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Hebbian learning in cortical networks during development and adulthood relies on the presence 
of a mechanism to detect correlation between the presynaptic and the postsynaptic spiking 
activity. Recently, the calcium concentration in spines was experimentally shown to be a 
correlation sensitive signal with the necessary properties: it is confi ned to the spine volume, it 
depends on the relative timing of pre- and postsynaptic action potentials, and it is independent 
of the spine’s location along the dendrite. NMDA receptors are a candidate mediator for the 
correlation dependent calcium signal. Here, we present a quantitative model of correlation 
detection in synapses based on the calcium infl ux through NMDA receptors under realistic 
conditions of irregular pre- and postsynaptic spiking activity with pairwise correlation. Our 
analytical framework captures the interaction of the learning rule and the correlation dynamics 
of the neurons. We fi nd that a simple thresholding mechanism can act as a sensitive and reliable 
correlation detector at physiological fi ring rates. Furthermore, the mechanism is sensitive 
to correlation among afferent synapses by cooperation and competition. In our model this 
mechanism controls synapse formation and elimination. We explain how synapse elimination 
leads to fi ring rate homeostasis and show that the connectivity structure is shaped by the 
correlations between neighboring inputs.
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mechanism, which restores the typical synapse density. In support 
of this hypothesis, not only in the developing cortex, but also in 
adult monkeys in vivo, synaptic boutons emerge and disappear with 
rates of 7 per cent per week (Stettler et al., 2006).

The functional role of synapse formation and elimination is 
not well understood, but theoretical studies have exposed the ben-
efi ts of the capability of structural remodeling (Chklovskii et al., 
2004; Stepanyants et al., 2002). Due to the fact that the number 
of potential presynaptic partners of a neuron easily exceeds the 
actual number at any point in time by an order of magnitude, 
each synapse carries three to four bits of structural information. 
In the framework of spiking associative memories this benefi cial 
functional role of structural plasticity can be exploited to increase 
the memory capacity (Knoblauch, 2006; Knoblauch et al., 2007). 
Therefore, synaptic formation and elimination is a candidate proc-
ess for long term information storage in cortical networks during 
development and adulthood alike.

The microscopic mechanisms leading to the formation of new 
synapses and to the elimination of existing ones have not yet been 
completely revealed. However, there is some evidence, that newly 
formed synapses are created in an intermediate, silent state (Cohen-
Cory, 2002; Kalisman et al., 2005). These frequently encountered 
silent synapses lack AMPA receptors but have NMDA receptors 
(Atwood and Wojtowicz, 2004). They bear a high potential for 
remodeling the neural circuit, since they can easily be converted into 

INTRODUCTION
The connectivity structure of the cortex was found to be surpris-
ingly dynamic in vitro and in vivo (Bonhoeffer and Yuste, 2002). 
Synapse formation and elimination exhibit a marked dependence 
on spiking activity, where higher activity promotes synapse for-
mation (Le Be and Markram, 2006). Based on geometric consid-
erations, Stepanyants et al. (2002), Chklovskii et al. (2004) and 
Stepanyants et al. (2007) suggest as a basic design principle of the 
cortex the potential of any pair of neurons to form a connection on 
small length scales of a few hundred micrometers together with an 
activity dependent selection mechanism. This idea is supported by 
direct observation of spines approaching presynaptic partners in a 
promiscuous manner (Kalisman et al., 2005). Of these structurally 
possible (potential) synapses, only a small fraction (0.12–0.34) is 
actually realized (Stepanyants et al., 2002), and transitions from 
potential to actual synapses are observed in vitro at rates of up 
to 1.2 per cent per hour during increased spiking activity (Le Be 
and Markram, 2006). These newly formed, immature synapses are 
weaker than mature ones. Synapse pruning mostly affects weak, but 
already mature synapses. The relation of synaptic strength to syn-
apse formation and synaptic death indicates that long term poten-
tiation (LTP) and synapse formation may be controlled by similar 
mechanisms and the same may hold for long term depression (LTD) 
and synapse pruning. The observation of increased connectivity 
after prolonged spiking activity also prompts for a synapse pruning 
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active synapses. The most probable mechanism is the translocation 
of AMPA receptors into the postsynaptic density (PSD). This is also 
observed (Cohen-Cory, 2002; Shi et al., 1999) during LTP for which 
NMDA receptor activation is a necessary precondition.

There is strong indication that synapse formation and synapse 
pruning are controlled in a similar way as LTP and LTD (Lüscher 
et al., 2000). Furthermore, Le Be and Markram (2006) found that the 
same antagonists prevent LTP and synapse formation, and conclude 
that the underlying mechanisms may be similar. Calcium entering 
the postsynaptic site through NMDA receptors is a probable mes-
senger causing synapse maturation (Atwood and Wojtowicz, 2004). 
For the induction of LTP and LTD, which in parts come about by 
modulating the number of postsynaptic AMPA receptors, Cormier 
et al. (2001) showed that both depend in a threshold like fashion 
on the intracellular calcium peak amplitude: higher amplitudes 
lead to LTP and lower ones to LTD.

Spike pairing experiments showed the calcium signal in spines 
to depend on the correlated activation of the pre- and postsynaptic 
site: Nevian and Sakmann (2004, 2006) found a marked depend-
ency on the relative timing and independence on the position of 
the spine along the dendrite, making the NMDA receptor medi-
ated calcium level in a spine an attractive candidate substrate to 
convey information about the correlation between presynaptic and 
postsynaptic activity.

For the calcium signal in a spine to control synaptic maturation 
or synaptic death it must activate a downstream signaling cascade. 
Calcium/calmodulin dependent kinase II (CaMKII) is a calcium 
activated kinase, which is crucial for the LTP of a synapse. In its 
activated state it can phosphorylate several structures among them 
AMPA receptors which respond with increased conductivity. There 
is also evidence, that CaMKII is involved in the insertion process 
of new AMPA receptors into the PSD. This causes LTP or turns a 
silent synapse (only having NMDA receptors) into an active one 
having AMPA and NMDA receptors. There is recent evidence from 
detailed biophysical modeling studies (Graupner and Brunel, 2007) 
that the activity dependent calcium infl ux can activate CaMKII in 
a bistable fashion and hereby explain spike timing dependent syn-
aptic plasticity (STDP). For a recent review of phenomenological 
models of STDP see Morrison et al. (2008).

CaMKII forms holoenzymes of two ring molecules consisting 
of six subunits each. A subunit can either be active or inactive. 
Transitions between the inactive and the active state are triggered 
by calcium signals of different amplitudes. Short and weak cal-
cium signals typically lead to activation of a single subunit by 
binding calcium or calmodulin to it. After the calcium level has 
dropped, unbinding of calcium and hence deactivation occurs 
within 0.1–0.2 s. At larger calcium concentrations an active subunit 
of the molecule (to which calcium is already bound) can phos-
phorylate the neighboring subunit. This only requires one addi-
tional calcium molecule to bind to the second subunit to expose 
its phosphorylation site. So phosphorylation can propagate along 
the ring and the molecule remains active even after calcium has 
returned to the resting level. At resting calcium concentrations, 
protein phosphatase 1 (PP1) can dephosphorylate an active subu-
nit, but a neighboring active site can immediately rephosphorylate 
it again. This regenerating effect explains the long time scales of 
several minutes for the deactivation of groups of active CaMKII 

molecules. Even longer time scales of hours of persistent activity 
are found at resting calcium concentrations in the special chemical 
environment of the PSD, where the concentration of PP1 is low 
compared to the number of CaMKII subunits. For a comprehen-
sive review see Lisman et al. (2002). Detailed biophysical simula-
tions (Miller et al., 2005) have confi rmed bistability between an 
active and an inactive state of whole populations of approximately 
20 holoenzymes. This effect is due to saturation of the phosphatase 
in the active state. The study found life times of both states in 
the range of 100 years. The time scale of the attractor dynamics 
is on the order of tens of minutes, but for strong fl uctuations 
of the calcium signal the bistability vanishes. Calcium can not 
only activate CaMKII (either directly or via calmodulin), but also 
protein phosphatases like calcineurin and protein phosphatase 1, 
which dephosphorylate CaMKII. These phosphatases have a higher 
affi nity to calcium than CaMKII. Therefore, they become active at 
lower calcium concentrations and counteract the phosphorylation 
of CaMKII. This is in agreement with the fi nding that LTD in CA1 
dendrites can be induced if the calcium concentration is below 
180 nM, while LTP requires it to exceed 540 nM (Cormier et al., 
2001). For a review see Cavazzini et al. (2005).

To our knowledge, previous models for structural plasticity 
either used simplifi ed neuron models (Butz et al., 2008; Dammasch 
et al., 1986) or plasticity rules depending on the fi ring rate alone 
and not taking into account formation and death of individual syn-
apses (van Ooyen et al., 1995). Consequently correlation dependent 
structure formation is outside the scope of these works. In this 
modeling study, we investigate how the biologically known path-
ways outlined above interplay to achieve a mechanism capable of 
detecting correlation between the presynaptic and the postsynaptic 
spiking activity. We focus on the calcium control hypothesis: the 
calcium signal mediated by NMDA receptors is the beginning of 
the signaling cascade. The main features of NMDA receptors enter-
ing our model are: (1) Their fast binding to glutamate followed 
by slow unbinding. (2) The quasi-instantaneous removal of the 
magnesium block upon postsynaptic depolarization to open the 
channel. In these assumptions, our model is similar to previous 
work by Shouval et al. (2002) on a mathematical model to explain 
spike timing dependent plasticity (STDP) based on the properties 
of NMDA receptors and the calcium control hypothesis. In contrast 
to their work, we assume the postsynaptic depolarization by the 
backpropagating action potential (bpAP) to be a short event.

The next stage of the signaling pathway in our model is a calcium 
controlled bistable effector molecule, like e.g. CaMKII. The impor-
tant properties for our model are: (1) The long time constants of 
sustained activation of each individual molecule by high calcium 
concentrations (bistability). We are interested in the regime, where 
calcium fl uctuations dominate the activation dynamics and the 
slower attractor dynamics causing bistability of the whole popula-
tion of molecules is negligible. (2) The ability of the kinase to infl u-
ence synaptic plasticity via AMPA receptor insertion. We assume 
a minimum amount of the kinase to be necessary for promoting 
synapses from silent to functional and we assume that there a mini-
mal amount of active kinase is required to prevent synapse death. 
(3) Two disjoint ranges of calcium concentration that control the 
transitions between the inactive and the active state of each mol-
ecule. (4) The relatively low number of molecules, which makes a 
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statistical description essential. We derive a model for correlation 
detection based on this pathway and investigate its dynamics under 
realistic conditions of irregular spike trains. We show that the model 
represents a viable mechanism to sense correlation between the 
pre- and postsynaptic activity. Controlling synaptic pruning, it can 
implement a fi ring rate homeostasis. Cohen-Cory (2002) already 
suspected, that activity-dependent remodeling selectively stabilizes 
coactive incoming synapses and destabilizes others. We demon-
strate that such cooperation and competition between synapses 
naturally emerges from the microscopic model and that a neuron 
can learn the correlations between neighboring inputs.

In the section “Spike Time Dependence of Postsynaptic Calcium 
Concentration” we explain the origin of spike timing dependence of 
the postsynaptic calcium concentration, mention the main fi ndings 
of recent imaging experiments, and develop a model for the peak 
amplitude of the postsynaptic calcium signal. We show it to quali-
tatively reproduce the experimental fi ndings. In the section “Ca2+ 
Transients Caused by Correlated Irregular Spiking” we show that 
for irregular spiking activity this model predicts a distinct depend-
ency of the observed postsynaptic calcium signal on the correlation 
between the presynaptic and the postsynaptic spiking events. The 
section titled “A Counter for Correlated Events” derives a biologically 
motivated model of a mechanism to “count” correlated events and 
therefore to assess the degree of correlation between the presynaptic 
and the postsynaptic activity. The section titled “Rate Homeostasis 
by Synaptic Pruning” shows that controlling synaptic pruning by this 
correlation measure can act as a rate regulation for the postsynaptic 
neuron at low rates. In the section “Cooperation and Competition 
by Spatial Input Correlation” we demonstrate that cooperation and 
competition between synapses depends on the correlation between 
neighboring inputs and that a synaptic pruning process manifests 
these input correlations in the resulting network structure. The last 
section discusses our results.

All simulations were carried out with the NEST simulation soft-
ware (Gewaltig and Diesmann, 2007) using the  computationally 

effi cient implementation of synaptic maturation and death pro-
vided in the section “Algorithmic Implementation of Synapse 
Maturation and Synapse Death” in Appendix. Preliminary results 
have been presented in abstract form (Helias et al., 2007).

SPIKE TIME DEPENDENCE OF POSTSYNAPTIC CALCIUM 
CONCENTRATION
In this section we show, that the calcium peak amplitude in a spine 
in good approximation depends exponentially on the temporal 
 difference of the presynaptic and the postsynaptic spiking and that 
the calcium infl ux is largest, if the presynaptic cell fi res shortly before 
the postsynaptic cell. This makes the calcium signal an appropriate 
candidate carrier of information on causal correlation.

Figure 1A illustrates the situation at a synapse subject to a spike 
pairing protocol. The principal mechanism causing the dependence of 
the postsynaptic calcium signal can readily be understood. With each 
presynaptic spike a small amount of glutamate is released, increasing 
the glutamate concentration ρ

glu
 at time t

glu
. Glutamate binds to a 

fraction of the postsynaptic NMDA receptors. There is experimental 
evidence (Mainen et al., 1999) that only a fraction n(t) of the NMDA 
receptors bind to glutamate. n(t) reaches its maximum n

0
 after a rise 

time of τ
rise,nmda

 � 5 − 10 ms. We choose this maximum obtained for 
a single presynaptic release to be the unit of n. After the glutamate 
concentration ρ

glu
(t) has decayed back to its resting value, the receptors 

unbind and n(t) decays back to 0. As long as the postsynaptic spine 
is not depolarized, the NMDA receptors are blocked by magnesium 
and thus have a low conductance (Jahr and Stevens, 1990a,b). Arrival 
of a postsynaptic back-propagating action potential (called bpAP in 
the following) depolarizes the spine (indicated as V

spine
 in Figure 1A), 

removes this block and Ca2+ can fl ow into the spine. The amount of 
NMDA receptors opening at time t

BP
 therefore equals

n(t
BP

) = n(t
BP

 − t
glu

).

This is illustrated in Figure 1B. Thus the NMDA receptor medi-
ated conductivity depends on the relative timing Δt

syn
 = t

BP
 − t

glu
. 
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FIGURE 1 | (A) Sketch of an experiment measuring the calcium concentration in 
spines during a spike pairing protocol. The calcium concentration inside the 
spine is measured while varying the temporal difference Δtsyn between the 
onset tglu of the glutamate concentration and the arrival of a postsynaptic bpAP 
tBP at the spine. (B) Rise in glutamate concentration at tglu in the synaptic cleft 
causes NMDA receptors in the spine to bind to glutamate. The fraction n (t) of 

glutamate bound NMDARs jumps to its maximum (n0 = 1 for simplicity) after 
time τrise,nmda. As long as the spine is not depolarized, the NMDA pore is blocked 
by Mg2+. A postsynaptic spikes causes a bpAP to arrive at the spine at tBP and to 
unblock the currently glutamate bound NMDA receptors n(tBP), so Ca2+ can enter 
the spine. The total amount of Ca2+ infl ux q is proportional to n(tBP) and therefore 
depends on the relative timing Δtsyn.
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This model assumes  instantaneous removal of the Mg2+ block. 
However, the detailed mechanism is more complicated. Removal 
of the Mg2+ block can happen at several time scales; a very fast one 
of �100 μs (Jahr and Stevens, 1990b) and several recently found 
longer time scales of a few 100 ms (Kampa et al., 2004). The longer 
time scales were found to effectively narrow the time window of 
substantial NMDA conductance (Kampa et al., 2004). Here, we do 
not intend to capture the NMDA receptor kinetics in full detail, 
but rather to construct a functional yet quantitative model where 
the experimental results constrain the model parameters. Calcium 
imaging studies on spines (Nevian and Sakmann, 2004) show, that 
the timing dependence of the Ca2+ peak amplitude can be fi tted for 
positive Δt

syn
 to a function with a rise time of τ

rise,nmda
 followed by a 

exponential decay with a single time constant of τ
nmda

. These studies 
typically measure the timing Δt = t

post
 − t

pre 
between the spiking in 

the presynaptic neuron’s soma t
pre

 and the spiking in the postsynap-
tic neuron’s soma t

post
 (see Morrison et al., 2008, for the defi nition 

of delays in models of synaptic plasticity). With d
BP

 being the delay 
for a bpAP and d

glu
 being the delay between presynaptic spike and 

glutamate release, the timing difference at the synapse is

Δ = −

+ −

= Δ + −

t t t

t d t d

t d d

syn BP glu

post BP pre glu

BP glu

= +( )

.

In this work, we neglect the continuous binding process and 
instead assume that the number n of glutamate bound NMDA recep-
tors jumps to a positive value after the rise time τ

rise,nmda
, like

n t n H t t
t t

( ) ( ) ,= − − −
− − ,

0 glu rise,nmda e
glu rise nmda

nmdaτ
τ

τ

 
(1)

where H(t) denotes the Heaviside function. Assuming the bpAP to 
be a point event, the total Ca2+ infl ux into the spine

q q t t n H t t
t t
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−∞
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− −
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depends exponentially on the timing Δt where i
Ca

 = q
0
δ(t − t

BP
) is 

the calcium current through a single open NMDA channel during 
a bpAP. Our expression for q defi nes the effective rise time τ

rise
 and 

suggests to measure q in units of q
0
n

0
, i.e. we set q

0
n

0
 = 1. Nevian 

and Sakmann (2004) measured an effective rise time τ
rise

 = 10 ms 
and an exponential decay with a time constant τ

nmda
 = 32 ms.

The postsynaptic depolarization due to the AMPA receptor 
activation only causes a small NMDA conductivity, as shown in 
measurements of the NMDA conductivity for voltage patterns 
caused by spike pairing experiments (Kampa et al., 2004) and also 
directly by observing that the calcium transient in spines in spike 
pairing experiments is not decreased signifi cantly by blocking 
AMPA receptors (Nevian and Sakmann, 2004). In our model, we 
neglect the infl uence of AMPA mediated depolarizations on the 
calcium signal.

Assuming the bpAP to be a point event is obviously an approxi-
mation. As well as the assumption, that the glutamate binding state 
jumps from 0 to 1 at t = t

glu
 + τ

rise,nmda
 instead of showing a continu-

ous increase on a time scale of 5–10 ms (as found experimentally by 
Kampa et al., 2004). However, for timings Δt

syn
 ≥ τ

rise,nmda
, it is easy 

to see that this does not qualitatively change the total Ca2+ infl ux 
(assuming i

Ca
(t < 0) = 0, because

q t i t t n t t t

i t n t t t t

( ) ( ) ( )

( ) ( )
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Ca glu BP

d
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As before, q depends exponentially on the relative timing Δt
syn

. 
The exact shape of the bpAP only enters the timing independ-
ent factor q′

0
. For Δt

syn
 < τ

rise,nmda
, the integral depends both on the 

shape of the resulting i
Ca

(t), which in turn depends on the actual 
shape of the bpAP, and on the rising fl ank of the NMDA channel 
activation. A typical trace of i

Ca
(t) has a half duration of �5 ms 

and the rise time of NMDA activation is of the same order of 
magnitude (5–10 ms). Hence, the slope of q(Δt

syn
) in this range is 

large compared to the following exponential decay with τ
nmda

, as 
confi rmed experimentally (Nevian and Sakmann, 2004). The step 
like approximation (Eq. 2) therefore seems adequate. Our choice to 
describe the bpAP to be a point event has the consequence that in 
this spike pairing experiment there is no calcium infl ux for larger 
negative timings Δt

syn
 − τ

rise,nmda
 < 0. Taking into account a fi nite 

short decay time for the postsynaptic depolarization as in Shouval 
et al. (2002) would lead to a small calcium infl ux also for the post-
before presynaptic timing.

The Ca2+ infl ux q leads to a transient signal which in good 
approximation decays in an exponential fashion (Nevian and 
Sakmann, 2004, 2006; Waters et al., 2003) with a decay time of 
20–200 ms (reviewed in Cavazzini et al., 2005). We therefore assume 
the calcium peak amplitude to depend linearly on the amount q of 
calcium infl ux.

Ca2+ TRANSIENTS CAUSED BY CORRELATED IRREGULAR SPIKING
So far we studied the model for the case of a spike pairing protocol, 
where a presynaptic action potential is paired with a postsynaptic 
action potential. In this section we investigate how much informa-
tion about the correlation between presynaptic and postsynaptic 
events is contained in the Ca2+ signal if the spiking activity is irregu-
lar. To this end, we simulate the presynaptic and the postsynap-
tic spiking as Poisson processes with rates ν

i
 and ν

o
, respectively. 

Both processes share a fraction of spikes that appear in the spike 
trains with a fi xed temporal distance Δt. In the following we call 
these events “pair events”. Figure 2A illustrates these processes. The 
strength of the temporal correlation is given by the correlation 
coeffi cient ε, which is the conditional probability of a pair event 
(i.e. seeing the temporally correlated presynaptic partner spike at 
t − Δt), given a postsynaptic spike at time t.
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Let A be the set of presynaptic spike times and B the set of post-
synaptic spike times within a fi nite interval [0, T]. The effects of 
the presynaptic spikes add up linearly in our model. Therefore, the 
number of glutamate bound NMDA receptors found at time t is

n t n
t A t t

t t

( )
{ }

=
−

−∑
− −

0

pre pre rise

pre rise

nmdae
∈ | < τ

τ
τ

 

(3)

and the total Ca2+ infl ux at the point in time t
post

 of a postsynaptic 
spike is accordingly

q t
t A t t

t t

A( )
{ }

post

pre pre post rise

post pre rise

nmde=
∈ | < −

−∑
− −

τ

τ
τ aa ,

where we again set q
0
n

0
 to unity. For different realizations of the 

presynaptic and postsynaptic spiking the elements of the set a
A,B

 = 
{q

A
(t

post
) | t

post
 ∈ B} are random variables, since A and B are random 

sets. We therefore need to calculate the probability density function 
of q

A
 and show that it depends on the correlation ε between pre- and 

postsynaptic events. Initially assume ε = 0, i.e. A and B to be two 
independent sets of Poisson points. In this case the points in time t

post
 

at which q
A
(t) is sampled are randomly and uniformly drawn from 

the interval [0, T]. Consequently the elements a ∈ a
A,B

 occur accord-
ing to the probability density function of q

A
(t), where t is a randomly 

and uniformly drawn point in time t ∈ [0, T]. This is the amplitude 
distribution ρ

0
(q) of a shot noise with an exponential kernel and can 

be calculated recursively (Gilbert and Pollak, 1960) as

ρ0

1 0 1
( )q =

< ≤−C q q

q

r

r

                                    for 

−− −− − >

⎧
⎨
⎪

⎩⎪

=

=

∫

−

1

1 0 1 1( ( ) )

(

C r x x x q

r

C

q
r

i

r

ρ

τ
γ

d  for 

with nmda

e

ν

Γ rr)

,γ = .0 577215665  (4)

where γ is Euler’s constant. In the case 0 < ε ≤ 1, however, we have 
to distinguish two cases: Given a postsynaptic spike, with prob-
ability 1 − ε this spike is not part of a pair event. The postsynaptic 
event is uncorrelated with respect to the presynaptic events and 
thus samples q(t) at a random point in [0, T] as discussed above. 
So the contribution of this event to the probability density ρ(a) is 
(1 − ε)ρ

0
(a). With probability ε the postsynaptic spike is part of a 

pair event. In this case, we know that there is a presynaptic spike at 
time t

post
 − Δt of which we still see the deterministic contribution 

Δ = − Δ −a te rise nmda( )/τ τ  to a. Since we assume the presynaptic spikes to 
have Poisson statistics, the existence of the presynaptic spike at 
t

post
 − Δt does not infl uence the statistics of the other presynaptic 

spikes. The latter produce a shot noise background obeying the 
distribution ρ

0
(a′): the probability density to observe the value 

a = a′ + Δa equals the probability density ρ
0
(a′). Hence the con-

tribution in this case is ερ
0
(a − Δa). Considering both types of 

postsynaptic spikes we arrive at

ρ(a) = ερ
0
(a − Δa) + (1 − ε)ρ

0
(a) (5)

with e rise nmdaΔ = − Δ −a t( )/ .τ τ

Figure 2B illustrates this result. The postsynaptic events belong-
ing to spike pairs (black bars) sample the shot noise signal at high 
values and cause the peak in the histogram around 0.73. Its height 
scales linearly with the correlation coeffi cient ε. The uncorrelated 
gray events cause a background manifested in the histogram by 
the large peak at low values. Its amplitude scales proportional 
to 1 − ε.

In conclusion, the information about correlation between the 
presynaptic and the postsynaptic events enters the probability 
distribution ρ(a) and is therefore exhibited in the amplitude dis-
tribution of Ca2+ transients in the postsynaptic spine: correlated 
postsynaptic events which come in close temporal proximity to a 
presynaptic spike produce a high Ca2+ infl ux.
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FIGURE 2 | (A) Presynaptic glutamate release treated as point events ρglu,pre(t). 
The back-propagating action potentials cause a postsynaptic depolarization 
Vspine(t), taken to be point events as well. Pre- and postsynaptic events occur 
with Poisson statistics at ν = 5 Hz, but both sequences contain a fraction of 
correlated events (black bars), which have a fi xed temporal distance 
Δt = 15 ms from each other. ε = 0.1 is the probability of observing a 
presynaptic partner, given a postsynaptic spike. The gray bars denote 
postsynaptic spikes, which have no correlated partner among the presynaptic 
events. (B) The left plot shows the shot noise (light gray) produced by the 

presynaptic events. A postsynaptic spike tpost samples the shot noise at the 
time of occurrence, a := q(tpost). Postsynaptic spikes that belong to a pair (i.e. 
which are preceded by a presynaptic event Δt before) are indicated by black 
bars. They sample q(t) at high values and thus produce the peak in the 
histogram (right panel) at e rise nmda− Δ − .( ) /t τ τ � 0 73 (with τrise = 5 ms). The black dots 
result from a realization of the stochastic process (T = 105 s) using Scientifi c 
Python (Jones et al., 2001), the gray curve illustrates (Eq. 5). The peak 
amplitude is proportional to the correlation coeffi cient ε = 0.1. Uncorrelated 
postsynaptic events cause the peak at low values of a.
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A COUNTER FOR CORRELATED EVENTS
In this section we devise a model of a postsynaptically realized 
counter for correlated events. The model is based on CaMKII, 
the most probable downstream signaling protein. CaMKII is an 
example of a bistable effector protein, whose transitions between 
its active and its inactive state are triggered by distinct calcium 
concentrations. Since the number of CaMKII molecules in a spine is 
low a statistical description is essential. Figure 3A shows a schematic 
drawing of the possible transitions of a single ring molecule in our 
model and their dependence on the calcium concentration: If the 
calcium infl ux exceeds the highest threshold Θ

h
, the number x of 

active CaMKII molecules is increased. We call this a plus-event. If 
the infl ux is between Θ

l
 and Θ

h
, the amount of active molecules 

remains unaffected. This region is often referred to as “no man’s 
land” (Cormier et al., 2001). For a low calcium infl ux between Θ

b
 

and Θ
l
, the number of active molecules decreases. We call this a 

minus-event. If the infl ux is below Θ
b
, the number of active mol-

ecules remains the same. Previous theoretical work (Shouval et al., 
2002) assumes a similar dependence of the synaptic weight change 
on the calcium concentration, but does not take into account the 
intermediate concentration, where no plasticity occurs. After a high 
calcium event, the concentration eventually drops to levels between 
Θ

b
 and Θ

l
, where it can activate the phosphatase and thus deac-

tivates CaMKII molecules. So the increase of active molecules in 
our model caused by a high Ca2+ event is understood to be the net 
effect of activated minus deactivated molecules.

Cormier et al. (2001) measured the thresholds for constant cal-
cium concentrations. It is unclear, whether these values also hold for 
transient calcium infl ux through NMDA receptors. Furthermore, 
for the spike pairing protocol, only relative calcium concentrations 
have been measured. We therefore pursue a more phenomenologi-
cal approach and choose Θ

h
 such that a plus-event occurs, if the 

temporal distance between the presynaptic and the postsynaptic 
event Δt is in the range 0 ≤ Δt = t

post
 − t

pre
 ≤ Δt+ = 20 ms, consist-

ent with the potentiation window of STDP (Bi and Poo, 1998). 

Furthermore, Bi and Poo (1998) showed that the transition from 
LTD to LTP occurs in a relatively narrow time window symmetric 
around Δt = 0. Since in the present work we aim at a functional 
model we choose the effective rise time to be τ

rise
 = 0 ms, in order 

for the coincidence window to start at Δt = 0. Θ
h
 is then given by 

Θh
t= −Δ +e nmda/ τ  (see Figure 4). Subsequently, we use the absolute 

values of Θ
h
 and Θ

l
 of Cormier et al. (2001) to infer from the ratios 

Θ
Θ

l

h
� 0 75.  and Θb

hΘ � 0 3.  the appropriate values of Θ
l
 and Θ

b
 for our 

condition.
Note that this choice of thresholds has the consequence for the 

spike pairing protocol that for 0 ≤ Δt ≤ Δt+ we obtain activation 
of CaMKII molecules, but we do not obtain deactivation for the 
reversed timing Δt < 0 as suggested by the experimentally observed 
LTD window of STDP. In the section “Sensitivity of Results to 
Model Assumptions” we discuss an extension of our model to 
incorporate the LTD window for negative relative timing and we 
argue that our results are invariant under this modifi cation.

Knowing the probability distribution ρ(a) of the calcium peak 
amplitudes a given a postsynaptic depolarization, we can calculate 
the probability of occurrence p− = P(Θ

b
 ≤ a < Θ

l
 | postsynaptic 

spike) of a minus-event and p+ = P(a ≥ Θ
h
 | postsynaptic spike) 

of a plus-event. In order to detect pairs of correlated pre- and 
postsynaptic events, their relative timing must satisfy Δt ≤ Δt+. 
This is equivalent to the condition Δ := −Δa t

he nmda/ τ ≥ Θ , meaning, 
that correlated events cause an infl ux larger than Θ

h
 (compare 

Figure 3B).
Using Eqs. 5 and 4 for the probability of a plus-event we arrive at
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h h
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FIGURE 3 | (A) CaMKII molecules exhibit bistability: An inactive state and a 
highly phosphorylated, active state. Transitions between the two states are 
triggered by Ca2+ infl ux. If the infl ux exceeds a threshold Θh, the molecule 
switches from inactive to active. Low Ca2+ infl ux between Θb and Θl deactivates 
the molecule. (B) At each postsynaptic spike, Ca2+ can enter the spine and can 
change the amount x of active CaMKII molecules. The probability density function 

ρ(a) of the Ca2+ infl ux at the points in time of a postsynaptic spike a = q(tpost) 
determines the direction of the effect on x (same data as in Figure 2B). According 
to this effect, it can be divided into different regions: For Θb ≤ a < Θl; the number 
of active molecules is reduced. This event occurs with probability p− (Eq. 7). For 
a ≥ Θh the number is increased, occurring which probability p+ (Eq. 6). In the 
regions between Θl and Θh and below Θb there is no infl uence on x.
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= + −1 1( ) .ε C

r h
rΘ

 
(6)

Here r and C are given as in Eq. 4. An analogous calculation, which 
is valid under the same assumption Θ

b
 < Θ

l
 < Θ

h
 ≤ Δa yields

p a a

a a a a a

b

l

b

l

b

l

−

=

=

= − + − Δ

∫
∫ ∫

( ) ( )

( ) ( ) ( )

ε ρ

ε ρ ρ

Θ

Θ

Θ

Θ

Θ

Θ

d

d d1 0 0

0 for ΘΘ Θ Θ

Θ Θ

b l h a

l
r

b
rC

r

< < ≤Δ

⎛
⎝⎜

⎞
⎠⎟= − −( ) .1 ε

 
(7)

Each PSD of a spine contains a number of CaMKII molecules, 
which was found to be N = 80 in a typical PSD on average (Chen 
et al., 2005). We are only interested in the behavior of the two sta-
ble states of a molecule: On long time scales, a molecule can only 
be in the fully activated or in the completely inactive state. Let the 
number of active molecules be x and assume that the postsynaptic 
neuron spikes with a rate ν

o
. Then x is a random variable and we are 

interested in the equilibrium distribution and its dependence on the 
correlation between the presynaptic and postsynaptic spike train. 
Each postsynaptic spike may lead to a plus-event with probability 
p+(ε). In such an event, each of the N − x inactive molecules can 
become active. In our model, this transition happens independ-
ently for each particle with probability p. Given x active molecules, 
the number of molecules per time being activated is ν

o 
p+ p(N − x). 

Analogously, the number of molecules per time being deactivated 
is ν

o 
p−qx. Here, q is the probability of a minus-event to deactivate a 

particular molecules. This scenario is sketched in Figure 5. In equi-
librium, both currents must compensate, leading to the expected 
number of active molecules

x N
p p

p p p q
eq =

+
+

+ −

.
 

(8)

Thus 〈x〉
eq

 depends on the relative probabilities p+(ε) for a plus-
event and p−(ε) for a minus-event given by Eqs. 6 and 7. Figure 5B 
shows the probability distribution for the number of active mol-
ecules for an ensemble of synapses, where the presynaptic and the 
postsynaptic activity are correlated Poisson processes. The higher 

the correlation coeffi cient ε between presynaptic and postsynaptic 
activity is, the more the distribution is shifted to the right. For a 
derivation of the fi rst and second moment of the probability dis-
tribution see section “Probability Distribution for the Number of 
Active CaMKII Molecules” in Appendix.

The amount of active CaMKII molecules is the signal that can 
trigger downstream processes in the postsynaptic spine. Synapse 
maturation caused by insertion of new AMPA receptors into the 
PSD is such a process. In our model we assume that the process 
requires the presence of a certain minimal amount X

m
 of active 

CaMKII molecules. The probability of a synapse to maturate is 
therefore the probability that the number x of active molecules 
exceeds the threshold X

m
. In a premature synapse, the initial Ca2+ 

concentration is low and hence the amount of active CaMKII is low 
as well. We would like to know the mean time needed by the signal 
x, starting at x = 0, to cross the threshold X

m
 for the fi rst time. This is 

the mean fi rst passage time problem. We approximate the mean fi rst 
passage rate by the decay rate of the slowest decaying eigenvector of 
the CaMKII distribution in the section “Mean First Passage Time 
Problem for the Number of CaMKII Molecules” in Appendix. This 
solution is plotted for different thresholds in Figure 6.

We treat synapse pruning analogously. In a mature synapse the 
initial amount of active CaMKII is already beyond the threshold 
X

m
. Due to pre- and postsynaptic activity, the amount x of active 

CaMKII may decrease or increase, depending on the rates and 
the pre- and postsynaptic correlation. If eventually x falls below the 
minimal amount X

d
, the synapse dies. We choose X

d
 < X

m
 for two 

reasons. First, once the amount of CaMKII is high, autophospho-
rylation will act regeneratively (Miller et al., 2005), making the 
decrease of x harder. We do not model this dynamics explicitly, 
but rather incorporate its effect in our choice of X

d
 < X

m
. Secondly, 

experiments by Le Be and Markram (2006) suggest, that there is a 
“period of grace” for newly formed synapses during which they are 
not pruned, preventing many synapses to be created and destructed 
in vain. Our choice is a possible implementation.

RATE HOMEOSTASIS BY SYNAPTIC PRUNING
In this section we employ the correlation detection mechanism to 
control synaptic pruning and demonstrate its capability to regulate 
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FIGURE 4 | (A) Spike pairs with timing differences Δt ≤ Δt+ = 20 ms produce 
plus-events. This determines the threshold Θh

t= −Δ +e nmda/ .τ  (B) Dependence of 
s p

p p( ) ( )
( ) ( )ε ε
ε ε= +

+ −+  on the presynaptic rate νi for two different correlation coeffi cients 

ε = 0 (black) and for ε = 0.3 (gray). The maximum spike rate νi,max at which the 
detector can discriminate these two correlation coeffi cients results from the 
condition that s(ε) > s(0) for all νi ≤ νi,max.
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spike rate towards a state of low rate. Before doing so we  generalize 
the correlation model studied in previous sections to the more 
realistic scenario of a temporally extended correlation between the 
presynaptic and the postsynaptic activity.

The correlation detection depends on the probabilities p+ for a 
plus-event (high Ca2+ infl ux) and p− for a minus-event (low Ca2+ 
infl ux). A plus-event happens, whenever the infl ux a is in the range 
a ≥ Θ

h
. In order to compute p+ and analogously p− we need to specify 

the pair correlation function C
io
(t

1
, t

2
) between the presynaptic and 

the postsynaptic spike train. Generally, the correlation function is 
defi ned as

C t t
t t t t t t t t

tt
io

pre postPr
( ) lim

( [ ] [ ])
.1 2

0

1 1 2 2

2
, =

∈ , + ∧ ∈ , +
d

d d

d↓

Here we restrict ourselves to stationary processes, such that 
C

io
(t

1
, t

2
) = C

io
(t

2
 − t

1
) only depends on the relative timing τ = t

2
 − t

1
 

between the presynaptic and the postsynaptic spike. Furthermore, 
we assume the presynaptic spikes to be Poisson events emitted 
at rate ν

i
. The postsynaptic spikes appear with mean rate ν

o
. For 

large τ the cross-correlation function decays to lim ( ) .| | ∞ =τ → τ ν νC i oio  
Hence we can write

C
io
(τ) = ν

i
ν

o
 + c

io
(τ),

where the cross-covariance c
io
 vanishes for large |τ|. We now know the 

conditional probability to observe a presynaptic spike at t
pre

 ∈ [t − τ, 
t − τ + dt] provided that a postsynaptic spike occurs at time t

Pr d post spike at d dpre io( [ ] ) ( )t t t t ci
o

∈ − , − + | = +τ τ τ τ
ν

τ τ.ν 1

 
(9)

For a presynaptic spike to cause a plus-event it must have 
appeared within the potentiation window (see Figure 4A), i.e. 
0 ≤ τ ≤ Δt+. So the correlation detector measures the probability 
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FIGURE 5 | (A) Finite reservoir model of CaMKII. Each of the N = 80 
molecules can either be active or inactive. Given a high calcium infl ux a ≥ Θh 
(which occurs with probability p+), each CaMKII molecule has the probability 
p = 0.01 to be activated. Given a low calcium infl ux Θb ≤ a < Θl (occurring with 
probability p−), the probability of an active molecule to be deactivated is 
q = 0.01. Presynaptic and postsynaptic events are Poisson with rates 
νi = νo = 5 Hz. The transition rates between the inactive and the active state 

are therefore νop+p(N − x) and νop−qx, respectively. (B) Equilibrium 
distribution of the number of active molecules x in an ensemble of synapses 
for different correlation coeffi cients ε = {0, 0.1, 0.2}. The activation rate 
increases with the correlation ε, whereas the deactivation rate decreases, 
shifting ρ(x) to the right. The black curves shows simulation results (temporal 
resolution 0.1 ms), the gray curves are Gaussians parameterized by 
Eqs. 8 and 17.
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∫ ′, ′0 d  of the number of active molecules 

in an ensemble of synapses averaged over time. Synapses with x < Xd are 
pruned. This threshold acts as an absorbing boundary. Semi-analytic expression 
(Eq. 19) (gray), simulation of N = 10 000 synapses subject to presynaptic 
Poisson activity of νi = 5 Hz and postsynaptically the spiking activity of an 
integrate and fi re neuron with νo = 9 Hz (black). (B) The number of surviving 
synapses as a function of time. Simulation (black) and analytical expectation 

value (gray) (Eq. 29). The death rate (slope) corresponds to the eigenvalue η1. 
Different rates are obtained for the thresholds Xd = 25, 30, 35, where the fastest 
decay belongs to the highest threshold Xd = 35. (The parameters of the integrate 
and fi re neuron are: membrane time constant τm = 20 ms, threshold 
Vth = 15.0 mV,, reset potential Vr = 0 mV. It receives excitatory Poisson input of 
νext = 35400 Hz from synapses with weight w = 0.05 mV and inhibitory Poisson 
inputs of rate νinh = 5600 Hz from synapses of weight −gw = −0.2 mV.)
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ε
eff

 exceeding chance level of fi nding a presynaptic spike within this 
potentiation window, given a postsynaptic event at t = 0. This prob-
ability is ε τ τνeff io d= ∫Δ +1

0o

t c ( ) . The cross-covariance c
io
(τ) decreases 

on a time scale comparable to the membrane time constant of the 
neuron, which is typically shorter than the potentiation window 
Δt+ = 20 ms. An example can be seen in Figure 7A. In this case we 
can make the simplifi cation

ε
ν νeff io

decays faster than 

iod
io

= ′ ′
Δ Δ ∞+ +

∫ = ∫1 1
0 0

o

t c t

o

c t t c( ) (( ) .′ ′t td
 

(10)

The probabilities of plus and minus-events are then given by Eqs. 6 
and 7, respectively, with ε = ε

eff 
. An analytic approximation for the 

effective correlation coeffi cient in the framework of linear response 
theory for an integrate and fi re neuron model can be found in the 
section “Input Output Correlation of an Integrate and Fire Neuron” 
in Appendix. Note that the causal dependence of output spikes on the 
input spikes and the assumed Poisson statistics of the incoming activ-
ity leads to the input–output correlation function (Figure 7A) which 
only deviates from baseline for Δt > 0. Therefore, the position of the 
temporal window for minus events is uncritical in this setup, as long 
as c

io
 is at baseline within this window. Thus we would obtain the same 

results, if the time window for minus events was at negative times.

We now have the tools to investigate synaptic pruning in the 
scenario depicted in Figure 7B. A neuron initially has a number 
k

0
 of synaptic excitatory inputs, each of which reaches the neu-

ron via a spiny synapse with a calcium based correlation detec-
tor as described in the section “A Counter for Correlated Events” 
All synapses are mature and may eventually die depending on the 
correlation variable x: A synapse is pruned as soon as the amount 
x of active CaMKII undercuts a critical threshold x < X

d
. The initial 

distribution of x over the ensemble of synapses is the eigenvector of 
the slowest decaying eigenmode at the initial fi ring frequency ν

o
(0) 

of the neuron. The choice is justifi ed, if we think of the initial con-
nectivity as the outcome of a slow dynamic wiring process, during 
which the synaptic amount x of active CaMKII had enough time 
to settle in this eigenmode. In addition to the excitatory inputs, the 
neuron receives a static confi guration of inhibitory connections. 
Due to the pruning process, excitatory synapses progressively die 
and hence the number of excitatory connections k(t) decays and 
the neuron’s fi ring rate ν

o
 decreases (see Figures 8A,B). The prun-

ing process continues until the postsynaptic neuron stops spiking. 
Thus, pruning is a mechanism to regulate the fi ring rate down-
wards. If the process is slow compared to the dynamics of x, we can 
assume the distribution of x to follow the eigenstate adiabatically. 
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FIGURE 7 | (A) Input–output correlation function normalized to the postsynaptic 
spike rate. The peak drops to baseline (νi = 5 Hz, gray) on a time scale which is 
shorter than the width of the potentiation window Δt+ = 20 ms. The area below 
the peak is the effective correlation coeffi cient εeff (see Eq. 10). (B) A neuron 

N receiving k Poisson spiking inputs of rate νi = 5 Hz via synapses s1…sk. Each 
synapse measures the correlation between its input spike train and the spiking 
activity of the neuron N. A synapse is pruned as soon as its number of active 
CaMKII has fallen below a threshold x < Xd = 30.
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reduces with the reduction of inputs (A). Black: fi ve simulation trials. Gray: 

Numerical integration of Eq. 11. Initial number of incoming connections 
k0 = 2000. In addition, the neuron receives 5080 excitatory connections and 
1120 inhibitory connections, which are not pruned.



Frontiers in Computational Neuroscience www.frontiersin.org December 2008 | Volume 2 | Article 7 | 10

Helias et al. Calcium based correlation detection

In this approximation, the development of connectivity obeys the 
differential equation

d

d

k

t
k k k

k k

o= − ,

=

η ν1

00

( ( ) )

( ) ,  (11)

where η
1
(ν

o
, k) is the eigenvalue of the slowest decaying eigenmode. 

All terms are accessible: a derivation of η
1
 is presented in the sec-

tion “Mean First Passage Time Problem for the Number of CaMKII 
Molecules” in Appendix and ν

o
 can be calculated using Eq. 34. 

Therefore, Eq. 11 can be numerically integrated. Figure 8 compares 
this semi-analytic result with a direct simulation of the model.

The negative slope of the pruning curve in Figure 8A is decreas-
ing with decreasing number of incoming synapses k. The reason 
is the dependence of the synapse death rate on the postsynaptic 
fi ring rate: The time scale of activation and deactivation of the 
CaMKII molecules is determined by the postsynaptic fi ring rate 
ν

o
 (compare Eq. 20). Consequently, also the death rate is propor-

tional to ν
o
. This is an interesting feature, since it facilitates a fi ring 

rate homeostasis: If new synapses are created with a constant rate 
the input connectivity to the neuron has a stable fi xed point at k* 
where synaptic death is just compensated by synapse creation. The 
fi ring rate of the neuron assumes a corresponding fi xed fi ring rate 
ν*

o
. A similar example of such a homeostasis will also be shown in 

the section “Synaptic Maturation and Pruning”.

COOPERATION AND COMPETITION BY SPATIAL INPUT CORRELATION
In the previous section we investigated a synaptic pruning proc-
ess, where all excitatory inputs are uncorrelated. However, there is 
evidence that coactive inputs are stabilized (Cohen-Cory, 2002) and 
therefore less likely to be pruned. Here we show, that the calcium 
based correlation detection mechanism naturally leads to coopera-
tion between synapses, which stabilizes coactive inputs.

SYNAPTIC PRUNING
In the fi rst setup, we investigate a neuron receiving excitatory inputs 
from two different sources: A pool of n

p
 presynaptic neurons with 

uncorrelated Poisson spiking activity at rate ν
i
. We call these inputs 

the “independent inputs” in the following. The second pool of n
c
 

Poisson spiking neurons at rate ν
i
, however, generates correlated 

spike trains. We use the multiple interaction process (Kuhn et al., 
2003) to produce the spike trains and call these the “correlated 
inputs”. The correlation coeffi cient 0 < c ≤ 1 is the probability of 
input neuron i having an input spike at time t, given neuron j has a 
spike at the same time. Thus, c = 0 results in uncorrelated Poisson 
processes, whereas for c = 1 all n

c
 spike trains are the same.

Initially (at t = 0) there are n
p
(0) = n

c
(0) = 1000 incoming syn-

apses. Each of the synapses uses the calcium based correlation 
detection mechanism to determine the number of active CaMKII 
molecules x. Whenever x falls below the threshold X

d
, the corre-

sponding synapse dies. Figure 9A illustrates this scenario.
Figure 9B shows the evolution of the number of incoming con-

nections. The synapses from independent sources exhibit a higher 
death rate than synapses from correlated inputs. We can readily 
understand this behavior: Given there is a spike at input i of the 
correlated pool, each of the remaining n

c
 − 1 inputs also delivers a 

spike with probability c at the same time. Thus, given a spike at the 
correlated input i, the expectation value for the sum of all inputs at 
this time is 〈w〉

mip
 = w(1 + c(n

c
 − 1)), where w is the homogeneous 

synaptic weight. In contrast, a spike from the uncorrelated pool 
only carries its own weight w < 〈w〉

mip
. A higher synaptic weight 

results in a higher probability of the target neuron to emit a spike. 
Thus, the probability of the neuron to fi re in response to a spike 
from one of the correlated inputs is higher than for an uncorrelated 
input. This probability is proportional to the correlation coeffi cient 
ε

eff
 between the presynaptic and the postsynaptic spike train (for a 

derivation of an analytic expression for ε
eff

 see Eq. 37 in the section 
“Correlated Poisson Input” in Appendix). With ε

eff,mip
 > ε

eff,Poisson
, 

the number of active molecules x in the synapses from correlated 
inputs is higher than in those from independent inputs (see also 
Figure 5B) and hence their death rate is lower (see also “A Counter 
for Correlated Events”).

Although there is no direct interaction between synapses from 
correlated inputs, cooperativity emerges between them and helps 
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FIGURE 9 | (A) A neuron receiving two pools of excitatory inputs: np synapses 
provide uncorrelated Poisson inputs at νi = 5 Hz, and nc synapses correlated 
Poisson inputs at rate νi = 5 Hz. The correlated events are produced by the 
multiple interaction process parameterized by the pairwise correlation c. 
A continuous pruning process eliminates synapses when the number of active 
CaMKII falls below a threshold x < Xd = 30. (B) Evolution of connectivity 

structure. Initially, both groups have the same number of synapses 
np(0) = nc(0) = 1000. In addition, the neuron receives 5080 excitatory 
connections and 1120 inhibitory connections, which are not pruned. The pruning 
process mainly affects the uncorrelated inputs. The top and the bottom trace are 
for a pair correlation c = 0.01, the intermediate traces for c = 0.005. Black: fi ve 
simulation trials. Gray: Numerical integration of Eq. 12.



Frontiers in Computational Neuroscience www.frontiersin.org December 2008 | Volume 2 | Article 7 | 11

Helias et al. Calcium based correlation detection

to stabilize these inputs in favor of the uncorrelated inputs. There 
is not only cooperation among synapses of the correlated pool, but 
also competition between the two pools: The number of uncor-
related inputs decreases with increasing correlation among the 
correlated inputs. This is because the synaptic deathrate increases 
with the fi ring rate of the target neuron.

The time evolution of the number of inputs n
p
(t) and n

c
(t) can 

be calculated numerically completely analogous to the section “Rate 
Homeostasis by Synaptic Pruning”. The system of differential equa-
tions governing the dynamics is

d

d
d

d

 Poisson

 mip

n

t
n n n n n

n

t
n n

p
p o p c p c

c
c o

= − , , ,

= −

,

,

η ν

η ν

1

1

( ( ) )

( ( pp c p c

p p

c c

n n n

n n

n n

, , ,
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( )

( ) ,
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,

0

0

0

0  
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where η
1,Poisson

(ν
o
, n

p
, n

c
) and η

1,mip
(ν

o
, n

p
, n

c
) are the slowest decaying 

eigen-modes calculated according to the section “Mean First Passage 
time Problem for the Number of CaMKII Molecules” in Appendix.

SYNAPTIC MATURATION AND PRUNING
In this section, we extend the scenario of Figure 9A by incorpo-
rating a process of synapse creation. Again we have two pools of 
input neurons: The fi rst pool of N

p
 neurons has Poisson spiking 

activity with rate ν
i
, the second pool of N

c
 neurons has Poisson 

activity with pair correlation c and the same rate ν
i
. Excitatory 

synapses from both pools can exist in either of two states, pre-
mature or mature as depicted in Figure 10A. Newly created syn-
apses are in the premature state, lacking AMPA receptors. Their 
synaptic weight is 0. A synapse becomes mature, if the number 
of active molecules x exceeds a threshold X

m
. The mature synapse 

has the synaptic weight w > 0. This synapse dies, if the number of 
active molecules falls below a threshold X

d
. Initially there are no 

premature synapses n
p,pre

(0) = n
c,pre

(0) = 0, and there are as many 
mature synapses from independent inputs as from correlated 

inputs n
p,mat

(0) = n
c,mat

(0) > 0. Premature synapses are constantly 
created: For each of the N

p
 − n

p,mat
 − n

p,pre
 presently unestablished 

 connections from independent sources, the rate of realization is 
λ

pre
. Premature synapses from correlated sources are created analo-

gously with the same rate λ
pre

.
The evolution of the connectivity in the presence of maturation 

and pruning is shown in Figure 10B. The connectivity approaches 
an equilibrium state after t � 600 s. The number of mature synapses 
from correlated inputs n

c,mat
 increases, while the number of synapses 

from uncorrelated inputs n
p,mat

 decreases (upper two traces). The 
two values saturate at different levels, such that n

c,mat
 > n

p,mat
. Initially, 

the number of premature synapses increases for both input pools 
(lower two traces). In equilibrium, the numbers of premature syn-
apses saturate at different levels n

p,pre
 > n

c,pre
. The explanation for this 

observation is the same as in the previous subsection: Correlatedly 
activated synapses exhibit cooperation, they experience a higher 
correlation coeffi cient between the input spike train and the output 
spike train produced by the neuron. Hence, for synapses from the 
correlated pool, the maturation rate of premature synapses is higher 
and the deathrate of mature synapses is lower as compared to the 
uncorrelated inputs. As in the section “Synaptic Pruning”, the target 
neuron becomes selective for the correlated pool.

A similar differential equation as Eq. 12 quantitatively describes 
the evolution of the connectivity in this model. Its numerical 
 solution (Figure 10B, gray) corresponds well to a direct simulation 
of the system (black). The observed deviations are due to synapse 
maturation: Each synapse entering the mature state has a number 
x of active CaMKII just above threshold X

m
. This perturbs the 

equilibrium distribution of x for the mature synapses and hence 
infl uences their death rate. The direction of this infl uence depends 
on the relative position of X

m
 with respect to the equilibrium 

〈x〉
eq

: For X
m
 > 〈x〉

eq
 the observed death rate is lower than the analytic 

estimate and vice versa.

DISCUSSION
In the present work we describe a novel model of the synaptic 
mechanisms controlling synapse pruning and synapse maturation. 
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FIGURE 10 | (A) Each synapse has two states: In the premature state, its 
synaptic weight is w = 0. If the number x of active CaMKII exceeds a 
threshold Xm = 45, the synapse maturates and exhibits a synaptic weight 
w = 0.05 mV. If x falls below Xd = 30, the synapse dies. (B) Formation of input 
structure of a neuron during constant creation of premature synapses with rate 
λpre = .0 05 1

s  synapses per second in otherwise the same input scenario as in 
Figure 9A. Initially, there are np,mat(0) = nc,mat(0) = 3540 mature excitatory 

synapses from each input pool and np,pre(0) = nc,pre(0) = 0 premature 
synapses. Additionally, there are inputs from 1120 inhibitory synapses not 
subject to pruning. The traces show (top to bottom): mature synapses from 
correlated pool nc,mat, mature synapses from uncorrelated pool np,mat, 
premature synapses from uncorrelated pool np,pre, premature synapses 
from correlated pool nc,pre. Black: simulation, gray: analytical 
approximation.
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To our knowledge, this is the fi rst model of structural plasticity 
based on the microscopic dynamics of the single synapse. Instead 
of constructing a phenomenological model, we use recent experi-
mental fi ndings to identify plausible postsynaptic mechanisms and 
to constrain the choice of model parameters. We analyze the cortical 
scenario of irregular spiking activity and quantify the dependence 
of structural plasticity on the correlation between the presynaptic 
and the postsynaptic activity. Functionally, the dynamics acts as a 
Hebbian learning rule for synaptogenesis and pruning. Our model 
can be understood as a biological plausible implementation of a 
cascade synapse (Rubin and Fusi, 2007) for spiking activity, where 
the number x of active CaMKII molecules plays the role of internal 
states. However, in contrast to the cascade model, once x falls below 
the critical threshold the synapse is lost and cannot be reactivated 
by subsequent potentiating events. Here we provide a full statistical 
treatment of the number of active molecules. This is essential, since 
due to the low number of molecules (N � 80) fl uctuations cannot 
be neglected. Previous work on STDP (Cai et al., 2007; Shouval 
and Kalantzis, 2005) demonstrated, that stochastic fl uctuations can 
change the phenomenology of a learning rule.

We show that there are two distinct rate regimes: In the low 
rate regime up to ν

i
 � 10 Hz, our model works as a correlation 

detector in the sense that synchronously activated synapses on 
the same dendrite stabilize. This frequency limit is a direct con-
sequence of the NMDA unbinding time constant τ

nmda
. Hence the 

model constitutes a viable mechanism for a network using tem-
poral (correlation) codes at low rates. At higher rates (ν

i
 > 10 Hz), 

synapse stabilization occurs irrespective of correlations between 
input and output. This is in accordance with recent experimental 
evidence that higher activity leads to increased synapse formation 
(Le Be and Markram, 2006) and to classical LTP induced by tetanic 
stimulation protocols. Furthermore, we show that by controlling 
synaptic pruning our model exhibits several desirable features for 
a neuronal network: The synaptic pruning rate increases with the 
postsynaptic fi ring rate. This enables the homeostasis of fi ring rate 
while synapses are continuously created, a fi nding obtained earlier 
using abstract rate based models of structural plasticity (van Ooyen 
et al., 1995). Moreover, the synapses targeting the same neuron 
naturally exhibit cooperation and competition. These emerging 
phenomena render the proposed microscopic mechanism relevant 
for the theory of learning in neuronal networks: The evolution of 
connectivity is sensitive to correlations in the inputs and hence 
neurons become selective for coactive inputs. This stabilization of 
coactive inputs has been proposed earlier based on experimental 
evidence, reviewed in (Cohen-Cory, 2002). Our treatment explains, 
how cooperation and competition are mediated solely by the 
identical postsynaptic activity experienced by synapses. Previous 
theoretical work (Kempter et al., 1999, 2001) showed cooperativity 
to emerge from the interplay of spike timing dependent learning 
rules with the spiking dynamics in the framework of spike response 
models. In general, a quantitative understanding of the interaction 
between a spike timing based plasticity rule and the integrate-and-
fi re dynamics is a hard problem. Here we provide such an analysis 
for our specifi c learning rule assuming all-to-all spike interaction. 
The analysis allows us to obtain semi-analytic expressions for the 
evolution of network structure. Specifi cally, we present results for 
the case of incoming irregular Poisson activity as well as for the case 

of  correlated inputs generated by a multiple-interaction-process 
(Kuhn et al., 2003).

SENSITIVITY OF RESULTS TO MODEL ASSUMPTIONS
For analytical convenience we use an integrate and fi re neuron 
model with δ-shaped postsynaptic currents, as commonly used 
in network simulations and theoretical works. These currents can 
cause an immediate spiking response to an incoming spike. More 
realistic neuron models have postsynaptic currents with fi nite rise 
times and hence also the input–output correlation function shows 
a fi nite latency of τ

response
 � 5 ms in response to an input spike. Since 

we aim at a consistent theory of the interaction between learning 
rule and neuronal dynamics, we compensate for the lack of latency 
by reducing the measured glutamate binding time τ

rise
 � 5…10 ms 

to τ
rise

 = 0 ms. As in the natural setting the whole mass of the 
input–output correlation function falls into the time window τ+ 
of the learning rule. A mismatch of the time constants would not 
change the observed phenomena qualitatively, but slightly reduce 
the sensitivity to correlations. We can extend our analysis to more 
realistic and more complicated neuron models, if an expression for 
the corresponding integral input–output correlation ∫∞

0 C t tio d( )  is 
known.

The probabilities p and q for activation and deactivation of 
CaMKII molecules by large and small calcium events respectively, 
are set to p = q = 0.01 without experimental reference. Once experi-
mental data are available, these parameters need to be reconsid-
ered. The smaller the values, the narrower the distribution of active 
CaMKII molecules. This increases the sensitivity to correlation but 
also the latency of the distribution in following transient changes 
in the correlation. The threshold X

d
 for the minimum number of 

active CaMKII molecules required for survival can be chosen such 
that the synapse turnover in a neuronal network reaches experi-
mentally observed values of 7% of all synapses per week (Stettler 
et al., 2006). As soon as an experimental value for X

d
 is available we 

can check whether our model consistently relates the two experi-
mental measures. We use a multiple interaction process to generate 
incoming spiking activity with higher order correlations. The choice 
is motivated by analytical convenience rather than by biological 
realism. However, we expect other models of higher order corre-
lation to exhibit qualitatively similar results for cooperation and 
competition between synapses.

Due to our assumption of a point event like bpAP (see also 
“Spike Time Dependence of Postsynaptic Calcium Concentration”) 
there is no calcium infl ux through NMDA receptors, if the post-
synaptic depolarization precedes the presynaptic release of gluta-
mate. For our model the consequence is that post-before-pre 
pairings do not cause deactivation of CaMKII molecules (see also 
“A Counter for Correlated Events”). Hence if the intention was to 
explain STDP, we would not be able to reproduce the part of the 
rule expressing LTD. Experimentally, Nevian and Sakmann (2004) 
observe calcium infl ux through NMDA receptors only for the pre-
before-post condition. Additionally, there is infl ux through voltage 
dependent calcium channels (VDCC) opened by the bpAP. Also 
AMPA receptors depolarize the spine and hence lead to calcium 
entry through coactivated NMDA receptors and VDCCs. However, 
the resulting NMDA conductivity is small (Kampa et al., 2004) 
and calcium transients in spines are not signifi cantly decreased by 
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blocking AMPA receptors (Nevian and Sakmann, 2004). So here 
we assume the main pathway for calcium infl ux into the spine to be 
NMDA receptors and we neglect the additional sources of calcium. 
As long as their contribution to the calcium signal is small, they 
constitute a background elevation of the overall calcium level in 
the spine and we obtain qualitatively similar results. If, however, 
their contributions were of comparable size as the calcium transient 
through NMDA receptors, a temporally close post-before-pre tim-
ing could lead to suffi cient calcium infl ux to deactivate CaMKII 
and hence create a LTD window. Previous biophysical models of 
STDP (Shouval et al., 2002) assumed a fi nite decay time for the 
postsynaptic depolarization. This as well leads to an intermediate 
calcium infl ux for the post-before-pre condition. Our model can 
be extended in the same way. However, as argued in the section 
“Rate Homeostasis by Synaptic Pruning”, for the results presented 
here, the exact temporal position of the LTD window is irrelevant. 
The observed rate homeostasis only depends on the proportion-
ality between the synapse death rate and the postsynaptic fi ring 
rate, resulting from the CaMKII dynamics. The cooperativity 
between synapses (see “Cooperation and Competition by Spatial 
Input Correlation”) only requires a Hebbian type plasticity, i.e. plus 
events are caused by a postsynaptic spike following a presynaptic 
spike in close succession.

SCOPE AND ACCURACY OF THE ANALYTICAL TREATMENT
The treatment of the CaMKII dynamics as a Markov process implic-
itly assumes the high (plus) and low (minus) calcium events to occur 
uncorrelatedly with the respective probabilities p+ or p−. However, 
the occurrence of a plus event or a minus event depends on the cur-
rent value n(t

post
), the fraction of glutamate bound NMDA recep-

tors at the time of the postsynaptic spike. n(t) has a time constant 
τ

nmda
 = 32 ms. Hence, if postsynaptic spikes occur with arbitrarily 

small inter-spike-intervals, the probability to observe a plus event is 
slightly higher after a previous plus event. Nevertheless, for realistic 
postsynaptic spike trains, small inter-spike-intervals are rare due to 
refractoriness, so the neglect of the temporal correlation of n(t) is 
well justifi ed (see also section “Mean First Passage Time Problem 
for the Number of CaMKII Molecules” in Appendix, Figure 12B). 
A more thorough treatment must take into account the actual 
auto-correlation function of the postsynaptic spiking activity. The 
dynamics of the discrete amount of active CaMKII molecules is 
mapped to a continuous system. By comparing the continuous 
analytic probability density to the discrete numerical solution of 
the probability mass function, we found that this approximation 
is suffi ciently accurate as long as the total number of molecules is 
large enough (N > 30). Furthermore, we approximate the CaMKII 
dynamics as a diffusion with a x-independent diffusion constant, 
whereas the original problem leads to a x-dependent diffusion 
term. Again, the nearly perfect agreement of the numerical solu-
tion (taking into account x-dependent diffusion) with the analyti-
cally obtained Gaussian, proves this approximation adequate (see 
Figure 11). However, if the distribution approaches the saturation 
limits x = 0 or x = N, we observe pronounced deviations. This may 
occur for highly correlated spiking and at excessive fi ring rates. 
The results for the synaptic death and maturation rates are based 
on the slowest decaying eigenvalue η

1
 of the CaMKII activation 

distribution. This component has the largest time constant. If the 

ensemble of synapses is initialized with a distribution containing 
contributions different from the slowest decaying eigenvector, we 
observe transient deviations in the pruning rate. These transients 
decay typically 15 times faster than the slowest eigenvector 

| |
| |( )η
η

1

2

1
15� . 

So after a suffi ciently long time, the CaMKII distribution obeys 
the analytical solution in good approximation. For calculating the 
equilibrium state of connectivity, the slowest decaying eigenvector 
is the exact description if the number x of active molecules of a new 
synapse is drawn from this eigenvector. But even for non-stationary 
connectivity, the distribution of activated CaMKII across synapses 
follows the structure quasi adiabatically and the approximation is 
well fulfi lled as shown by comparing analytical results with direct 
simulations (see “Rate Homeostasis by Synaptic Pruning” and 
“Cooperation and Competition by Spatial Input Correlation”). The 
larger deviations in Figure 10 are attributed to this approximation: 
Each synapse entering the mature state has a number x of active 
CaMKII just above threshold X

m
. This perturbs the equilibrium 

distribution, explaining the deviation of the simulated from the 
analytically obtained connectivity structure.

FUNCTIONAL ROLE OF STRUCTURAL PLASTICITY
Recent experiments (Stettler et al., 2006) demonstrated synaptogen-
esis and synaptic death to occur even in the adult cortex. However, 
their functional relevance for the neural network still remains to 
be illuminated. Theoretical considerations (Chklovskii et al., 2004; 
Stepanyants et al., 2002) suggest rewiring in networks to provide 
the dominating substrate of information storage. In artifi cial neural 
networks optimization of wiring was already shown to contribute 
signifi cantly to memory capacity (Knoblauch, 2006; Knoblauch 
et al., 2007). More generally, restructuring of connectivity allows 
biological systems to optimize their circuitry to fulfi ll a specifi c set of 
functions. Understanding the mechanisms of  wiring optimization 
will also be benefi cial for technical systems (e.g. integrated circuits), 
since due to their essentially two dimensional nature, the number 
of contacts existing at any point in time is a precious and limited 
resource. For the above purposes a phenomenological model of 
structural plasticity is suffi cient. However, a microscopic model 
is required to uncover the underlying biological mechanisms and 
resulting limitations. Moreover, an understanding of the control 
mechanisms of connectivity may contribute to the development of 
medical protocols to promote plasticity after neural lesions, e.g. as 
experienced after a stroke. How a system can exhibit a plastic struc-
ture and yet acquire and maintain its functionality is still a matter 
of research. To answer this question it is not suffi cient to investigate 
synaptogenesis and synaptic death under conditions of stationary 
activity, but we rather have to consider the close interplay between 
the structural dynamics and the correlation dynamics exposed by 
the present work. The framework presented here provides the tools 
for this endeavor; we are now in the position to investigate struc-
tural plasticity in recurrent neural networks.

APPENDIX
PROBABILITY DISTRIBUTION FOR THE NUMBER OF ACTIVE CaMKII 
MOLECULES
Numeric solution of the equilibrium distribution
Suppose there is a fi nite amount of CaMKII in the PSD. Each of the 
N molecules can either be active or inactive. Transitions between 
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these states are triggered by calcium infl ux, where a high calcium 
amplitude a ≥ Θ

h
 causes each inactive molecule to be activated with 

probability p, and a low calcium amplitude Θ
b
 ≤ a < Θ

l
 causes each 

active molecule to be inactivated with probability q. The rate of 
high calcium events is λ+ = ν

o 
p+(ε), the rate of low calcium events 

λ− = ν
o 
p−(ε), where ν

o
 denotes the postsynaptic fi ring rate. Given 

x active molecules, the number of molecules being activated per 
time is λ+ p(N − x), the current of molecules being deactivated is 
λ−qx. Since these rates depend on the state x of the system, the proc-
ess has the Markov property. Thus, the system is uniquely defi ned 
by the transition probability P(x, y) from state x into state y. Let 
λ = ν

o
(p+(ε) + p−(ε)) be the rate of events that change the state of 

the system, + += +

+ −
p p

p p
( )

( ) ( )
ε

ε ε  the probability that the event was a plus-

event and − += −
+ −

p p
p p

( )
( ) ( )

ε
ε ε  be defi ned analogously. Given an event 

(either plus or minus), the transition probability is

P x y H y x p B y x p N x

H x y p B x y q x
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( ) ( )

, = − − | , −
+ − − | , ,

+

−  (13)

where B k p N p pk
N k N k( ) ( )| , = ( ) − −1  is the binomial distribution and 

H the Heaviside function. We are interested in the equilibrium 
distribution ρ(x), which must fulfi ll
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To obtain the non-trivial solution, we have to take into account 
the normalization condition 1 0= .=Σ x

N xρ( )  This results in the inho-
mogeneous linear system of N + 1 equations

δ ρ δ δy
x

N

x y yx P x y y N,
=

, ,= , − + ∀ ∈ ,∑0
0

0 0( )( ( ) ) [ ],
 

(14)

which can be solved numerically. Since the transition probability 
P(x, y) is a positive stochastic matrix, i.e. it fulfi lls P(x, y) ≥ 0 and 
∀ : , ==x P x yy

NΣ 0 1( ) , according to the Perron-Frobenius theorem 
(MacCluer, 2000) its largest eigenvalue is 1 and the respective 
eigenvector ρ(x) is unique with positive entries. This guarantees 
a unique solution of Eq. 14 with the desired properties of a prob-
ability distribution.

Analytic approximation of the equilibrium distribution
In order to obtain information about the equilibrium density ρ(x) 
we investigate its fi rst and second moments. Suppose, x obeys the 
distribution ρ(x, t) at time t with a well defi ned fi rst and second 
moment. In this case we can determine the infi nitesimal time evo-
lution of μ(t) = 〈x(t)〉 and σ2(t) = 〈(x(t) − 〈x〉)2〉 for short times Δt. 
For the mean we obtain
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where the identity Σk
N

k
N k N kp p k Np=

−( ) − =0 1( )  (mean of the bino-
mial distribution) was used. The fi rst moment of the distribution 
fulfi lls the differential equation
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In equilibrium, the mean value is

μeq eq
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+
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In addition, we can calculate its temporal evolution from Eq. 15 
to be
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So the time scale on which the distribution approaches its equi-
librium is given by
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In equilibrium, we determine

where S(x) denotes the probability fl ux operator. An explicit form 
can be determined under the following assumptions: (1) The proc-
ess can be described as a diffusion. (2) The equilibrium distribution 

of the process is given by a Gaussian ρ
πσ

μ σ
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1
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where μ
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 and σ
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 are determined by Eqs. 16 and 17. The station-
ary probability density has to fulfi ll ∂ρ

∂t = 0, so from Eq. 19 it follows 
that S(x)ρ

0
(x) = S

0
 = const. The constant must be S

0
 = 0, since the 

probability current vanishes at x = − 1
2 it vanishes for all x. We intend 

to describe the process as a diffusion. Therefore, S should contain 
only fi rst derivatives in x and the fl ux operator must have ρ

0
 as its 

stationary solution, leading to
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The constant D controls the time scale of the process. We deter-
mine D such that the dynamics of the diffusion process Eq. 19 
matches the dynamics of our process for the fi rst moment of ρ. 
In doing so, we follow Ricciardi et al. (1999) and determine the 
infi nitesimal drift term A

1
(x) from the master equation of the proc-

ess, which yields
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Subsequently we require A
1
(x) = −D(x − μ

eq
), which fi xes 

D p p p q= + .+ −λ( )
To simplify the notation, we rescale the variable y

x= −μ
σ

eq

eq
. The 

fl ux operator now reads S y D y y( ) ( ).= − −σ ∂
∂eq  A separation ansatz 

for the probability density ρ(y, t) = φ(y)eηt turns the Fokker–Planck 
equation 19 into the corresponding eigenvalue problem
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FIGURE 11 | Comparison between the numerically obtained distribution 

of the number of active molecules in an ensemble of synapses solving

Eq. 14 (black dotted curve) and the Gaussian approximation (gray curve) 

using Eqs. 16 and 17 for different pair correlation coeffi cients 

ε = {0, 0.1, 0.2} between the presynaptic and the postsynaptic spiking 

activity. Same parameters as in Figure 5.
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Figure 11 compares the numerical solution of Eq. 14 to a Gaussian 
with mean μ

eq
 and standard deviation σ

eq
, demonstrating that the 

Gaussian approximation is suffi cient.

Mean fi rst passage time problem for the number of 
CaMKII molecules
In the model the number of active CaMKII molecules x determines 
whether a synapse maturates or dies. Both decisions are triggered by 
the crossing of different thresholds. Thus we have to calculate the 
mean time until x passes the threshold X for the fi rst time. This is 
known as the mean fi rst passage time problem with an absorbing 
boundary at x = X. Here we are interested in an approximation 
for the mean fi rst passage time, or equivalently, for the threshold 
passing rate.

Figure 5 shows that the equilibrium distribution ρ(x) in absence 
of any absorbing boundary is well described by a Gaussian distri-
bution. This observation suggests a mapping of the discrete fi rst 
passage time problem to a continuous one with x N∈ , ⊂[ ]0 � and 
the corresponding replacement of the discrete probability distribu-
tion ρ by a continuous probability density function ρ

ρ
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(18)

In the following we omit the tilde; x and ρ name the continuous 
variables. The time evolution of the probability density ρ(x) can 
be described by the Fokker–Planck equation

∂ρ
∂

∂
∂

ρ
t x

S x= − ,( )
 

(19)



Frontiers in Computational Neuroscience www.frontiersin.org December 2008 | Volume 2 | Article 7 | 16

Helias et al. Calcium based correlation detection

To fi nd the eigenvalues of L
FP

, we follow Risken (1996) and 
transform Eq. 21 into a Hermitian operator, using the following 
transformation

U y
y

y y
y

( ) ,= =
− ∫ ′ ′ −

e e
d

1

2 4

2

which satisfi es

∂

∂

∂

∂y
U y U y y

y
( ) ( ) .= − +

⎛
⎝⎜

⎞
⎠⎟

1

2

Hence the transformed operator L is

L U y L U y

D y
y

=

= − +
⎛
⎝⎜

⎞
⎠⎟

.

−1

2
2

2

1

2

1

4

( ) ( )FP

∂
∂

Let φ(y) be an eigenvector of L
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, then obviously ψ = U−1(y)φ(y) 
is an eigenvector of L with the same eigenvalue, so we have to 
solve
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This is the differential equation of the harmonic oscillator known 
from quantum mechanics. The general solution of this differential 
equation is a linear combination of confl uent hypergeometric func-
tions (Abramowitz and Stegun, 1974)
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(22)

The last equality follows from M(a, b, z) = ezM(b − a, b, −z) 
where the constant c must be determined using the normalization 
condition 1 = ∫ φdx. The boundary conditions constrain the choice 
of possible values for η as well as for the constants r. Without loss 
of generality, we assume that the threshold X has to be crossed 
from above (synapse pruning). The case in which the threshold 
represents an upper boundary (synapse maturation) can be han-
dled analogously by interchanging the roles of plus and minus-
events and the associated quantities. At the upper end x N= + 1

2 of 
the interval, the probability fl ux has to vanish, i.e. this is a totally 
refl ecting boundary

x N
S = + =1

2

0φ .
 

(23)

The lower end of the interval is given by the threshold X. This 
is an absorbing boundary, but does not require the probability 
density to vanish, since the rate of minus-events is limited and 
hence the threshold passing rate remains fi nite even if φ(X) > 0. 
The probability for the system in state x to cross the threshold X 
after having received a minus-event is

p x
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where the last expression is the cumulative density function of the 
binomial distribution. Figure 12 shows the typical steep increase 
of the exit probability in the vicinity of the threshold X.

The fl ux η through the boundary can be calculated as

S p x xX
x X

N

= −
=
∑λ ρexit( ) ( )

 
(24)
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FIGURE 12 | (A) Exit probability pexit given a minus-event depending on the 
state x (black) and probability density function ρ (gray) of the number of 
active molecules x. (B) Probability of having k consecutive plus-events given 
at least one plus-event. Expected probability p k p pk( ) ( )= −+

−
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11  for 

independently occurring events (gray). Statistics of events caused by a 
postsynaptic spike train of an integrate and fi re neuron (black dashed line) 
and of events caused by a postsynaptic Poisson spike train 
(black dashed-dotted line).
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The probability density can be approximated by a linear Taylor 
series here, since p

exit
(x) vanishes except in a small range near 

the threshold (see Figure 12). Using the fl ux operator S, the fl ux 
through the boundary can be expressed as
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Taken together we obtain the boundary condition
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Using the explicit form of ρ given by Eq. 22, and its derivative
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boundary condition Eq. 23 assumes the form
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which fi xes the constant r as

where η
1
 is called the escape rate or the inverse mean fi rst passage 

time. The eigenvector in Eq. 22 resulting from the considerations 
above is plotted in Figure 6 together with results of direct simula-
tions. The decay rate expected from Eq. 29 agrees well with the 
simulation. In this analytical treatment we have assumed that plus 
and minus-events occur independently of the history of previous 
events with probabilities +p  and −p , respectively. However, this is an 
approximation, since plus and minus-events depend on the signal 
n(t), which has the time scale τ

nmda
. Thus, given a postsynaptic spike 

at t
post,1

 and given n(t
post,1

) > Θ
h
, a plus-event is produced. n(t) then 

decays exponentially with the time constant τ
nmda

 or it jumps to 
even higher values, if a presynaptic spike arrives. Therefore a later 

postsynaptic spike t
post,2

 > t
post,1

 defi nitely generates another plus-

event as long as n t i

t t

h( )
( )/

post e post post nmda

,
− −, , > ,2 1 τ Θ  i.e. within a fi nite 

time window after the fi rst event. Consequently, the probability 

++p  for a plus-event to follow another plus-event is slightly higher 
than +p . The same is true for minus-events. But since a neuron’s 
spike train exhibits refractoriness and the probability is low that the 
second spike occurs within the time window determined by τ

nmda
, 

the correlated occurrence of plus (or analogously minus) events has 
only a small impact. This is verifi ed in Figure 12B, where the prob-
ability of k consecutive plus-events is displayed. For events caused 
by the spike train of an integrate and fi re neuron, the curve is near 
its theoretically expected value +

−
+= −kp k p p1 1( ) ( ),  while for spikes 

with Poisson statistics, the correlated occurrence of plus-events can 
be explained by p k p pk( ) ( )= −++

−
++

1 1  with ++ +>p p .

INPUT–OUTPUT CORRELATION OF AN INTEGRATE AND FIRE NEURON
Poisson input
Here we calculate the correlation coeffi cient of the incoming spike 
train at a given excitatory synapse and the output spike train of 
an integrate and fi re neuron, where the correlation coeffi cient is 
defi ned by Eq. 10. If we have incoming Poisson spikes at a sta-
tionary rate ν

i
, the neuron fi res in a stationary fashion with rate 

ν
o
 as well. We can then rewrite the cross-correlation function as 

C
io
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 and formally the 

correlation coeffi cient in Eq. 10 reads

r
yM

D
y y

D
M

D
y

= −
− + ; ; −⎛

⎝⎜
⎞
⎠⎟ + −⎛

⎝⎜
⎞
⎠⎟ − + ; ; −1

2

1

2

1

2

1

2
1

1

2

3

2

3

2

1

2
2 2η η η⎛⎛

⎝⎜
⎞
⎠⎟

+ − + ; ; −⎛
⎝⎜

⎞
⎠⎟ + −⎛

⎝⎜
⎞
⎠⎟ −( )1

1

2
1

3

2

1

2

1

3

2

3

1

2
2 2 2y M

D
y y

D
M

D

η η η ++ ; ; −⎛
⎝⎜

⎞
⎠⎟ =

+ −2
5

2

1

2
2 1

2y y
N μ

σ

eq

eq

.

 

(28)

Finally, we simultaneously solve Eqs. 28 and 27 for η by a sim-
ple numerical bisection method. By construction, the solutions 
η

0
 > η

1
>… are eigenvalues of the Fokker–Planck operator Eq. 21. 

Since eventually the system has to pass the threshold, there can-
not be an equilibrium eigenstate with η

0
 = 0; all eigenstates are 

decaying. We are interested in the largest negative eigenvalue, which 
determines the slowest decaying eigenvector Eq. 22, i.e. the largest 
η

1
 < 0 which solves Eq. 21 and fulfi lls the boundary conditions. 

Being initially (t = 0) in this eigenstate, the probability of fi nding 
the system still in the interval [0, X] after time t is
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For the particular case of δ-shaped postsynaptic currents we 
fi nd an explicit expression for Eq. 30 as follows. The membrane 
potential V is governed by

τ δd

d

 if 

V

t
V w t t

V t V V t V
i

i i= − + −

= >

∑
+ −

τ ( )

( ) ( ) ,r th  (31)

with reset potential V
r
 and spike threshold V

th
. Here t

i
 is the time 

of the i-th incoming event and w
i
 its weight. For each event, the 
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weight w
i
 is a random variable with distribution K. This allows us to 

calculate Eq. 30 also for the case where a neuron receives N correlated 
spike trains (see section “Correlated Poisson Input”). The incom-
ing events are assumed to be Poisson events with rate ν. Then the 
membrane potential is a Markov process with distribution P(V, t) 
which obeys the evolution equation

P V t P V t V t P V t V( ) ( ) ( ), = , | ′, ′ ′, ′ ′.∫ trans d

We closely follow the derivation of the Fokker–Planck equation 
for the integrate and fi re neuron given by Gerstner and Kistler 
(2002), but generalize it for arbitrary weight distributions K. As we 
assume stationary input, we set t′ = 0 without loss of generality. For 
short times Δt the transition probability becomes
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A Kramers–Moyal expansion can be made under the assumption 
that the weight w is small and the rate ν is high. This is also known 
as the diffusion limit:
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(32)

In the limit of small 〈w〉
K
 only the fi rst and the second moment 

of K enter the Fokker–Planck equation. This determines the drift 
constant μ and the diffusion constant σ2 to

μ = τν〈w〉
K

σ2 = τν〈w2〉
K 
. (33)

In equilibrium, the fi ring rate ν
o
 of the neuron can be calculated 

by the formula (Brunel, 2000; Brunel and Hakim, 1999; Ricciardi, 
1977)
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Finally, we employ linear response theory to calculate the 
input–output correlation coeffi cient in Eq. 30 for one particular 
incoming synapse in the limit of small weights w. First assume, that 
every event has the same weight w. Since the incoming spike rate 
is stationary, without loss of generality, we can assume an incom-
ing spike to occur at time t = 0. This is a small perturbation of the 
membrane potential and shifts the distribution by weight w to 
the right, which can be taken into account in the Fokker–Planck 
equation 32 as
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To fi rst order in w, the incoming spike can be described as a 
δ-shaped perturbation of the mean input μ(t) = μ + τwδ(t). Since 
the events are Poisson, their auto-correlation is fl at, thus in the 
instant t = 0− before the spike arrives the neuron’s membrane poten-
tial obeys the equilibrium distribution. The effect of the perturba-
tion on the fi ring rate can be treated in the framework of linear 
response theory for small w << V

th
 − μ. The response of the fi ring 

rate can then reads

ν
o
(t | input spike at t = 0) = ν

o
 + wτh(t) t ≥ 0,

where ν
o
 is the equilibrium fi ring rate and h(t) is the impulse 

response of the fi ring rate with respect to a δ-shaped perturba-
tion of the mean input. So Eq. 30 becomes

ε τν
νeff

i

o
d=

∞

∫w h t t
0

( )
 

(35)

where ∫ ′ ′∞
0 h t t( ) d  is the step-response of the fi ring rate for t → ∞ 

with respect to a unit-step change of the mean input. Up to linear 
order in w
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2

2Ω μ σ
 

(36)

In the second step we employ Eq. 34 and in the third summarize 
terms by the quantity Ω(μ, σ) called “dc-susceptibility” in linear 
response theory. Using Eq. 36 in Eq. 35 results in the desired explicit 
expression. A related approach can be found in De la Rocha et al. 
(2007).

Correlated poisson input
The input–output correlation coeffi cient can also be calculated in 
the case, where the neuron receives spikes from N excitatory inputs 
of weight w generated by a multiple-interaction-process (mip) 
Kuhn et al. (2003) with mother spike rate ν

mother
 and copy prob-

ability c. In addition, the neuron receives uncorrelated excitatory 
and inhibitory Poisson input which we treat as a Gaussian white 
noise background input with mean μ

bg
 and standard deviation σ

bg
. 

As in “Poission Input” we are interested in the correlation coeffi cient 
in Eq. 30 of a given input i ∈ [1,…,N] and the output spike train. 
A spike at time t

i
 at input i, indicates that there is a mother-spike that 

was successfully copied to input i. Hence, with probability c each 
of the remaining N − 1 inputs also has a spike at time t

i
. Therefore 

the expectation value of the weight of the composed event is 
〈w〉

mip
 = (1 + (N − 1)c)w. For small 〈w〉

mip
 <<V

th
 − μ the we can apply 

the framework of linear response theory as before and calculate 
Eq. 30 using Eqs. 36 and 35 as

ε Ω μ σ ν
ν

τeff mip
,= ,( ) i w

o  (37)

where

μ μ ν τ

σ σ ν τ
μ

= +

= + − +

bg mother

bg mother

mip

wNc

w Nc c N c2 2 2 2 21( ( ) )

σσmip
2

.

The last two equations using μ
mip

 and σmip
2  result from Eq. 33.

ALGORITHMIC IMPLEMENTATION OF SYNAPSE MATURATION AND 
SYNAPSE DEATH
A synapse connecting an axon of neuron i to the dendrite of  neuron 
j is stored in a list associated with neuron i. Without loss of gen-
erality we restrict the discussion to the case of a single synapse 
between i and j. In a distributed simulation, each process stores 
only the part of the list referring to the resident target neurons 
(see Morrison et al., 2005). The parameters and dynamic vari-
ables stored for each synapse j are: the synaptic weight w

j
, the 

synaptic delay d d dj j
D

j
A= + , composed of the dendritic delay dj

D 
and the axonal delay dj

A , the number x
j
 of active CaMKII mol-

ecules, and the boolean variable mature
j
 indicating whether the 

synapse is mature (True) or premature (False). Axonal delays and 
the NMDA receptor rise time can be taken into account as long 
as d dj

A
j
D+ ≤τrise,nmda  (compare Morrison et al., 2005). However, 

in our simulations, we assume dj
A + =τrise,nmda 0 for sake of sim-

plicity. We also assume the time constant τ
nmda

 to be identical for 
all synapses. In this case the fraction of glutamate bound NMDA 
receptors n(t) as defi ned in Eq. 3 is the same for all axonal synapses 
of neuron i. In addition, each neuron stores the time t

old
 of its 

last spike. The spike distribution algorithm invokes the method 
spike(t) (see Algorithm 1) for each spike t of the presynaptic 
neuron i. It propagates the dynamics of each synapse in the local 
target list. Here we use the function T(x, n′) (see Algorithm 2) as an 
abbreviation for the transitions of x due to the number n′ = n(t

post
) 

of glutamate bound NMDA receptors as defi ned in the section 
“A Counter for Correlated Events”. To evolve the synaptic dynam-
ics, we need the spike history of the postsynaptic neuron. Here we 

Algorithm 1 spike(t)

Require: t
old

 last presynaptic spike processed, n = n(t
old

)
Ensure: t

old
 = t, n = n(t) on exit

    for all postsynaptic neurons j do
        if mature

j
 then

            send spike(w
j
, d

j
) to neuron j

        end if

        history ← j.get_history( )t d d t d dj
D

j
A

j
D

j
A

old rise,nmda rise,nmda− + + , − + +τ τ
        for all spikes t

j
 ∈ history do

            t t dj j
D

BP ← +

            ′ ← −( )−n n t texp BP old

nmdaτ

            x
j
 ← T(x

j
, n′)

            mature
j
 ← mature

j
 ∨ (x

j
 > X

m
) {synapse maturates, if x

j
 > X

m
}

            if mature
j
 ∧ (x

j
 < X

d
) then

                j.stop_recording( )t d dj
D

j
A− + + τrise,nmda

                delete synapse j {mature synapse dies, if x
j
 < X

d
}

            end if
        end for
    end for

    n n t t← ( )+−exp old

nmdaτ 1

    t
old

 = t

Algorithm 2 T(x, n)

Require: Binomial(N, p) ∈ [0, N] binomially distributed random number
    if n > Θ

h
 then

        x ← x + Binomial(N − x, p)
    else if n > Θ

b
 ∧ n <= Θ

l
 then

        x ← x − Binomial(x, q)
    end if
    return x

Algorithm 3 start_recording(t
fi rst

)

    start at beginning of spike register
    while t

SP
 <= t

fi rst
 do

        counter
SP

 ← counter
SP

 + 1
        move to next element
    end while
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closely follow Morrison et al. (2007) and use the same defi nition 
of update_register(t) and get_history(t

1
, t

2
). An extension, 

however, is necessary, because in the presence of structural plastic-
ity the number of incoming connections of a  neuron may change 
over time: The access counter counter

SP
 of each entry in the spike 

register has to be adapted whenever a synapse is created or dies. 
We defi ne the method start_recording(t

fi rst
) (see Algorithm 3) 

called on the postsynaptic neuron when a new synapse is created. 
The argument is the earliest t t d dj

D
j
A

first old rise,nmda= − + + τ  the new 
synapse will start accessing the spike history (excluding t

fi rst
). 

Analogously, stop_recording(t
last

) is called when a synapse dies 
(see Algorithm 4). Its argument t t d dj

D
j
A

last rise,nmda= − + + τ  is the 
latest point in the history (including t

last
) considered by the synapse 

before dawn (see Algorithm 1).
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Algorithm 4 stop_recording(t
last

)

    start at beginning of spike register
    while t

SP
< = t

last
 do

        counter
SP

 ← counter
SP

 − 1
        move to next element
    end while
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