
Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 20 | 1

COMPUTATIONAL NEUROSCIENCE
ORIGINAL RESEARCH ARTICLE

published: 23 November 2009
doi: 10.3389/neuro.10.020.2009

motors (Bath et al., 2005), nanoscale DNA shapes and patterns 
(Rothemund, 2006), fi xed-width cellular automata (Fujibayashi 
et al., 2008), and many others.

Tile systems are one of the most important mathematical  models 
of self-assembly systems (see e.g., Adleman, 2000; Rothemund 
et al., 2004). A Wang tile is an oriented unit square with each edge 
covered by a specifi c “glue”. Tiles are placed on the two-dimen-
sional plane, and two adjacent tiles stick together if and only if 
they have the same glue on their abutting edges. Wang tiles, fi rst 
proposed by Wang (1961), have been extensively studied before 
fi nding their natural applications to self-assembly. More recently, 
Wang tiles and some of their variants, e.g., the Tile Assembly Model 
(Winfree, 1998; Rothemund, 2001), have been widely used as mod-
els for self- assembly and used to design and analyze successful 
practical experiments (see e.g., Rothemund et al., 2004; Barish 
et al., 2005).

Although quite intuitive, the idea of glues placed on the edges 
of a tile is not always natural for simulating the interactions 
occurring in some real systems. For example, when considering 
protein self-assembly, the shape of a protein is essential in deter-
mining its function and its interactions with other proteins. Tiles 
of various shapes had been previously designed and studied in 
the literature for specifi c purposes. For example, Robinson (1971) 
designed six polygonal tiles (squares with notched edges and 
corners) in the context of solving the problem of minimization 
of the number of tiles that allowed only aperiodic tilings of the 
plane. In this paper, we design geometrical tiles, i.e., square tiles 
with protrusions on their edges, for the purpose of simplifying 
neighborhood relationships in tiling systems. Our main goal is 
to simulate any tiled path (“zipper”) that uses tiles with an arbi-
trarily complex neighborhood, by a “ribbon” of new  geometrical 

INTRODUCTION
During the last decade, breakthroughs in DNA manipulation 
 techniques have generated a wide range of advances in several areas 
of science: genetics, biology, medicine, but also nanoengineering 
and computer science. Regarding computer science in particular, 
several new directions of research have been established: DNA com-
puting, DNA code-design, bioinformatics, computational mod-
eling, and others. However, as usual in mathematics and computer 
science, the theoretical foundations of these new research topics lie 
deep in well established theoretical backgrounds.

The principle of self-assembly is one of the key concepts of 
 nanosciences. It is the process by which objects aggregate inde-
pendently, without external force or guidance, to form complex 
structures. This process can be found in nature at all levels: atoms 
interact with one another and create molecules, molecules may 
aggregate to form macromolecules, proteins self-assemble into 
protein complexes, etc. This natural principle has been mim-
icked successfully by artifi cial and semi-artifi cial self-assembly 
systems. Examples are the macroscopic plastic tiles of Rothemund 
(2000) which assemble on an oil/water surface, simulating in this 
way a one-dimensional cellular automaton, or the self-assem-
bly of some lead structures on a copper surface from Plass 
et al. (2001). On the other hand, scientists have also used the 
intrinsic properties of biomolecules, such as the Watson–Crick 
complementarity of DNA molecules, in order to construct vari-
ous self-assembly systems which are capable of a wide range of 
computations or tasks. Examples are the DNA nanostructures 
performing bit-wise cumulative XOR (Mao et al., 2000), binary 
counters (Barish et al., 2005), molecular switches between two 
conformations (Liedl et al., 2006), DNA “walkers” moving along 
a track (Sherman and Seeman, 2004), autonomous molecular 

Geometrical tile design for complex neighborhoods

Eugen Czeizler*† and Lila Kari

Department of Computer Science, University of Western Ontario, London, ON, Canada

Recent research has showed that tile systems are one of the most suitable theoretical 
frameworks for the spatial study and modeling of self-assembly processes, such as the formation 
of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, 
attaching to other tiles and forming larger and larger structures. Although quite intuitive, the 
idea of glues placed on the edges of a tile is not always natural for simulating the interactions 
occurring in some real systems. For example, when considering protein self-assembly, the shape 
of a protein is the main determinant of its functions and its interactions with other proteins. 
Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, 
for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles 
with simple, local neighborhoods. This paper is a step toward solving the general case of an 
arbitrary neighborhood, by proposing geometric tile designs that solve the case of a “tall” 
von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 × 5 
“fi lled” rectangular neighborhood. The techniques can be combined and generalized to solve 
the problem in the case of any neighborhood, centered at the tile of reference, and included 
in a 3 × (2k + 1) rectangle.

Keywords: tile systems, tiled paths, geometric tiles, complex neighborhoods

Edited by:

Hava T. Siegelmann, 
University of Massachusetts Amherst, 
USA

Reviewed by:

Enrico Formenti, Laboratoire 
d’Informatique de Marseille, France
Yuriy Brun, University of Southern 
California, USA
Matthew J. Patitz, Lowa State 
University, USA

*Correspondence:

Eugen Czeizler, Department of 
Information Technologies, Åbo 
Academi University, Turku 20520, 
Finland.
e-mail: eczeizle@abo.fi 
†Current address: Department of 
Information Technologies, Åbo Akademi 
University, Turku 20520, Finland.



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 20 | 2

Czeizler and Kari Geometrical tile design for complex neighborhoods

tiles with a much simpler neighborhood relationship. Namely, 
the only requirement of a tiling with the new tiles is that no 
overlap occurs.

The reason we focus on tiled paths, either zippers or ribbons, 
instead of simple total or partial tilings, is threefold. First, from a 
theoretical point of view, due to their underlying path, the tran-
sition from zippers with complex neighborhoods to ribbons of 
geometrical tiles is much more complex than a simple transition 
between two, possibly partial, tilings (the fi rst using a complex 
neighborhood and the second using geometric tiles). Indeed, pre-
serving the underlying path of the zippers when transforming them 
into ribbons can be non-trivial. The second and third reasons are 
more application oriented. Note that the zipper and the ribbon 
structures are closely related to protein structures. Although we 
can see a protein as a “valid tiled” three-dimensional structure, 
these organic compounds are made of linear chains of amino acids, 
which are folded into their actual three-dimensional shape. The 
fi nal reason for considering paths associated with tilings comes 
from the practical challenge of creating self-assembling nano-wires 
and nano-circuits. This aspect has been particularly studied in ref-
erence with the Tile Assembly Model (see e.g., deLorimier et al., 
2002; Cook et al., 2004; Brun and Reishus, 2009).

The fi rst step towards solving the proposed problem was done 
in Czeizler and Kari (Submitted) where we introduced a “motif” 
construction, based on a geometrical tile design, that solved the 
problem in the case of Moore neighborhood. This paper is the next 
step towards the solution to the general case. We namely consider 
other natural extensions of the von Neumann and Moore neigh-
borhoods, consisting of elements placed further away from the 
reference tile. In particular, we consider the case of the neighbor-
hood that is a “tall” version of the von Neumann neighborhood 
(the neighborhood of a tile consists of the tile at the East, the tile 
at the West, two tiles to the North and two tiles to the South), the 
f-shaped neighborhood, and the 3 × 5 “fi lled” rectangular neighbor-
hood. The techniques can be combined and generalized to solve the 
problem in the case of any neighborhood included in a Moore-type 
rectangular neighborhood, centered at the tile of reference, and of 
width 3 and height 2k + 1.

For all three cases, any zipper can be simulated by a ribbon made 
of new geometrical tiles in which the tiles shapes, and not their 
glues, determine the self-assembly process, and the  neighborhood 
dependency is greatly simplifi ed. The geometrical tile design ensures 
the transmission of information at a distance (across several tiles), 
as well as across several information channels. At the same time, 
the design satisfi es the requirement of no overlapping between any 
two geometric tiles.

The paper is organized as follows. The next section presents 
basic defi nitions and notations. In Section “From Complex 
Neighborhoods to Geometric Tiles” we make the transition from 
tiles with complex neighborhoods to geometric tiles with simple, 
i.e., local, neighborhoods. The three following subsections address 
the case of the “tall” von Neumann neighborhood, the f-shaped 
neighborhood, and the 3 × 5 “fi lled” rectangular neighborhood. 
In the last section we show how to combine and generalize these 
techniques to solve the problem of neighborhood simplifi cation by 
geometric tile design in the case of any neighborhood, centered at 
the tile of reference, and included in a 3 × (2k + 1) rectangle.

PRELIMINARIES
A Wang tile is an oriented unit square, i.e., a square which  cannot be 
rotated or refl ected, whose edges are labeled by symbols from a fi nite 
alphabet X, called glues. Thus, each tile t is uniquely  determined by 
the four glues of its North, East, South and West edges as:

t = (t
N
, t

E
, t

S
, t

W
) ∈ X4.

The positions of the tiles on the plane are indexed by pairs of 
integers, (i, j) ∈ Z2.

A tile system T is a fi nite collection of tiles. We say that two tiles 
t and t′ stick on the North-South direction if and only if t

N
 = t′

S
, 

that is, if the North end of t and the South edge of t′ have the same 
glue. Similarly, we can defi ne the sticking property on the East-West, 
South-North and West-East directions.

A total tiling of the plane is a mapping T : Z2 → T which assigns 
to every position from Z2 a tile from T. We say that a tiling T is 
valid on a position (i, j) ∈ Z2 if the tile on position (i, j), denoted 
as t(i, j), sticks on the North-South, East-West, South-North and 
West-East directions to the tiles t(i, j + 1), t(i + 1, j), t(i, j − 1), and 
t(i − 1, j) respectively; here, we assume that there exists a tile on all 
positions of the plane.

A partial tiling of the plane is a mapping T
D
 from a domain D ⊆ Z2 

to T. We say that T
D
 is valid if for any tile within the domain there 

are no mismatches between the glues of a tile and the glues of its 
existing neighbors. More formally, for all (i, j) ∈ D,

• if (i, j + 1) ∈ D then t(i, j)
N
 = t(i, j + 1)

S
;

• if (i + 1, j) ∈ D then t(i, j)
E
 = t(i + 1, j)

W
;

• if (i, j − 1) ∈ D then t(i, j)
S
 = t(i, j − 1)

N
;

• if (i − 1, j) ∈ D then t(i, j)
W

 = t(i − 1, j)
E
.

If no confusion can arise, we refer to valid tilings (either total 
or partial ones) simply as tilings.

A path P is a succession of adjacent positions in the plane. 
Formally, a fi nite (resp. infi nite) path is a mapping P : I → Z2 
where I = {1, 2, 3,…,n}, n ≥ 2, (resp. I = N) such that for all 
1 ≤ i ≤ n − 1 (resp. for all i ≥ 1), if P(i) = (x, y) for some x, y ∈ Z, 
then P(i + 1) ∈ {(x, y + 1), (x + 1, y), (x, y − 1), (x − 1, y)}. A T-
tiled path is a contiguous succession of tiles. Formally, it is a pair 
(P, r) where P : I → Z2 is a path and r : range(P) → T is a mapping 
assigning tiles to all positions of the path. A T-tiled path is called a 
T-ribbon if P is injective, i.e., the path is not self-crossing, and for 
any position in the path (except for the last one, if any), the tile 
and its successor must agree on their glues on the corresponding 
abutting edges. A T-zipper is a special type of T-ribbon where if 
two tiles are adjacent, even if they are not on consecutive positions 
on the path, they still must agree on their glues on their abutting 
edges. Given a ribbon (resp. a zipper) (P, r), we refer to P as the 
underlying path of the ribbon (resp. of the zipper).

A neighborhood vector (or simply neighborhood) is a fi nite 
collection of pairs of integers, describing the relative position 
in space of those tiles which interact with a given tile. Formally 
(Kari, 2005; Adleman et al., 2009), a neighborhood is an n-tuple 
N = (ν

1
, ν

2
,…,ν

n
), ν

i
 ∈ Z2\{(0, 0)}, 1 ≤ i ≤ n, where ν

i
 ≠ ν

j
 for all 

1 ≤ i < j ≤ n, and for all 1 ≤ i ≤ n there exists a unique j such that 
ν

i
 = (x, y) and ν

j
 = (−x, −y), where x, y ∈ Z. This last restriction 

on the content of the neighborhood vector is referred to as the 
“symmetry  condition” and it is due to the fact that whenever a tile 



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 20 | 3

Czeizler and Kari Geometrical tile design for complex neighborhoods

t interacts with another tile t′, then also t′ interacts with t. The 
neighbors of a position (x, y) ∈ Z2 are the positions (x + x

i
, y + y

i
) 

where ν
i
 = (x

i
, y

i
) for 1 ≤ i ≤ n.

In this paper, we consider the way in which a tile interacts with 
its neighbors to be similar to the case of classical Wang tiles, that 
is using glues. Although the tiles are represented as unit squares 
and placed on the nodes of a square lattice (exactly as in the case 
of classical tiles), we can think of a tile t as having n “virtual” edges, 
each labeled by a glue and each associated to exactly one neigh-
boring tile. Given a neighborhood vector N = (ν

1
, ν

2
,…,ν

n
) and a 

tile t placed on position (x, y) ∈ Z2, the neighboring tiles of t are 
all the tiles placed on the neighboring positions of (x, y), that is, the 
tiles on positions (x + x

i
, y + y

i
), where ν

i
 = (x

i
, y

i
) for all 1 ≤ i ≤ n. 

Then, each tile t is uniquely determined by an n-tuple of glues, 
t = (t

1
, t

2
,…,t

n
), where each glue t

i
 ∈ X, 1 ≤ i ≤ n, corresponds to 

the virtual edge associated with the neighboring tile placed on the 
relative position ν

i
.

In order to simplify future considerations, for a tile t, we use t x yi i( , ) 
to refer to the glue t

i
, where ν

i
 = (x

i
, y

i
). Then, for two neighboring 

tiles t and t′ such that t′ is placed on the position ν
i
 relative to the 

position of t, the glues t x yi i( , ) and ′− −t x yi i( ),  correspond to the com-
mon virtual edge between the two tiles. Note that the existence of 
the element (−x

i
, −y

i
) in the neighborhood N is guaranteed by the 

“symmetry condition”.
Given a neighborhood vector N with n elements, a tile  system 

using this neighborhood is a fi nite set T
N
 ⊆ Xn of tiles. If no 

 confusion can arise regarding the neighborhood, we can omit N 
from the notation. Then, a (partial) tiling is a (partial) function 
T : Z2 → T. If the function is defi ned for (x, y) ∈ Z2, we denote by 
t(x, y) the tile on this position.

Given a neighborhood vector N = (ν
1
, ν

2
,…,ν

n
) and some 

D ⊆ Z2, we say that a (total or partial) tiling T : D → T is valid on 
position (x, y) ∈ D if for all ν

i
 = (x

i
, y

i
) such that (x + x

i
, y + y

i
) ∈ D, 

we have t x y t x x y yx y i i x yi i i i
( ) ( )( ) ( , ), = , ,, + + − −  i.e., the two neighboring 

tiles have the same glue on their common virtual edge. We say that 
T is valid if it is valid on all positions (x, y) ∈ D.

Next, we give a couple of examples illustrating the previous 
notions.

Example 1: let N be the well known von Neumann neighbor-
hood vector,

N = ((0, 1), (1, 0), (0, −1), (−1, 0)),

pointing to the positions to the North, East, South and West of 
a given tile. Tile systems using this neighborhood are exactly the 
classical Wang tile systems defi ned in Section “Preliminaries”. The 
neighbors of a given tile t(x, y) are those tiles placed to the North, 
East, South and West directions and the virtual edges of t(x, y) are 
simply its edges.

Example 2: let N be the “tall” von Neumann neighborhood 
 vector, i.e.,

N = ((0, 1), (0, 2), (1, 0), (0, −1), (0, −2), (−1, 0)).

In this case, the neighbors of a tile are the tiles placed one and 
two steps to the North and to the South, and the tiles placed imme-
diately to the East and to the West. Here, besides the four normal 
edges of the tile, i.e., the four geometrical edges of the unit square, 
we have two additional virtual edges, one corresponding to the tile 

two steps to the North, and the other corresponding to the tile two 
steps to the South. In Figure 1 we present a valid partial tiling using 
this neighborhood. Note that adjacent tiles do not necessary have 
the same glues on their virtual edges; for instance, in Figure 1, the 
North virtual edge of the tile t

1
 has to agree only with the South 

virtual edge of t
2
.

Example 3: another well established instance is the Moore neigh-
borhood vector,

N = ((0, 1), (1, 1), (1, 0), (1, −1)(0, −1), (−1, −1), (−1, 0), (−1, 1)).

In this case, the neighbors of a given tile are all those tiles on the 
eight surrounding positions. Here, it is more intuitive to consider 
the corners of the tiles as the virtual edges, see Figure 2 for a valid 
partial tiling using this neighborhood.

The notions of path, tiled path, and zipper are generalized in 
the natural way for the case of complex neighborhood vectors. The 
notion of path (resp. tiled path) remains unchanged independent of 
the contents of the neighborhood vector, i.e., a mapping P : I → Z2 
(resp. a pair (P, r)) where the element P(i + 1) can be placed only 
to the North, East, South or West of P(i), exactly as in the case of 
classical Wang tile systems. In the case of zippers we require that 

a a

a

a

a

a
a

a

a a a

a

a a

a

a

a

b

b b

b b

b

t2

t1

b

b

b b

b b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

a

a

a

a

a

a

a

a

FIGURE 1 | A partial tiling using the “tall” von Neumann neighborhood. 

The gray sections on the borders of the tiles represent the virtual edges.

a a a a a a a

a

aa

a a

a

a

a a

a

a

a

a

aa

aaa

a

a a

a

b

b

b b

b

b b

b b

ba

a a

b b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b b

b b b

FIGURE 2 | A partial tiling using the Moore neighborhood; both the 

edges and the corners of each tile are labeled by glues.



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 20 | 4

Czeizler and Kari Geometrical tile design for complex neighborhoods

the underlying path is not self-crossing and, moreover, any two 
tiles placed one on the neighborhood of the other (not necessarily 
succeeding or even adjacent to each other) must have the same 
glues of their common (maybe virtual) edges.

FROM COMPLEX NEIGHBORHOODS TO GEOMETRIC TILES
The principle of matching glues, although quite intuitive and very 
easy to be modeled mathematically, is not always natural for simulat-
ing the interactions within some self-assembly systems. Sometimes, 
the geometry of the objects involved in these systems can play the 
central role in their self-assembly. Thus, a major requirement for two 
or several objects to successfully aggregate is that when doing so, the 
objects will simply not overlap. For instance, in the case of protein 
self-assembly, the shape of the protein, i.e., its folding, determines 
both its function and the way it interacts with other proteins.

The most natural question arising at this moment is whether 
one can modify the structure of the tiles from the previous section 
such that instead of using glues as a way to control self-assembly, 
the shape of the tiles would govern the self-aggregation process. 
The case of fi nite zipper structures is particularly interesting, as this 
would correspond to a sequence of amino acids forming a  protein, 
or a sequence of proteins forming a complex. The case of the 
 classical von Neumann neighborhood has already been addressed 
by, e.g., Robinson (1971), Adleman et al. (2002, 2009), Kari (2003), 
where glues were replaced with pairs of matching bumps and dents. 
However, in this case, each tile has abutting edges with all its neigh-
bors, thus making the construction very intuitive. In the case of 
more complex neighborhood vectors, tiles may have virtual edges 
with some non-abutting neighbors. Thus, we must fi nd a way to 
“transmit” information from one tile to its distant neighbors. In 
Czeizler and Kari (Submitted) we present a way of doing so for the 
case of tile systems using the Moore neighborhood vector from 
Example 3. However, also in this case, the neighbors of a tile are still 
surrounding it in some sense, making the construction easier.

When simulating a tiling using glues and a complex neighbor-
hood dependency by a tiling based only on the non- overlapping 
principle, one of the fi rst methods that one could try is the 
 following. First, one simulates the fi rst tiling by another one where 

tiles use the von Neumann neighborhood, i.e., using Wang tiles. 
Then, based on the already known constructions, one simulates 
the Wang  tiling by another one where tiles use only their shapes in 
order to self-assemble.

One of the methods used in the literature (see e.g., Kari, 1989; 
Adleman et al., 2002, 2009), for simulating a larger neighborhood 
by a smaller one, is to scale up the construction. That is, one cre-
ates some macro-tiles, which capture the information of both the 
initial tile and its neighbors. For instance, in Adleman et al. (2002, 
2009), for the case of total tilings of the plane, the authors simu-
late the Moore neighborhood dependency by the von Neumann 
neighborhood dependency. The authors replace the initial tiles (let 
us call them mini-tiles) with a set of macro-tiles, consisting of 
blocks of 3 × 3 mini-tiles with no mismatching inside the blocks. 
Then, two such macro-tiles can be placed one North of the other 
if and only if the bottom 2 × 3 mini-tiles from the fi rst macro-tile 
are exactly the same as the top 2 × 3 mini-tiles from the second 
macro-tile. Similarly, one defi nes the South-North, East-West and 
West-East sticking property. Then, by performing the following 
transformation, there exists a one-to-one correspondence between 
total tilings of the mini-tile system using the Moore neighborhood, 
and total tilings of the macro-tile system using the von Neumann 
neighborhood (Adleman et al., 2002, 2009). For a given total tiling 
using mini-tiles we replace each tile t(i, j) on position (i, j) with 
the macro-tile corresponding to the 3 × 3 block containing t(i, j) 
in the middle and all eight surrounding tiles. For the converse, the 
correspondence is obtained by associating to each macro-tile the 
mini-tile placed in the middle of that particular 3 × 3 block.

This technique can be generalized successfully for any neighbor-
hood vector, by taking k × k blocks as macro-tiles, for suffi ciently 
large k. However, it is essential to notice that this scaling up tech-
nique works only if we consider total tilings of the plane. If, on the 
other hand, we consider partial tilings, then this method generates 
errors, as we can design some valid partial tilings using macro-tiles 
which do not correspond to any valid tilings using mini-tiles, see, 
e.g., Figure 3.

Another method which one could consider for simulating a til-
ing using some complex neighborhood by a tiling using Wang tiles, 

bA B Ca a
a
aa

a a a
a
aaa

a

a
a t1

t2 t2 t2 t2 t2 t2 t2 t2 t2

t2 t2 t2 t2 t2 t2 t2 t2 t2

t2 t2 t2

t2 t2 t2

t2 t2 t2

t2 t2 t2

t2 t2 t2 t2 t2 t2
t2

t2

t2 t2

t2

t2t1

t2 t2 t2

t2 t2 t2

t1 t2

t2

t2 t2 t2 t2

t2t2t2t2t2t2

t1 t1

t3 t2 t2 t2 t2

t2

t2

a a a
a
baa

a t3

a a a
a
aaa

a

a a a
a
aaa

a

a a a
a
aaa

a
a a a

a
aaa

a

a a a
a
aaa

a

a a a
a
aaa

a
b a a

a
aaa

a

FIGURE 3 | (A) A set of mini-tiles, (B) a valid tiling using macro-tiles, emphasizing the center mini-tiles, (C) the associated non-valid tiling using mini-tiles.



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 20 | 5

Czeizler and Kari Geometrical tile design for complex neighborhoods

could be the following. We modify the way we associate glues to 
the sides of the square unit tiles, such that instead of having only 
one glue on each edge, we could have several. Then, we use some of 
these extra glues in order to transfer information from one tile to its 
distant neighbors by using the tiles placed in between. Similarly to 
the previous case, this method can be used successfully for the case 
of total tilings. However, also here, in the case of partial tilings, this 
method can generate errors, since we do not have a tile in each 
position of the plane.

In this paper we propose a more direct approach for this prob-
lem, that is, we replace each tile from the initial tile system with 
several tiles with complex structures. In the following sections 
we present several tile designs constructed for some particular 
complex neighborhood vectors, accomplishing the desired require-
ment: the shape of the tiles is the sole factor determining the 
self-assembly process. We call these tiles geometric tiles (or simply 
tiles if no confusion can arise) to underline the importance of 
their shapes.

Since we want to eliminate glues, the notion of valid tiling (total 
or partial) must be updated. Although at a fi rst look the geometric 
tiles that we propose here do not have a regular contour any more, 
by making an abstraction of the bumps and dents placed on their 
edges, each tile has actually a square shape. Thus, similar to the 
previous cases, we require that all tiles are placed on the nodes of 
a square lattice. Note that this requirement can be easily imposed 
geometrically (see e.g., Robinson, 1971; Kari, 2008) by adding pairs 
of matching bumps and dents on the actual edges of the tiles, such 
that the only way that these tiles can be placed near each other 
without overlapping is by placing them on the nodes of a square 
lattice, see Figure 4.

Since the geometrical tiles are placed on the nodes of a square 
lattice, the notions of geometrical tiling and geometrical tiled path 
have the same meaning as in the case of Wang tiles.

We say that a geometrical tiling (resp. a geometrical tiled path) 
is non-overlapping if no two tiles are overlapping. Note that we 
may refer to non-overlapping tiled paths also as “ribbons”. This 
is because, similarly to the case of Wang tiles, the underlying path 

of this construction imposes a quasi-linear neighborhood to all 
tiles; namely, each tile (except the fi rst and the last, if any) has a 
predecessor and a successor. Even more, by using standard meth-
ods employed in previous papers (see Adleman et al., 2002, 2009; 
Czeizler and Kari, Submitted), one can easily transform such a 
non-overlapping tiled path into a ribbon of Wang tiles.

In the following sections we show that in the framework of 
geometric tiles, the notions of non-overlapping tiling and non-
overlapping tiled path are equivalent to that of a valid tiling and 
valid zipper structure, respectively.

THE “TALL” VON NEUMANN NEIGHBORHOOD VECTOR “−| −| ”
In this section we consider the “tall” von Neumann neighborhood 
vector from Example 2,

N = ((0, 1), (0, 2), (1, 0), (0, −1), (0, −2), (−1, 0)),

which contains six elements, as described more suggestively by 
the pattern:

( , )

( , )

( , ) ( , )

( , )

( , )

0 2

0 1

1 0 1 0

0 1

0 2

−
−
−

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

.

Let T ⊆ X6 be a tile system using this neighborhood vector, where 
X is the set of possible glues of the edges. We design a geometri-
cal tile system G inducing a direct correspondence between valid 
(partial) T-tilings and T-zippers and non-overlapping G-tilings 
and G-tiled paths, respectively.

Given a tile t ∈ T, we denote by (t
N
, t

NN
, t

E
, t

S
, t

SS
, t

W
) the ordered 

set of its glues, instead of (t
(0, 1)

, t
(0, 2)

, t
(1, 0)

, t
(0, −1)

, t
(0, −2)

, t
(−1, 0)

). Let n 
be the total number of glues, i.e., |X| = n. For each tile t = (t

N
, t

NN
, 

t
E
, t

S
, t

SS
, t

W
) ∈ T, we construct n geometric tiles g g g Gt t t

n1 2, , , ∈ ,…  
called the geometrical variants of t. The reason for which we need 
to introduce multiple geometrical variants for each tile t will be 
explained in detail later, when we introduce some specifi c con-
structions, called the spike, the big dent, and the sheath. The base 
shape of all geometric tiles is a square. However, on the edges 
of these squares we place specifi c bumps and dents in order to 
simulate the glues of the original tile. We use the East and West 
edges of the geometric tiles to simulate the glues corresponding 
to the East and West neighbors. At the same time, the North and 
South edges are used to simulate the glues corresponding to the 
four neighbors placed one and two steps to the North and to 
the South.

We discuss fi rst the East and West edges of the geometrical 
variants of a given tile t. First, to each glue from X we associate a 
unique position along the East and the West edges. Then, in all 
geometrical variants of t we place a bump on the East edges on 
the unique position associated to the glue t

E
 and a dent on the 

West edges on the unique position associated to the glue t
W

, see 
e.g., Figure 5. Thus, if the glues of two horizontally adjacent tiles 
are matching, then the bump and the dent of the corresponding 
edges of the two associated geometric tiles are placed exactly on 
the same position, i.e., they fi t each other. For example, if the glue 
on the East edge of a tile t is the same as the glue on the West edge 

FIGURE 4 | Tiles with matching bumps and dents, forcing their 

placement on the nodes of a square lattice.



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 20 | 6

Czeizler and Kari Geometrical tile design for complex neighborhoods

of a tile t′, i.e., t
E
 = t′

W
, then the bump on the East side of any of 

the t geometrical variants fi ts exactly with the dent on the West 
side of any of the t′ geometrical variants. However, if for two tiles 
t and t′ we have t

E
 ≠ t′

W
, then the bump from the East edge of 

any of the variants of t overlaps with the West edge of any of the 
variants of t′.

Let us consider now the North and South edges of the geometri-
cal variants of t. The structure of these edges is more complex, as 
here we use bumps and dents both to communicate with neighbor-
ing tiles and to allow the propagation of information. Thus, both 
edges are split in three regions, and to every glue we associate a 
unique position in each of these regions.

The fi rst regions of the North and the South edges of the geo-
metrical variants of t are used in order to communicate with the 
tiles placed immediately to the North and to the South, respectively. 
Similar to the case of East and West edges, we place a bump on the 
North edge and a dent on the South edge of each of the variants. 
The bump on the North edge is placed on the unique position 
from the fi rst region associated to the glue t

N
, while the dent on the 

South edge is placed on the unique position from the fi rst region 
associated to the glue t

S
.

The second and the third regions of the North and respectively 
the South edges of the geometrical variant of t are used to simulate 
the glues on the virtual edges of t. Thus, on the second region of 
the North edge of each of the geometrical variants of t we place an 
elongated bump, called spike. This spike is used to simulate the glue 
t

NN
, and thus it is placed (on all geometrical variants) on the unique 

position from the second region of the North edge associated to it. 
The spike is long enough to cross the fi rst geometric tile to the North 
and to reach the South edge of the geometric tile placed two steps 
to the North. Moreover, the spike shifts its position, see Figure 5, 
such that when it reaches the second tile to the North, the spike 
is placed on the unique position from the third region associated 
to the glue t

NN
. If this second geometric tile is a variant of a tile t′ 

such that t′
SS

 = t
NN

, then there exists a matching dent in the third 
region; otherwise an overlap will occur. As previously suggested, 
on the third region of the South edge of each of the geometrical 

variants of t we place a wider dent, called the big dent. This big dent 
is used to simulate the glue placed on the South virtual edge of t, 
that is t

SS
, and it is placed (on all geometrical variants of t) on the 

unique position associated to the glue t
SS

 from the third region of 
the South edge, see Figure 5.

Until now, all the geometrical variants of t, that is g g gt t t
n1 2, , , ,…  

have identical shapes. However, the difference between them is 
given by the sheath which is placed on the second region of 
the South edge and the third region of the North edge of the 
geometrical variants. The sheath is a pair of a matching bump 
and dent, see Figure 5, which perfectly surrounds the spike of 
the tile below. Due to this sheath, geometric tiles can propagate 
information from the tile below, to the tile above. Since there are 
n different possible positions for the spike of the geometric tile 
placed below, each of the variants of t will cover for exactly one 
of these possibilities, see Figure 6 (thus, the required number 
of different geometrical variants for t). Note that the big dent is 
constructed wide enough such that it actually matches both the 
spike (of the tile placed two steps below) and the possible sheath 
(of the tile placed one steps below) surrounding the spike. In 
Figure 7 we display a non-overlapping tiling using geometric tiles 
which is associated to the valid tiling from Figure 1. Note that 
the tiling from Figure 7 is only one of the possible non-overlap-
ping tilings which can be associated to the tiling from Figure 1. 
For instance, the top right geometric tile can be replaced by 
any other geometrical variant of the same tile, without causing 
any overlapping.

The reason for which we have to use the spike, the big dent, 
and the sheath instead of using normal (small) bumps and dents is 
the following. We want each geometric tile to act as an intermediate 
between the tile below and the tile above. However, we cannot be 
sure whether given a partial tiling T

D
 (or similarly a zipper con-

struction) between any two tiles which are placed two steps North 
of each other, there is also a third tile placed in between. That is, 
even if (x, y), (x, y + 2) ∈ D, it is not necessary that (x, y + 1) ∈ D. 
Thus, we must make sure that in both cases, i.e., whether there 
exists or not a middle tile t(x, y + 1), the information regarding 
the glue t(x, y)

NN
 is transferred from t(x, y) to t(x, y + 2). In our 

case, this is accomplished by the matching spikes, big dents, and 
sheaths; see for example the tiles g

1
 and g

2
 from Figure 7 for the 

case when there is a tile in between, and the tiles g'
1
 and g'

2
 for the 

other case.
Observation 1: both the spike and the sheath have a step-like 

form due to the following reason. We design the geometric tiles 
such that all of them have the same square base shape, up to the 
positions of their bumps and dents along their edges (including 
here also the spike, the big dent, and the sheath). Thus, if we would 
have chosen the spike (and hence also the sheath) to have a straight 
form then, the spike, the big dent, and the sheath, would all be 
placed in the same region of the South and the North edges of 
a geometric tile. Thus, for instance, in the case when for some 
tile t(x, y) we have t(x, y)

SS
 = t(x, y)

NN
 then, in all the geometrical 

variants of t(x, y), the spike and the big dent will actually overlap 
with each other. Even more, in that particular geometric variant 
of this tile, t(x, y), in which also the sheath corresponds to the glue 
t(x, y)

SS
, the spike and the big dent are going to overlap also with 

the sheath, making the construction much more complicated. Also, 

the spike

(normal) bump and dent

the sheath

the big dent

FIGURE 5 | A geometric tile for the case of the “tall” von Neumann 

neighborhood.



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 20 | 7

Czeizler and Kari Geometrical tile design for complex neighborhoods

in many other cases, the spike and the sheath of a geometrical tile 
placed on position (x, y) will overlap with the spike, the big dent 
and the sheath of the geometrical tile placed on position (x, y + 1). 
Although such a design is not impossible, by allowing the spike 
and the sheath to have a step-like shape we overcome all of these 
overlapping problems.

Theorem 1: let N = ((0, 1), (0, 2), (1, 0), (0, −1), (0, −2), (−1, 0)) be a 
neighborhood vector, and let T ⊆ X6 be a tile system using this neigh-
borhood. Then, we can construct a geometrical tile  system G such 
that for any surface D ⊆ Z2, there exists a one-to-one correspond-
ence between valid T

D
-tilings and non- overlapping G

D
-tilings, up to 

replacing some of the tiles with any of its geometrical variants.

a

A B C

the sheath
corresponding to
the glue a

the sheath
corresponding to
the glue b

a

ab

b b

FIGURE 6 | The geometrical variants of a tile, for the case when X = {a, b}: (A) the tile, (B) the fi rst geometrical variant, (C) the second geometrical variant.

g1

g2

g’1

g’2

FIGURE 7 | A non-overlapping tiling of geometric tiles, for the case of the “tall” von Neumann neighborhood.



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 20 | 8

Czeizler and Kari Geometrical tile design for complex neighborhoods

Proof: Let T
D
 : D → T  be a valid tiling, and let G be a  geometrical tile 

system constructed as described above. Then, for each (x, y) ∈ D we 
replace the tile t(x, y) with one of its geometrical variants as follows:

• If (x, y − 1), (x, y + 1) ∉ D, then we replace t(x, y) with any of 
its geometrical variants.

• If either (x, y − 1) ∈ D or (x, y + 1) ∈ D, then we replace t(x, y) 
with the geometrical variant whose sheath matches either the 
spike of the geometric tile below or the big dent of the geome-
tric tile above, respectively. Note that independently of which 
geometrical variants of the tile below and the tile above we use, 
the spike and the big dent are the same.

• If both (x, y − 1), (x, y + 1) ∈ D, then we replace t(x, y) with 
the geometrical variant whose sheath matches the spike of 
the geometric tile below. Since the tiling T

D
 is valid, we must 

have t(x, y − 1)
NN

 = t(x, y + 1)
SS

. Thus, the sheath of the chosen 
geometrical variant also matches the big dent of the geometric 
tile above.

In all of the above cases we do not obtain any overlapping 
between the spikes, big dents, and sheaths of the geometric tiles. 
Moreover, since we assumed the tiling T

D
 to be valid, we also con-

clude that there is no overlapping between the normal bumps and 
dents of all adjacent geometric tiles. Thus, the tiling G

D
 : D → G 

obtained by replacing the tiles from T with the corresponding 
geometric tiles from G as described above, is non-overlapping. 
Moreover, except for the fi rst case mentioned above, i.e., for some 
(x, y) ∈ D, both (x, y − 1), (x, y + 1) ∉ D, where we can replace the 
tile t(x, y) with any of its geometrical variants, on all the other cases 
each tile can be replaced only by one of its geometrical variants.

For the converse, let us assume that G
D
 : D → G is a non-

 overlapping tiling. From the defi nition of the geometric tile sys-
tem G, each geometric tile from G

D
 is a variant of a (unique) tile 

in T. We construct the tiling T
D
 : D → T by replacing each tile 

from G
D
 with the corresponding tile from T. Since there are no 

overlaps in G
D
 between bumps and dents and also between the 

spikes and the big dents, we conclude that any tile from T
D
 must 

agree on its glues with all of its neighbors from the domain D. 
Thus, the tiling T

D
 is valid, and it is uniquely obtained starting 

from the tiling G
D
. 

The conceptual difference between a zipper and a partial tiling 
is given only by the presence of a path. Moreover, since in both 
generalized Wang tile systems and geometrical tile systems the tiles 
are placed on the nodes of a square lattice (actually the same square 
lattice), the notion of path remains unchanged. Thus, the following 
result is a direct consequence of the previous theorem.

Corollary 1: let N = ((0, 1), (0, 2), (1, 0), (0, −1), (0, −2), (−1, 0)) 
be a neighborhood vector, and let T ⊆ X6 be a tile system using this 
neighborhood. Then, we can construct a geometrical tile system G 
such that for any non self-crossing path P there exists a one-to-one 
correspondence between T-zippers (P, r) and non-overlapping G-
tiled paths (P, s), up to replacing some of the tiles with any of its 
geometrical variants.

THE f -NEIGHBORHOOD VECTOR “�−�”
In this section we consider the neighborhood vector

N = ((0, 1), (0, 2), (1, 2), (1, 0), (0, −1), (0, −2), (−1, −2), (−1, 0)),

which contains eight elements and is described by the following 
pattern:

( , ) ( , )

( , )

( , ) ( , )

( , )

( , ) ( , )

0 2 1 2

0 1

1 0 1 0

0 1

1 2 0 2

−
−

− − −

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟
⎟⎟

.

This neighborhood describes the shape of the letter f and it is 
obtained by adding to the “tall” von Neumann neighborhood vector 
from the previous section the two symmetric elements (1, 2) and 
(−1, −2). The geometric tiles which we use in this case are obtained 
by adding to the previous geometric tiles a new pair of matching 
spikes, big dents and sheaths, which are used to send, receive and 
respectively transfer the information from a given tile to the one 
corresponding to the relative position (1, 2).

The new spike, called spike II, is placed along the East edge of the 
geometric tiles, and it points upwards, see Figure 8. This structure 
is used to simulate the glue corresponding to the virtual edge which 
links a tile to its neighbor placed on the relative position (1, 2). 
Contrary to the case of the fi rst spike, the starting point of the spike 
II is the same, independently of which glue it stands for. However, 
the length of its fi rst horizontal segment uniquely determines which 
glue it simulates. Before spike II reaches the South edge of the tile 
placed on the relative position (1, 2) it crosses both the tile placed 
on the relative position (1, 0) and the tiled placed on the relative 
position (1, 1). Thus, we construct two new sheaths, called sheath II 
and sheath III, which enable the  crossing of spike II through these 
two tiles, without overlapping.

The new big dent, called big dent II, is placed on the South edge 
of the geometric tiles, and it corresponds to the glue of the virtual 
edge which connects a tile to its neighbor placed on the relative 
position (−1, −2). Thus, it has to match the spike II of the geomet-
ric tile placed on this position. In fact, as we explain next, it has to 
match both the spike II and the corresponding sheaths surrounding 
it: the sheath II of the geometric tile placed on the relative posi-
tion (0, −2), and the sheath III of the geometric tile placed on the 
relative position (0, −1).

The sheath II starts from the West edge of the geometric tiles 
and it surrounds the spike II of the geometric tile to the left, i.e., 
the tile placed on the relative position (−1, 0). Thus, the sheath II 
crosses the geometric tile placed above it [i.e., the tile placed on the 
relative position (1, 0)], resembling in some sense a spike.

The sheath III starts from the South edge of the geometric tiles 
and it surrounds both the spike II of the geometric tile placed on 
the relative position (−1, −1) and the sheath II of the geometric 
tile placed on the relative position (0, −1) (which itself also sur-
rounds the spike II).

For a better understanding of these constructions and how 
they embed in each other, in Figure 9 we present a partial non-
overlapping tiling using these geometric tiles. As explained in 
Observation 1, all these constructions, i.e., the spike II, the sheath II, 
and the sheath III, must have a step-like form in order to avoid over-
lapping with similar structures from the surrounding geometric 
tiles. Thus, some new splitting of the edges are necessary as follows. 
The East and West edges are split into two regions, while the South 



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 20 | 9

Czeizler and Kari Geometrical tile design for complex neighborhoods

the spike the spike II

the first horizontal
segment

the sheath

the big dentthe big dent II

the sheath III

the sheath II

(normal) bump and dent

FIGURE 8 | A geometric tile for the case of the f-neighborhood.

FIGURE 9 | A non-overlapping tiling of geometric tiles, for the case of the f-neighborhood.



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 20 | 10

Czeizler and Kari Geometrical tile design for complex neighborhoods

and North edges are split into fi ve (two new regions are created on 
the left side of the edges).

The spike II starts from the upper region of the East edge. As 
previously mentioned, the starting position of this construction 
(along the edge) is independent of the glue it stands for. However, 
the length of the fi rst horizontal segment of spike II is unique for 
each of the n different glues. Thus, the fi rst vertical segment of 
the spike II reaches the second region of the South edge of the 
tile placed on the relative position (1, 1) on the unique position 
associated to the glue simulated by spike II. Before reaching the 
South edge of the tile placed on the relative position (1, 2), the 
spike II shifts again, such that now it intersects the edge on the third 
region (again on the unique position corresponding to the same 
specifi c glue).

The sheath II must surround the spike II of the tile on the left. 
Thus, it starts from the upper region of the West edge, it shifts 
horizontally, it crosses the second region of the South edge of the 
tile above, and, after shifting again, it reaches the third region of 
the South edge of the tile placed on the relative position (0, 2). 
Note that the positions from both the second region of the South 
edge of the tile above and the third region of the South edge of the 
tile two steps above in which the sheath II crosses these tiles, must 
correspond to the same glue.

The sheath III starts from the second region of the South edge, 
it shifts once, and it reaches the third region of the South edge of 
the tile above. Also in this case, the position from the second region 
of the South edge on which it starts must correspond to the same 
glue as the position reached on the third region of the South edge 
of the tile above.

In order to make the transition from tiles with glues to geomet-
ric tiles, we proceed as follows. Given a tile system T ⊆ X8, for each 
tile t ∈ T we construct n3 geometrical variants, where n = |X| is the 
number of distinct glues. All these n3 geometrical variants of t have 
the same bumps, dents, spikes and big dents. This is because all 
these structures simulate the eight glues of the tile t, and they are all 
placed on the exact position corresponding to the particular glues 
they simulate. However, on distinct geometric variants, the sheaths 
must be placed on different positions along the specifi c regions of 
the edges. This is due to the fact that the sheaths have the role of 
allowing the crossing of spikes from a neighboring geometric tile to 
another, without overlapping. Thus, since these spikes can be placed 
on n different places along the edges (or actually along one particu-
lar region of the edges), for each tile t there must exist a geometric 
variant corresponding to each of these n cases. Since there are three 
sheaths, for each tile we must have n3 geometric variants.

Theorem 2: let

N = ((0, 1), (0, 2), (1, 2), (1, 0), (0, −1), (0, −2), (−1,  −2), (−1, 0))

be a neighborhood vector, and let T ⊆ X8 be a tile system using 
this neighborhood. Then, we can construct a geometrical tile sys-
tem G such that for any surface D ⊆ Z2, there exists a one-to-one 
correspondence between valid T

D
-tilings and non-overlapping 

G
D
-tilings, up to replacing some of the tiles with several of its 

geometrical variants.
Proof : Let T

D
 : D → T be a valid tiling, and let G be a geometrical 

tile system constructed as described above. Then, for each (x, y) ∈ D 

we replace each tile t(x, y) with one of its  geometrical variants. Since 
the sheaths of the geometric tile g(x, y) are coming in contact with 
the geometric tiles on positions (x − 1, y), (x − 1, y − 1), (x, y − 1), 
(x, y + 1), (x, y + 2) (if these positions are in the domain D), we must 
select carefully which geometrical variant of t(x, y) we should use. 
Depending on whether or not one or several of the fi ve positions 
mentioned above are in the domain of the tiling T

D
, we make the 

following choices (we describe here just three situations, the others 
cases being very similar):

• If (x − 1, y), (x − 1, y − 1), (x, y − 1), (x, y + 1), (x, y + 2) ∉ D, 
then we can replace t(x, y) with any of its geometrical variants. 
This is because all the sheaths of the geometric tile g(x, y) are 
not coming in contact with any other geometric tile.

• If (x, y + 2) ∈ D or (x − 1, y) ∈ D (or both) then we replace 
t(x, y) with its geometrical variant whose sheath II corresponds 
to the glue t(x, y + 2)

(−1, −2)
 or t(x − 1, y)

(1, 2)
, respectively. Note 

that if both (x, y + 2), (x − 1, y) ∈ D then, since the tiling T
D
 is 

valid, it must be that t(x, y + 2)
(−1, −2)

 = t(x − 1, y)
(1, 2)

.
• If (x, y + 1) ∈ D then we replace t(x, y) with its geometrical 

variant which satisfi es the following conditions. First, its sheath 
should correspond to the glue t(x, y + 1)

(0, −2)
. Then, its sheath 

II should be perfectly surrounded by the sheath III of the geo-
metric tile above (here, there may be several variants having 
this property). If also (x, y + 2) ∈ D, then the sheath II should 
correspond to the glue t(x, y + 2)

(−1, −2)
. Finally, its sheath III 

should correspond to the glue t(x, y + 1)
(−1, −2)

.

The other cases are treated in a similar manner.
By choosing the correct geometrical variants for the tiles, since 

the tiling T
D
 is valid, we do not obtain any overlapping in G

D
. Thus, 

the tiling G
D
 : D → G obtained by replacing the tiles from T with 

the corresponding geometric tiles from G as described above, is 
non-overlapping. Moreover, the tiling G

D
 is unique, up to replac-

ing some of its geometrical tiles with other geometrical variant of 
the same tile.

For the converse, if G
D
 : D → G is a non-overlapping tiling then, 

just as in the previous section, we construct the tiling T
D
 : D → T 

by replacing each tile from G with the corresponding tile from T 
(each tile in G is a geometrical variant of a unique tile from T ). 
Since there is no overlapping in G

D
 between bumps and dents and 

also between the spikes and the big dents, we conclude that any tile 
from T

D
 must agree on its glues with all of its neighbors from the 

domain D. Thus, the tiling T
D
 is valid, and it is uniquely obtained 

starting from the tiling G
D
. 

As in the previous section, the following result is an immediate 
consequence.

Corollary 2: let

N = ((0, 1), (0, 2), (1, 2), (1, 0), (0, −1), (0, −2), (−1, −2), (−1, 0))

be a neighborhood vector, and let T ⊆ X8 be a tile system using this 
neighborhood. Then, we can construct a geometrical tile system G 
such that for any non self-crossing path P there exists a one-to-one 
correspondence between T-zippers (P, r) and non-overlapping 
G-tiled paths (P, s), up to replacing some of the tiles with several 
of its geometrical variants.



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 20 | 11

Czeizler and Kari Geometrical tile design for complex neighborhoods

THE 3 × 5 “FILLED” RECTANGULAR NEIGHBORHOOD VECTOR
As a fi nal case, we consider the neighborhood vector N containing 
14 positions, which is described by the following pattern:

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , ) (

−
−
−
− − −

1 2 0 2 1 2

1 1 0 1 1 1

1 0 1 0

1 1 0 1 1,, )

( , ) ( , ) ( , )

.

−
− − − −

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

1

1 2 0 2 1 2

In this case, the neighbors of a tile t(x, y) are all the tiles con-
tained in the 3 × 5 rectangle centered on (x, y), except for (x, y). 
The geometric tiles used in this case are obtained by combining 
several geometrical tile designs. We combine the geometrical tile 
design given in the previous section with its symmetric design, and 
also with a new tile design which is described below.

In Czeizler and Kari (Submitted) we present a motif construc-
tion of a certain shape, which is used for proving that a tiling 
using the Moore neighborhood, see Example 3, can be simu-
lated by another tiling using a quasi linear neighborhood, i.e., a 
partial von Neumann neighborhood. This shape is obtained by 
attaching a square to a regular hexagon and by placing several 
bump and dent constructions on its edges, see Figure 10A. This 
motif construction can be used for designing a geometrical tile 
system which can simulate the tiles with glues having the Moore 
neighborhood. As in the case of the geometric tiles presented in 
the previous sections, between the bump and dent constructions 
of these geometric tiles we can distinguish a spike, a big dent and 
a sheath. Note that this shape, i.e., a square attached to a regular 
hexagon, can indeed tile the plane, as it is derived from one of the 
11 Archimedean Tilings done by regular polygons (see Grünbaum 
and Shephard, 1987). In Figure 10B we present one of the non-
overlapping tilings by geometric tiles which is associated to the 
tiling from Figure 2.

By putting together all of these constructions, we obtain a 
 geometrical tile design which has three pairs of normal (small) 
bumps and dents, four spikes, four big dents, and six sheaths. In 
Figure 11 we present both the design of these geometric tiles as 
well as a non-overlapping tiling obtained using this geometrical tile 
system (the small bumps and dents are omitted from the pictures). 
Note also that since in this case we have six sheaths, for each tile 
we have to construct n6 geometrical variants, where n = |X| is the 
number of glues.

Theorem 3: let N be the 3 × 5 “fi lled” rectangular neighborhood 
vector, and let T ⊆ X14 be a tile system using this neighborhood. 
Then, we can construct a geometrical tile system G such that for any 
surface D ⊆ Z2, there exists a one-to-one correspondence between 
valid T

D
-tilings and non-overlapping G

D
-tilings, up to replacing 

some of the tiles with several of its geometrical variants.
Corollary 3: let N be the 3 × 5 “fi lled” rectangular neighbor-

hood vector, and let T ⊆ X14 be a tile system using this neighbor-
hood. Then, we can construct a geometrical tile system G such that 
for any non self-crossing path P there exists a one-to-one corre-
spondence between T-zippers (P, r) and non-overlapping G-tiled 
paths (P, s), up to replacing some of the tiles with several of its 
geometrical variants.

CONCLUSIONS
In this paper we showed how to simulate partially-tiled paths (zip-
pers) that use square tiles with complex neighborhood relations, by 
ribbons of geometrical tiles that use a very simple, local neighbor-
hood relation based solely on non-overlapping. We namely solved 
this problem for the case of the “tall” von Neumann neighbor-
hood (a slightly “taller” version of the von Neumann cross-shaped 
neighborhood), the f-shaped neighborhood, and the 3 × 5 “fi lled” 
rectangular neighborhood.

The techniques we used can be extended to some other particu-
lar cases of neighborhoods. For instance, the method from Section 

FIGURE 10 | Geometric tiles for the case of the Moore neighborhood: (A) a geometric tile; (B) one of the non-overlapping tilings by geometric tiles which 

can be associated to the tiling from Figure 2.



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 20 | 12

Czeizler and Kari Geometrical tile design for complex neighborhoods

“The ‘Tall’ von Neumann Neighborhood Vector ‘−| ’” can be easily 
extended for the case when the von Neumann neighborhood’s ver-
tical arm is arbitrarily tall, i.e., the neighborhood contains one or 
several pairs of the form (0, k), and their symmetric ones (0, −k), 
where k ≥ 2. These positions correspond to those tiles placed k-
steps to the North and to the South. For each such new position 
(0, k) and its symmetric (0, −k), we have to add a new spike, big 
dent, and k − 1 sheaths on the North and South edges. The spike 
has to be suffi ciently long, i.e., a little longer than (k − 1)-times 
the size of the East edge, while the lengths of the sheaths would 
have to match the spike, i.e., decreasing from (k − 1)- to one-times 
the length of the East edge. Also, all these structures would have 
to be in a step like form, in order not to overlap with the similar 
structures from the above and below tiles.

By generalizing the methods described in Section “The f-
Neighborhood Vector ‘�−�’”, we can further extend the “arbitrarily 
tall” von Neumann neighborhood of the previous paragraph by 
adding to it pairs of the form (1, k) or (−1, k), and their symmetric 
ones (−1, −k) and (1, −k), respectively, where k ≥ 2. Here, for each 
new position (1, k) and the symmetric one (−1, −k), we add one 
spike starting from the East edge, one big dent on the South edge, 

A B

spikes sheaths

big dents

FIGURE 11 | Geometric tiles for the case of the 3 × 5 “fi lled” rectangular neighborhood (normal bumps and dents are omitted): (A) a geometric tile; 

(B) a non-overlapping tiling by geometric tiles.

one sheath on the West and North edges, and k − 1 sheaths on the 
South and North edges.

By putting together all the above considerations, we con-
clude the following. Let N

k
 and Nk  be the  neighborhoods 

N
k
 = {(i,j)|−1 ≤ i ≤ 1,−k ≤ j ≤ k, and (i,j) ≠ (0,0)} and 

N i j k i k j i jk = − −{( , ) , , ( , ) ( , )}.≤ ≤ ≤ ≤ ≠1 1 0 0and  Informally, this 
neighborhood is a rectangular Moore-type neighborhood, centered 
at the tile of reference, and with width 3 and height 2k + 1 (or 
height 3 and width 2k + 1). Then, for all tile systems T

N
, were N is 

a symmetric neighborhood which can be included in one of the 
above neighborhoods, i.e., such that there exists k ≥ 0 with N ⊆ —N

k
 

or N Nk⊆ , we can design a geometrical tile system G such that any 
(partial) T-tiling or T-zipper can be simulated by a non-overlapping 
G-tiling or G-tiled path, respectively. Note that such a neighbor-
hood included in a 3 × (2k + 1) rectangle need not be contiguous, 
i.e., may even have holes in it. On the other hand, we observe that 
an immediate generalization of the previous techniques cannot be 
directly applied to the case of completely arbitrary neighborhoods 
[not even for neighborhoods included in a 5 × (2k + 1) rectangle], 
since the spikes and sheaths we would have to add in these cases 
would self-overlap.



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 20 | 13

Czeizler and Kari Geometrical tile design for complex neighborhoods

Sherman, W., and Seeman, N. (2004). 
A precisely controlled DNA biped walk-
ing device. Nano Lett. 4, 1203–1207.

Wang, H. (1961). Proving theorems by 
pattern recognition, II. Bell Sys. Tech. 
J. 40, 1–42.

Winfree, E. (1998). Algorithmic Self-
assembly of DNA. Ph.D. thesis, 
California Institute of Technology, 
Pasadena.

Conflict of Interest Statement: The 
authors declare that the research was con-
ducted in the absence of any commercial or 
fi nancial relationships that could be con-
strued as a potential confl ict of interest.

Received: 30 June 2009; paper pending 
published: 05 August 2009; accepted: 22 
September 2009; published online: 23 
November 2009.
Citation: Czeizler E and Kari L (2009) 
Geometrical tile design for complex neigh-
borhoods. Front. Comput. Neurosci. 3:20. 
doi: 10.3389/neuro.10.020.2009
Copyright © 2009 Czeizler and Kari. This 
is an open-access article subject to an exclu-
sive license agreement between the authors 
and the Frontiers Research Foundation, 
which permits unrestricted use, distribu-
tion, and reproduction in any medium, 
provided the original authors and source 
are credited.

REFERENCES
Adleman, L. (2000). Towards a 

Mathematical Theory of Self Assembly, 
Technical Report 00-722. Los Angeles, 
Department of Computer Science, 
University of Southern California.

Adleman, L., Kari, J., Kari, L., and 
Reishus, D. (2002). On the Decidability 
of Self-asssembly of Infi nite Ribbons. 
Proceedings of FOCS’2002, Canada, 
pp. 530–537.

Adleman, L., Kari, J., Kari, L., Reishus, D., 
and Sosik P. (2009). The undecid-
ability of the infinite ribbon prob-
lem: implications for computing by 
self-assembly. SIAM J. Comput. 38, 
2356–2381.

Barish, R., Rothemund, P., and Winfree, E. 
(2005). Two computational primi-
tives for algorithmic self-assembly: 
copying and counting. Nano Lett. 5, 
2586–2592.

Bath, J., Green, S., and Turberfield, A. 
(2005). A free-running DNA motor 
powered by a nicking enzyme. Angew. 
Chem. Int. Ed. Engl. 44, 4358–4361.

Brun, Y., and Reishus, D. (2009). Path fi nd-
ing in the tile assembly model. Theor. 
Comp. Sci. 410, 1461–1472.

Cook, M., Rothemund, P., and Winfree, E. 
(2004). Self-Assembled Circuit 
Patterns, DNA Computers 9, LNCS 
2943, pp. 91–107.

Fujibayashi, K., Hariadi, R., Park, S., 
Winfree, E., and Murata, S. (2008). 
Toward reliable algorithmic self-
assembly of DNA tiles: a fi xed-width 
cellular automaton pattern. Nano Lett. 
8, 1791–1797.

Grünbaum, B., and Shephard, G. C. 
(1987). Tilings and Patterns. W. H. 
Freeman and Company. New York.

Kari, J. (1989). On the inverse neigh-
borhood of reversible cellular 
automata. In Lindenmayer Systems, 
Impact in Theoretical Computer 
Science, Computer Graphics and 
Developmental Biology, G. Rosenberg, 
and A. Salomaa, eds (Berlin, Springer), 
pp. 477–495.

Kari, J. (2003). Infinite Snake Tiling 
Problems. Proceedings of DLT 2002, 
LNCS 2450, pp. 67–77.

Kari, J. (2005). Theory of cellular autom-
ata: a survey. Theor. Comp. Sci. 334, 
3–33.

Kari, J. (2008). On the Undecidability of 
the Tiling Problem, SOFSEM 2008: 
Theory and Practice of Computer 
Science, LNCS 4910, pp. 74–82.

Liedl, T., Olapinski, M., and Simmel, F. 
(2006). A surface-bound DNA switch 
driven by a chemical  oscillator. Angew. 
Chem. Int. Edn. Engl. 45, 5007–5010.

deLorimier, M., Mathy, A., Reishus, D., 
Schmidt, R., Shaw, B., and Wong L. 

(2002). Algorithmic Self-Assembly 
of Circuits. In Proceedings of CBSSS. 
California Institute of Technology, 
Pasadena.

Mao, C., LaBean, T., Reif, J., and Seeman, N. 
(2000). Logical computation using 
algorithmic self-assembly of DNA 
triple-crossover molecules. Nature 
407, 493–495.

Plass, R., Last, J. A., Bartelt, N. C., and 
Kellogg, G. L. (2001). Nanostructures – 
self-assembled domain patterns. 
Nature 412, 875.

Robinson, R. M. (1971). Undecidability 
and nonperiodicity for tilings of the 
plane. Invent. Math. 12, 177–209.

Rothemund, P. (2000). Using lateral 
capillary forces to compute by self-
assembly. Proc. Natl. Acad. Sci. U.S.A. 
97, 984–989.

Rothemund, P. (2006). Folding DNA to 
create nanoscale shapes and patterns. 
Nature 440, 297–302.

Rothemund, P., Papadakis, N., and 
Winfree, E. (2004). Algorithmic self-
assembly of DNA Sierpinski triangles. 
PLoS Biol. 2, 12. doi: 10.1371/journal.
pbio.0020424.

Rothemund, P. W. K. (2001). Theory 
and Experiments in Algorithmic 
Se l f -assembly. Ph.D. thes i s , 
University of Southern California, 
Los Angeles.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


