. The initial load consists on the stimula-
tion of a small number of selective neurons, which are followed 
by a mask modeled as a brief excitation of non-selective cells, 
which succinctly represent the side-inhibition of the clutter fi eld 
of distractors (Figure 1C,E). After a small hiatus (set to 300 ms 
from stimulus offset in Figure 1B) top-down control is directed 
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FIGURE 1 | A model of sensory decay and top-down memory retrieval. 

(A) Neural recording in area V1 from a monkey performing a contour grouping 
task (Li et al., 2006), showing a fi rst initial transient followed by a second wave 
of delayed activations. (B) Two-stage responses in a recurrent model of cortical 
processing. Top-down control, which sets the circuit in a winner-take-all mode, is 
directed to the network 300 ms after stimulus offset. The average fi ring rate of 
selective (brown) and non-selective (grey) populations are plotted (fi ring rates are 
averaged in causal windows of 100 ms and sliding steps of 5 ms). (C) Schematic 
time course of input signals. The model is submitted to a series of two stages, 
defi ned by the particular confi guration of external currents (top-down, 
bottom-up). In the fi rst stage, which corresponds to the bottom-up stimulation 
generated by stimulus presentation, external inputs are increased for both 
populations of selective neurons, in 240 Hz for the population with higher 
selectivity and in 120 Hz for the population with lower selectivity. This 

stimulation lasts 100 ms and is followed by a mask, which is modeled as a 
stimulation of non-selective cells also during 100 ms. In the second stage, after 
a delay which is under experimental control, top-down control is directed to the 
network, modeled as a constant input to all excitatory cells. (D) Predicted neural 
activations of an electrophysiological experiment that has not been done, 
bracketing stimulus presentation and top-down control. The duration of the 
buffer is 700 ms. (E) The excitatory neurons are divided in those selective to 
target 1, to target 2, and non-selective. Visual masking (dark green box) is 
represented as a stimulation of excitatory non-selective cells that through 
shared inhibitory connections increase the decay rate of the stimulus trace. 
A raster plot of representative (randomly selected) neurons of all populations is 
shown, as well as the average activity of each group. (F) Proportion of correct 
retrievals as a function of the duration of the perceptual buffer, for trials with and 
without backwards mask.
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of the input currents to the circuit was variable. These currents 
model the sensory stimulation and top-down control, determining 
the specifi cs of the experiment which is being simulated.

The activity of each node is defi ned by S
i(i = 1,2)

 (see Materials 
and Methods), the average synaptic gating variable (proportion 
of open channels). At any moment in time, the state of the neural 
circuit is defi ned by a point in phase space, represented by the 
activity of both populations and by the confi guration of external 
currents.

As with other models, (Fusi et al., 2007; Machens et al., 2005; 
Wong and Wang, 2006) the input currents act as parameters of 
this system of equations and thus the dynamics of the system may 
undergo bifurcations as currents are changed. For any parameter 
confi guration, the fundamental aspects of the dynamics can be 
understood by analyzing the structure of fi xed points in the phase 
plane diagram. Here we focus on two important aspects of fi xed 
points: (1) stability (only stable points will result in empirically 
observed solutions) and (2) active or inactive. An active fi xed point 
has a value of S signifi cantly different from the spontaneous activ-
ity in the resting state. To visualize the fi xed points and under-
stand the dynamics in each of the processing stages, we plotted the 
nullclines – the curves where either dS

1
/dt = 0 or dS

2
/dt = 0. Fixed 

points occur where nullclines intersect. Since there is a monotonic 
relation between S

i
 and its corresponding fi ring rate, all observa-

tions are qualitatively similar when represented as fi ring rates or 
in terms of the synaptic gating variables.

Prior to stimulus onset (i.e. the initial condition) the network 
is in a state of spontaneous activity (∼3 Hz for excitatory cells and 
9 Hz for inhibitory cells). We then model the task as a succession 
of two distinct stages (Figure 2A).

Load
During this phase the two populations receive distinct currents, 
which represent the sensory inputs evoked by external stimuli. This 
simulates an experiment in which two stimuli are present at differ-
ent intensities, or in which only one stimulus differentially activates 
both populations. The system has two active and stable fi xed points 
with asymmetric basins of attraction (the points in phase-space that 
will evolve to a fi xed point in a fully deterministic system). In the 
absence of noise, the system will evolve to either S

1
 or S

2
 depending 

solely on whether the initial condition (quiescent S
1
 and S

2
) belongs 

to the basin of attraction of S
1
 or S

2
. In the presence of noise, the 

system has a probability of diffusing (noise-driven fl uctuations) 
across basins of attractions.

Retrieval
During the retrieval period, both populations are stimulated with 
the same external current which models top-down control. This 
current is unbiased towards either stimulus. However, it sets the sys-
tem in a new state that amplifi es small current differences. During 
the retrieval stage, the system has two active and symmetric stable 
fi xed points. The basins of attraction are symmetric and thus the 
probability of evolving to either of the two fi xed points is deter-
mined solely by the distance of the initial condition to the diagonal 
S

1
 = S

2
. Following prior convention (Wong and Wang, 2006), we 

refer to this important manifold (the line S
1
 = S

2
), which divides 

the phase space, as the decision boundary.

to the network. Top-down is modeled as a global current injected 
to all excitatory neurons. The dynamic mechanisms involving the 
spontaneous engagement of such system, involving saliency maps, 
task relevance etc… are not modeled here and will be explored in 
further studies. The dynamics of the populations selective to the 
stimulus reproduces accurately the experimental data. This result 
was expected and does not present much novelty since it had been 
already shown that this network results in different operational 
modes as the input current to the circuit is varied. In the absence 
of currents, the system rests quiescent. In the presence of external 
currents, it can undergo a bifurcation leading to persistent activity 
(Wong and Wang, 2006).

The main aim and novelty of this study is to understand the 
dynamics of information when – as done in the partial report para-
digm experiments – stimulus presentation (and the evoked tran-
sient response) and top-down control are bracketed by a  controlled 
temporal interval. When top-down currents are injected, the net-
work becomes bistable, with one selective population active and 
the other inhibited.

In all trials one population receives a stronger current during 
stimulus presentation (see Figure 1C). A trial is considered correct 
when the active population after retrieval corresponds to the more 
stimulated population. For short delay between stimulus offset and 
top-down control (300 ms, Figure 1B), the more stimulated popu-
lation (black trace) was amplifi ed with high probability. For a larger 
delay (700 ms, Figure 1D), the transient stimulus fades out and in 
a more substantial amount of trials, the less-stimulated population 
(grey trace) was amplifi ed during retrieval.

The probability of correct response as a function of the delay 
decreased, reaching a plateau about 1 s following stimulus presen-
tation (Figure 1F). Interestingly, in consistency with experimental 
observations (Giesbrecht and Di Lollo, 1998), when the stimulus 
in unmasked it can be retrieved independently of the buffer dura-
tion (Figure 1F).

The objective of these simulations – of an electrophysiological 
experiment which has not been performed – is to understand in 
more detail the probability of correct retrieval as a function of stim-
ulus properties (strength, specifi city, duration) and of the temporal 
interval – henceforth referred simply as the buffer (Figure 1C). To 
provide a more quantitative understanding, it is useful to collapse 
this broad network into the smallest number of relevant dimen-
sions through mean-fi eld and dimensionality reduction (Wong 
and Wang, 2006).

BRACKETING STIMULUS PRESENTATION AND TOP-DOWN 
CONTROL: DESCRIPTION OF THE MODEL
Previous studies have shown that a two-node network can embody 
in simplifi ed but accurate form the dynamics of the large-scale cor-
tical model described briefl y in the previous section (see Materials 
and Methods for details, Brunel and Wang, 2001; Wang, 2002; 
Wong and Wang, 2006). Wong and Wang (2006) showed that fol-
lowing mean-fi eld approximation and reduction of the dynamics 
of fast variables, the spiking network can be collapsed to a sys-
tem of two coupled equations. Each equation corresponds to the 
activation of a distinct selective population, interacting through 
self-excitatory connections and mutual inhibition. As before, the 
biophysical parameters were fi xed and only the temporal course 
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FIGURE 2 | Neural dynamics as a concatenation of discrete processing 

stages. (A) Sketch of the mean-fi eld architecture and trajectories in phase 
space. Output synaptic gating variables are plotted against each other. Nullclines 
for S1 and S2 are plotted in black and grey, respectively. When the stimulus is 
presented, the system evolves towards the high S1/low S2 asymmetrical 
attractor. During the buffer, the fi xed point in the quiescent state becomes 
stable and the system evolves towards this fi xed point. Top-down control 
reconfi gures the phase space, forcing the system to one of the two high-level 
attractors. Two trajectories are plotted from the same initial point, giving one 
correct and one incorrect response. (B,C) Time course of fi ring rates for short 

(B) and long (C) buffers. Firing rates are constructed averaging activity over 
windows of 25 ms, with sliding steps of 5 ms. Red, green, and blue dotted lines 
indicate load onset, load offset, and retrieval onset, respectively. (D,E) Each 
processing stage can be understood as a stochastic map in phase space as 
seen by the distributions of the fi nal states (200 trials) of each processing stage 
(load, before top-down and after top-down, in green, red and blue, respectively). 
Each data point indicates the average activity (fi ring rate) of the last 12.5 ms of 
the corresponding phase, for short (D) and long (E) buffers. (F) Percent of 
correct retrievals as a function of the duration of the buffer. Each point is the 
average over 10,000 trials.
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In our simulations, contrary to most previous experiments, both 
stages will be bracketed in time by a controlled perceptual buffer 
during which the network does not receive external (top-down or 
bottom-up) currents. During this stage the system evolves from its 
current load state towards the quiescent state (∼3 Hz). Any initial 
condition (resulting from a transient activation) will evolve towards 
this fi xed point. Processing stages are sequentially organized and 
linked by state continuity: the initial condition of each phase is 
equal to the fi nal condition of the previous phase.

In this mean-fi eld model with only two active populations, we 
modeled a stimulus with low visibility by a weak transient response – 
contrary to the spiking model where we could explicitly model a 
subliminal presentation by a high contrast stimulus followed by 
a stimulation of non-specifi c excitatory cells, which represented 
the mask. An important aspect of this simplifi ed architecture is that 
we do not postulate a specifi c mechanism for the maintenance of 
the sensory trace. Instead, the loss of the memory trace, results from 
a passive decay during the buffer towards the quiescent state, which 
becomes an attractor in the absence of currents. For increasing buffer 
durations, neural activity will progressively approach the quiescent 
state – and thus the decision boundary – implying that there is a 
lesser trace of the sensory memory (Figure 2A, middle panel).

The three stages of neural activity (transient response – passive 
fade out – retrieval) are also evident in the time course of the fi ring 
rate for both populations (Figures 2B,C). We measured explicitly 
the probability of correct retrieval as a function of buffer size and 
observed that it decreases monotonically until it reaches saturation 
after about 700 ms (Figure 2F). The stochastic nature of the deci-
sion process can be seen by analyzing the distribution of trials in 
phase space (Figures 2D,E). The fi nal state of each stage (load, before 
retrieval, after retrieval) is represented in a scatter plot (green, red, 
blue respectively). In this formulation, the entire trial can be seen 
as a composition of three functions (the load function, the buffer 
function and the retrieval function) and thus as the concatenation 
of three operators.

BIOPHYSICS OF RETRIEVAL PROBABILITY AND MEMORY DURATION: 
NEUROPHYSIOLOGICAL PREDICTIONS
In a stochastic dynamical system, attractors and noise play opposite 
roles: stable fi x-points result in a shrinking of phase space (all points 
evolve to the fi xed point) while noise diffusion leads to a blurring 
of phase space. During the buffer, the interplay between these two 
mechanisms determines the probability of crossing the decision 
boundary and thus loosing track of the stimulus memory. The 
probability of stochastically crossing this manifold is determined 
by the inverse of the coeffi cient of variation: µ(S

1
 − S

2
)/σ(S

1
 − S

2
), 

which essentially estimates the distance to the decision boundary 
in units of standard deviation. Thus, both the speed of conver-
gence to the quiescent state and the amount of diffusion (noise) 
determines the duration of the perceptual memory. Some exam-
ples are illustrated in Figure 3A. It is worth remarking that equal 
values of noise can lead to distributions which appear consider-
ably noisier when the speed of convergence is decreased. In the 
limit, in which there is no deterministic memory loss (close to 
the bifurcation value), memory loss is exclusively determined by 
diffusion (this is close to the situation shown in the lower right 
panel of Figure 3A).

A quantitative analysis of these dependencies can be understood 
analyzing the comparatively simpler linearized system of equations 
(Strogatz, 1994). In a linear system, the dynamics can be collapsed 
to a single number – referred as the eigenvalue – which indicates 
the speed of convergence to the fi xed point. Thus, to explore the 
effect of different biophysical parameters in the duration of sensory 
memory, we calculated the eigenvalue of the quiescent fi x point 
in the direction orthogonal to the decision boundary (S

1
 = −S

2
, 

Figure 3B).
A current discussion in the literature has debated whether 

top-down control is allocated sequentially in an all or none fash-
ion to distinct processors or rather, whether certain amount of 
top-down control can be shared among concurrent processes. 
In our simplifi ed network each population receives a single cur-
rent type (i.e. different inputs do not target distinct receptors or 
synapses with different dynamics) and thus all input currents are 
additive. Thus, to understand the effect of sub-threshold modu-
lations (i.e. for which the only active state is quiescent) on the 
dynamics of sensory memory, we gradually increased the back-
ground currents during the buffer from the default values to the 
bifurcation point in which the network switches to a retrieval 
mode (Figures 3B,C).

The simulations resulted in the following conclusions:

1. For small background current values the eigenvalue is nega-
tive indicating that the default state is an attractor. At a certain 
critical value of the top-down current the eigenvalue becomes 
positive. This merely refl ects that the network undergoes a 
bifurcation in which the quiescent state is not stable anymore 
and switches to a retrieval operational mode.

2. For high background currents within the buffer regime – just 
bellow the bifurcation point – speeds of convergence to the 
decision boundary is close to zero, indicating that stimulus 
memory is lost only by noise-driven drift.

3. As the background currents decreases, the speed of con-
vergence increases monotonically (the eigenvalue becomes 
more negative). This process reaches an asymptote which 
establishes a maximal speed of convergence, or, conversely, a 
minimal temporal decay constant. This critical time is esta-
blished by the NMDA temporal constant and determines that 
the system cannot relax (at least passively) faster than about 
100 ms.

Based on these observations, we simulated a sensory retrieval 
experiment, using the full (non-linear) system of equations while 
varying the background current during the buffer (Figure 3C). 
As suggested by the lineal analysis, information is lost exponen-
tially with a time constant which decreases monotonically with 
decreasing background current, reaching a lower bound (green to 
cyan curves result in almost identical temporal decay functions, 
although the background current is lowered). Thus, variations in 
top-down control – even at modest levels which are insuffi cient to 
achieve amplifi cation – affect the time constant of the decay of the 
experimental buffer establishing a concrete prediction which can 
be submitted to experimental verifi cation.

Next, we wanted to investigate whether other biophysical and 
experimental manipulations changed the time course of the per-
ceptual memory (Figure 3D). We performed three simulations 
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changing the background current during the buffer phase (which 
from prior results we know it affects the temporal constant), the 
strength of recurrent connections and the strength of the stimulus. 
While overall all manipulations affected the probability of cor-
rect retrieval, they had a different impact in the dynamics of the 
memory trace. The background current and the strength of recur-
rent connections (which is also a plausible biophysical model of 

top-down control – see Discussion) affected the temporal constant 
of the exponential (for recurrent strength JN

11
 = [0.24, 0.207] nA, 

the temporal constants for the best-fi t exponentials (R2 > 0.994) 
were τ = [289, 636] ms, and for buffer currents I

buffer
 = [+15, 

−15] Hz, the temporal constants were τ = [250, 750] ms, respec-
tively). On the contrary, changing the stimulus strength affected 
the gain of the perceptual buffer (a multiplicative effect in the 

FIGURE 3 | The dynamics of error and correct responses during memory 

decay and retrieval. (A) We explored the progression of the distance to the 
decision boundary during the buffer. The four panels represent a factorial 
exploration of the effects of background current during the buffer 
[low (left column) and high (right column) input currents] and the noise level 
[low (top panels) and high noise (bottom panels)]. Within each panel, each line 
represents a histogram, coded in a grey color code. The y-axis indicates buffer 
time and the x-axis indicates the difference in activity between S1 and S2. In all 
panels it can be seen that in the beginning of the buffer activity is clustered in 
a value of (S1 − S2) (the initial condition had no dispersion) and as time passes 
(going down in the y-axis) the distribution probability approaches the decision 
boundary and becomes wider. (B) The speed of convergence to the decision 
boundary can be estimated by calculating the eigenvalue of the quiescent fi x 
point in the linearized system as a function of the background input currents. 
For high background currents – just bellow the bifurcation – speeds are 
arbitrarily slow (stimulus memory is lost by noise diffusion). For lower currents, 
the speed increases (in absolute value) reaching an asymptote which 
establishes a maximal rate of convergence and thus a minimal temporal 

decay constant. This critical time is determined by the NMDA temporal 
constant and determines that perceptual buffers last at least about 100 ms. 
The current values which correspond to the retrieval mode (positive 
eigenvalue) are indicated in bold. Black arrows indicate the default values used 
as background currents during buffer (I0 = 0.3255 nA) and retrieval 
(I0 = 0.3619 nA) throughout the paper. (C) Simulations of a sensory retrieval 
experiment using the original (non-linear) system of equations, varying the 
duration of the buffer and the background current during the buffer. 
Information is lost exponentially with a time constant which increases with 
increasing currents and has a lower bound. Each curve is the average over 
5,000 trials. Each color represents a different input value, as indicated in 
Figure 2B. Values range from 0.24 to 0.37 nA, in intervals of 0.01 nA. 
(D) Effect of different parameter manipulations on task performance: stimulus 
intensity (Istim, upper left panel), top-down currents during the buffer 
(Ibuffer, upper-right panel), and recurrent strength (Jii, lower left panel). The 
baseline (same as data in Figure 2F) is plotted in gray. Higher values are 
plotted in red and lower values in green. Data is fi tted with exponential 
distributions. Error bars indicate 95% confi dence bounds.
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exponential), with no effect in its temporal constant (τ = [351, 
383] ms for I

1
 = [91.2, 100.8] Hz respectively).

FROM BIOPHYSICS TO BEHAVIOR: PERFORMANCE OF THE MODEL IN 
A DUAL-TASK EXPERIMENT
As discussed in the introduction, there are not (to our knowledge) 
single-cell neurophysiological experiments which have investigated 
explicitly and in a controlled manner the temporal bracketing 
between sensory stimulation and top-down control. On the con-
trary, many variants of this experiment – as for instance in the 
AB and the Partial Report Paradigm have been largely explored 
in the experimental psychology literature (Raymond et al., 1992; 
Sperling, 1960).

In the AB, two masked stimuli in rapid succession have to be 
reported (Figure 4A); the second stimulus is often missed, and 
the probability of not seeing the stimulus is a function of the 
SOA. Despite its conceptual simplicity, an extensive exploration 
of this phenomenon has revealed a quite complex description 

(see Discussion and, for instance, Bowman and Wyble, 2007 for 
an extensive review). The aim of this work is not to provide a model 
which will account for this rich diversity of observations. Rather, 
we show that the simple biophysical architecture described in this 
paper can account for one factor which is common to these distinct 
behavioral experiments: the exponential decay of information.

In the AB, it has been shown that the probability of seeing the 
second target is also a function of the response time to the fi rst task 
(RT

1
) (Jolicoeur, 1999) (Figure 4C). This result can be interpreted 

in terms of a very simple theoretical scheme, according to which, 
top-down control is sequentially allocated to both tasks. According 
to this interpretation, top-down control to T

2
 is only delivered once 

it has been released from T
1
 and thus the longer the time to complete 

the fi rst task (RT
1
) the larger the gap between the presentation of 

T
2
 stimulus and the allocation of top-down control (see Figure 4B 

for a simple illustration of the scheme).
More precisely, following the assumptions of a sequential 

deployment of top-down control, the duration of the perceptual 

FIGURE 4 | Simulation of a dual-task interference experiment. (A) Sketch of 
the “speeded attentional blink” paradigm used by Jolicoeur (1999): letters are 
presented in rapid serial visual presentation (RSVP), each letter presented for 
100 ms with no blank ISI. Subject must report both T1 and T2. T1 must be reported 
as soon as possible, while T2 is reported at the end of the trial, without time 
pressure. SOA is systematically varied in order to study its effect on T2 accuracy. 
(B) A schematic model of interference based on sequential top-down allocation. 

Top-down allocation to T2 can only occur once it has been released from T1 and 
thus the duration of the sensory buffer is determined by RT1 − SOA − P. (C) Mean 
accuracy in task 2 for different SOA, as obtained by (Jolicoeur, 1999). The 
proportion of trials where T2 was correctly identifi ed (given T1 correct) is plotted 
against SOA (in milliseconds). Results are grouped in four categories according to 
the response time to the fi rst task (RT1). Mean RT1 is indicated. (D) Result of the 
simulations of the model after averaging 1,000 trials for each condition.



Zylberberg et al. Decay and retrieval of sensory information

Frontiers in Computational Neuroscience www.frontiersin.org March 2009 | Volume 3 | Article 4 | 11

buffer can be obtained from experimental observables: as sketched 
in Figure 4B, the duration of the perceptual buffer of S

2
 is deter-

mined by:

Buffer RT SOA= − −max( , )0 1 P  (1)

where P is a fi xed value determined by the latency of the sensory 
response (Pashler, 1994; Sternberg, 1969).

We modeled an extremely simplifi ed version of T
2
 processing in 

this AB experiment, using the reduced two-dimensional network, 
with the same set of parameters as in Figure 2.

For each RT
1
 and SOA values we calculated the duration of the 

buffer following Eq. 1. We then simulated 10,000 trials, following 
exactly the procedure of Figure 2 (i.e. a stimulus presentation of 
50 ms biased to one of the selective populations) – followed by a 
buffer in which the background current was set to 0.3255 nA and 
then a retrieval period. In each trial, the response was considered 
correct if the activated population after retrieval corresponded to 
the more stimulated population. We then averaged, for each SOA 
and RT

1
 value, the percent of correct responses for comparison with 

the experimental results. Note that here we are not simulating the 
processing of T

1
 and the precise gating mechanisms that control 

the shifting of attention between T
1
 and T

2
. A full simulation of 

the dynamics of the engagement and disengagement of top-down 
control during the processing of multiple sensory elements will be 
an objective for future studies. Rather, we make the simple assump-
tions that: (1) top-down to T

2
 is directed after the conclusion of 

the fi rst task, (2) that this is indexed by RT
1
 and (3) that top-down 

control is implemented by a non-specifi c current to the network 
which sets it in a retrieval mode.

The experiments show that this single parameter derived from 
SOA and RT

1
 (the duration of the sensory buffer), is capable of cap-

turing one of the main qualitative aspects of the dependence of per-
formance with RT

1
 and SOA (Figures 4C,D), which captures most 

of the variability for intermediate SOA values. The observations for 
very short and for very long SOA values cannot be explained by a 
passive decay of information mechanism. For instance, this over 
simplifi ed model predicts that performance is worse at the shortest 
SOA values and an asymptotic performance for large SOA values 
which is independent of RT

1
. These predictions are in contradiction 

with the observations and thus pose a limit on which observations 
can be explained simply by passive decay of information.

A more direct experimental psychological demonstration of the 
memory decay during the interval between stimulus presentation 
and top-down control comes from partial report experiments 
(Sperling, 1960). In these experiments, participants are asked to 
recall only a portion of the stimulus array. Performance in many 
different variants of this experimental design has been shown to 
decay exponentially with the inter-stimulus interval (ISI), the time 
between the presentation of the stimulus and the spatial cue indicat-
ing the item to report (Loftus et al., 1992; Sperling, 1960).

Here we modelled an experiment in which eight different letters 
appeared simultaneously for 106 ms, arranged on a circle around 
the fi xation point. A cue was then presented at variable ISI values, 
ranging from 24 to 1,000 ms, after the offset of the array display 
(Figure 5A) (Graziano and Sigman, 2008).

In the AB experiment, as in most simple-decision experiments, 
subjects (and the models) perform a binary choice. On the contrary, 

in the partial report experiment the number of possible responses 
corresponds to the 26 letters of the alphabet. Thus the model 
described earlier (Figure 2) was extended to 26 different excitatory 
populations. In addition to all letter identities, the network has to 
code the position of the array. For simplicity, all spatial locations 
were modeled independently, i.e. there were no direct connections 
between populations coding for different locations (Figure 5B). 
Within each location, populations responding to distinct letters 
were arranged on a circle and connected to the two closest neigh-
bors. These connections resulted in partial spreading of activity 
and, in future work, should permit exploring the confusion effect 
in iconic memory experiments (i.e. when the letter F is responded 
when the letter E was present in the cued location). For the mod-
eling of the main factor, the exponential decay in performance, 
these connections were unnecessary and removing them yields 
essentially the same results.

On the contrary, the topology of the inhibitory network played 
a critical role in the model. As shown in Figure 5B, inhibitory neu-
rons receive synaptic inputs from a single excitatory population and 
then project globally to all excitatory populations. Local excitation 
and global inhibition has been assumed as a plausible architecture 
in many computational and theoretical studies (Ardid et al., 2007; 
Compte et al., 2000; Ermentrout, 1992; Kang et al., 2003; Wang 
and Terman, 1995). This asymmetry (local presynaptic and global 
postsynaptic connections of inhibitory neurons) turned out to be 
critical to assure that the network scaled correctly and generated a 
winner-take-all behavior during retrieval. This can be intuitively 
understood with a simple qualitative calculation involving the 
balance of currents in excitatory populations and assuming that 
populations fi re following a step function, if the input current is 
larger than a threshold T. Each excitatory population receives input 
currents:

I
tot

 = I
SE

 + I
E
 − I

INH
 (2)

Which respectively correspond to: (1) self-excitation (2) an 
external excitatory current which captures the background and 
top-down currents and (3) inhibitory inputs. If the population 
is active and I

SE
 + I

E
 − I

INH
 > T, it will stay active. Of course, this 

algebraic equation needs to be iterated dynamically since once the 
population is active it changes the inputs to other populations, 
which in turn change the input to others populations and so on. 
However, without need of solving this differential equation it can 
be understood that if I

SE
 + I

E
 − I

INH
 > T (i.e. the active population 

keeps on fi ring) and I
E
 − I

INH
 < T (i.e. the silent populations stay 

silent) then the network confi guration with a single active popula-
tion is stable.

This consideration is general and does not make assumptions 
about the architecture of the network. The important aspect of the 
proposed architecture is that inhibition to all neurons increases 
linearly with the number of excited neurons and thus the bal-
ance between inhibition and excitation can be easily controlled. 
For this architecture the input current to a excitatory population 
becomes:

I
tot

 = I
SE

 + I
E
 − µ × N

E
 (3)

where we have simply replaced from Eq. 2 the inhibition current 
by a constant (the effi cacy of synaptic inhibition) multiplied by 
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the number of active populations (recall that the key aspect of this 
architecture is that for each active excitatory population, there is 
one active inhibitory population). It is easy to see that, for fi xed 
values of I

E
 and T, there is a critical number of excited populations 

(N
C
) such that:

I
SE

 + I
E
 − µ × N

C
 > T > I

SE
 + I

E
 − µ × (N

C
 + 1) (4)

In this case, and if silent excitatory populations stay silent which 
can be assured if

I
E
 − µ × N

C
 < T (5)

a stable state with N
C 

neurons exists. Note from Eq. 4 that the stable 
state with maximal number of active populations can be related 
to µ by:

N
C
 = [T − (I

SE
 + I

E
)]/µ

We verifi ed this relation (Figure 5B), showing that N
C 

decays as 
1/µ, with a constant that depends on the excitatory input. Note that 
this dependence implies that there is a wide region in parameter 
space for which there will be a winner-take-all (i.e. a single active 
population, N

C
 = 1). Thus, we could easily adjust the parameters, in 

FIGURE 5 | Simulation of a partial report experiment. (A) Sketch of the partial 
report experiment (Graziano and Sigman, 2008). Eight letters appeared 
simultaneously for 106 ms on a computer screen, arranged on a circle (5.5°) 
around the fi xation point. Each letter was presented in uppercases and chosen at 
random from a set of 26 letters. Trials started with a fi xation point at the center of 
the display. After 1,000 ms, the array of eight letters was shown for 106 ms. After 
removal of the array of letters participants were cued with a color marker at the 
location of the letter that had to be reported. The cue was maintained on the 
screen until participants made a forced choice. Eight target-cue asynchronies 
(ISI) were investigated: the cue appeared 24, 71, 129, 200, 306, 506, 753, 
1,000 ms after the offset of the array display. (B) Description of the network and 
of the model. Each letter is represented by a variable with a normalized output in 
the range (0, 1). For simplicity, we neglect any interaction between letters in 
different positions of the stimulus array and thus the eight different locations are 
modeled independently. The network is endowed with local excitatory 
connection – each excitatory population connects to one inhibitory population – 
and global inhibition – each inhibitory population projects uniformly to all 

excitatory populations. The number of active populations in the stable state 
decreases with the inverse of inhibition strength and increases with top-down 
strength. This dependency assures that a wide range of parameters exists for 
which the network is set in a winner-take-all mode (i.e. retrieves a single 
population). In each location, only one population receives bottom-up input during 
stimulus presentation (green populations in the lower-left panel). During retrieval, 
all excitatory populations receive equal top-down currents (blue populations in 
the lower-right panel). (C) Transient responses to the stimuli and top-down 
amplifi cation at the target location. In each position, the activity of the 
26 possible responses (letters) is plotted. Top-down current sets a winner-take-all 
competition at target location, where the initial transient response biases the 
competition towards the presented letter. Stimulus onset, stimulus offset, and 
cue onset are marked with green, red and blue lines respectively. (D) 
Performance for human subjects (red dots) and model (black line). Solid curve 
was obtained by fi tting model simulations to an exponential distribution 
(R2 > 0.995). Data for the fi t was obtained by averaging 3,000 simulations at each 
of 43 inter-stimulus-cue intervals (from 0 to 1,050 ms at intervals of 25 ms).
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a stable manner to set the network in a mode in which there is pas-
sive decay during the buffer and amplifi cation to a single response 
after allocation of top-down control currents. It is interesting that in 
Iconic Memory Experiments subjects often retrieve more than one 
letter with very high confi dence. Thus, in future experiments and 
model it might be worth exploring the number of elements which 
can be correctly retrieved in iconic memory experiments and how 
this may relates in a more quantitative manner to the architecture 
of inhibition in recurrent memory networks.

Once we could assure a stable winner-take-all network for a large 
number of excitatory populations, we proceeded to explore whether 
retrieval in this network showed an exponential dependence with 
ISI, as observed in the experiments. We simulated the dynamics 
of the network, 3,000 trials for each ISI condition (Figures 5C,D). 
Figure 5C shows the dynamics of all populations in a representative 
trial. The stimulus was modeled as a constant input current, lasting 
100 ms to one of the populations in each spatial location. The stim-
ulated population at each location evoked a large  transient response 
which decayed to the quiescent state. Top-down was directed to 
the cued location of the visual fi eld at a fi xed delay (set at 200 ms) 
following the cue. The delay between the cue and the onset of top-
down modulation – which was necessary to explain performance 
level bellow 100% for the shortest ISI values – has been found in 
different experimental setups (Bisley and Goldberg, 2006; Lamme, 
1995; Li et al., 2006; Roelfsema et al., 1998).

The performance of these simulations for long ISIs is at chance 
level (which here is 1/26) since the transient response has com-
pletely decayed. This is in contradiction with the results of iconic 
memory experiments – in which it is observed that the asymptotic 
performance is signifi cantly above chance – and we hypothesized 
that this is due to the fact that spontaneously (before the beginning 
of the trial) top-down control is directed to a window of the visual 
scene which covers a fraction of the display. We assumed that in 
trials in which the cued letter was within the attended window, 
performance was perfect. In trials in which the cued location was 
outside of the attended window, top-down control is directed to 
this location only after the presentation of the cue, and perform-
ance can be estimated by the model. This simply results in a linear 
correction of the probability of correct performance, as described 
in the “Materials and Methods” section.

As with the simulation of the AB experiment, this aims to explain 
a complex psychophysical experiment in an admittedly simplifi ed 
simulation. Future work should address the spontaneous allocation 
of top-down control and the subsequent shifting to other cued 
location in a full simulation which incorporates in the network the 
dynamics of these processes. Here, we merely show that: (1) correct 
retrieval after passive delay accounts for the correct scaling observed 
in psychophysical experiments and (2) that a recurrent network 
can be confi gured to elicits passive decay of information in absence 
of top-down control and switch, with the allocation of top-down 
control, to a winter-take-all confi guration for a large number of 
distinct excitatory populations.

DISCUSSION
In this work we have attempted to unite, through a simple bio-
physical implementation, two different literatures which have inde-
pendently investigated the dynamics of top-down control. Single 

single-cell monkey electrophysiology have investigated in detail the 
distinct waves of responses to a sensory stimulus in situations of 
varied ethological relevance, without explicitly manipulating the 
temporal gap between sensory stimulation and top-down control. 
Different behavioral paradigms which include the PRP (Pashler, 
1994; Smith, 1967; Telford, 1931), the AB (Raymond et al., 1992) 
and partial report experiments (Sperling, 1960) have investigated 
performance (visibility, ability to respond to an item, etc…) in 
experiments in which an interference probe perturbed the ability 
to timely attend to a presented stimulus, leading to experiments in 
which the gap between sensory stimulation and top-down control 
is presumably controlled experimentally but in which this relation 
can only be made indirectly.

We presented a biophysical model intended to bridge the partial 
retrieval of sensory information – as determined in partial report 
and AB experiments – to the two-stage organization of responses 
in visual areas of awake-behaving monkeys. We show that a simple 
model, involving a fi rst initial transient response followed by a 
forced competition set out by top-down currents can account for 
the partial retrieval of sensory information observed in partial 
report and AB experiments. The proposed model can successfully 
explain functional dependencies of interference experiments, such 
as the visibility of a target as a function of the time it takes to 
report a previous item and the rapid memory loss of a stimulus 
display.

The model works by concatenation of discrete processing stages, 
determined by specifi c stimulus and top-down context. Contrary 
to “boxological” models, where different functions are generally 
assigned to different areas in the brain, in our model the same 
network performs the different processing stages. The particular 
confi guration of external inputs (stimulus and top-down) sets 
the circuit in a specifi c working mode, which can respond tran-
siently, decay or amplify information. Our model suggests that the 
“memory” of a stimulus resides in the decaying trace of a stimu-
lus transient response and the speed of this decay depends on the 
background current and recurrent connection strength, but not 
on the stimulus intensity. The model does not need to assume an 
active process in the maintenance of iconic memory, establishing 
a qualitatively different form of persistence than working memory 
models in which the memory is actively held in a reverberation 
process. In accordance with this distinction, experimental results 
have shown that iconic memory decays much more rapidly than 
working memory (in a few hundred milliseconds) and is labile, i.e. 
can be destroyed by the presence of a concurrent stimulus. Previous 
fMRI studies in a partial report experiment have also suggested a 
passive role of iconic memory, by showing that activity in the visual 
cortex is identically amplifi ed when the cue is presented 200 ms 
before or after the stimulus presentation (Ruff et al., 2007).

A similar observation comes from a classical demonstration 
of dual-task interference, the PRP. In this experimental setup in 
which two targets have to be responded rapidly, if the second 
processed target is not masked it can be retrieved correctly with 
virtually perfect performance. There is, however, a very clear trace 
of interference as refl ected in the fact that the second target is 
only responded after a delay (Pashler and Johnston, 1989). Two 
principal observations suggest that the nature of this memory is 
qualitatively different from working memory and similar to the 



Zylberberg et al. Decay and retrieval of sensory information

Frontiers in Computational Neuroscience www.frontiersin.org March 2009 | Volume 3 | Article 4 | 14

iconic memory observed in partial report paradigm experiments: 
(1) this memory is labile (i.e. a brief mask is suffi cient to degrade 
it) as shown in the behavioral experiments by Jolicoeur and col-
leagues, reported in this paper and (2) functional imaging experi-
ments have not shown any activation related to the maintenance of 
the second target while the fi rst task is being executed (Dux et al., 
2006; Jiang et al., 2004; Sigman and Dehaene, 2008). Thus, the 
physiological nature of the memory of the delayed stimulus, which 
does not seem to involve an active process, constitutes an open 
question suitable for theoretical and computational investigation. 
Here we showed that a passive decay memory, sustained in the 
convergence to a quiescent state in the absence of top-down control 
can account for these principal observations. Another possible 
physiological alternative, which may explain the lack of a correlate 
of this memory in fMRI experiments, involves low metabolic-cost 
synaptic memories (Mongillo et al., 2008).

DURATION OF SENSORY INFORMATION, FROM BIOPHYSICS 
TO PSYCHOPHYSICS
Our explorations have shown that two factors control the dura-
tion of iconic memory, a uniform background current and the 
strength of recursive connections. While in our model we have 
investigated the effect of varying these parameters in a sim-
ple model of a processing network, an interesting possibility is 
that these parameters may vary at different stages of the cortex. 
For instance, the size of the receptive fi elds increase as one pro-
ceeds in the visual hierarchy (Rolls, 2000), indicating a larger 
population of neurons with similar response properties and thus 
stronger effective recurrent connections. It is thus possible and 
a matter for further experiments to investigate whether, the sen-
sory memory, i.e. the duration of a transient response evoked 
by a stimulus, may increase (even in the absence of conscious 
perception) as one progresses from primary sensory areas to the 
frontal cortex. Another possibility is that, within the same cortical 
region, effective recurrent strengths may be changed by top-down 
control. While no direct biophysical evidence of such mechanism 
exists, this possibility is suggested by indirect evidence which has 
shown that top-down infl uences target specifi cally contextual 
and integrative properties of V1 neurons (Gilbert and Sigman, 
2007; Li et al., 2004, 2006). Indeed, we performed simulations in 
which the retrieval stage – when information is amplifi ed under 
top-down control – is modeled by an increase of the recurrent 
connections (instead of increasing the background currents) 
which yielded virtual identical results as the ones described in 
the paper.

A theoretical debate has been held on whether, in dual-task 
experiments, top-down allocation is a sequential all-or-none proc-
ess or whether it can be distributed in a graded manner across dif-
ferent processes (Shapiro et al., 2006; Tombu and Jolicoeur, 2003, 
2005). Our model suggests an experimental approach to discern 
between these alternatives. If top-down control is partially allocated 
to the task which is not consciously being executed – even at mod-
est levels which are insuffi cient to achieve amplifi cation – it should 
affect the time constant of the decay of the experimental buffer. 
Indeed, some experiments have investigated which  parameters can 
affect the persistence of a stimulus of iconic memory, measuring 
quantitatively the temporal constant of the memory decay in partial 

report paradigms. Our model shows that different factors map to 
distinct parameters of the exponential decay. For instance chang-
ing the background current during the buffer affects the temporal 
constant, while increasing stimulus strength affects the exponential 
decay function in a multiplicative manner. Thus, the model pre-
dicts that different experimental manipulations should be found 
affecting distinct parameters of the iconic memory decay. Previous 
experiments provide partial evidence in support of this view. For 
instance, iconic memory decays much faster for observers with Mild 
Cognitive Disorders than for normal controls even when they per-
formed at equivalent levels assays of visibility and of short-term 
memory (Lu et al., 2005). Our model predicts that the temporal con-
stant of the memory decay can be affected independently of stimulus 
strength and suggests that the patients’ defi cit may be explained by a 
reduced capacity to maintain low levels of top-down control during 
the buffer. Complementarily, in a partial report experiment which 
studied the duration of the iconic memory as a function of different 
geometric and spatial factors, we found that letter frequency affects 
the memory decay in a multiplicative manner, without changing the 
temporal constant (Graziano and Sigman, 2008). This is precisely 
the prediction of our model, given that more frequent letters elicit 
stronger average response than non-frequent letters in occipito-
temporal visual cortex (Vinckier et al., 2007).

RELATION TO OTHER MODELS OF DYNAMICS OF NEURAL ACTIVITY
At this stage, our model does not intend to provide a full explana-
tion of the dynamics of sensory processing and top-down con-
trol. Rather we used the proposed model as a tool to explain and 
interpret observations in different experiments. We suggest that 
observations from partial report paradigm and the AB may involve 
a common mechanism. Our model, although admittedly oversim-
plifi ed, establishes concrete predictions which may guide future 
neurophysiological experiments.

More detailed models of the AB (Bowman and Wyble, 2007; 
Dehaene et al., 2003; Fragopanagos et al., 2005; Nieuwenhuis et al., 
2005) can capture some elements which our simple model is unable 
to describe. For instance, it can’t explain why in the AB performance 
increases for very short SOA. This effect, known as lag-1 sparing, 
is still largely unexplained (Dell’Acqua et al., 2007) and has been 
attributed to mechanisms beyond the present model, such as an 
attentional “blaster” effect on selected target stimuli (Bowman and 
Wyble, 2007). It is clear that our minimal model cannot account 
for this effect, since shorter SOA result in longer buffers and thus 
worse performance. Another aspect that cannot be accounted 
by our simple model is the effect of RT

1
 when SOA is large. In 

the model, if SOA > RT
1
 − P, the buffer duration is zero and the 

processing of T
2
 is independent of RT

1
. Experimental results show 

that performance does recover as SOA increases, but this recovery 
is not as complete as predicted by our model. This may be due to 
the presence, in actual experiments, of a small fraction of trials at 
long RT

1
 in which the subject is distracted and fails to reallocate 

attention to the second stimulus.
Numerous efforts have been made to generate biophysical models 

which account for important elements of cognition, such as, Bayesian 
inference in sensory perception (Knill and Pouget, 2004; Pouget et al., 
2003), information maintenance in  working  memory (Brunel and 
Wang, 2001; Durstewitz et al., 2000),  attentional  modulation 
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(Ardid et al., 2007; Deco and Rolls, 2003), decision-making (Lo and 
Wang, 2006; Machens et al., 2005) and conscious access (Dehaene 
et al., 2003; Izhikevich and Edelman, 2008). Mean-fi eld approxima-
tions have been used to reduce the dimensionality of large-scale 
spiking models as well as to get a geometric understanding of their 
behavior (Brunel and Wang, 2001; Renart et al., 2004; Tovee et al., 
1993). This paper has been motivated by this strategy of generating 
simple dynamic models from large-scale architectonic models, to 
address an important aspect of information fl ow: the persistence of 
sensory buffers. As described in other previous models (Dehaene 
et al., 2003), only a fraction of sensory information is amplifi ed and 
piped to the decision-making or the motor system. Here we have 
incorporated the dynamics of the unattended and the to-be-attended 
stimuli. Our model was able to capture different experimental obser-
vations and led to the following predictions:

1. Both buffering and retrieval can occur within sensory areas 
initially involved in the feed-forward response to the stimulus, 
without the need to postulate specifi c “buffer areas”.

2. Firing rates just prior to top-down signals for retrieval are a 
predictor of the probability of correct retrieval.

3. Mean activity in sensory areas decays almost exponentially 
during the delay period, and this decay accounts for the 
memory loss. There is an upper limit to the speed of this decay, 
determined by NMDA receptors. Pharmacological blockage 
of these receptors should signifi cantly reduce the temporal 
 constant of the decay.

4. In behavioral experiments, blocking NMDA receptors should 
result in the inability to retrieve unattended stimuli, as can be 
explored with a partial report paradigm experiment in animal 
models.

5. In a partial report experiment in which attention is removed 
away from the presented letter (for instance with a compe-
ting task in the fovea as done in (Joseph et al., 1997)) iconic 
memory should decay very fast (but with unaffected ampli-
tude). This prediction is parametric; the exponential time 
constant should decrease monotonically with the amount of 
attention deployed to the competing task. Moreover, if top-
down resources are completely allocated away from the partial 
report paradigm task, the asymptotic performance for very 
long ISI should be at chance levels.

6. We predict that this observation should co-vary with the tem-
poral constant of populations of neurons in sensory areas.

7. If increased receptive fi eld size determines stronger local recur-
rence between excitatory populations, the temporal constant 
of the decay of stimulus information should increase as one 
proceeds in the visual hierarchy.
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