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Theoretical studies have shown that memories last longer if the neural representations are sparse, that is, when each neuron is selective

for a small fraction of the events creating the memories. Sparseness reduces both the interference between stored memories and the

number of synaptic modifications which are necessary for memory storage. Paradoxically, in cortical areas like the inferotemporal cortex,

where presumably memory lifetimes are longer than in the medial temporal lobe, neural representations are less sparse. We resolve this

paradox by analyzing the effects of sparseness on complex models of synaptic dynamics in which there are metaplastic states with

different degrees of plasticity. For these models, memory retention in a large number of synapses across multiple neurons is significantly

more efficient in case of many metaplastic states, that is, for an elevated degree of complexity. In other words, larger brain regions allow

to retain memories for significantly longer times only if the synaptic complexity increases with the total number of synapses. However, the

initial memory trace, the one experienced immediately after memory storage, becomes weaker both when the number of metaplastic

states increases and when the neural representations become sparser. Such a memory trace must be above a given threshold in order to

permit every single neuron to retrieve the information stored in its synapses. As a consequence, if the initial memory trace is reduced

because of the increased synaptic complexity, then the neural representations must be less sparse. We conclude that long memory

lifetimes allowed by a larger number of synapses require more complex synapses, and hence, less sparse representations, which is what

is observed in the brain.
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INTRODUCTION
Memories have a rather limited lifetime if they are stored in synapses
whose efficacy is restricted to vary in a limited range (Amit and Fusi, 1994;
Fusi, 2002; Fusi and Abbott, 2007; Parisi, 1986). Old memories are
forgotten because they are overwritten by the new ones or by the ongoing
spontaneous activity. The memory trace decays exponentially fast with
the number of long-term synaptic modifications for a large class of models
of learning and synaptic plasticity (Amit and Fusi, 1994; Fusi, 2002; Fusi
et al., 2005). This implies that the number of storable memories depends
only logarithmically on the number of synapses, N, which is extremely
inefficient if we consider the amount of information that can be stored in N
synapses. The number of synaptic modifications determine the coefficient
of the logarithm and it depends on the statistics of the neural
representations of the memories and on the way synapses are modified
when a pattern of neural activity is imposed by a stimulus. Theoretical

studies have shown that memory lifetimes can be extended if the
representations of the memories are sparse, that is, when each neuron
responds to a small fraction f of the set of stimuli which create the
memories (Amit and Fusi, 1994; Leibold and Kempter, 2007; Treves,
1990; Tsodyks and Feigelman, 1988; Willshaw et al., 1969). Sparseness
reduces both the interference between stored memories and the number
of synaptic modifications, and it extends memory lifetime by a factor that
can be as large as f �2. The drawback is a reduced amount of information
stored in every memory.

The patterns of neural activity observed in the brain in response to
various stimuli have different degree of sparseness depending on the type
of stimulus and on the area. In the hippocampus, both granular (Barnes
et al., 1990) and pyramidal cells (Jung and McNaughton, 1993), respond
to a small fraction of stimuli ( f ¼ 0.01–0.04). More generally, in the
medial temporal lobe, f varies between 0.01 and 0.2, with an average
value of f ¼ 0.03 (Quiroga et al., 2005) for visual stimuli. Most of the cells
analyzed in these studies were recorded in the hippocampus, some in the
parahippocampal gyrus, amygdala, and a few in entorhinal cortex. The
authors used strict criteria to determine whether a cell was responsive to a
stimulus or not. For example, in Quiroga et al., (2005) a cell was
considered to be selective to a particular stimulus if the response was at
least five standard deviations above the baseline. As a consequence, their
estimates are admittedly an upper bound for sparseness and the actual
f might be larger if cells with lower average firing rates would be
considered. However, it seems clear that the representations in the medial
temporal lobe are sparser than in other areas of the cortex which also
encode high order features of the visual stimuli. For example, in
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inferotemporal cortex f ¼ 0.2–0.3 (Rolls and Tovee, 1995; Sato et al.,
2007) in response to visual stimuli, or in pre-frontal cortex about 30% of
the recorded cells are selective to a particular visual stimulus and
70% respond to combinations of stimuli and intended motor response
(Asaad et al., 1998). Given that memory lifetimes are presumably longer in
these areas of the cortex than in the medial temporal lobe, these esti-
mates seem to be in contradiction with the theoretical result that memory
lifetimes can be extended by making the neural representations sparser.

Here we propose a possible resolution of this paradox which is based
on the constraints imposed by the complexity of synaptic plasticity on
sparseness of neural representations. In particular, we will consider the
model introduced by Fusi et al., (2005) in which every synapse has a
cascade of states with different levels of plasticity. Such a synapse is
modified at a rate that depends on the previous history of synaptic
changes (metaplasticity). The authors showed that these relatively
complex cascade models can produce a power law decay of the memory
trace and that the upper bound of the memory lifetimes becomes
significantly higher than those of simple, non-cascade synaptic models.
The number of storable memories increases exponentially with the
number n of metaplastic states. In other words, there is a great advantage
of increasing the complexity of the synapse at the cost of only a 1=n
reduction of the initial, most vivid memory trace, the one experienced
immediately after storage.

Here we show that neurons with cascade synapses not only can retain
the stored memories but they can actually retrieve them provided that the
initial memory trace is strong enough. The initial memory trace increases
with the number C of synapses which are directly accessible by each
neuron and it decreases with the sparseness of the stimuli and the
complexity of the synapse. If the initial memory trace is below a certain
threshold, it is as if the memory had never been created. Indeed, it cannot
be retrieved even immediately after the occurrence of the experience
which created the memory. Instead, if it is above the critical value, then it
can still be retrieved for a time which increases with sparseness (as 1/f 2)
and with complexity (up to 2n).

When we consider a large number of synapses distributed on different
neurons, we cannot estimate the lifetime of retrievable memories without
specifying the architecture of the network. However, we can compute the
number of memories which can be retained, that is, those memories
which are stored in all N synapses across different neurons, and that can
be retrieved by an ideal observer who has a direct access to all of the
synapses. Such a number also increases with sparseness and complexity
as in the case of single neuron memory retrieval.

The ability of each of these multiple neurons to retrieve a memory still
relies on the fact that the input patterns are not too sparse. A single neuron
cannot access directly all the synapses of the network and it can rely only
on those synapses on its dendritic tree to decide what output activity to
produce. This implies that f cannot be reduced arbitrarily in order to
extend the memory lifetime. Actually, we will show that the smallest value
of f permitted by 1000–10 000 synapses on a dendritic tree is 0.007–0.02
(obtained when each synapse has only two states). Such a number would
limit the number of retainable memories to �104 irrespective of the total
number N of synapses across multiple neurons. Indeed, the dependence
on the total number of synapses is logarithmic, and hence very weak. Is
it possible to obtain a more favorable scaling of the memory lifetime
with N ?

The number of retainable memories increases significantly with N
when the complexity increases. For example, for the cascade model, it
increases with a power law of N, provided that the number n of
metaplastic states is large enough (n should grow logarithmically with the
memory lifetime). A power law is a significant improvement over the
logarithmic dependence when a large number of synapses is considered.
However, complexity has a cost as it reduces the initial memory trace
of each single neuron, and memories become irretrievable if such a
reduction is not compensated by an increase of connectivity C or a
decrease of sparseness. If the connectivity is constant, such an argument

leads to the conclusion that longer memory lifetimes require a reduced
degree of sparseness of the stimuli.

In what follows, we will first show that single neurons with cascade
synapses can retrieve a number of memories which scales as a power law
of the number of synapses provided that the correlations between the C
different synapses on the same dendritic tree are negligible. Notice that
such a condition is not trivial because these correlations are present even
when the neural representations are random and uncorrelated. We show
that a learning rule similar to the one proposed by Tsodyks and Feigelman
(1988) is sufficient to eliminate these correlations. We will then illustrate
in detail the points of the argument sketched above and leading to the
conclusion that long memory lifetimes require complex synapses and
limited sparseness.

MATERIALS AND METHODS
The learning scenario
We consider isolated neurons, each integrating C synaptic inputs which
are generated by a particular input pattern of neural activities j:

h ¼ 1

C

XC

i¼1

Jiji

Ji are the synaptic efficacies which are assumed to have only two values.
To simplify the calculations, we chose without any loss of generality
Ji¼�1. We will refer to h as to the total synaptic input. All synapses are
updated every time a certain pattern of neural activity is imposed to the
pre- and post-synaptic neurons. Each of these patterns creates a memory
and it is assumed to be random and not correlated with the other patterns.
In particular, we chose a neuron to be active, ji ¼ jþ, with probability f
and to be inactive, ji ¼ j�, with probability 1� f . For simplicity, we will
assume that jþ¼ 1 and j�¼�1. Any value of j� would produce the
same scaling properties as long as j� is not exactly zero (see Section
‘‘Discussion’’). f is sometimes named coding level and the patterns
are said to be sparse when f is small. Notice that in case of random
uncorrelated patterns, f is also the expected fraction of stimuli or
events which activate a particular neuron. If we assume that the events
generating memories occur at an average rate r, then rt are the
memories stored in a time interval of duration t. We assume that the
synapses remain unchanged between one event and another, and that
every memory is stored in one shot.

In order to establish whether a particular memory j can be retrieved or
not, we impose the input pattern of activities used to create the memory
and we check whether the output neuron response matches the one
imposed during memory creation. Such a criterion would allow, for
example, the retrieval of memories of patterns of activities which are
attractors of the neural dynamics (see e.g., Amit and Fusi (1994)). We
denote by hþ the normalized total synaptic current of the neurons that
should be active, h� that of the inactive postsynaptic neurons. If these two
values are well separated for all the stored memories, then it is possible to
place a threshold for the synaptic current where it would separate
correctly neurons that should be inactive from the neurons which should
be active. Every neuron which should be active experiences a different
sequence of random input patterns and hence it will have a different total
synaptic current in response to j. Analogously for the neurons which should
be inactive. The distance between the expected values of hþ and h�,
which is the memory signal S, should be compared to the width of the
distributions of the hs, which can be estimated by the squared
noise N 2 ¼ Var½hþ� þ Var½h��, where the variance of h is given by

Var½h�� ¼ hh2i��hhi
2
� (1)

The angle brackets denote an average over a particular set of neurons
(e.g., h. . .iþ is the average across the neurons that should be active).
Details on the calculation of the variance can be found in Appendix A.1.
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The minimal number of errors in retrieving a memory is estimated by
either the signal-to-noise ratio S=N or by using the Receiver operating
characteristic (ROC) approach (see Appendix A.4).

In order to estimate the memory lifetime, we track a particular memory
and we compute the S=N as a function of time. The storage of other
memories cause the tracked memory to fade away and its S=N to go to
zero. We estimated the memory lifetime as the time t at which the S=N
goes below a certain value (in our case, we chose S=N ¼ 1,
corresponding to 15% errors during retrieval using ROC). Notice that if a
memory can be retrieved at time t, then a fortiori all memories stored after
the one that we are tracking can also be retrieved. Hence, memory lifetime
and memory capacity have the same meaning in our learning scenario.

Synaptic plasticity
Learning rules. Memories are created by modifying the synapses when
a certain pattern of activities is imposed to the pre- and post-synaptic
neurons. In general, The synapse can be potentiated, depressed, or
remain unchanged depending on the pre- and postsynaptic activities.
We consider two rules for updating the synapses: Rule 1 (R1), introduced
in Amit and Fusi (1994), for which the synapse is modified only if the
pre-synaptic neuron is active, and in particular it is potentiated
with probability qþ if the postsynaptic neuron is active, depressed with
probability q� otherwise. Rule 2 (R2): the synapse is potentiated with
probability qþ if the pre- and postsynaptic neurons are both active, or
with probability q0 if they are both inactive, and it is depressed with
probability q� when the pre- and postsynaptic activities are different.
Such a rule is inspired by a similar rule introduced in Tsodyks and
Feigelman (1988) for unbounded synapses. The probabilities qþ, q�, and
q0 set the learning rate as they determine the average number of modified
synapses. Small values correspond to slow learning. Notice that the
statistics of the random patterns induces potentiation with probability
qþ f 2 and depression with probability q� f 1� fð Þ for R1. For R2,
potentiation occurs with probability qþ f 2 þ q0 1� fð Þ2 and depression
with probability 2q� f 1� fð Þ. In our analysis, we chose qþ¼ 1,
q� ¼ f= 1� fð Þ, and q0 ¼ f 2= 1� fð Þ2. Such a choice balances the
probability of potentiation and depression and makes the memory lifetime
scale as f �2 (Amit and Fusi, 1994; Fusi, 2002).

Synaptic models. The neural activity determines the direction of the
synaptic modification. If each synapse has only two states (Figure 1
bistable synapse) corresponding to the two synaptic efficacies, then the
synaptic dynamics is entirely specified by the rules of the previous
section. However, we will also consider more complex synapses
(Figure 1 multistate, cascade), in which many states correspond to the
same efficacy, but they have different degrees of plasticity. When
the pattern of neural activity is such that the synapse, for example, has to
be potentiated, then a transition to a different state is induced with a
certain probability. The transition might lead to a modification of the
synaptic efficacy (from depressed to potentiated) or to a further
consolidation of an already potentiated synapse. Potentiated states are
then more resistant to depression. Analogously, more consolidated states
in the left (depressed) column would be progressively more resistant to
potentiation. There is accumulating experimental evidence that biological
synapses show this kind of metaplasticity and that the induction of long-
term modifications depends on the initial synaptic state (Montgomery and
Madison, 2004; O’Connor et al., 2005). The models that will be studied are
schematically described in Figure 1:

1. Simple bistable synapse (Amit and Fusi, 1992; Amit and Fusi, 1994;
Tsodyks, 1990)—there are only two states which correspond to the
two efficacies �1. When the conditions for potentiation are satisfied,
the synapse makes a transition to the potentiated state with a
probability q, no matter where it started from. Analogously for
depression. The two states are also the two bounds of the synapse
and q sets the learning rate.

2. Multistate synapse—half of the n states have weak efficacy (left
column), and the other half have strong efficacy (right column). The
states are connected serially and if the conditions for potentiation are
satisfied, the synapse moves one step from the state at the lower left
end, in the direction of the state at the lower right end. Analogously,
for depression, it moves in the opposite direction.

3. Cascade synapse (Fusi et al., 2005)—the synapse becomes
progressively more resistant to plasticity as it moves down, along
the vertical axis, through a cascade of states. If it has a strong
synaptic efficacy, and the conditions for potentiation are satisfied,
then it moves one step down with a probability that depends on the
state (red arrows, the probabilities decrease as 1/2k�1, where k is the
number of states from the top of the cascade). If the conditions for
depression are satisfied, then a transition to the top of the cascade is
induced, and the synaptic efficacy changes. The probability for both
transitions decreases exponentially as the synapse moves down
along the cascade of states. Analogously for the depressed states.
This behavior reflects the activation of biochemical processes which
operate on multiple timescales.

The bistable model has an initial S=N that scales like fq
ffiffiffiffi
C
p

(Amit
and Fusi, 1994) when the patterns have sparseness f . The signal decays
with time as exp(�rtq f 2), where rt is the number of shown memories at
time t with rate r. The memory lifetime can be extended arbitrarily by
reducing q, at the price of reducing the initial S=N by the same factor
(Amit and Fusi, 1992; Amit and Fusi, 1994; Tsodyks, 1990). Small qs

correspond to slow learning and long memory lifetimes, whereas qs that
are close to 1 correspond to fast learning and fast forgetting. The
multistate synapses show a similar behavior, with the only difference that
with n states, their initial S=N is reduced by a 1/n factor whereas the
memory lifetimes are extended by a 1/n2 factor (Amit and Fusi, 1994).
The bistable model, the simplest, is also very robust to unbalanced
potentiation and depression when compared to the multistate model (Fusi
and Abbott, 2007). Finally, the cascade model has the advantages of long
memory retention, as in the case of a bistable synapse with small q, and
fast learning, corresponding to a large q. Indeed on the one side, its initial
S=N scales like the bistable model for q¼ 1 multiplied by a factor 1/n.

Figure 1. Schemes of synaptic states for the bistable, multistate, and
cascade models. Every circle denotes a synaptic state. Yellow circles
correspond to a potentiated synapse, that is, a synapse with an elevated
efficacy. Empty circles correspond to depressed synapses. The arrows
represent the possible transitions between states. Red arrows are the
transitions in the case the neural activity tends to potentiate the synapse.
Blue arrows correspond to synaptic depressions. Some of the learning rates
are reported with black numbers. They are q for the bistable model, always
one for the multistate model, and they decrease as 1/2 k for the cascade
model, where k is the metaplastic level (number of states from the top of the
cascade). The states at the bottom are the most resistant to plasticity, whereas
those at the top are the most plastic ones.
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The decay of the memory trace is not exponential but it follows a power
law for a long time, proportional to 2n, and then it goes down
exponentially.

Synaptic state occupancies
In order to study the decay of the memory trace, we evaluate the S=N as
a function of time. Hence, we need to compute the first and second order
terms of the total synaptic current h for all pairs of pre- and postsynaptic
activities imposed by the pattern generating the tracked memory (Amit
and Fusi, 1994). We use a ‘‘mean field’’ approach in which we compute
the conditional synaptic distributions at every time step. For every pair of
pre- and postsynaptic activities, we compute the probability Fxy

l of
occupying a given state l, given that the pre- and postsynaptic activities
are x and y during the creation of the tracked memory. In the general case,
the probability Fxy

l t þ 1=rð Þ, at time tþ 1/r, after a new memory has
been stored, of occupying state l¼ 1, 2,. . ., n can be written as:

Fxy
l ðt þ 1=rÞ ¼

X
m

MlmFxy
m ðtÞ

where Mlm is the probability of making a transition from state m to state l.
We assume that the memories stored after the tracked one are created by
patterns which are random and not correlated to the values of x and y.
Mlm generally depends on the learning rule, on the synaptic model, and on
the statistics of the neural representations of the memories (i.e., f ).

For all the models studied here, and more generally for any realistic
model with a finite number of states, there exists an equilibrium
distribution which corresponds to the state reached after the storage of a
large number of memories created by random patterns. The equilibrium
distribution is uniform for both R1 and R2 as the total probabilities of
potentiating and depressing a synapse are balanced. As the memory we
track is not a special memory, but it can be created by any event in
the past, we start from the equilibrium distribution and we then modify the
conditional synaptic distributions. For example, for the bistable model, we
have only two states, the synapse can be either depressed (state 0) or
potentiated (state 1). We assume that for example the imposed pre- and
post-synaptic activities are active (x¼ y¼ active). If the learning rule is
R1, the only permitted transition is potentiation with probability qþ.
Therefore, if we start from the equilibrium distribution F(t¼ 0)¼ [F0

(t¼ 0), F1 (t¼ 0)]¼ [1/2,1/2] at time 0, the distribution at time 1/r (i.e.,
after the tracked memory is stored) will be: Fþþ 1ð Þ ¼ F 0ð ÞQþ;þ ¼
½1=2 1�qþð Þ; 1=2 1þ qþð Þ�, where Qþ,þ is a transition probability
matrix that contains the initial conditions x¼ y¼þ, that is, active. Bold
letters represent vectors. The distribution F after the next memories are
stored can be calculated simply using the Markov chain rule, by having the
next iteration starting from the previous one, but replacing matrix Qþ,þ
with the general transition matrix M (containing the elements Mlm), since
the next patterns will stochastically activate x and y (see Appendix A.2).
More generally, with any given initial conditions for the pre- and
postsynaptic activity, the synaptic distribution can be computed at any
time using the above time difference stochastic equation. For more details
about the calculation of F, Q, and M see Appendix A.2.

RESULTS
Memory retrieval in the presence of correlated noise
The ability to retrieve a memory depends on the number of synapses, on
the statistics of the neural patterns of activities creating the memories,
and on the synaptic dynamics. In order to estimate the memory
performance as a function of these different factors, we consider
statistically independent random patterns of activities. Every pattern
creates a memory which later might be partially or completely overwritten
by other memories. In order to establish whether a memory can be
retrieved or not, we estimated a memory signal which is defined as a
difference between the normalized total synaptic current of the neurons

that should be active and the normalized current of the neurons which
should be inactive (see Section ‘‘Materials and Methods’’ for more
details). Such a current varies from neuron to neuron, even when we
consider only neurons that should be active. This variability is due to
the fact that the patterns generating the memories are random and
different neurons in general see different input patterns. The average
value of the memory signal is normalized in such a way that it does not
depend on the average number, C, of plastic synapses on the dendritic
tree of a single neuron. The width of the distribution can be estimated by
computing the noise, which is given by the standard deviation of the total
synaptic current across different neurons. Two components constitute the
squared noise. The first one scales as 1/C, that is what we would have in
the case of completely independent synapses. The second component
does not depend on C, and it is due to the correlations between synapses
on the same dendritic tree. To understand the origin of the second
component, consider rule R1 for updating the synapses; when the
presynaptic neuron is active, the synapse is modified. The direction of the
change depends on the postsynaptic activity; potentiation occurs for an
active postsynaptic neuron, depression otherwise. The synapses on the
same dendritic tree are clearly correlated even in the case of uncorrelated
random patterns of neural activity; if a synapse is potentiated, all the other
synapses will be either potentiated or left unchanged, because they share
the same postsynaptic activity. Had the synaptic modifications been
independent, the other synapses could also undergo depression. The
existence of these correlations can completely disrupt the ability to
retrieve memories. Indeed, in case of uncorrelated noise, the S=N would
scale like

ffiffiffiffi
C
p

, which would always allow memory retrieval, provided that
the number of synapses is sufficiently large. For correlated noise, there
would be no improvement in the memory lifetime when the number of
synapses increases, making the storage resources of a large number of
synapses completely useless. This problem was noticed already in Amit
and Fusi (1994) for a bistable synaptic model, and it was solved by the
authors by assuming that the patterns of activity generating the memories
are sparse. Indeed, for R1, the uncorrelated part of the squared noise does
not depend on the sparseness, but the correlated part decays linearly with
f . Notice that the uncorrelated part of the noise does not depend on time,
whereas the correlated part is modulated by the storage of other
memories (see Figure 2(a)).

Is it possible to eliminate the correlated part of the noise without
recurring to sparseness? We can actually modify the synaptic dynamics
R1 to strongly reduce the effects of the correlated part of the noise.
Following Tsodyks and Feigelman (1988), we balance the transitions
between synaptic states in such a way that there are no correlations
between synapses when the neural patterns of activities are random and
uncorrelated. We assume that the synapse is potentiated also when the
pre- and the postsynaptic neurons are inactive, depression occurs
otherwise. We tune the learning rates in such a way that when a synapse
potentiates, the other synapses on the same dendritic tree have the same
probability of potentiating and depressing, as in the uncorrelated case.
Indeed, now a synapse can potentiate every time the pre- and
postsynaptic activities are the same. The probability that a different
synapse on the same dendritic tree also potentiates is now independent of
the direction of synaptic modification of the first synapse and it is
determined by the presynaptic activity, which is random and uncorrelated,
regardless of the postsynaptic activity. For such a rule, the squared noise
for the equilibrium distribution does not depend on f (see Figure 2(b)).
The correlated part of the noise is always strongly reduced when
compared to that of R1, it peaks at a certain time, and then it becomes
small for large t.

The equilibrium noise for R1 and the maximal noise for R2 are plotted
in Figure 2(c) as a function of f . Notice that there is a maximum in the
correlated noise for both rules. The correlated part of the noise at
equilibrium for R2 is negligible and the total noise decreases as the
uncorrelated term like 1=

ffiffiffiffi
C
p

(see Figure 2(d)). In what follows, we will
study more complex models of synaptic plasticity but we will always use
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the decorrelating R2. This allows also a great simplification of the analysis
as we can neglect the correlated part of the noise.

Memory retrieval performed by single neurons
The memory trace for cascade models decays as a power law over a time
interval which increases exponentially with the number of levels of the
cascade (Fusi et al., 2005). After that time, the decay becomes
exponential and hence significantly more rapid. If we require that the
S=N is larger than a certain threshold, then the number of memories
which can be retrieved grows as a power law of the number of synapses
C. This scaling compares favorably to the logarithmic dependence on C of
non-cascade models. We now analyze how the memory performance
of cascade models is affected by the sparseness of neural patterns of
activities which create the memories. In Figure 3(a), we show the S=N
of a cascade model as a function of time for three different levels of
sparseness and for C¼ 10 000, n¼ 10. The curves are plotted in a log-
log scale, thus straight lines represent power laws. As f decreases (lighter
lines), the initial S=N also decreases, but the memory lifetime slightly
increases. The curves can be fitted by the following function:

S=N cascade ¼
14

ffiffiffiffi
C
p

f

5n

1

1þ ðrt f 2Þ e
�rt f 2=2ðn�2Þ

(2)

The function has been determined as in Fusi et al., (2005) by simple
considerations based on the scaling properties of the signal and the noise.

The initial S=N (obtainable by setting t¼ 0) has been determined
analytically. The decay is due to two factors. The first is a power law�1/t,
and the second is an exponential term which dominates when t is larger
than the longest time constant of the cascade. The power of the first term
(�1), estimated by fitting the formula to the mean field results, is slightly
different from the one estimated in Fusi et al., (2005) (�3/4) as it has been
determined to describe the S=N decay in a different range. The
numerical coefficients also result from a fit and they have been expressed
as fractions for readability. All times are scaled by a factor f 2. This is
simply because in R2 the probability of modifying a synapse is
proportional to f 2. It is as if only a fraction f 2 of all memories actually
modify a specific synapse.

For the range S=N>10�6, n¼ [5,15] and f ¼ [10�4,0.5], the
goodness of the fit is 0.97 and it is assessed by taking the relative error
ei ¼ jyi�ŷij=yi for each point and then calculating the quantity 1�ê2

where ê2 ¼ he2
i i; the closer the value is to one the better the fit is

(similarly to the coefficient of determination R-squared in statistics).
The initial S=N (obtainable for t¼ 0) contains all the dependence on

C, which comes from the 1=
ffiffiffiffi
C
p

dependence of the uncorrelated part of
the noise. Moreover, it is inversely proportional to the number n of levels of
the cascade because at the equilibrium distribution all metaplastic states
are equally occupied (see Fusi et al., (2005) for more details). Finally,
the initial signal depends linearly on f . The explanation is simple:
consider a postsynaptic neuron which should be active in response to
the input when a memory is retrieved. All synapses connecting
active presynaptic neurons (which are a fraction f of all neurons) are
potentiated with probability 1, and all synapses connecting inactive

Figure 2. NoiseN the case of the bistable model. (a) Noise for C¼ 104for R1 for four different levels of sparseness: f ¼ 0.19, 0.11, 0.07, 0.04, from darker to
lighter lines. (b) Noise for C¼ 104for R2 for the same f s reported in (a). (c) Noise for R1 (solid) and R2 (dashed) as a function of f , obtained taking the points
indicated by the arrows in Figures 2(a) and 2(b) for large C. (d) Noise for R1 (solid) and R2 (dashed) as a function of C ( f ¼ 0.055) for the points indicated by
the arrows in Figure 2(c).
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presynaptic neurons (fraction 1� f ) are modified with probability f .
Hence, the total contribution is proportional to f if higher order terms are
neglected.

The memory lifetime is estimated as explained in Section ‘‘Materials
and Methods,’’ by requiring that the S=N is larger than a particular
threshold (we allow an average error of 15%). The results are plotted in
Figure 3(b). Notice that as it is clear from Figure 3(a), for C¼ 10 000 the
initial S=N is very close to the critical threshold, and most of the power
law decay occurs in a region in which memories cannot be retrieved. Such
a behavior depends on the number of levels n of the cascade, as it will also
be discussed in the next section, and on the number of synapses C. In
Figure 3(c), we plotted the memory lifetime as a function of sparseness f
for three values of n. The best performance is obtained for the smallest n,
because for a single neuron with a relatively small number of synapses
(C¼ 10 000) the maximum memory lifetimes are anyway small and any
additional complexity would not help to extend the memory. Notice that for
all three curves, there is an optimal f ¼ fM and a minimal value f ¼ f 0

below which the memories cannot be retrieved. The nonmonotonic
behavior comes from the fact that just above f 0 the number of storable
memories increases with f , reflecting the dependence of the initial S=N
on the sparseness. Then it decreases because the memory lifetime is
inversely proportional to the average number of modified synapses, which
scales like f 2.

Memories can be retrieved only if sparseness is limited
Memory lifetimes are inversely proportional to f 2, and hence sparse
stimuli mean longer memories. However, f cannot be arbitrarily reduced

as single neurons can retrieve memories only if the initial S=N is above a
certain value. If it is not possible to retrieve a memory immediately after it
has been stored, when it is most vivid, then it is impossible to retrieve it
after other memories partially or completely overwrote it. The initial S=N
is proportional to f

ffiffiffiffi
C
p

=n (see Equation (2)) and hence it decreases
linearly with f when the stimuli become sparser.

In order to retrieve memories, the initial S=N must be larger than a
certain threshold, which in turn depends on the average number of errors
produced during retrieval. For simplicity, we consider a threshold 1, which
corresponds to errors in response to 15% of the input patterns. As we
noticed in the previous section, for any given pair of C and n, there is a
minimal f ¼ f 0 below which it is not possible to retrieve any memory:

f > f0 ¼
5n

14
ffiffiffiffi
C
p

The smallest f is constrained by the complexity of the synapse, repre-
sented by n, and by the number of synapses C which are directly
accessible by each neuron.

Complexity reduces the initial S=N
The initial S=N decreases with sparseness, but it is also reduced when
complexity increases (larger n). This is a general property of a large class
of metaplastic synapses and it is an obvious consequence of the existence
of multiple synaptic states. Indeed, if all the states are visited with a non-
zero probability, the synapse will spend only a fraction of its time roughly
proportional to 1/n in the most plastic states, which are those that

Figure 3. (a) S=N of cascade (solid curves are the fits of Equation (2) and the squares are obtained from the mean-field calculation) with n¼ 10 at
N¼ 104 and decreasing values of f ¼ 0.19, 0.11, 0.07 (lighter lines). (b) rt at which the S=N ratio of Equation (2) goes below 1. Same f s as in (a). The dotted
line corresponds to the 104synapses. (c) Memory lifetime as a function of f for N ¼ 104and for n¼ 5, 10, 15 (light lines correspond to increasing values of n).
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contribute the most to the initial S=N . How does the memory lifetime of
single neurons scale with complexity and f ? If the synapse operates in the
power law regime rt� 2n�2= f 2

� �
, the best memory performance is

obtained for f M¼ 2f 0. The dependence of memory lifetime on f and on n
is illustrated in Figure 3(c) and its maximum is given by

rt’ 1

4 f 2
0

’ 2C

n2

Notice that such a memory lifetime decreases rapidly with the number n of
metaplastic states. So what would be the advantage of using a complex
synaptic model with a large n?

Memory retention in synapses across multiple neurons
The need for complexity comes from various considerations about the
memory capacity of multiple neurons. When we combine together the
information stored in synapses of different dendritic trees, we cannot
determine the number of retrievable memories without specifying the
architecture of the network and the neural dynamics. However, we can
estimate an upper bound of the memory lifetime by considering the point
of view of an ‘‘ideal observer,’’ as in Fusi et al., (2005), who has a direct
access to the set of all synapses. Such an observer can determine whether
a memory is retained by measuring the correlation between the current
set of synaptic efficacies and the pattern of synaptic modifications which
created the tracked memory. Indeed, the pattern of synaptic modifications
is determined by the neural activities and hence it contains all the storable
information about the particular stimulus or event which created the
memory. If the current synaptic efficacies are not correlated to such a
pattern, then the memory is forgotten. The correlation is highest
immediately after the tracked memory is stored, and then it is degraded by
other experiences, which also impose patterns of synaptic modifications.
We assume that these patterns are random and uncorrelated. The
decorrelating learning rule would actually guarantee that the synaptic
modifications are statistically independent when we assume that the
neural representations generating the memories are also random,
uncorrelated, and arbitrarily sparse. Notice that this is true also when
two postsynaptic neurons share a certain number of inputs. Indeed, the
synapses sharing the same presynaptic neuron are not correlated for
the same reason that two synapses on the same dendritic tree are
uncorrelated (see Section ‘‘Memory Retrieval in the Presence of
Correlated Noise’’).

Following Fusi et al., (2005), we now estimate quantitatively the
maximum number of memories which can be retained when N
statistically independent synapses are considered. We divide the
synapses into two groups, those which are potentiated and those which
are depressed when the tracked memory is created. We define the
memory signal as the average difference between the number of
synapses in the two groups and the noise as its standard deviation. Notice
that we assume that the synapses are statistically independent, so there
are no correlations between different synapses. Not surprisingly, the
S=N for memory retention of synapses on multiple neurons decays as
the S=N for memory retrieval of single neurons in the case of
uncorrelated noise. The only difference is that instead of the number of
synapses C on the dendritic tree of a single neuron, we now have N,
which is the total number of synapses of multiple neurons. The
expressions are the same because memory retrieval in single neurons is
equivalent to read out the correlations between the synaptic efficacies and
the input pattern which was imposed when the tracked memory was
created. The main difference is that in the case of single neuron memory
retrieval the synapses share the same postsynaptic neuron and hence
they can be correlated. In the case of memory retention in multiple
neurons, we totally ignore the architecture of the network and we assume
that the synapses are completely independent. The S=N for memory
retention can also be computed with small modifications of the mean field

approach introduced in Fusi et al., (2005), and it can be fitted by the
following function:

S=N cascade ¼
14

ffiffiffiffi
N
p

f

5n

1

1þ ðrt f 2Þ e
�rt f 2=2ðn�2Þ

(3)

If rt� 2n�2= f 2, then

S=N cascade ¼
14

ffiffiffiffi
N
p

f

5n

1

1þ ðrt f 2Þ (4)

The tracked memory is retained if this S=N is larger than some
threshold, which we assume for simplicity to be unitary. Then we have
approximately

rt<
14

5

ffiffiffiffi
N
p

fn

Relation between synaptic complexity and sparseness
As discussed in the previous section, we do not know how to retrieve the
information when it is distributed across different neurons. However, we
can safely assume that f is larger than f 0, the minimal value of f which
would allow each single neuron to retrieve the memories stored in its C
synapses (see also Section ‘‘Discussion’’). Such a condition guarantees
that the initial S=N is larger than 1, and imposes a lower bound on f . It is
important to keep in mind that every neuron sees only C synapses, and
not all the N synapses which are available to multiple neurons. At f ¼ f 0,
the memory lifetime would be exactly zero, so f should be larger than f 0.
In what follows, we assume that f is tuned in such a way that every single
neuron has the best memory performance ( f ¼ f M). As f M¼ 2f 0, we
would obtain the same scaling properties if we do the analysis with f 0

instead of f M.
Let us consider first the case of lowest complexity n¼ 2, which would

allow us to choose the sparsest stimuli. In such a case, we basically do not
have a cascade model, the decay is entirely dominated by the exponential
term, and the memories are retained as long as approximately
rt< f�2log

ffiffiffiffi
N
p

f
� �

. If we choose the lowest f which would still allow
single neurons to do retrieval, we obtain

rt<
C

8
logðN=CÞ

This way we would use very inefficiently the memory resources provided
by multiple neurons given that the memory lifetime grows only as the
logarithm of the total number of synapses. We can actually do much better
if we increase the synaptic complexity. We assume that f ¼ fM ¼
2 f0 ¼ 5n=ð7

ffiffiffiffi
C
p
Þ and we get that the maximal retention time of a

memory stored in N synapses is given by Equation (4) and it is
approximately

rt< 4

ffiffiffiffiffiffiffi
NC
p

n2

In order to derive this expression, we neglected the 1 at the denomi-
nator of Equation (4). Such an approximation is valid as long as N�C=4,
which is certainly true for all the cases that we will analyze. The upper
bound on rt is correct as long as rt< 2n�2= f 2

M , which would correspond
to the condition that the cascade model operates in the power law regime.
Notice that now the maximal number of memories increases with the
square root of the total number of synapses, which can be a very large
number, even when a single cortical column is considered (N� 108–
109). If M is the total number of neurons, and we assume that each
neuron has C synapses, then N¼CM, and

rt< 4
C
ffiffiffiffiffi
M
p

n2
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Such a favorable scaling is valid only if the synapses operate in the
power law regime, which implies

n�2 log2ðnÞ>1�log2ðCÞ þ log2rt (5)

This inequality is obtained by replacing f M¼ 2f 0 in the expression
rt<2n�2= f 2

M : One of the consequences of such an inequality is that the
synapse should have a number n of metaplastic states that grows
approximately as the logarithm of the maximal memory lifetime. In other
words, the complexity of the synaptic dynamics should increase in order
to harness the storage resources provided by the N synapses. As n
increases, the initial S=N decreases. If C is set to a fixed value, then the
only way to still guarantee the ability to retrieve information at the level of
a single neuron is to reduce the level of sparseness by increasing f . This
conclusion is illustrated in Figure 4(a) where we plotted the minimal and
the optimal f ( f 0 and f M, respectively) as a function of the maximal
memory lifetime which can be obtained for statistically independent
synapses. Given a desired memory lifetime rt, we first computed the
number n of necessary metaplastic states by solving Equation (5), with
C¼ 1000 (red line) and C¼ 10 000 (blue line), see Figure 4(b). Given the
resulting n(rt), we then computed and plotted f0 ¼ 5n=ð14

ffiffiffiffi
C
p
Þ and

f M¼ 2f 0 in Figure 4(a). f 0 is a function of n and, again, C¼ 10 000 and
C¼ 1000. We conclude that if large memory lifetimes are needed, then
the neural representations of the memories cannot be too sparse,
otherwise they cannot be retrieved. For the range of Cs that we
considered (103–104), f is constrained to be of the order of 10�2–10�1.
The corresponding number of storable memories ranges from 104 for the
sparsest representations ( f � 0.01) observed in the medial temporal lobe
(Barnes et al., 1990; Jung and McNaughton, 1993; Quiroga et al., 2005),
to 107 for f � 0.1–0.2 similar to the sparseness observed in
inferotemporal and prefrontal cortices (Rolls and Tovee, 1995; Sato
et al., 2007). The memory lifetimes depend on the rate r of creation of
memories. If, for example, r¼ 0.1 s, then memory lifetimes for f � 0.01–
0.05 would be in the range of one or a few days, whereas for f � 0.1–0.2,
they would be of the order of 3–4 years.

Memory retrieval with alternative models
The next question we ask is whether it would be possible to obtain a
similar memory performance for M neurons with other complex synaptic
models with the same number of states. In principle, we could rely solely
on sparseness to extend the memory lifetime, without recurring to
metaplasticity. In practice, the non-cascade models have in general a
logarithmic, very weak dependence of memory lifetime on M which would
require a sparseness which goes to zero with M and hence prohibitively

low values of f . Interestingly, the considerations about the relation
between synaptic complexity and sparseness are still valid for a large
class of efficient n state synaptic models.

We analyzed the multistate model as we did for the cascade model.
The S=N can be nicely fitted by

S=N multistate ¼
9
ffiffiffiffi
C
p

f

5n
e�5rt f 2=n2

(6)

The formula can be easily derived from the analysis of Fusi and Abbott
(2007) and the numerical coefficient 9/5 has been determined by fitting
the formula to the mean field estimates (goodness of fit 0.99). The S=N
of the cascade and of the multistate S=N model are plotted in Figure 5
for C¼ 10 000 and for f ¼ 0.19. Notice that for such a relatively small
number of synapses, there is a wide interval of time in which the
multistate model outperforms the cascade model with the same number
of states. This is again another expression of the fact that complexity is
required for storing information in a large number of synapses, when
multiple neurons are considered, and it might appear to be deleterious
when a single neuron with a relatively small number of synapses is
considered.

For the multistate model, there is also a maximum memory lifetime for
a certain f , as already noticed in Leibold and Kempter (2007). Such a
maximum is approximately at f M¼ 8f 0/5 where f 0 is the minimal f which
allows retrieval and it depends on n and C similarly to the f 0 of the
cascade model:

f > f0 ¼
5n

9
ffiffiffiffi
C
p

The memory lifetime at the maximum is simply C/100 and surprisingly it
does not depend on n. When M neurons are considered, then the upper
bound of the memory capacity is approximately

rt<
C

80
logM

The log M dependence on the number of neurons should be compared to
the

ffiffiffiffiffi
M
p

dependence of the cascade model. The reduction due to n2 of the
memory lifetime of the cascade model seems to be a small price to be
paid in comparison to the advantage of a

ffiffiffiffiffi
M
p

dependence. Such an
advantage becomes particularly relevant when the total number of
synapses is large.

The upper bound of the memory capacity of the two models for an
increasing number of statistically independent synapses N is plotted in
Figures 6(a) and 6(b) for n¼ 10, 15, 15 when f ¼ 0.1. In both cases, the

Figure 4. Relation between sparseness and memory lifetime. (a) The minimal and the optimal sparseness ( f0 and f M, respectively) are plotted against a
desired memory lifetime for C¼ 1000 (red) and C¼ 10 000 (blue). As memory lifetime increases, the number of needed metaplastic states n also increases (b),
and this imposes an upper bound on the sparseness (a lower bound on f ).

Ben Dayan Rubin and Fusi

8
Frontiers in Computational Neuroscience | November 2007 | Volume 1 | Article 7



cascade model performs better than the multistate for N > 106 when
n¼ 10 and N > 108 when n¼ 15. Notice that in a single cortical column,
we probably already have N > 109.

An extensive comparison of the two models is made by examining the
contour plot of Figures 6(c) and 6(d) where the ratio between the capacity
of the cascade over the multistate model is plotted for N¼ [102,1012] and
f ¼ [10�4,0.5] in log scale for both N and f . The black-shaded area
corresponds to the region where the multistate model has zero capacity
because the initial S=N is below the critical threshold. The lines are
cutting the ( f , N) plane along the curve f ¼ 10a=

ffiffiffiffi
N
p� �

, where a is a
coefficient that controls the position of the level lines. This fit is good for
f < 0.1 while for bigger values of f the lines tend to curve slightly to the
left of the graph. This is because of the nonmonotonic behavior of the

noise component as we approach 0.5 (see Figure 2(c) where for f � 0.3–
0.5 noise increases).

DISCUSSION
We showed that complex cascade models of synapses can memorize and
retrieve a large number of random uncorrelated patterns. Our analysis
extends the results of Fusi et al., (2005) from populations of independent
synapses to single neurons where the synapses on the same dendritic tree
can generate harmful correlations, also in the case of memories created
by random uncorrelated patterns of activities. These correlations are
exactly zero for random uncorrelated patterns in which on average half of
the neurons are activated, or negligible in the case of extremely sparse
patterns. However, for the levels of sparseness observed in the brain, they
might disrupt the ability to retrieve memories because the correlated part
of the noise grows as fast as the memory signal when the number of
synapses increases. We introduced a learning rule which allows to cancel
the correlations given that the average sparseness f of the patterns is
known. Indeed, the learning rates for both potentiation and depression
must depend on f in order to eliminate the correlations. Such information
might be available to single synapses by reading out some global signal
generated by some unknown mechanism operating on a longer timescale.
Such a mechanism might be involved in the global processes of protein
synthesis which, in turn, would permit the expression of long-term
synaptic modifications.

The neural system that we analyzed is highly simplified and the
neurons are only either active or inactive. We believe that such a simple
model captures many important features of the memory performance of
more realistic models of long-term synaptic dynamics, and we know that
learning prescriptions similar to ours can be implemented with detailed,
biologically realistic synaptic dynamics (Fusi et al., 2000; Mongillo et al.,
2005). However, it does not incorporate the complexity of the detailed
biochemical processes that lead to long-term synaptic modifications and

Figure 5. S=N of the cascade (blue) and of the multistate (red) model for
C¼ 104 and for f ¼ 0.19 as a function of the number of stored memories rt.

Figure 6. Comparison of the memory lifetime of the cascade (in blue) and the multistate model (in green) for f ¼ 0.1 (a) for n¼ 10 (b) and n¼ 15. (c) Ratio
of the memory lifetime of cascade over multistate model as a function of N and f for n¼ 10 (N and f are in Log10 base). The graded black area corresponds to the
range in which the cascade has much higher memory capacity. (d) The same as above for n¼ 15.
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this might generate misleading interpretations. For example, the
decorrelating learning rule requires that the synapses are potentiated
when both the pre- and the postsynaptic neurons are inactive, though the
modifications should be consolidated with a small probability (�f 2). This
does not necessarily imply that the synapses are continuously modified at
the same rate as they are updated when the neurons are stimulated.
Neuromodulators like dopamine are known to greatly modulate the
learning rates (Reynolds and Wickens, 2002) and they might activate the
process which creates a memory only when a relevant event occurs.
Moreover, many protocols to induce long-term synaptic modifications like
spike-timing-dependent plasticity require very specific patterns of pre-
and postsynaptic spikes, and our two neural states can simply correspond
to some specific trains of spikes which do not occur during spontaneous
activity. On the other hand, it might also be that synapses are actually
modified by spontaneous activity, as already observed in Zhou et al.,
(2003), and our learning rule would be compatible with such a scenario as
the learning rate in the case of inactive neurons is supposed to be
significantly smaller than in the other cases.

After the introduction of a decorrelating learning rule, we analyzed the
relation between the complexity of the mechanisms responsible for
memory preservation and the sparseness of the neural patterns of activity
which create the memory. The initial memory trace corresponds to a vivid
memory which then fades away as new memories are stored. If such a
trace is not sufficiently strong, then it is not possible even to store a
memory. The strength of the initial memory trace is proportional to f and
to the square root of the connectivity C and inversely proportional to the
number of metaplastic states n. If the latter, representing a measure of the
complexity of the synaptic dynamics, increases to extend the memory
lifetime and C is kept constant, then f has also to increase by the same
amount. As the advantage due to increased complexity is huge when one
considers a large number of synapses, then longer memory lifetimes
would require less sparse neural representations.

This result is based on the assumption that every neuron singularly has
to be able to retrieve as many memories as possible, or at least it should
be able to retrieve at least one memory. We do not know how to estimate
the number of patterns which can be retrieved by a large network of
connected neurons because this would require to specify the neural
dynamics of highly interconnected networks of neurons and of
multimodular networks. We know that it is very difficult to study large
networks of neurons and that the performance can be surprisingly poor
when neural cells are interacting at a multimodular level (O’Kane and
Treves, 1992). With these premises, we think that a good memory
performance could be achieved when we require that every neuron
retrieves the maximum patterns that it can, or, at least, when we demand
that every neuron can retrieve more than one pattern without errors. In
principle, it might be possible to build a network in which every neuron
makes a large number of mistakes and then these errors are corrected by
some complicated interaction with other seemingly failing neurons.
However, it is probably easier to assume that single neurons operate in a
regime in which they can retrieve patterns on the basis of the memory
signal that we defined. Interestingly, if we make this assumption, we then
constrain the sparseness of the neural representations in a range which is
very close to the sparseness observed in the brain (Asaad et al., 1998;
Barnes et al., 1990; Jung and McNaughton, 1993; Rolls and Tovee, 1995;
Sato et al., 2007).

Notice that the constraint on sparseness that we derived depends on
the requirement that synapses on multiple neurons need to be complex
(i.e., have a large number of states) in order to store in their synapses an
extensive number of memories. Our estimates of the maximal number of
retainable memories are based on the assumptions that an ideal observer
can read out all synapses simultaneously and that the synaptic
modifications are statistically independent. The first hypothesis makes
our estimate an upper bound, and the second is discussed below in
Subsection ‘‘Correlated Neural Representations of Memories.’’ However,
it is important to notice that the estimate does not depend on the particular

neural dynamics, on the architecture of the network, and on the way the
neurons interact. We essentially estimate the number of retainable
memories by assuming that the different synapses are like independent
bits of a computer memory. If the memory trace is not stored in the
synapses, then there is no way that the memory can be retained and, of
course, a fortiori, the memory cannot be retrieved. In this sense, our
estimate is a strict upper bound for the memory capacity.

Our study predicts that across different brain areas, like inferotemporal
cortex versus medial temporal lobe, longer lifespan of storied memories
should be correlated with a larger number of metaplastic synaptic states,
and correspondingly neurons are expected to respond to a larger number
of stimuli.

Relation to previous works on sparseness
Sparseness has been shown to extend the memory lifetime in many
publications (Treves, 1990; Tsodyks and Feigelman, 1988) and to play a
particularly important role in the case of bounded synapses (Amit and Fusi,
1994; Leibold and Kempter, 2007). The conclusions of these works seem
to be in contradiction with our result that sparseness should be reduced
when long memory lifetimes are required. However, the contradiction is
only apparent because we also believe that sparseness greatly contributes
to extend memory lifetimes in case of single neurons, or in the case of
multiple neurons when different neurons store on their dendritic tree the
same input pattern of neural activity (e.g., in the case of recurrent neural
networks in which attractors (Amit and Fusi, 1994; Treves, 1990; Tsodyks
and Feigelman, 1988) or sequences of patterns (Leibold and Kempter,
2007) are stored). However, in all these studies the authors did not analyze
the memory performance of a network of neurons which is larger than the
local one considered. We showed that in such a case sparseness cannot
be the only solution to the memory capacity problem as each neuron still
sees a limited number of synapses when large networks are considered,
and hence the sparseness cannot be arbitrarily reduced. It is particularly
interesting to discuss the cases of Amit and Fusi (1994) and Leibold and
Kempter (2007). In both papers, the authors consider realistic binary
synapses, and they show that the memory lifetime scales like f �2log( fC).
If the sparseness increases with C, then the memory lifetime increases
with a very favorable scaling because of the f �2 factor in front of the
logarithm. However, the initial memory trace is also reduced and in order
to be still above the threshold of retrievability, f > 1/C. As consequence,
the upper bound of the number of retainable memories in multiple neurons
would scale like C 2 and it would depend only logarithmically on the total
number of neurons M. Notice that the f �2 factor cannot be used to obtain
an M 2 dependence on the total number of neurons as f cannot become
arbitrarily small ( f should be larger than 1/C) as required by f � 1/M.
Moreover, the scaling properties of neurons encoding sparse representa-
tions are correct only if the correlations between synapses are negligible
(Amit and Fusi, 1994).

In the case of the complex cascade models, the number of memories
increases approximately as C

ffiffiffiffiffi
M
p

and it decreases with complexity. As n
increases very slowly with the longest memories lifetimes, it is clear that
there is always an M such that the performance of the cascade synapses
is better than a network which relies only on sparseness. However, such a
number can be very large, even larger than the total number of neurons in
the brain. If this is the case, then complexity has only a negative effect on
memory lifetimes (Leibold and Kempter, 2007).

We showed that for realistic parameters this is not what happens and
that cascade models perform better already for the number of neurons
which are in a single column. Leibold and Kempter (2007) seem to actually
reach the opposite conclusion. One of the explanations of this apparent
contradiction is that they assumed that inactive neurons have exactly a
zero contribution to the noise of the memory signal. In their case, the noise
is then proportional to f . As soon as some noise is introduced in the
inactive neurons (e.g., spontaneous activity), the scenario drastically
changes. In particular, when the standard deviation of the noise is larger
than

ffiffiffi
f
p

jþ, where jþ is the mean activity of active neurons, then the
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dominant term of the total noise of the memory trace does not depend on
f , and the minimal f which would allow single neuron retrieval becomes
significantly larger, scaling as 1=

ffiffiffiffi
C
p

. The non-cascade models dominate
when f is very small, close to its minimum 1/C� 10�4, and hence the
background activity j� of the inactive neurons should be at least
100 times smaller than the average foreground activity jþ j�<

ffiffiffi
f
p

jþð Þ.
If jþ is 20–30 Hz (for which the synapses are already modified), then j�
should be smaller than 0.2–0.3 Hz. We believe that the spontaneous
activity is at least one order of magnitude higher, and hence that the
dependence of the noise on f of our analysis is more realistic.

However, we have to acknowledge that all the papers that we cited
about the estimate of the sparseness of the real brain provide us with a
lower bound of f but they are all based on extracellular recordings. Recent
experimental works show that in certain sensory areas (e.g., auditory or
somatosensory cortex), in anesthetized or restrained animals, the neural
representations of some stimuli seem to be sparser in the case in which
the neuronal activity is recorded intracellularly with a blind patch
technique (Brecht et al., 2003; DeWeese et al., 2003). This discrepancy
could be due to the bias that the experimentalists might have introduced in
choosing more active cells when they recorded extracellularly. However,
the results based on intracellular recordings in vivo are preliminary,
certainly not extensive as the results of extracellular recordings, and they
might also be biased. Indeed, in most of the intracellular studies the cell
properties are modified by the solution contained in the electrode (e.g., the
cell can be hyperpolarized by elevated concentrations of potassium).

In conclusion, we cannot rule out the possibility, proposed by Leibold
and Kempter (2007), that complexity is not necessary if the represen-
tations are extremely sparse. However, our scenario is strongly supported
by several experimental works, it reproduces the sparseness estimated
with extracellular recordings, it allows to store a significantly larger
amount of information in each pattern of neural activity and it provides a
simple solution to the paradox of longer memory lifetimes in areas where
the representations are less sparse.

Dependence of minimal sparseness on the local connectivity
We showed how the maximal sparseness is related to the required
memory lifetime. As the complexity increases to allow the storage of long
lasting memories, the neural representations have to become less sparse
to compensate for the reduction of the initial memory trace. Another factor
that is important for the initial memory trace is the connectivity, that is, the
number of synapses per neuron. Such a number is about the same for the
pyramidal neurons in the cortex and in CA3 in the hippocampus, and it is in
the range of 103–104. However, the connectivity is significantly larger for
Purkinje cells (>105). The initial memory trace is proportional to the
square root of the connectivity, which implies that any reduction due to the
increase in complexity can be compensated by a reduction of sparseness
or by an increase in the connectivity. An increase in connectivity would
hence allow for sparser representations, which seems to be the case in
the cerebellum (Eccles et al., 1967).

Slow learning
In our analysis, we have considered only the case in which every memory
is stored in one shot. We know that humans have remarkable memory
performances also in such a case (see e.g., Standing (1973)). However,
there are also situations in which the memories become retrievable only
after several repetitions of the same event that created them. In such a
case, the learning process is slow, and the memory can become
retrievable after a sufficient number of stimulus repetitions even though
the initial signal to noise ratio corresponding to a single presentation is
below the retrievability threshold. Such a scenario has been investigated
in the case of bistable synapses for dense (Amit and Fusi, 1992; Tsodyks,
1990) and sparse stimuli (Amit and Fusi, 1994; Brunel et al., 1998) and
slow learning turned out to be a very efficient way of storing information
when it is not necessary to learn in one shot. However, we believe that the

performance can significantly improve also in a slow learning scenario if
metaplastic states are introduced. This issue will be addressed elsewhere.

Supervised learning rules
Our learning scenario is certainly very simplified, and besides increasing
the number of metaplastic states, there can be other mechanisms which
can extend the memory lifetime. For example, in supervised learning
algorithms like the perceptron (Rosenblatt, 1958), the synapses are
modified only when the neuronal response does not match the one desired
by the supervisor, which is a smart and efficient way of reducing the
number of modified synapses. Such a mechanism allows to deal with
correlated patterns, as long as they are linearly separable, and it increases
the memory capacity, also for bounded synapses. In particular, it allows to
retrieve 2

ffiffiffiffi
C
p

random uncorrelated patterns with f ¼ 1/2 when the
synapses are bistable (Fusi and Senn, 2006), and a number of patterns
proportional to C if there are enough metaplastic states, even for the
serially connected states of the multistate model (Baldassi et al., 2007;
Rosenblatt, 1962). The main problem of such an approach is that it is
unclear whether and how the feedback information required to block
memory consolidation is actually available at the level of single cells.
Indeed, it is not sufficient to rely on a global signal like a reinforcer, but
every neuron should know independently whether it is producing the
desired response or not in order to implement a perceptron-like
mechanism. There are only a few biologically plausible models to
implement such a mechanism and they work in highly simplified neural
architectures, typically feedforward one layer networks with binary
outputs (see e.g., Brader et al., 2007; Gütig and Sompolinsky, 2006).

Correlated neural representations of memories
Most of the works about memories stored in bounded synapses
considered neural representations of the memories which are random and
uncorrelated. We also believe that it is an important benchmark, but in
order to estimate the real memory capacity it will be fundamental to
consider that the observed patterns of activities creating the memories are
not random and certainly they are not uncorrelated (Sato et al., 2007;
Tsunoda et al., 2001; Wang et al., 1996), especially if large areas of the
brain are considered. It is also very unlikely that uncorrelated patterns
of activities are an efficient way to store information in the brain when
a large number of neurons is considered. The correlations have at least
two effects on memory capacity: on the one hand they reduce the
amount of information that has to be stored, and hence they might
decrease the effective number of statistically independent synaptic
modifications which are needed to create memories. On the other hand,
they require more complicated learning rules which would make the
memories retrievable also when different memories have largely
overlapping neural representations. One scenario in which the correlations
might significantly improve memory lifetimes could be the one in which
the fraction f of stimuli activating a neuron refers to the statistics of a local
structure like a cortical column. If such a column is the only one activated
in one area (i.e., the inferotemporal cortex), and it contains a fraction g of
the total number of neurons, then the effective sparseness of the entire
area would scale like the product fg, and it could be significantly smaller
than f . This would allow the local retrieval of patterns with a certain f , and
to allow a higher level of sparseness when a bigger structure like the
entire area is considered. However, this scenario presents at least two
problems. The first is that we do not know the capacity for correlated
patterns and how it scales with the effective capacity. The second is that
there is no evidence for such a scenario in the recorded neural activity.
Indeed, in most of experimental studies cited in the introduction, the
authors do not seem to introduce any bias by recording from a specific
column or a highly localized structure. The only exception is Sato et al.,
(2007), in which the single unit recordings are guided by optical imagining.
In general, optical imaging studies (Sato et al., 2007; Tsunoda et al., 2001;
Wang et al., 1996) show that in inferotemporal cortex every stimulus
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activates multiple spots, indicating that the effective sparseness at the
level of an entire area could be not too different from the one measured
within a column. Instead, correlations between neural representations of
different stimuli might actually play a very important role, especially for
complex objects and their representation. Such a representation in certain
areas like the medial temporal lobe (O’Connor et al., 2005), the
inferotemporal and prefrontal cortex is known to be affected by a large
number of factors like attention, the context, the rule in effect used to
perform a task, the previous memories, and more in general by the
particular mental state of the animal.
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APPENDIX
Total variance of the synaptic input
Given C input synapses, we generate a set of random uncorrelated neural
activation patterns with sparseness f . The patterns are shown with a rate
r, a pattern every 1/r time units. rt is, therefore, the number of patterns
shown to the system at time t. At each time t, we can calculate
h rtð Þ ¼ 1

C

P
j; J j rtð Þj

j
ð1Þ, the total synaptic current evoked if the

synapses are tested with the first pattern, j 1ð Þ, after other rt� 1 patterns
were shown. J j rtð Þ is computed at each time as explained in paragraph
A.2. In the following, we will omit the notation for the dependence on time
of both h and J and we will omit the superscript (1) over j

ð1Þ
j . Here we start

from the variance of the total synaptic input, the mean of h is
straightforward. By h�i, we denote the expected value over many
postsynaptic neurons which see different random input patterns:

Notice that the first term scales like 1/C and it represents the
uncorrelated part of the noise. The second one is practically independent
of C and it is due to the correlations between synapses on the same
dendritic tree.

Conditional expected values. In order to compute the terms of the final
expression of Equation (7), we need to derive the expressions of the
probability that a synapse is Jþ or J� conditional to the value of the
presynaptic neural activity ji, for the neurons which are either active (jþ)
or inactive (j�) when the tracked memory is stored. We denote by Pðx; yÞ

the joint probability of x and y, and PðxjyÞ is the conditional probability of
x given y. Then we have

Jjh i ¼ 1

C

XC

i

JijiPðJ; jÞ ¼
1

C

XC

i

JijiPðJjjÞPðjÞ

¼ j�Pðj�Þ½J�PðJ�jj�Þ þ JþPðJþjj�Þ�
þjþPðjþÞ½J�PðJ�jjþÞ þ JþPðJþjjþÞ�

ð8Þ

where we can write P j ¼ jþð Þ ¼ f and P j ¼ j�ð Þ ¼ 1� f .

hJ2j2i ¼ 1

C

XC

i

J2
i j

2
i PðJ; jÞ

¼ j2
�Pðj�Þ½J2

�PðJ�jj�Þ þ J2
þPðJþjj�Þ�

þj2
þPðjþÞ½J2

�PðJ�jjþÞ þ J2
þPðJþjjþÞ�

ð9Þ

hJiJjjijjii 6¼j ¼
1

CðC � 1Þ
XC

i;j6¼i

JiJjjjjiPðJi; Jj; ji; jjÞ

¼
Xfj�;jþg
x;y

xyKðx; yÞPðxÞPðyÞ

ð10Þ

where Kðx; yÞ ¼ ½J�2 P J�J�jxyð Þ þ JþJ�P JþJ�jxyð Þ þ J�JþðJ�Jþ
jxyÞ þ J2

þP JþJþjxyð Þ�, and where x and y can take the values from
the set fj�; jþg.

Synaptic distributions
In this section, we will illustrate how to calculate the terms P Jijjið Þ and
P JiJ jjjij j

� �
and how they depend on time. The calculation is presented

for the simple case of the bistable synapse, for the cascade and multistate
synaptic models the extension is straightforward once the meta-plastic
states on the two branches of the model are grouped into depressed and
potentiated states. We will still consider hereafter the contribution of the
total synaptic current afferent only to one of the two postsynaptic neurons
(see Subsection ‘‘The Learning Scenario’’); therefore when the initial
conditions are imposed in order to do retrieval we will assume that at the
postsynaptic site either of the two conditions (active/inactive) are imposed.

Transition matrix and the eigenvalue problem. In what follows, we
will be considering the time evolution as reported in paragraph A.1, where
the synapses are modified at rate r. When the synapse is confined into two
possible states (bistable synapse in the text) J¼ J�, Jþ, any synaptic
modification can be expressed by the following matrix:

MðJiðrt þ 1ÞjJiðrtÞÞ ¼ 1� a a

b 1� b

� �
ð11Þ

this is transition probability matrix, where a stands for the total probability
of potentiating a synapse and b stands for the total probability of
depressing a synapse. For an easier notation, we refer to matrix
M Ji rt þ 1ð ÞjJi rtð Þð Þ as MJ. Let the row vector F(rt)¼ [F�(rt)
Fþ(rt)]¼ [P(J�) P(Jþ)] denote the probabilities of finding the synapse
in state J� or Jþ at time t. Thus, if synapse Ji has distribution F(rt) at
time t, after one more memory is stored, the distribution will be given by
F(rtþ 1)¼F(rt)MJ. We can track the distribution of the synapses at any
time (at each pattern presentation) using the Markov chain property
F(rt)¼F(0)MJ

rt, where F(0) is the initial distribution.
In general, we can write M in the so-called spectral decomposition

notation

Mrt ¼ VLrtV�1 (12)

where V is a matrix whose columns are the right-eigenvectors fV1,V2; . . .g
of M and L¼ diag (li), where li the ith eigenvalue of M. Being M

Markovian, l1¼ 1 and V1¼ [11 . . .]T . Let U¼V�1, then the rows of U

Var½h� ¼ h2
� �

� hh i2¼ 1

C

X
j

Jjjj �
1

C

X
k

Jkjk

* +
� 1

C

X
j

Jjjj

* +2

¼ 1

C2

X
j;k

JjJkjjjk

* +
� 1

C

X
j

Jjjj

* +2

¼ 1

C2

X
j6¼k

JjJkjjjk

* +
þ

X
j¼k

J2
j j

2
j

* +" #
� 1

C

X
j

Jjjj

* +2

¼ 1

C
ðC � 1Þ JjJkjjjk

� �
j 6¼k
þ J2

j j
2
j

D Eh i
� Jjjj

� �2

¼ 1

C
J2

j j2
j

D E
� Jjjj

� �2
h i

þ C � 1

C
JjJkjjjk

� �
j6¼k
� Jjjj

� �2
h i

ð7Þ
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are the left-eigenvectors fU1,U2,. . .g of M. By rewriting Equation (12),
we obtain

Mrt ¼ VLrtU ¼ V1�U1 þ
Xk

i¼2

lrt
i Vi�Ui

the only term that does not vanish for increasing rt (note that 1¼ l1>
l2� l3� . . .) is V1 � U1 which is the right-eigenvector associated with
l1 and defines the equilibrium distribution of F given M. In the two-states
case is given by F(1)¼ [b a]/(aþb).

Memory creation. When the tracked memory is stored, we have a
different equation for computing the conditional distributions:

FðrtÞ ¼ Fð1Þ �QJ �Mrt�1
j (13)

where QJ is the conditional transition matrix. F(1) stands for the
equilibrium distribution before the tracked memory is stored. This
equilibrium distribution is as if infinite patterns were presented to the
network and there is no longer trace of them. We can write
F(1)¼F(1) �QJ which is the distribution right after the first pattern
is shown.

More specifically, on the postsynaptic site the activity is imposed to
be either active or inactive. This condition coupled with the other two
conditions on the presynaptic site will generate four possible
combinations of initial conditions which are encapsulated in the matrix
notation Q. Hereafter, we will refer only to the presynaptic activation
taking only one of the two postsynaptic neurons as reference. The analysis
for the second postsynaptic neuron is the same. Therefore, we will
consider only two of the four possible initial condition matrices since
we restrain the analysis to the presynaptic site. Accordingly, we define
two of these initial condition matrices, each considers one specific
presynaptic activity: either active QJ;jþ or inactive QJ;j� . To these two
initial condition matrices correspond two vectors Fjþ¼P(Jjjþ) and
Fj�¼P(Jjj�). Now we can write the distribution of the synaptic weights
at time step rt given active or inactive presynaptic neurons:

PðJðrtÞj�Þ ¼ Fj�ðrtÞ ¼ Fð1Þ �Q j;j�Mrt�1
j

In the same way, in order to obtain the term P(Ji, Jjjji, jj) at any point
in time, we start from an initial distribution for a synaptic pair F(0)JJ and
by applying Equation (13) with a transition matrix for a synapse pair MJJ

(see next paragraph for the details). In the same way, the special initial
matrix QJJ would set the initial conditions for the distribution.

Transition matrices structure. First order transition matrix—A
transition matrix encapsulates the learning rule that the synapse obeys
upon pre- and postsynaptic neuron activities. The update direction and the
probabilities of update are enclosed in matrix MJ. For example, for
learning R1 the probability of having both pre- and postsynaptic neurons
active is f 2. Therefore, the total potentiation probability is a¼ f 2qþ. The
probability of having depression is when presynaptic is active and
postsynaptic is inactive, this happens with probability f (1� f ). Therefore,
the total depression probability is b¼ f (1� f )q�.

Second order transition matrix—The matrix in the bistable case is a
4	 4 matrix, we will denote it by MJJ. Each element correspond to the
transition probability of having a couple of synapses at time rt moving to
another configuration at time rtþ 1. On the diagonal, there are the
transition invariant configurations. All the probabilities of moving from the
current configuration to the next one are met moving along a row.

The generic matrix element Mlm(Ji(rtþ 1)Jj(rtþ 1)jJi(rt)Jj(rt))
corresponds to a probability of transition of the synapse pair (Ji, Jj)
from configuration m to l. The transition probability includes a
combination of potentiation, depression, and non-modification terms.
All the possible combinations of probabilities of activations of a synapse
pair jijj together with the state of the postsynaptic neuron z are evaluated

with a flag for each synapse (li, lj) that activates the synaptic update.
When the flag is on (li¼ 1), the ith synapse gets updated with the
probability, for example, pupdate, set by the actual learning rule for that
combination of pre-/postsynaptic activities. When the flag is off (li¼ 0),
the update takes place with probability 1� pupdate. This corresponds to
evaluating 25 possible cases: jijjzlilj, where ji, jj, z are active or inactive
with probability {1� f , f } and li,lj¼ {0, 1} with probability 1/2. These are
all the transition probability pairs for each pair of presynaptic and one
postsynaptic activations: all the pair combination of potentiation,
depression, and non-modification for two synapses. These transitions
are considered only if the learning rule prescribes the corresponding pre-
and postsynaptic neuron activities. Where the transition is not possible
because of the learning rule prescription, a probability of 1/2 is assigned to
the event. The total probability for a specific event (pair of transitions) is
given by the product of the probabilities of having that combination of
j1j2zl1l2. To conclude, we add all the probabilities that correspond to a
specific pair of transitions in Mlm.

Once we have the second order transition matrix MJJ, we can
calculate the equilibrium distribution for a synaptic pair. The initial special
matrix QJJ is obtained by the same procedure reported above; being
independent of postsynaptic activity, on the presynaptic side there will be
four possible combinations of presynaptic activities. Therefore, there
will be four special matrices that account for each of these four
possibilities:

PðJiðrtÞJ jðrtÞjji;�j j;�Þ¼F
j�j�
JJ ðrtÞ¼FJJð1Þ �QJJ;j�j�Mrt�1

JJ

and

PðJiðrtÞJ jðrtÞjji;�j j;
Þ¼F
j�j

JJ ðrtÞ¼FJJð1Þ�QJJ;j�j
Mrt�1

JJ

where all the four combinations are given by considering (j�,j�), (j�,jþ),
(jþ,j�), (jþ,jþ).

Rule R2—correlation suppressing
In the following, we will formally prove that the correlation term in the
linear case (when all the memories are contemporarily stored) goes to
zero using R2.

When pre- and post- have the same sign, we have potentiation (with
probability q00

þ or q11
þ depending if the two are both inactive—state 0—or

active—state 1), otherwise depression.
By equating the partial probabilities to 1/2, we obtain

Pðu2ju1Þ ¼
Pðu1; u2Þ

Pðu1Þ
¼

f 3q11
þ þ ð1� f Þ3q00

þ

f 2q11
þ þ ð1� f Þ2q00

þ
¼ 1

2
ð14Þ

only when q00
þ ¼ q11

þ f 2= 1� fð Þ2, where the term f 3 (or (1� f ) 3) is
the probability to have the two pre- and the postsynaptic neurons being
active (inactive) at the same time. Analogously, we obtain the
dependencies for the depression cases:

Pðd2jd1Þ ¼
Pðd1; d2Þ

Pðd1Þ
¼ ð1� f Þ2fq10

� þ f 2ð1� f Þq01
�

ð1� f Þf ðq10
� þ q01

� Þ
¼ 1

2

ð15Þ

only when q01
� ¼ q10

� ¼ q11
þ f= 1� fð Þ. We will refer to this rule as R2.

Receiver operating characteristic (ROC)
Suppose we want to separate two distributions g1ðxÞ, g2ðxÞ of a random
variable x, the ROC gives the minimal error we can make by choosing one
point belonging to one distribution given that the point is actually
belonging to the other one. This is done by setting a binary threshold on x.
The two distributions are integrated over the x range obtaining the
cumulative distributions G1ðxÞ and G2 xð Þ2½0; 1�. Plotting G1ðxÞ against
G2ðxÞ, we obtain a curve in a [0–1] box. The area below the curve can
take values from 0 to 1. The error percentage corresponds to the minimal
area below or above the curve. When the distributions completely overlap,
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the curve cuts the [0–1] box into two halves: the area and the error equals
1/2 (chance level).
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