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et al., 2009). We found that useful learning is always still possible 
provided that Hebbian adjustments retain some connection spe-
cifi city, though it is degraded. However, there has been increasing 
realization that at least in the neocortex unsupervised learning 
must be sensitive to higher-than-pairwise correlations, which 
requires that the learning rule at individual connections be non-
linear. Since the number of possible higher-order correlations is, 
for high-dimensional input patterns, essentially unlimited, useful 
learning might require that the connection-level nonlinear learning 
rule be extremely accurate.

To test this idea, we studied the effect of introducing Hebbian 
crosstalk in perhaps the simplest neural network model of non-
linear learning, independent components analysis (ICA) (Nadal 
and Parga, 1994; Bell and Sejnowski, 1995; Hoyer and Hyvärinen, 
2000; Hyvärinen et al., 2001). In this model, it is assumed that the 
higher-order correlations between inputs arise because these vectors 
are generated from independent, non-Gaussian sources by a linear 
mixing process. The goal of the nonlinear learning process is to 
estimate synaptic weights corresponding to the inverse of the mixing 
matrix, so that the network can recover the unknown sources from 
the given input vectors (Nadal and Parga, 1994; Bell and Sejnowski, 
1995; Hyvärinen et al., 2001). We are not proposing that the brain 
actually does ICA, although the independent components of natural 
scenes do resemble the receptive fi elds of neurons in visual cortex 
(Bell and Sejnowski, 1997; van Hateren and Ruderman, 1998; van 
Hateren and van der Schaaf, 1998; Hyvärinen and Hoyer, 2000). 
Furthermore, ICA is closely related to projection pursuit and the 
Bienenstock–Cooper–Monro rule, which have been proposed as 
important for neocortical plasticity (Cooper et al., 2004). ICA is a 
special, particularly tractable case (linear square noiseless mixing) 
of the general unsupervised learning problem. While our approach 
incorporates one aspect of biological realism (i.e. imperfect specifi -
city), we make no attempt to incorporate others (e.g. spike-timing 
dependent plasticity, overcomplete representations, observational 
noise, nonlinear mixing, temporal correlations, synaptic homeosta-
sis etc.), since these are being studied by others. The goal of this work 
is to investigate crosstalk in the simplest possible context, rather 
than to propose a detailed model of biological learning. Although 

INTRODUCTION
Unsupervised artifi cial neural networks usually use local, activity-
dependent (and often Hebbian) learning rules, to arrive at effi cient, 
and useful, encodings of inputs in a self-organizing manner (Herz 
et al., 1991; Haykin, 1994). It is widely believed that the brain, and 
particularly the neocortex, might self-organize, and effi ciently 
represent an animal’s world, in a similar way (Dayan and Abbott, 
2001; Cooper et al., 2004), especially since synapses exhibit spike-
coincidence-based Hebbian plasticity (Andersen et al., 1977; Levy 
and Steward, 1979; Dan and Poo, 2004), such as long-term poten-
tiation (LTP) or long-term depression (LTD). However, some data 
(Kossel et al., 1990; Bonhoeffer et al., 1994; Schuman and Madison, 
1994; Engert and Bonhoeffer, 1997; Bi, 2002) suggest that biologi-
cal Hebbian learning may not be completely synapse-specifi c, and 
other data (Chevaleyre and Castillo, 2004; Matsuzaki et al., 2004), 
while showing a high degree of specifi city, do not unequivocally 
show complete specifi city. Very recent work (Harvey and Svoboda, 
2007) has shown that induction of LTP at one synapse modifi es the 
inducibility of LTP at closely neighboring synapses (“crosstalk”). 
Perhaps, given the close packing of synapses in neuropil (>109 mm−3 
in neocortex; DeFelipe et al., 1999), complete chemical isolation 
may be impossible. Such crosstalk, although typically very small, 
could nevertheless lead to inaccurate adjustments of connection 
strengths during development or learning. Our work focuses on 
the idea that extremely accurate connection strength adjustments 
might be required for the type of learning that occurs in the neo-
cortex, and that if the necessary extreme accuracy is biophysically 
impossible, some characteristic, and enigmatic, neocortical cir-
cuitry might boost accuracy and allow useful learning (Cox and 
Adams, 2000; Adams and Cox, 2002a,b, 2006).

In previous work we studied the effect of learning inaccuracy, 
or crosstalk, in simplifi ed neural network models using a linear 
Hebbian learning rule, which is only sensitive to pairwise correla-
tions (Cox and Adams, 2000; Adams and Cox, 2002a,b; Radulescu 
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our model is extremely oversimplifi ed, there is no reason to suppose 
that more complicated models would be more crosstalk-resistant, 
unless they were specifi cally designed to be so.

Our computer experiments, described below, suggest that slight 
Hebbian inspecifi city, or crosstalk, can make learning intractable 
even in simple ICA networks. If crosstalk can prevent learning even 
in favorable cases, it may pose a general, but hitherto neglected, 
barrier to unsupervised learning in the brain. For example, since 
crosstalk will increase with synapse density, our results suggest 
an upper bound on the number of learnable inputs to a single 
neuron. We propose that some of the enigmatic circuitry of the 
neocortex functions to raise this limit, by a “Hebbian proofread-
ing” mechanism.

MATERIALS AND METHODS
We were unable to extend Amari’s analysis (Amari et al., 1997) of 
the stability of the error-free learning rule to the erroneous case, 
so we relied on numerical simulation, using Matlab. Except for 
Figure 5, all simulations stored data only for every hundredth 
iteration, or epoch. Most of our results were obtained using the 
Bell–Sejnowski (Bell and Sejnowski, 1995) multi-output rule, but 
in the last section of Results we used the Hyvarinen–Oja single 
output rule (Hyvarinen and Oja, 1998).

An n-dimensional vector of independently fl uctuating sources s 
obtained from a defi ned (usually Laplacian) distribution was mixed 
using a mixing matrix M (generated using Matlab’s “rand” function 
to give an n by n-dimensional matrix with elements ranging from 
{0,1} and sometimes {−1,1}), to generate an n-dimensional column 
vector x = M s, the elements of which are linear combinations of 
the sources, the elements of s. For a given run M was held fi xed, 
and the numeric labels of the generating seeds, and sometimes the 
specifi c form of M, are given in the Results or Appendix (since the 
result depended idiosyncratically on the precise M used). However, 
in all cases many different Ms were tested, creating different sets of 
higher-order correlations, so our conclusions seem fairly general 
(at least within the context of the linear mixing model).

The aim is to estimate the sources s
1
, s

2
,…,s

n
 from the mixes x

1
, 

x
2
,…,x

n
 by applying a linear transformation W, represented neurally 

as the weight matrix between a set of n mix neurons whose activi-
ties constitute x and a set of n output neurons, whose activities u 
represents estimates of the sources. When W = PM−1 the (arbitrarily 
scaled) sources are recovered exactly (P is a permutation/scaling 
matrix which refl ects uncertainties in the order and size of the 
estimated sources). Although neither M nor s may be known in 
advance, it is still possible to obtain an estimate of the unmixing 
matrix, M−1, if the (independent) sources are non-Gaussian, by 
maximizing the entropy (or, equivalently, non-Gaussianity) of the 
outputs. Maximizing the entropy of the outputs is equivalent to 
making them as independent as possible. Bell and Sejnowski (1995) 
showed that the following nonlinear Hebbian learning rule could 
be used to do stochastic gradient ascent in the output entropy, 
yielding an estimate of M−1,

ΔW = γ([WT]−1 + f(u) xT)

where u (the vector of activities of output neurons) = Wx and 
y = f(u) = g″(u)/g′(u) where g(s) is the source cdf, primes denote 
derivatives and γ is the learning rate.

Amari et al. (1997) showed that even if f ≠ g″/g′, the algorithm 
still converges (in the small learning rate limit) to M−1 if certain 
conditions on f and g are respected.

Bell and Sejnowski derived specifi c forms of the Hebbian part of 
the update rule assuming various nonlinearities (matching differ-
ent source distributions). For the logistic function f(u) = (1 + e−u)−1 
their rule, which we will call the BS rule, is (for superGaussian 
sources):

ΔW = γ([WT]−1 + (1 − 2y)xT) (1)

where 1 is a vector of ones. Using Laplacian sources the conver-
gence conditions are respected even though the logistic function 
does not “match” the Laplacian. The fi rst term is an antiredun-
dancy term which forces each output neuron to mimic a different 
source; the second term is antiHebbian (in the superGaussian 
case), and could be biologically implemented by spike coinci-
dence-detection at synapses comprising the connection It should 
be noted that the matrix inversion step is merely a formal way 
of ensuring that different outputs evolve to represent different 
sources, and is not key to learning the inverse of M. We also 
tested the “natural gradient” version of the learning rule (Amari, 
1998), where the matrix inversion step is replaced by simple 
weight growth (multiplication of Eq. 1 by WTW), which yielded 
faster learning but still gave oscillations at a threshold error. We 
also found that a one-unit form of ICA (Hyvarinen and Oja, 
1998), which replaces the matrix inversion step by a more plau-
sible normalization step, is also destabilized by error (Figure 8). 
Thus although the antiredundancy part of the learning rule we 
study here may be unbiological, the effects we describe seem to 
be due to the more biological Hebbian/antiHebbian part of the 
rule, which is where the error acts.

Errors were implemented by postmultiplying the Hebbian 
part of ΔW by an error matrix E (components E

ij
; see below), 

which shifted a fraction E
ij
 of the calculated Hebbian update 

(1 − 2y)xT from the jth connection on an output neuron onto the 
ith connection on that neuron, i.e. postsynaptic error (Figure 1, 
left).

ΔW = γ([WT]−1 + [(1 − 2y) xT]E) (2)

This refl ects the assumption that Hebbian changes are induced 
and expressed postsynaptically. Premultiplying by E would assign 
error from the ith connection on a given output neuron onto the 
jth connection on another output neuron made by the same presy-
naptic neuron (presynaptic error; Figure 1, right). We will analyze 
this presynaptic case elsewhere.

THE ERROR MATRIX
The errors are implemented (“error onto all”, see below) using an 
error matrix E:
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where Q is the fraction of update that goes on the correct  connection 
and ε = (1 − Q)/(n − 1) is the fraction that goes on a wrong con-
nection. The likely physical basis of this “equal error-onto-all” 
matrix is explained below (see also Radulescu et al., 2009). We 
often refer to a “total error” E which is 1 − Q. When ε = Q, spe-
cifi city breaks down completely, and, trivially, no learning at all 
can occur.

ERROR ONTO ALL
The proposed physical basis of the lack of Hebbian specifi city stud-
ied in this paper is intersynapse diffusion, for example of intrac-
ellular calcium. In principle intersynapse diffusion will only be 
signifi cant for synapses that happen to be located close together, 
and it seems likely, at least in neocortex (e.g. Markram et al., 1997), 
that the detailed arrangements of synapses in space and along the 
dendritic tree will be arbitrary (refl ecting the happenstance of 
particular axon-dendrite close approaches) and unrelated to the 
statistical properties of the input. This would refl ect the standard 
connectionist view that synaptic potentials occurring anywhere 
on the dendrites are “integrated” at the initial segment, and might 
not hold if important computations are done in nonlinear den-
dritic domains (Hausser and Mel, 2003). Nevertheless, in the 
present  work we made the simplest possible assumption, that all 
connection strength changes are equally likely to affect any other 
connection strength – an idea we call “equal error onto all”. The 
underlying premise is that there should be no arbitrarily privi-
leged connections – that the neural learning device should func-
tion as a “tabula rasa” (Kalisma et al., 2005; Le Be and Markram, 
2006) – which is inherent in the connectionist approach. We extend 
the idea that all connections should be approximately electrically 
equivalent (Nevian et al., 2007) to suggest that they might also be 

approximately chemically equivalent. This could also be viewed as a 
“meanfi eld”  assumption, so that “anatomical fl uctuations” (detailed 
synaptic neighborhood relations) get averaged out in the large n 
limit, because messengers spread (Noguchi et al., 2005; Harvey et al., 
2008), connections turn-over (Stepanyants et al., 2002; Chklovskii 
et al., 2004; Kalisma et al., 2005; Keck et al., 2008) and are multisyn-
apse (Binzegger et al., 2004), as discussed in (Radulescu et al., 2009). 
In the limit of the error-onto-all assumption, the diagonal elements, 
and also the off-diagonal elements, of E are equal, and in the case 
of complete specifi city E reduces to the identity matrix implicit in 
conventional treatments of Hebbian learning. However, in real-
ity the exact distribution of errors, even for multisynapse labile 
connections, will vary according to the idiosyncratic arrangement 
of particular axon-dendrite touchpoints. We also tested examples 
of E where offdiagonal elements were perturbed randomly away 
from equality, with very similar qualitative results. Of course, if 
synapses carrying strongly correlated signals cluster on dendrites, 
local crosstalk might actually be useful (Hausser and Mel, 2003). 
However, we do not know of evidence that such clustering occurs 
in the neocortex (see Discussion).

The “quality” Q of the learning process (Q = 1 is complete specif-
icity), would depend on the number of inputs n, the dendritic (e.g. 
calcium) diffusion length constant, the spine neck and dendritic 
lengths, and buffering and pumping parameters. In the simplest 
case, with a fi xed dendritic length, as n increases the synapse linear 
density increases proportionately, and one expects Q = 1/(1 + nb) 
where b is a “per synapse” error rate. This expression can be derived 
as follows (see also Discussion and Radulescu et al., 2009). Call 
the number of existing (silent or not) synapses comprising a con-
nection α. The total number of synapses on the dendrite, N, is 
therefore N = nα and the synapse density ρ is nα/L where L is the 
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FIGURE 1 | Schematic ICA network. Mixture neurons X receive weighted 
signals from independent sources S, and output neurons Y receive input from the 
mixture neurons. The goal is for each output neuron to mimic the activity of one 
of the sources, by learning a weight matrix W that is the inverse of M. In the 
diagrams this is indicated by the source shown as a dotted circle being mimicked 
by one of the output neurons (dotted circle) with the dotted line connections 
representing a weight vector which lies parallel to a row of M−1, i.e. an 
independent component or “IC” . The effect of synaptic update error is 
represented by curved colored arrows, red being the postsynaptic case (crosstalk 
between synapses on the same postsynaptic neuron, left diagram), and blue the 

presynaptic case (crosstalk between synapses made by the same presynaptic 
neuron; right diagram). In the former case part of the update appropriate to the 
connection from the left X cell to the middle Y cell leaks to the connection from 
the right X cell to the middle Y cell, e.g. by. In the latter case, part of the update 
computed at the connection from the left X cell onto the right Y cell leaks onto the 
connection from the left X cell onto the middle Y cell. However, in both these 
cases for clarity only one of the n2 possible leakage paths that comprise the error 
matrix E (see text) are shown. Note that learning of W is driven by the activities of 
X cells (the vector x) and by the nonlinearly transformed activities of the Y cells 
(the vector y), as well as by an “antiredundancy” process.
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was then premultiplied by the decorrelating matrix Z computed 
as follows:

Z = (C½)−1 and M
O
 = Z M

The input vectors x generated using M
O
 constructed in this way 

were thus variably “whitened”, to an extent that could be set by vary-
ing the size of the sample (the batch size) used to estimate C. The 
performance of the network was measured against a new solution 
matrix MO

−1, which is approximately orthogonal, and is the inverse 
of the original mixing matrix M premultiplied by Z, the decorrelat-
ing, or whitening, matrix:

M Z MO
− −=1 1( )

In another approach, perturbations from orthogonality were 
introduced by adding a scaled matrix (R) of numbers (drawn ran-
domly from a Gaussian distribution) to the whitening matrix Z. 
The scaling factor (which we call “perturbation”) was used as a 
variable for making M

O
 less orthogonal, as in Figure 6 (see also 

Appendix Methods).

ONE-UNIT RULE
For the one-unit rule (Hyvarinen and Oja, 1998) we used 
Δw = −γ x tanh(u) followed by division of w by its Euclidian 
norm. The input vectors were generated by mixing source vec-
tors s using a whitened mixing matrix M

O
 (described above, and 

see Appendix). For the simulations the learning rate γ was 0.002 
and the batch size for estimating the covariance matrix was 1000. 
At each error value the angle between the fi rst row of MO

−1, and 
the weight vector was allowed to reach a steady value and then 
the mean and standard deviation was calculated from a further 
100,000 epochs.

RESULTS
BS RULE WITH TWO NEURONS AND RANDOM M
We fi rst looked at the BS rule for n = 2, with a random mixing 
matrix. Figure 2 shows the dynamics of initial, error-free con-
vergence for each of the two weight vectors, together with the 
behaviour of the system when error is applied. “Convergence” was 
interpreted as the maintained approach to 1 of one of the cosines 
of the angles between the particular weight vector and each of the 
possible rows of M−1 (of course with a fi xed learning rate exact 
convergence is impossible; in Figure 2, γ = 0.01, which provided 
excellent initial convergence). Small amounts of error, (b = 0.005, 
equivalent to total error E = 0.0099, applied at 200,000 epochs) 
only degraded the performance slightly. However, at a threshold 
error rate (b

t
 = 0.01037, E = 0.0203 see Figure 4A and Appendix) 

each weight vector began, after variable delays, to undergo rapid 
but widely spaced aperiodic shifts, which became more frequent, 
smoother and more periodic at an error rate of 0.02 (E = 0.0384; 
Figure 2). These became more rapid at b = 0.05 (see Figure 4A) 
and even more so at b = 0.1 (Figure 2, E = 0.166). Figure 2D shows 
that the individual weights on one of the output neurons smoothly 
adjust from their correct values when a small amount of error is 
applied, and then start to oscillate almost sinusoidally when error 
is increased further. Note that at the maximal recovery from the 
spike-like oscillations the weight vector does briefl y lie parallel to 
one of the rows of M−1.

dendrite length. Defi ne x as the linear dendritic distance between 
the shaft origins of two spiny synapses. For x = 0, assume that the 
effective calcium concentration in an unstimulated synapse is an 
“attenuation” fraction a of that in the head of a synapse undergo-
ing LTP, due to outward calcium pumping along two spine necks 
in series. Assume that calcium decays exponentially with distance 
along the shaft (Zador and Koch, 1994; Noguchi et al., 2005) with 
space constant λ

c
, and that the LTP-induced strength change at a 

synapse is proportional to calcium. The expected total strengthen-
ing at neighboring synapses due to calcium spread from a refer-
ence synapse at x = 0 where LTP is induced, as a fraction of that at 
the reference synapse, assuming that λ

c 
is much smaller than half 

the dendritic length, is given by:

2 2
2

0

2

ρ
λ

ρλ λ
a

x
dx a

a N

L
nb

L

c
c

c
/

exp∫ −⎛
⎝⎜

⎞
⎠⎟ ≈ = =

where b = 2αaλ
c 
/L

b (a “per connection error rate”) refl ects intrinsic physical fac-
tors that promote crosstalk (spine–spine attenuation and the 
product of the per-connection synapse linear density and λ

c
), 

while n refl ects the effect of adding more inputs, which increases 
synapse “crowding” if the dendrites are not lengthened (which 
would compromise electrical signaling; Koch, 2004). Notice that 
silent synapses would not provide a “free lunch” – they would 
increase the error rate, even though they do not contribute to 
fi ring. Although incipient (Adams and Cox, 2002a,b) or potential 
(Stepanyants et al., 2002) synapses would not worsen error, the 
long-term virtual connectivity they provide could not be immedi-
ately exploited. We ignore the possibility that this extra, unwanted, 
strengthening, due to diffusion of calcium or other factors, will 
also slightly and correctly strengthen the connection of which the 
reference synapse is part (i.e. we assume n is quite large). This 
treatment, combined with the assumption that all connections 
are anatomically equivalent (by spatiotemporal averaging), leads 
to an error matrix with 1 along the diagonal and nb/(n − 1) off-
diagonally. In order to convert this to a stochastic matrix (rows 
and columns sum to one, as in E defi ned above) we multiply by 
the factor 1/(1 + nb), giving Q = 1/(1 + nb). We ignore the scaling 
factor (1 + nb) that would be associated with E, since it affects all 
connections equally, and can be incorporated into the learning 
rate. It’s important to note that while b is typically biologically 
very small (∼10−4; see Discussion), n is typically very large (e.g. 
1000 in the cortex), which is why despite the very good chemi-
cal compartmentation provided by spine necks (small a), some 
crosstalk is inevitable.

The off diagonal elements E
i, j

 are given by (1 − Q)/(n − 1). In the 
results we use b as the error parameter but specify in the text and 
fi gure legends where appropriate the “total error” E = 1 − Q, and a 
trivial error rate ε

t
 = (n − 1)/n when specifi city is absent.

ORTHOGONAL MIXING MATRICES
In Sections Orthogonal Mixing Matrices and Hyvarinen–Oja One-
Unit Rule, an orthogonal, or approximately orthogonal, mixing 
matrix M

O
 was used. A random mixing matrix M was orthogonal-

ized using an estimate of the inverse of the covariance matrix C 
of a sample of the source vectors that had been mixed using M. M 
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One could therefore describe the behavior as switching between 
assignments, though spending most of its time at nonparallel states. 
Similar behavior was seen with different initializations of W or s.

ORBITS
Figure 3 shows plots of the components of both weight vectors 
(i.e. the two rows of the weight matrix, shown in red or blue) 
against each other as they vary over time. The weight trajectories 
are shown as error is increased from 0 to a subthreshold value 

and then to increasingly suprathreshold values. The weights fi rst 
move rapidly from their initial random values to a tight region of 
weight space (see blow-up in right plot), which corresponds to a 
choice of almost correct ICs, where they hover for the fi rst million 
epochs. The initial IC found is typically the one corresponding to 
the longest row of M−1, and the weight vector that moves to this IC 
is the one that is initially closest to it (a repeat simulation is shown 
in Appendix Results; the initial weights were different and so was 
the choice). Introduction of subthreshold error produces a slight 
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FIGURE 2 | Plots (A) and (C) shows the initial convergence and subsequent 

behaviour, for the fi rst and second rows of the weight matrix W, of a BS 

network with two input and two output neurons Error of b = 0.005 

(E = 0.0099) was applied at 200,000 epochs, b = 0.02 (E = 0.0384) at 

2,000,000 epochs. At 6,000,000 epochs error of 0.1 (E = 0.166) was applied. 
The learning rate was 0.01. (A) First row of W compared against both rows of 
M−1 with the y-axis the cos(angle) between the vectors. In this case row 1 of W 
converged onto the second IC, i.e. the second row of M−1 (green line), while 
remaining at an angle to the other row (blue line). The weight vector stays very 
close to the IC even after error of 0.005 is applied, but after error of 0.02 is 
applied at 2,000,000 epochs the weight vector oscillates. (B) A blow-up of the 

box in (A) showing the very fast initial convergence (vertical line at 0 time) to the 
IC (green line), the very small degradation produced at b = 0.005 (more clearly 
seen in the behavior of the blue line) and the cycling of the weight vector to each 
of the ICs that appeared at b = 0.02. It also shows more clearly that after the 
fi rst spike the assignments of the weight vector to the two possible ICs 
interchanges. (C) Shows the second row of W converging on the fi rst row of 
M−1, the fi rst IC, and then showing similar behaviour. The frequency of oscillation 
increases as the error is further increased (0.1 at 6,000,000 epochs). (D) Plots 
the weights of the fi rst row of W during the same simulation. At b = 0.005 the 
weights move away from their “correct” values, and at b = 0.02 almost 
sinusoidal oscillations appear.
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shift to an adjacent stable region of weight space. Introduction 
of suprathreshold error initiates a limit cycle-like orbit. Further 
increases in error generate longer orbits. The red and blue orbits 
superimpose, presumably because the two weight vectors are now 
equivalent, but the columns of W are phase-shifted (see orbits, 
Figure A4, shown in Appendix Results). In Figure 3 the weights 
spend roughly equal amounts of time everywhere along the orbits, 
but at error rates just exceeding the threshold the weights tarry 
mostly very close to the stable regions seen at just subthreshold 
error (i.e. the weights “jump” between degraded ICs; see Appendix 
Results, Figures A1–A3).

VARYING PARAMETERS
Figure 4A summarizes results for a greater range of error values 
using the same mixing matrix M. At very low error rates the weights 
remain stable, but at a threshold error rate near 0.01 there is a 
sudden break in the graph and the oscillations abruptly appear 
(although initially at very low frequency). Further study showed 
the threshold error to be very close to 0.01037 (see Figure 4A). 
The change in behaviour at the threshold error rate resembles a 
bifurcation from a stable fi xed point, which represents a degraded 
version of the correct IC, to a limit cycle. However, the oscillations 
that appear at the threshold error value are extremely slow and 
aperiodic (see below and Appendix).

Different mixing matrices gave qualitatively similar results but 
the exact threshold error value varied (see below). The results in 
Figures 2, 3 and 4A were obtained with γ = 0.01. Lowering the 
learning rate produces very minor, and probably insignifi cant, 

changes in the estimated threshold error rate. Figure 4B shows 
the behavior at much lower learning rates (0.0005) for a different 
M (seed 10), over a long simulation period (150 M epochs). The 
introduction of b = 0.0088 (E = 0.0173) at 4 M epochs lead to a slow 
drop in the cosine which then crept down further until the sudden 
onset of a very slow oscillation at 35 M epochs; the next oscillation 
occurred at 140 M epochs. With b = 0.00875 (E = 0.0172) learning 
was perfectly stable over 68 M epochs, though degraded (data not 
shown). In this case the threshold appears to lie between 0.00875 
and 0.0088, though possibly there are extremely slow oscillations 
even at 0.00875.

If γ was increased to 0.005 there was no clear change in the 
threshold error rate. There was no oscillation within 60 M epochs at 
0.0086 error (using seed 10) but an oscillation appeared (after 4 M 
epochs) at 0.0875 (see below). However the “oscillations” close to 
the threshold error are quite irregular: at b = 0.0088 (γ = 0.005) the 
oscillation frequency was 4.18 ± 0.31 mean ± SD; range 4.41–3.64; 
n = 5); at 0.087 they were even slower (around 30 M epochs) and 
more variable, and the weights changed in a steplike manner (see 
Appendix Results, Figures A1–A3).

To explore the range of the threshold error rate, 20 consecutive 
seeds (50–70) for M, i.e. 20 different random Ms (with elements 
from {−1,1}), were used in simulations. One of the Ms did not 
yield oscillations at any error although two of the weights started to 
diverge without limit. The average threshold per-connection error 
b for the remaining 19 Ms was 0.134, the standard deviation 0.16, 
the range 0.00875–0.475. In all these cases the threshold error was 
less than the trivial value.

A B

FIGURE 3 | Trajectories of weights comprising the ICs. The weights 
comprising each IC (rows of the weight matrix) were plotted against each 
other over time ((A) red plot is the fi rst row of W and the blue plot is the 
second row of W). The simulation was run for 1 M epochs with no error applied 
and each row of W can be seen to evolve to an IC (red and blue “blobs” 
indicated by large arrows in panel (A)). From 2 M to 4 M epochs error 
b = 0.005, i.e. below the threshold error level, was applied and each row of W 
readjusts itself to a new stable point, red and blue “blobs” indicated by the 
smaller arrows. From 4 M to 6 M epochs error of 0.02 was applied and each 
row of W now departs from a stable point and moves off onto a limit cycle-like 

trajectory (inner blue and red ellipses). Error is increased at 6 M epochs to 0.05 
and the trajectories are pushed out into longer ellipses. At 7 M epochs error 
was increased again to 0.1 and the ellipses stretch out even more. Notice the 
transition from the middle ellipse to the outer one (error from 0.02 to 0.1) can 
be seen in the blue line (row 2 of W) in the bottom left of the 
plot. (B) A blow-up of the inset in (A) clearly showing the stable fi xed point of 
row 2 of W (i.e. an IC) at 0 error (right hand blue “blob”). The blob moves a 
small amount to the left and upwards when error of 0.005 is applied indicating 
that a new stable fi xed point has been reached. Further increases in error 
launch the weights into orbit, γ = 0.005.
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FIGURE 4 | (A) Increased error increases the frequency of the oscillations 
(cycles/106 epochs) but that the onset of oscillations is sudden at b = 0.01037 
(E = 0.0203; L = 0.01; seed = 8), indicating that this threshold error level heralds a 
new dynamical behaviour of the network. In (B) and (C) (enlargement of the box 
in (B)) the behaviour of the network at a very low learning rate is shown for a 
different learning rate and M (γ = 0.0005; seed = 10). The blue curves show 
cos(angle) with respect to the fi rst row of M−1, the green curves with respect to 
the second column. Only the results for one of the output neurons is shown (the 
other neuron responded in mirror-image fashion). Plot (B) shows that the weight 
vector converged rapidly and precisely, in the absence of error, to the fi rst row 
(blue curve; the initial convergence is better seen in (C)); error (b = 0.0088 
E = 0.0173) was introduced after fi ve million epochs; this led to a slow decline in 
performance over the next fi ve million epochs to an almost stable level which 
was followed by a further very slow decline over the next 30 million epochs (blue 
trace in (C)) which then initiated a further rapid decline in performance to 0 (the 
downspike in (B)) which was very rapidly followed by a dramatic recovery to the 
level previously reached by the green assignment; meanwhile the green curve 
shows that the weight vector initially came to lie at an angle about cos−1 0.95 
away from the second row of M−1. The introduction of error caused it to move 
further away from this column (to an almost stable value about cos−1 0.90), but 
then to suddenly collapse to 0 at almost the same time as the blue spike. Both 

curves collapse down to almost 0 cosine, at times separated by about 10,000 
epochs (not shown); at this time the weights themselves approach 0 (see 
Figure A1). The green curve very rapidly but transiently recovers to the level 
[cos(θ) ∼1] initially reached by the blue curve, but then sinks back down to a level 
just below that reached by the blue curve during the 5 M–30 M epoch period. 
Thus the assignments (blue to the fi rst row initially, then green) rapidly change 
places during the spike by the weight vector going almost exactly orthogonal to 
both rows, a feat achieved because the weights shrink briefl y almost to 0 (see 
Figure A1). During the long period preceding the return swap, one of the weights 
hovers near 0. After the fi rst swapping (at 35 M epochs) the assignments remain 
almost stable for 120 M epochs, and then suddenly swap back again (at 140 M 
epochs). This time the swap does not drive the shown weights to 0 or orthogonal 
to both rows (Figure A1). However, simultaneous with this swap of the 
assignments of the fi rst weight vector, the second weight vector undergoes its 
fi rst spike to briefl y attain quasi-orthogonality to both nonparallel rows, by weight 
vanishing (not shown). Conversely, during the spike shown here, the weight 
vector of the second neuron swapped its assignment in a nonspiking manner 
(not shown). Thus the introduction of a just suprathreshold amount of error 
causes the onset of rapid swapping, although during almost all the time the 
performance (i.e. learning of a permutation of M−1) is very close to that stably 
achieved at a just subthreshold error rate (b = 0.00875; see Figure A1).
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LARGER NETWORKS
Figure 5 shows a simulation of a network with n = 5. The behav-
iour with error is now more complicated. The dynamics of the 
convergence of one of the weight vectors to one of the rows of the 
correct unmixing matrix M−1 (i.e. to one of the fi ve ICs) is shown 
(Figure 5A; for details of M, see Appendix Results). Figure 5A plots 
cos(θ) for one of the fi ve rows of W against one of the rows of 
M−1. An error of b = 0.05 (E = 0.09) was applied at 200,000 epochs, 
well after initial error-free convergence. The weight vector showed 
an apparently random movement thereafter, i.e. for eight million 
epochs. Figure 5B shows the weight vector compared to the other 
rows of M−1 showing that no other IC was reached. Weight vector 
2 (row 2 of W) shows different behaviour after error is applied 

(Figure 5C). In this case the vector undergoes fairly regular 
 oscillations, similar to the n = 2 case. The oscillations persist for 
many epochs and then the vector (see pale blue line in Figure 5D) 
converged approximately onto another IC (in this case row 3 of 
M−1) and this arrangement was stable for several thousand epochs 
until oscillations appeared again, followed by another period of 
approximate convergence after 8.5 million epochs.

ORTHOGONAL MIXING MATRICES
The ICA learning rules work better if the effective mixing matrix 
is orthogonal, so the mix vectors are pairwise uncorrelated (whit-
ened) (Hyvärinen et al., 2001). For n = 2 we looked at the case 
where the data were whitened to varying extents. This was done 
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FIGURE 5 | (A) The convergence of one of the rows of M−1, with one of the 
weight vectors of M (seed 8) with n = 5. The initial weights of W are random. 
The angle between row 1 of the weight matrix and row 1 of the unmixing matrix 
are shown. The plot goes to 1 (i.e. parallel vectors) indicating that an IC has been 
reached. Without error this weight vector is stable. At 200,000 epochs error of 
0.05 (E = 0.09) is introduced and the weight vector then wanders in an 
apparently random manner. (B) The weight vector compared to all the other 

potential ICs and clearly no IC is being reached. Plots (C,D) on the other hand 
shows different behaviour for row 2 of the weight matrix (which initially 
converged to row 4 of M−1). In this case the behaviour is oscillatory after error 
(0.05 at 200,000 epochs) is introduced, although another IC (in this case row 3 of 
M−1 (pale blue line) after 6.5 M and again at 8.5 M epochs) is sometimes 
reached, as can be seen in (D) where the weight vector is plotted against all row 
of M−1. The learning rate was 0.01.
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either by limiting the number of data vectors used to estimate C, 
or by variably perturbing the whitening matrix Z (see Materials 
and Methods). We looked at the relationship between degree of 
perturbation from orthogonality of the whitened mixing matrix 
Q = ZC and the onset of oscillation with error (see Materials and 
Methods). We found that there was a correlation (Figure 6, left 
graph) with the onset of oscillation occurring at lower error rates 
as Q was more and more perturbed from orthogonality. Figure 6 
(right graph) shows the effect of lowering the batch number used 
in estimating the covariance matrix C of the set of source vectors 
that have been mixed by a random matrix M. As the effective mixing 
matrix, which is orthogonal with perfect whitening, becomes less 

orthogonal (due to a cruder estimate of the decorrelating matrix 
by using a smaller batch number for the estimate of C) the onset 
of oscillations occur at lower and lower values of error.

We noted above that the threshold error rate for oscillation onset 
varies unpredictably for different Ms. There seemed to be no rela-
tionship between the angle between the columns of M and b

t
 (not 

shown). In order to try to fi nd a relationship between a property of a 
given random mixing matrix and the onset of oscillation, we plotted 
the ratio of the eigenvalues λ

2
 and λ

1 
of MMT against b

t
. If M is an 

orthogonal matrix then MMT is the identity and λ
2
/λ

1
 is 1. If M is 

not orthogonal then the ratio is less than 1. We used the ratio λ
2
/λ

1
 

as a measure of how orthogonal M was, and Figure 7 (left graph) 

FIGURE 7 | Relationship of increasing orthogonality of M with threshold 

error at which oscillations appear. Left fi gure shows a plot of the ratio of 
eigenvalues of MMT (λ2/λ1) against the threshold error bt for a given M, for 
various randomly-generated Ms selected to give a range of threshold errors. On 

the right hand side is a plot of bt (threshold error) against the cos(angle) between 
normalized columns of M (for the same set of random Ms). Note that for two 
exactly orthogonal Ms, different bt values were obtained, n = 2. The lines in both 
graphs are least squares fi ts.

FIGURE 6 | Effect of variable whitening on the error threshold for the onset 

of instability (n = 5). Left fi gure shows the relationship between degree of 
perturbation of an orthogonal (whitened) matrix Q (seed 2, n = 2) and the onset 
of oscillation. Data using fi ve different perturbation matrices (series 1–5) applied 
to a decorrelating matrix Z (see Materials and Methods), are plotted. Each series 
is of one perturbation matrix, scaled by varying amounts (shown on the abscissa 
as “perturbation”), which is then added to Z (calculated from a sample of mixture 
vectors), and plotted against the threshold error (obtained from running different 
simulations using each variably perturbed Z), shown on the ordinate. At 0 

perturbation (i.e. for an orthogonal effective mixing matrix) the network became 
unstable at a non-trivial error rate. As the effective mixing matrix was made less 
and less orthogonal by perturbing each of the elements of the decorrelating 
matrix Z (see Materials and Methods, and Appendix) the sensitivity to error 
increased. The right hand graph is a plot for one random M (n = 5, seed 8) where 
the mixed data has been whitened by a decorrelating matrix, (C½)−1. In this case 
the covariance matrix C of the mix vectors was estimated by using different batch 
numbers, with a smaller batch number giving a cruder estimate of C and a less 
orthogonal effective mixing matrix. The learning rate was 0.01 in both graphs.
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shows a plot of this ratio against b
t
 for the respective M. Although 

the points are scattered, there does appear to be a trend: as the ratio 
gets closer to 1, the value for b

t
 gets larger. Figure 7 (right graph) 

is a plot of the cosine of the angle between the now normalized 
columns of the mixing matrices in Figure 7 (left graph) against the 
redetermined b

t
 in runs for the normalized version of M. There is 

a clear trend indicating that the more orthogonal the normalized 
columns of M are, the less sensitive to error learning becomes. A few 
of these “normalized” matrices, however, did not show oscillation at 
any value of error, perhaps because the weights seemed to be growing 
without bound (there is no explicit normalization in the BS rule). 
The angles between the columns in these cases were always quite 
large. Completely orthogonal matrices were not, however, immune 
from sudden instability (i.e. at a threshold error value b

t
), as the two 

points lying on the x-axis in Figure 7 (right graph) demonstrate; 
here the angle between the columns is 90° but there was a threshold 
error rate at b = 0.4 and 0.45, well below the trivial value.

The results in Figures 6 and 7, using three different approaches, 
suggest that whitening the inputs make learning less crosstalk-
 sensitive, although the actual sensitivity varies unpredictably with 
the particular M used.

The source distribution was usually Laplacian, but some simula-
tions were done with a logistic distribution (i.e. the distribution 
for which the nonlinearity is “matching”). The results were similar 
to those for the Laplacian distribution in terms of convergence to 
the ICs, but the onset of oscillation occurred at a threshold error 
rate that was about half that for the Laplacian case, using the same 
random mixing matrices (data not shown).

HYVARINEN–OJA ONE-UNIT RULE
All the results described so far were obtained using the B-S mul-
tiunit rule, which estimates all the ICs in parallel, and uses an 
 antiredundancy component to ensure that each output neuron 

learns a different IC. This antiredundancy component is rather 
unbiological, since it involves explicit matrix inversion, although 
crosstalk was only applied to the nonlinear Hebbian part of the 
rule. Although the antiredundancy component forces different 
outputs to learn different ICs, the actual assignment is arbitrary 
(depending on initial conditions and on the historical sequence 
of source vectors), though, in the absence of crosstalk, once 
adopted the assignments are stable. The results with this rule 
show 2 effects of crosstalk: (1) below a sharp threshold, approxi-
mately correct ICs are stably learned (2) above this threshold, 
learning becomes unstable, with weight vectors moving between 
various possible assignments of approximately correct ICs. Just 
over the crosstalk threshold, the weight vectors “jump” between 
approximate assignments, but as crosstalk increases further, the 
weights spend increasing amounts of time moving between these 
assignments, so that the sources can only be very poorly recovered. 
This behavior strongly suggests that despite the onset of instability 
the antiredundancy term continues to operate. Thus we interpret 
the onset of oscillation as the outcome of instability combined 
with antiredundancy. This leads to the important question of 
whether a qualitative change at a sharp crosstalk threshold would 
still be seen in the absence of an antiredundancy term, and what 
form such a change would adopt. We explored this using a form 
of ICA learning which does not use an antiredundancy term, 
the Hyvarinen–Oja one-unit rule (Hyvarinen and Oja, 1998). 
This nonlinear Hebbian rule requires some form of normaliza-
tion (explicit or implicit) of the weights, and that the input data 
be whitened. For simplicity we used “brute force” normalization 
(division of the weights by the current vector length), but similar 
results can be obtained using implicit normalization (e.g. as in 
the original Oja rule; Oja, 1982).

A full account of these results will be presented elsewhere, and 
here we merely illustrate a representative example (Figure 8), using 

FIGURE 8 | Effect of crosstalk on learning using a single-unit rule with N = 2 and 

tanh nonlinearity. An orthogonal mixing matrix was constructed from seed 64 by 
whitening. The cosine of the angle between the IC found at 0 crosstalk (“error”) and 

that found at equilibrium in the presence of various degrees of crosstalk is plotted. 
This angle suddenly swings by almost 90° at a threshold error of 0.064 (E 0.113). The 
error bars show the standard deviation estimated over 100,000 epochs.
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seed 64 to generate the original mixing matrix M (n = 2), which 
was then converted to an approximately orthogonal effective M

O
 

by multiplication by a whitening matrix Z derived from a sample 
of 1000 mix vectors obtained from Laplacian-distributed sources 
using M (see Materials and Methods and Appendix). There are 
two possible ICs (i.e. rows of M

O
) that the neuron can learn (in 

the absence of crosstalk), depending on the initial conditions; only 
one is shown here. Figure 8 shows the cosine of the angle between 
this IC and the weight vector (averaged over a window of 100,000 
epochs after a stabilization period following changes in the cross-
talk parameter). It can be seen that up to a threshold crosstalk 
value around 0.064 there is only a slight movement away from 
the correct IC. At this threshold the weight vector jumped to a 
new direction that was almost orthogonal to the original IC. The 
weight vector continued to fl uctuate near this direction with no 
sign of oscillation. Although this direction was, in this case, quite 
close to the direction of the second possible IC, it seems unlikely 
that supratheshold crosstalk simply changes the IC that is learned 
(see Discussion). For example, we found similar behavior (n = 3) 
using two Gaussian and one Laplacian sources. In this case there 
is only one stable IC to be found. In both cases (n = 2 and n = 3) 
when all sources were Gaussian (and therefore the mix signals have 
zero higher order cumulants so that ICA is not possible) the equi-
librium weight vector shifted gradually as crosstalk increased (not 
shown), in the manner seen with a linear Hebbian rule (Radulescu 
et al., 2009).

DISCUSSION
BIOLOGICAL BACKGROUND
A synaptic connection has two main functions: it must convey 
selective information about the activity of the presynaptic neu-
ron and its own current strength to the postsynaptic neuron, and 
it must appropriately adjust its strength based on the history of 
signals arriving at that connection. Both these operations should 
occur independently at different connections, even though the 
individual synapses comprising connections are very small and 
densely packed. Optimizing these related but different functions 
must be quite diffi cult, especially since they are somewhat contra-
dictory: electrical signals must pass through the synapse towards 
a spike trigger region, while chemical signals must be confi ned to 
the synapse itself. Compartmentation is achieved by a combination 
of narrow spaces and buffering/pumping mechanisms. However, 
these strategies are themselves contradictory: chemicals that power 
pumps must arrive through the same narrow spaces. It is unlikely 
that connections operate completely independently of each other, 
even though there is little advantage in having large numbers of 
connections and neurons if they cannot. A central problem in 
neurobiology is the storage of information at very high density, 
as in other forms of computing (silicon or genetic), and neural 
information cannot be accurately stored unless connections change 
strength independently.

We are interested in the possibility that sophisticated brains use 
dual, direct and indirect, strategies to achieve high levels of con-
nectional independence. Placing synapses on spines would be an 
example of a direct strategy. It is clear that the spine neck provides 
a signifi cant, though not complete, barrier to calcium movement, 
and that calcium is a key chemical mediating activity-dependent 

modifi cations in synaptic strength (Wickens, 1988; Lisman, 1989; 
Muller and Connor, 1991; Koch and Zador, 1993; Lisman et al., 
2002; Nimchinsky et al., 2002; Kampa et al., 2004; Nevian and 
Sakmann, 2004; Noguchi et al., 2005; Feng et al., 2007). We have 
proposed (Cox and Adams, 2000; Adams and Cox, 2002a,b, 2006) 
that the neocortex might in addition use an indirect, “Hebbian 
proofreading”, strategy, involving complex, mysterious but docu-
mented, microcircuitry that independently monitors and regu-
lates activity at connections. However, while the suggestions that 
synapses cannot operate completely independently, and that the 
neocortex is partly a device for mitigating the effects of synaptic 
interdependence, are not inherently implausible, the key step in this 
argument has been missing: a demonstration that neural network 
learning fails if synapses are not suffi ciently independent.

Any such failure would depend on the type of learning. We and 
others (Cox and Adams, 2000; Adams and Cox, 2002a,b; Botelho 
and Jamison, 2004; Radulescu et al., 2009) have already shown that 
learning from pairwise correlations using a linear, but inaccurate, 
Hebb rule typically produces graceful degradation, with no sudden 
change at a critical error rate. However unsupervised learning by 
the neocortex probably requires sensitivity to higher-than-pairwise 
correlations since such correlations encode information about the 
underlying laws of nature, such as those transforming objects to 
images. We therefore studied the simplest model of such transfor-
mations: linear square deterministic mixing (i.e. the ICA model). 
This model has the attractive feature that learning by a single layer 
of feedforward weights is completely tractable (Dayan and Abbott, 
2001), at least with perfectly accurate Hebb synapses.

PHYSICAL BASIS OF ERROR AND NONLINEARITY
Although in at least some cases coincident activity at one synapse 
does affect adjustments at others on the same neuron (Engert and 
Bonhoeffer, 1997; Bi, 2002; Harvey and Svoboda, 2007), the physical 
basis of such crosstalk is uncertain.

We briefl y discuss this issue because mechanism affects magni-
tude, and it’s important to consider whether the magnitude of the 
crosstalk that leads to learning failure is consistent with experimen-
tal data. In at least one case (Tao et al., 2001) crosstalk seems to be 
caused by dendritic diffusion of calcium. In a recent elegant study 
of crosstalk (Harvey and Svoboda, 2007) evidence was obtained that 
crosstalk is caused by an “intracellular diffusible factor”. However, 
these authors suggests that this factor was not calcium, since in 
their experiments the calcium increase at a synapse caused by an 
LTP-inducing protocol at a neighboring synapse was only 1% (and 
not signifi cantly different from 0%) of that occurring at that neigh-
boring synapse. However, this reasoning may be fl awed. First, that 
1% signal is even less signifi cantly different from 1% than it is from 
0, and could double the calcium concentration at that synapse. 
Second, the space constant for the dendritic diffusion of the “factor” 
was similar to that measured for calcium diffusion (Noguchi et al., 
2005). Third, immediately following an LTP- inducing protocol at a 
spiny synapse, there is a dramatic decrease in the diffusional cou-
pling of the spine head to the shaft (Bloodgood and Sabatini, 2005), 
which would presumably prevent the escape of any “factor” (except 
for calcium itself, which is the earliest spine head signal, and which 
presumably triggers the uncoupling). Fourth, since LTP at a sin-
gle synapse produces a stochastic, all-or-none increase in strength 
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calcium-binding dyes. Zador and Koch (1994) have estimated that 
about 5% of the calcium entering through the NMDAR might reach 
the dendritic shaft (most of the loss would be due to pumping by 
the spine neck membrane). How much of that 5% might reach 
neighboring spine heads? Obviously simple dilution of this calcium 
by the large shaft volume would greatly attenuate this calcium leak-
age signal, and then the diluted signal would be further attenuated 
by diffusion through a second spine neck. It might seem impos-
sible that after passing this triple gauntlet (neck, dilution, neck) 
any calcium could survive. However, one must consider that the 
amount of stray calcium reaching a particular spine head refl ects 
the combined contribution of stray signals from all neighboring 
spines: it will depend on the linear density of spines. One way 
to embody this was outlined in Methods. Another even simpler 
approach was adopted by Cornelisse et al. (2007): they pointed 
out that in the case where all synapses are active together (perhaps 
a better approximation than that only one is active at a time) one 
could simply regard each spine as coupled to a shaft segment that 
was as long as the average distance between spines. Typically, this 
segment volume is comparable to the spine head volume, so the 
“dilution factor” would only be around twofold. Furthermore the 
effect of neck pumps on calcium transfer from shaft to head will 
be much less than that on transfer from head to shaft, because the 
spine head does not have a large volume relative to the relevant den-
dritic segment. Indeed, the extra head-head attenuation produced 
by dilution is offset by the reduced head-head attenuation due to 
fi nite head volume. The underlying cause is the different boundary 
condition for head-shaft and shaft-head reaction- diffusion. Making 
necks longer or narrower could improve isolation, but would lead 
to decreased electrical effectiveness for single synapses, requiring 
compensating increases in synapse numbers and no net decrease 
in crosstalk.

The second approach is direct measurement using fl uorescent 
dyes. Such dyes inevitably perturb measurements, and this fi eld 
has been very controversial, with one group claiming that under 
natural conditions there is negligible loss to the shaft (Sabatini et al., 
2002) and other groups arguing that there can be low but signifi -
cant loss (Majewska et al., 2000; Korkotian et al., 2004; Noguchi 
et al., 2005). On balance these studies suggest that natural loss is 
in the range 1–30%. A very conservative overall fi gure of 1% for 
head-shaft attenuation and 10% for shaft-head attenuation, giving 
a combined a value of 10−3, is used below. It should be noted that 
even if calcium is not the source of crosstalk (Harvey et al., 2008), 
our results still hold. Furthermore, even though such diffusion 
is a local, intersynapse, phenomenon, it will affect the specifi city 
of adjustments of connections in a global manner, both because 
feedforward connections are often comprised of many synapses 
distributed over the dendritic tree (Markram et al., 1997), and 
because synapses typically form and disappear at many locations 
(Kalisma et al., 2005; Le Be and Markram, 2006; Keck et al., 2008). 
Although most of our results were obtained assuming, for simplic-
ity, that all connections affect each other equally (which would 
only be true in the limits that each connection is made of very 
many synapses, or that learning is slow compared to the turnover 
of individual synapses (or, a fortiori, both), we found the same 
qualitative behaviour using error matrices with randomly varying 
offdiagonal elements. The way that local synapse crosstalk could 

(Petersen et al., 1998; O’Connor et al., 2005), and to  reliably induce 
LTP adequate stimuli must be presented many times [e.g. 30 stimuli 
over 1 min in the Harvey/Svoboda (Harvey and Svoboda, 2007) 
experiments] it seems that some mechanism must “integrate” the 
magnitude of those stimuli over a minute-long time-window. An 
obvious “register” candidate for such integration is phosphoryla-
tion of CaM Kinase, the principal link between calcium and LTP 
expression (Lisman, 1990; Derkach et al., 1999; Lisman et al., 2002). 
This means that repeated small increases in calcium at a synapse 
that are in themselves insuffi cient to trigger LTP, could nevertheless 
be registered at that synapse, and add to subsequent subthreshold 
calcium signals at that synapse to trigger all-or-none LTP. In the 
reverse protocol (Harvey and Svoboda, 2007), where the subthresh-
old remote stimulus is given fi rst, no threshold change is seen, 
possibly because the observed spine structural changes shield the 
synapse from subsequent small dendritic calcium signals.

One possible objection to this argument would be that very 
small changes in calcium may fail to affect the register, for exam-
ple if calcium activates CaM Kinase nonlinearly (De Koninck and 
Schulman, 1998). This raises the important question of the possible 
biophysical basis of the nonlinearity that is essential for learning 
high-order statistics. There are two possible limiting cases. (1) “non-
linearity fi rst”: the nonlinearity is applied to the Hebbian update 
before part of that update leaks to other synapses. This is the form 
we adopted in this paper (Eq. 2). In this case the nonlinearity might 
refl ect a relation between depolarization and spiking, or between 
spike coincidence and calcium entry. (2) “nonlinearity last”: the 
calcium signal would linearly relate to the number of coincidences; 
after attenuation it would then be linearly distributed to neighbor-
ing synapses, where it would nonlinearly combine with whatever 
other calcium signals occur at those synapses. This would lead to 
an equation of form:

ΔW = γ([WT]−1 + [1 − 2f (uE) xT])

We will describe the behavior of this case in another paper, but 
it seems to be similar to that described here.

Clearly in the “nonlinearity fi rst” case, the register would 
respond linearly to calcium (as assumed in our derivation of b). 
In the “nonlinearity last” case, the register could perhaps discrimi-
nate against very small calcium signals emanating from neigh-
boring synapses; however, the effectiveness of such a mechanism 
would be constrained by the requirement to implement a nonlin-
earity that is suitable for learning, and not just for discrimination 
against stray calcium. An extreme case of a nonlinearity would 
be a switch from LTD to LTP at a threshold (Cooper et al., 2004). 
Thus if calcium spreads, LTP at one synapse might cause LTD 
at neighboring synapses. However, we found that making the 
offdiagonal elements in E negative did not substantially affect 
the onset of instability.

None of our results hinge on the nature of the diffusing crosstalk 
signal. However, if we assume it is calcium, we can try to estimate 
the magnitude of possible biological crosstalk, and compare this 
to our range of values of b

t
, to see whether our results might be 

biologically signifi cant. There are two possible approaches. The 
fi rst is based on detailed realistic modeling of calcium diffusion 
along spine necks, including buffering and pumping. Although 
indirect, such modeling does not require the use of perturbing 
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lead to global  connection crosstalk is further detailed in our paper 
on linear learning (Radulescu et al., 2009).

CROSSTALK TRIGGERS INSTABILITY IN THE BS MODEL
We studied the role of error in the BS model of ICA, an exten-
sively studied learning paradigm in neural networks (Bell and 
Sejnowski, 1995; Hyvärinen et al., 2001). Figure 2 shows that the 
performance of the ICA network is at fi rst only slightly degraded 
when minor error is introduced. It appears that the effect of minor 
crosstalk is that a slightly degraded version of M−1 is stably learned, 
as one might expect. This result is related to what we see with 
linear Hebbian learning: the erroneous Oja rule (Oja, 1982) learns 
not the leading eigenvector of the input covariance matrix C, 
but that of EC (Adams and Cox, 2002a; Botelho and Jamison, 
2004; Radulescu et al., 2009). However, in the linear case, stable 
(though increasingly degraded) learning occurs all the way up 
to the trivial error rate. It appears that in the present, nonlinear, 
case, at a threshold error rate below the trivial value a qualitatively 
new behaviour emerges: weight vectors become unstable, shifting 
between approximately correct solutions, or, in the one-unit case, 
showing dramatic, but stable, shifts in direction. In particular, just 
above the error threshold, the weight vectors “jump” unpredicta-
bly between the possible (approximately correct) assignments that 
were completely stable just below the threshold (see Appendix). 
These jumps appear to be enabled because, at the threshold, one 
of the weights spends long periods near 0, with occasional brief 
sign reversals. As a weight goes through 0, it becomes possible for 
the direction of the weight vector to dramatically change dur-
ing unusual short pattern runs, even though the weights them-
selves can only change very slightly (because the learning rate is 
very small). In particular, the weight vectors are able to swing to 
alternative assignments to rows of M−1. Furthermore, the weight 
vectors can also remain aligned to their current assignments, but 
swing through 180°, by a change in sign (see Appendix). This 
means that exactly at the error threshold, the “orbit” consists of 
almost instantaneous jumps between corners of a parallelogram, 
followed by protracted sojourns at a corner. This parallelogram 
rounds out to an ellipse as error increases, with the weight vectors 
spending increasingly longer periods away from approximately 
correct assignments, so that the network recovers the sources 
increasingly poorly.

These oscillations could be viewed as a manifestation of the 
freedom of the BS rule to pick any of the possible permutations 
of M−1 that allow source recovery, and if we had measured per-
formance using the customary Amari distance (Amari et al., 1996) 
which takes into account all possible assignments, the sudden onset 
of instability would be concealed. An extreme case would be if 
weights instantaneously jumped between various almost correct 
assignments, as seems to happen exactly at the error threshold (see 
Appendix Results): there would be no sudden change in the Amari 
distance and within the strict ICA framework, any W that allows 
sources to be estimated is valid. Such jumps are usually never seen 
in the absence of error, and to our knowledge such behavior has 
never been reported (though we have observed approximately this 
behavior in error-free simulations using high learning rates, which 
are of course very noisy). At higher learning rates (Figure 2) or for 
error rates well beyond b

t
 (Figure 4A), the network spends relatively 

more time relearning a progressively less accurate permuted  version 
of M−1, so the Amari distance (averaged over many epochs) would 
decline further.

It should be noted that although the detailed results we present 
above were obtained using the original BS rule, in which a matrix-
inversion step is used to ensure that different output neurons fi nd 
different ICs, an apparently related failure above a threshold error 
rate is also seen with versions of the rule (Amari, 1998; Hyvarinen 
and Oja, 1998) that do not use this feature (e.g. Figure 8). When 
only a single output neuron is used, with an orthogonal mix-
ing matrix, jumping between approximate ICs may not be pos-
sible. Instead, we fi nd that at a threshold crosstalk value, the 
rule fails to fi nd, even approximately, the initially selected IC, 
and jumps to a new direction. While in some cases this new 
direction happens to corresponds to another possible IC, this is 
probably coincidental: it remains in this direction as crosstalk 
further increases, and in some cases that we tested all the other 
possible ICs are unstable (because they correspond to Gaussian 
sources). Clarifi cation of the signifi cance of the suprathreshold 
direction requires further work.

Thus in both versions of ICA learning there is a sharp dete-
rioration at a threshold error, making the rules more or less use-
less, though the form of the deterioration varies with the form 
of the rule.

THE DYNAMICAL BEHAVIOUR OF THE BS RULE WITH ERROR
Our results are merely numerical, since we have been unable to 
extend Amari’s stability analysis to the erroneous case. The follow-
ing comments are therefore only tentative.

The behaviour seen beyond the threshold error rate may arise 
because the fi xed points of the dynamics of the modifi ed BS rule, 
i.e. degraded estimates of permutations of M−1, become unstable. 
The behavior in Figures 2, 3 and 4A resembles a bifurcation from 
a stable fi xed point to a limit cycle, the foci of which correspond 
approximately to permutations of M−1. Although we suspect that 
this is the case, we have not yet proved it, since it is diffi cult to 
write an explicit expression for the equilibria of the erroneous 
rule, a necessary fi rst step in linear stability analysis. Presumably 
Amari’s stability criterion must be modifi ed to refl ect both M 
and E. The fact that the onset of oscillations occurs at almost 0 
frequency suggests the bifurcation may be of the “saddle-node on 
invariant circle” variety, like Hodgkin class 1 excitability (Strogatz, 
2001; Izhikevich, 2007). Figures 5A,B shows that when n = 5 more 
complex behaviour can occur for error beyond the threshold level. 
We see that one of the rows of W seems to wander irregularly, 
not visiting any IC for millions of epochs. We do not know if this 
behavior refl ects a complicated limit cycle or chaos, but from a 
practical point of view this outcome would be catastrophic. In 
a sense the particular outcome we see, onset of oscillations at a 
crosstalk threshold, is a peculiarity of the form of the rule, in 
particular the operation of the rather unbiological antiredun-
dancy term. Nevertheless, even though the antiredundancy term 
operates accurately and effectively, the compromised accuracy 
of the Hebbian term no longer allows stable learning. In another 
version of ICA, the Oja–Hyvarinen single unit rule, there is no 
antiredundancy term, yet IC learning still fails at a sharp thresh-
old (Figure 8).
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WHITENING
Most practical ICA algorithms use whitening (removal of pairwise 
correlations) and sphering (equalizing the signal variances) as pre-
processing steps. In some cases (e.g. Hyvarinen and Oja, 1998) the 
algorithms require that M be orthogonal (so the mixed signals are 
pairwise uncorrelated). As noted above it is likely that the brain also 
preprocesses data sent to the cortex [e.g. decorrelation in the retina 
and perhaps thalamus (Srinivasan et al., 1982; Atick and Redlich, 
1990, 1992)], and we explored how this affects the performance of 
the inaccurate ICA network. Whitening the data did indeed make 
the BS network more robust to Hebbian error as Figures 6 and 7 
show, with the onset of instability occurring at higher error levels 
as the data were whitened more. However, even for completely 
orthogonal Ms, oscillations usually still appear at error rates below 
the “trivial value” ε

t
, for which learning is completely inspecifi c 

(ε
t
 = (n − 1)/n). As discussed further below, if synapses are very 

densely packed, even error rates close to the trivial rate could occur 
in the brain.

Neither for random nor orthogonal Ms could we predict exactly 
where the threshold error would lie, although it is typically higher 
in the orthogonal case (Figures 6 and 7). Some, but not all, of 
the variation in the b

t
 values could be explained by the degree of 

nonorthogonality of M, estimated in two different ways. First, for 
an orthogonal matrix multiplication by its transpose yields the 
identity matrix, which has all its eigenvalues equal; we found that 
the b

t
 for a given random M was correlated with the ratio of the 

fi rst two eigenvalues of MMT (Figure 7, left). Second, if the columns 
of a matrix whose columns are orthogonal have equal length (i.e. 
the matrix is orthogonal), so do the rows. When we normalized 
the columns of a given random M, we found an improved cor-
relation between the cosine of the angle between the columns and 
b

t
 (Figure 7).

Another factor infl uencing the threshold error rate for a given 
M was the source distribution; we found that the threshold error 
rate was typically about halved for logistic sources compared to 
Laplacian, despite the fact that this improves the match between 
the nonlinearity and the source cdf. We suspect that this is because 
the kurtosis is lower for the logistic distribution (1.2 compared to 
3 for the Laplacian).

Even though learning can tolerate low amounts of error in 
favorable cases (particular instances of M and/or source distribu-
tions), low biological error can only be guaranteed by using small 
numbers of inputs. In the neocortex the number of feedforward 
inputs that potentially synapse on a neuron in a cortical column 
often exceeds 1000 (Binzegger et al., 2004), so b values would have 
to be well below 10−3 to keep total error below the trivial value, and 
considerably less to allow learning in the majority of cases. In the 
simple model summarized in the Methods, which assumes that 
strengthening is proportional to calcium, which diffuses along den-
drites, we obtained b = 2αaλ

c
/L. a is the effective calcium attenu-

ation from one spine head to another when both are at the same 
dendritic location; a factor that the preceding discussion suggests 
cannot be much below 10−3. α is typically around 10 for feedfor-
ward connections (Binzegger et al., 2004), λ

c 
around 3 µm (Noguchi 

et al., 2005) and L around 1000 µm (Binzegger et al., 2004), so nb 
would be around 6 × 10−2, which often produces breakdown for 
Laplacian sources. If the cortex were to do ICA (perhaps the most 

tractable form of nonlinear learning), it would require additional, 
error-prevention machinery, especially if input statistics were less 
rich in higher order correlations than in our Laplacian simulations 
(see below). If the cortex uses more sophisticated strategies (because 
inputs are generated in a more complex manner than in ICA), the 
problem could be even worse.

The fact that whitening can make the learning rule more error-
resistant suggests at fi rst sight that our study has only theoretical, 
not practical, signifi cance, because whitening is a standard process 
which digital computers can accurately implement. However, the 
brain is an analog computer (albeit massively parallel) and so it can-
not whiten perfectly, because whitening fi lters cannot be perfected 
by inaccurate learning. While learning crosstalk does not produce a 
qualitative change in the performance of the Oja model of principal 
components analysis (unlike the ICA model studied here), it does 
degrade it, especially when patterns are correlated (Adams and Cox, 
2002a; Botelho and Jamison, 2004; Radulescu et al., 2009).

CROSSTALK AND CLUSTERING
In the ICA model completely accurate Hebbian adjustment leads 
(within the limit set by the learning rate) to optimal learning, which 
is degraded (above a threshold, quite dramatically) by “global” 
crosstalk. However, other authors have suggested that a local form 
of crosstalk could instead be useful, by leading to the formation 
of dendritic “clusters” of synapses carrying related information. 
In particular, it has been suggested that with such clustered input 
excitable dendritic segments could function as “minineurons”, so 
that a single biological neuron could function as an entire multi-
neuron net (Hausser and Mel, 2003; Larkum and Nevian, 2008; 
Polsky et al., 2008), with greatly increased computational power. 
While these are intriguing suggestions, they seem unlikely to apply 
to the neocortex, which is the ultimate target of our approach. 
While crosstalk between synapses is clearly local, cortical connec-
tions are typically composed of multiple synapses scattered over 
the dendritic tree (e.g. Markram et al., 1997), so crosstalk between 
connections is likely to be more global. We know of no evidence for 
such clustering in the neocortex. Furthermore, such clustering may 
not always confer increased “computational power”, at least in the 
following restricted sense: a biological neuron with clustered inputs 
and autonomous dendritic segments could indeed act as a collec-
tion of connectionist “neuron-like” elements but these elements 
could not have as many inputs as a whole biological neuron, simply 
because there would not be as much available space on a segment 
as on the entire tree. In particular, in the case of correlation-based 
Hebbian learning, there would be no net computational advantage, 
and indeed for learning from higher-order correlations there would 
be decided disadvantages. Thus for linear learning, learning by seg-
ments would only be driven by a subset of the overall covariance 
matrix for the total input set; correlations between the activities of 
these segments could then also be explored (for example at branch-
points) but the net result could only be that learning by the entire 
neuron would be driven by the overall covariance matrix, with no 
net computational advantage. But for nonlinear learning driven 
by higher-order correlations, clustering and segment autonomy 
would simply vastly restrict the range of relevant higher-order cor-
relations, since only higher-order correlations between subsets of 
inputs could be learned.
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The crux of the argument we are attempting to make in this 
paper is that real neurons cannot be as powerful as ideal neurons, 
since the former must exhibit crosstalk, which sets a fundamental 
barrier to the number of inputs whose HOCs a neuron can usefully 
learn from. Furthermore, the essence of the problem the brain faces 
is to make intelligent choices based on a learned internal model of 
the world, which must be constructed using nonlinear rules oper-
ating on the HOCs present in the multifarious stimuli the brain 
receives. The power of the model a neuron learns depends on the 
number of inputs, and the number of learnable inputs is set by (bio-
physically inevitable) crosstalk. Therefore a fundamental diffi culty 
intelligent brains face is (given that the learning problems them-
selves are endlessly diverse), making sure connection adjustments 
occur suffi ciently accurately. In this view the problem is not that 
the brain does not have enough neurons, but that neurons cannot 
have enough inputs. Obviously our limited numerical results with 
toy models cannot establish this conclusion, but they do support 
it, and since this viewpoint is both powerful and novel, we feel 
justifi ed in sketching it here. Even more generally, it seems likely 
that the combinatorial explosions which bedevil diffi cult learning 
problems cannot be overcome using suffi ciently massively parallel 
hardware, since massive parallelism requires analog devices which 
are inevitably subject to physical errors.

LEARNING IN THE NEOCORTEX
How could neocortical neurons learn from higher-order correla-
tions between large numbers of inputs even though their presum-
ably nonlinear learning rules are not completely synapse-specifi c? 
The root of the problem is that the spike coincidence-based 
mechanism which underlies linear or nonlinear Hebbian learning 
is not completely accurate: coincidences at neighboring synapses 
affect the outcome. In the linear case, this may not matter much 
(Radulescu et al., 2009) but in the nonlinear case our results sug-
gest that it could be catastrophic. Of course our results only apply 
to the particular case of ICA learning, but because this case is the 
most tractable, it is perhaps all the more striking. Other nonlinear 
learning rules have been proposed based on various criteria (e.g. 
Dayan and Abbott, 2001; Hyvärinen et al., 2001; Cooper et al., 2004; 
Olshausen and Field, 2004) and it will be interesting to see whether 
these rules also fail at a sharp crosstalk threshold.

Other than self-defeating brute force solutions (e.g. narrowing 
the spine neck), the only obvious way to handle such inaccuracy 
is to make a second independent measure of coincidence, and it is 
interesting that much of the otherwise mysterious circuitry of the 
neocortex seems well-suited to such a strategy. If two independent 
though not completely accurate measures of spike coincidence at 
a particular neural connection (one based on the NMDAR recep-
tors located at the component synapses, and another performed by 
dedicated specialized “Hebbian neurons” which receive copies of 
the spikes arriving, pre- and/or postsynaptically, at that connection) 
are available, they can be combined to obtain an improved estimate 
of coincidence, a “proofreading” strategy (Adams and Cox, 2006) 
analogous to that underpinning Darwinian evolution (Swetina and 
Schuster, 1982; Eigen, 1985; Leuthausser, 1986; Eigen et al., 1989). 
The confi rmatory output of the coincidence-detecting Hebbian 
neuron would have to be somehow applied to the synapses com-
prising the relevant connection, such that the second coincidence 

signal would allow the fi rst (synaptic) coincidence signal to actually 
lead to a strength change. While direct application (via a dedicated 
modulatory “third wire”) seems impossible, an effective approxi-
mate indirect strategy would be to apply the proofreading signal 
globally, via two branches, to all the synapses made by the input cell 
and received by the output cell; the only synapses that would receive 
both, required, branches of the confi rmatory feedback would be 
those comprising the relevant connection (in a suffi ciently sparsely 
active and sparsely connected network; Olshausen and Field, 2004). 
We have suggested that layer 6 neurons are uniquely suited to such a 
Hebbian proofreading role, since they have the right sets of feedfor-
ward and feedback connections (Adams and Cox, 2002a, 2006).

In summary, our results indicate that if the nonlinear Hebbian 
rule that underlies neural ICA is insuffi ciently accurate, learning 
fails. Since the neocortex is probably specialized to learn higher-
order correlations using nonlinear Hebbian rules, one of its 
important functions might be reduction of inevitable plasticity 
inspecifi city.

APPENDIX
METHODS
Generation of random vectors
To get a vector of which each element is drawn from a Laplacian 
distribution, fi rst an N element vector s, the elements of which is 
drawn from a uniform distribution (range{−0.5,0.5}), is generated by 
using the Matlab rand function: s = −0.5 + [0.5 − (−0.5)] * rand(1,N). 
Then each element s

i
 of x is then transformed into a Laplacian by the 

following operation:

s
i
 = −sign(s

i
)ln(1 − 2|s

i
|)

“sign” means take the variable x
i
 and if it is positive, assign it the 

value 1, if it is negative assign it the value −1, and if 0 assign it the 
value 0.

Mixing matrices used in the simulations

The mixing matrix M used for Figure 2 was 0 034 0 128

0 455 0 281

. .

. .

⎛
⎝⎜

⎞
⎠⎟

 (rand 

seed 8, {0,1}) and for Figure 4 was 0 45 0 128

0 208 0 076

. .

. .

⎛
⎝⎜

⎞
⎠⎟

 (rand seed 10, 

{0,1})

The mixing matrix (seed 8) used in Figure 5 was

M =

0.03 0.25 0.67 0.26 0.84

0 45 0 60 0 15 0 23 0 20

0 12 0 88 0 87 0 78

. . . . .

. . . . 00 95

0 28 0 96 0 001 0 94 0 44

0 99 0 75 0 91 0 72 0 35

.

. . . . .

. . . . .

⎛
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⎜
⎜
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⎟⎟

Orthogonality
Perturbations from orthogonality were introduced by adding a 
scaled matrix (R) of numbers (drawn randomly from a Gaussian 
distribution) to the whitening matrix Z. The scaling factor (which 
we call “perturbation”) was used as a variable for making M

O
 (see 

Orthogonal Mixing Matrices) less orthogonal, as in Figure 5. Below 
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FIGURE A1 | On the left is a plot of the weights of one of the rows of W 

with error of 0.0088 (i.e. just above the apparent threshold error) applied 

at 4 M epochs at γ = 0.0005 (seed 10). These are the weights comprising the 
“other” weight vector from the one whose behavior was shown in 
Figures 4B,C. Thus the large swing in the weight vector shown in 
Figures 4B,C produced relatively small adjustments in the weights shown 
here ( at 30 M epochs), while the very large weight changes shown here (at 
140 M epochs) correspond to small shifts in the direction of the weight vector 
shown in Figures 4B,C. (Conversely, these large weight steps at 140 M 
epochs produce a spike-like swing in the corresponding weight vector angle). 
Note the weights make rapid steps between their quasistable values. Also the 
smaller (blue) weight spends a very long time close to 0 preceding the large 
weight swing (during which swing the weight vector goes briefl y and almost 

simultaneously orthogonal to both rows of M−1). Close inspection revealed that 
the blue weight crosses and recrosses 0 several times during the long 
“incubation” period near 0. Note the wobbly appearance of the green weight. 
The thickness of the lines in the left and right plots refl ects rapid small 
fl uctuations in the weights that are due to the fi nite learning rate. On the right 
is the plot of the cos(angle) between the weight vector whose components 
are shown in the left plot, and the two rows of M−1. However, b = 0.00875 (i.e. 
very close to the error threshold; see Figure A2) introduced at 5 M 
epochs;other parameters the same as in the left plot. Note that the weight 
vector relaxes from the correct IC to a new stable position corresponding to a 
cos angle just below 1 (blue plot), and then stays there for 65 M epochs. The 
relaxation is more clearly seen in the green plot, which shows the cos angle 
with the row of M−1 that was not selected.



Frontiers in Computational Neuroscience www.frontiersin.org September 2009 | Volume 3 | Article 11 | 17

Cox and Adams Hebbian crosstalk prevents nonlinear learning

FIGURE A2 | Plots of individual rates using the same parameters as in 

Figure A1 except γ = 0.005 (which increases the size of the slow and fast 

fl uctuations, which is why the lines are thicker than in Figure A1) and 

b = 0.0087 (which appears to be extremely close to the true error 

threshold for this M; the fi rst oscillations occurs at 27 M epochs, which 

would correspond to 270 M epochs at the learning rate used in 

Figure A1), introduced at 1 M epochs. Each weight (i.e. green and blue lines) 
comprising the weight vector adopts four possible values, and when the 
weights step between their possible values they do so synchronously and in a 
particular sequence (though at unpredictable times). The four values of each 
weight occur as opposite pairs. Thus the green weight occurs as one of four 
large values, two positive and two equal, but negative. The two possible 
positive weights are separated by a small amount, as are the two possible 
negative weights. The blue weight can also occupy four different, but smaller 
values. Thus there are two small, equal but reversed sign weights, and two 
even smaller equal but reversed sign weights. These very small weights lie 
very close to 0. Since the weights jump almost synchronously between their 

four possible values, the “orbit” is very close to a parallelogram, which rounds 
into an ellipse as error increases. One can interpret the four corners of the 
parallelogram as the four possible ICs that the weights can adopt: the two ICs 
that they actually do adopt initially and the two reversed sign ICs that they 
could have adopted (if the initial weights had reversed sign). However, two of 
the corners are closer to correct solutions than are the others (corresponding 
to the assignment reached when the blue weights are very close to 0). It 
seems likely that exactly at the error threshold the difference between the two 
close values of the green weights, and the difference between the very small 
values of the blue weights, would vanish. This would mean that the blue 
weights would be extremely close to 0 during the long period preceding an 
assignment swap, so the direction of the weight vector would be very 
sensitive to the details of the arriving patterns. Consistent with this 
interpretation, the weights fl uctuate slowly during the long periods preceding 
swaps; these fl uctuations, combined with the vanishing size of one of the 
weights, presumably make the system sensitive to rare but special sequences 
of input patterns. Similar behavior was seen using seed 8.
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FIGURE A4 | The plot on the right is similar to those of Figure 3 

except that the data was generated from a different simulation with 

all parameters being the same except that the initial weight vectors 

were different. Notice how one of the weight vectors (rows of W) 

initially evolves to the mirror image in terms of sign of the weight vector in 
Figure 3A (right most red blob). The right hand plot shows weight 1 from row 
1 of W with weight 2 of row 2 (blue) and weight 2 of row 1 with weight 1 of 
row 2 (red).

FIGURE A3 | This shows the behavior of the weight vector whose 

component weights are shown in Figure A2 (cos angle with respect to the 

two rows of M−1) Error b = 0.0087 introduced at 1 M epochs. Note the 
weight vector steps almost instantaneously between its two possible 
assignments. However, when the weight vector is at the blue assignment, it is 

closer to a true IC than it is when it is at the green assignment (which is the 
assignment it initially adopts. When the weight vector shifts back to its original 
assignment (at 43 M epochs), it shifts orthogonal to both ICs at almost the same 
moment (sharp downspikes to 0 cosine). Notice the extreme irregularity of the 
“oscillations”.
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Feng, D., Marshburn, D., Jen, D., 
Weinberg, R. J., Taylor, R. M., and 
Burette, A. (2007). stepping into 

are the matrices used in generating one of the data sets of Figure 5 
with M generated from seed 8 (seeds 2–6 were used to generate the 
different R matrices for the fi ve data sets in Figure 5):

Z R=
−

−
⎛
⎝⎜

⎞
⎠⎟

=
−

−
⎛
⎝⎜

⎞
⎠⎟

10 6 1 79

1 59 1 94

0 37 0 18

0 22 0 176

. .

. .

. .

. .
 

(from seed 2)

For instance the matrix at perturbation = 0.5 on the graph 
would be M

O
 = (0.5R + Z)M.

This procedure resulted in each element of M
O
 being altered 

by an amount in the range (0–25%) as the perturbation ranged 
from between (0–1.5).

One-unit Rule
The whitened matrix used in the simulations for Figure 8 was:

MO =
−

⎛
⎝⎜

⎞
⎠⎟

0 927 0 529

0 487 0 865

. .

. .

RESULTS
Plots near the error threshold
Figure 4B showed a 150 M epoch simulation using seed 10 for M 
b = 0.0088 and γ = 0.0005 During the oscillation “spikes” one of 
the weight vectors moves almost exactly orthogonal to both of the 
rows of M−1. This can only happen if both weights go through 0 at 
the same moment. Closer inspection revealed however that there is 
a slight delay (on the order of 10 K epochs) between the moments 
that these vectors swing through 90°, such that the 2 weights do 
not 0 at exactly the same moment. Preceding the swings, one of the 
weights spends very long periods hovering near 0. At these very low 
learning rates, the weight vector spends extremely small amounts 
of time near any of the rows of M−1.
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