
Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 1

COMPUTATIONAL NEUROSCIENCE
ORIGINAL RESEARCH ARTICLE

published: 20 November 2009
doi: 10.3389/neuro.10.025.2009

the motivation is to produce realistic dendritic structures to be
used in an electrophysiology simulator, e.g. (Stiefel and Sejnowski,
2007). The prototypical example of the construction approach is
L-Systems, a recursive procedure initially invented for modeling
plant branching structures (Lindenmayer, 1968), which has been
successfully applied to neural morphologies (Hamilton, 1993;
Mulchandani, 1995; Ascoli et al., 2001). Other methods have been
proposed like probabilistic branching models (van Pelt and Verwer,
1983; Kliemann, 1987), Markov models (Samsonovich and Ascoli,
2005), Monte Carlo processes (da Fontoura Costa and Coelho,
2005), or diffusion limited aggregation (Luczak, 2006). But as suc-
cessful as they are in reproducing neuronal shapes, these models
provide very little insight into the fundamental growth mechanisms
leading to cortex formation.

Growth models, on the other hand, study the biological mecha-
nisms that underly the generation of neuronal morphology. Many
interesting agent-based simulations have been published, repro-
ducing various aspects of development, such as cell proliferation
(Ryder et al., 1999; Shinbrot, 2006), polarization (Samuels et al.,
1996), cell migration (Cai et al., 2006), neurite extension (Kiddie
et al., 2005), growth cone steering (Goodhill et al., 2004; Maskery
and Shinbrot, 2005; Krottje and van Ooyen, 2007), fasciculation
(Hentschel and van Ooyen, 1999) and synapse formation (van
Ooyen and Willshaw, 1999; Stepanyants et al., 2008). Mean fi eld
models have also been proposed, for instance to study axon gui-
dance and map formation (Reber et al., 2004; de Gennes, 2007).

INTRODUCTION
During the past two decades Computational Neuroscience has
developed sophisticated methods for simulating physiology of
neurons (Markram, 2006; Izhikevich and Edelman, 2008). This
progress has been partly due to advances in computational resour-
ces as well as our improved understanding of the basic principles
of electrophysiology. But importantly, this approach has been
facilitated by the development of robust simulation packages
such as NEURON (Hines and Carnevale, 1997) and GENESIS
(Bower and Beeman, 1995). By providing neuroscientists with
the building blocks and the environment in which to assemble
their own neuronal and network models, these programs have
relieved scientists from the enormous task of writing complicated
computational frameworks themselves, and have left them free
to concentrate on productive simulation of experimental data.
Similarly, researchers in other areas of biology now also have
at their disposal powerful modeling environments, for instance
for the study of biochemical pathways (Alves et al., 2006). The
simulation package CX3D that will be described here, offers an
analogous tool that can be used to simulate the growth of neu-
rons in 3D.

There are two major approaches to the simulation of neural
development: construction algorithms, and biologically-inspired
growth processes. The construction approach aims to reproduce
the geometrical properties of real neurons, and not at understan-
ding the biological processes underlying neural growth. Often

A framework for modeling the growth and development
of neurons and networks

Frederic Zubler* and Rodney Douglas

Institute of Neuroinformatics, University of Zurich/Swiss Federal Institute of Technology Zurich, Zurich, Switzerland

The development of neural tissue is a complex organizing process, in which it is diffi cult to
grasp how the various localized interactions between dividing cells leads relentlessly to global
network organization. Simulation is a useful tool for exploring such complex processes because
it permits rigorous analysis of observed global behavior in terms of the mechanistic axioms
declared in the simulated model. We describe a novel simulation tool, CX3D, for modeling the
development of large realistic neural networks such as the neocortex, in a physical 3D space.
In CX3D, as in biology, neurons arise by the replication and migration of precursors, which
mature into cells able to extend axons and dendrites. Individual neurons are discretized into
spherical (for the soma) and cylindrical (for neurites) elements that have appropriate mechanical
properties. The growth functions of each neuron are encapsulated in set of pre-defi ned modules
that are automatically distributed across its segments during growth. The extracellular space
is also discretized, and allows for the diffusion of extracellular signaling molecules, as well
as the physical interactions of the many developing neurons. We demonstrate the utility of
CX3D by simulating three interesting developmental processes: neocortical lamination based
on mechanical properties of tissues; a growth model of a neocortical pyramidal cell based on
layer-specifi c guidance cues; and the formation of a neural network in vitro by employing neurite
fasciculation. We also provide some examples in which previous models from the literature are
re-implemented in CX3D. Our results suggest that CX3D is a powerful tool for understanding
neural development.

Keywords: neural development, cortex, modeling, computational neuroanatomy, axon guidance

Edited by:

Stefano Fusi, ETH University Zurich,
Switzerland; Columbia University, USA

Reviewed by:

Victor Luria, Columbia University, USA
Enrique Alvarez-Lacalle, Universitat
Politécnica de Catalunya UPC, Spain

*Correspondence:

Frederic Zubler, Institute of
Neuroinformatics, University of Zurich/
Swiss Federal Institute of Technology
Zurich, Winterthurerstrasse 190,
CH-8057 Zurich, Switzerland.
e-mail: fred@ini.phys.ethz.ch

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 2

Zubler and Douglas Simulation framework for neural development

Unfortunately, all these studies were conducted within different
frameworks, which prevents the comparison, or the combination
of several computational models in larger simulations.

In addition to allowing for simulations of various aspects of
development, a general purpose simulation platform should also
emulate the physics of developing tissues, namely mechanics and
diffusion. Mechanical forces infl uence both structural properties
(such as cell densities and macroscopic architecture; Hilgetag
and Barbas, 2006) and functional properties (via infl uences on
intracellular biochemical pathways, a mechanism called mecha-
notransduction; Huang et al., 2004) of developing tissues. For
instance in neurons, the tension in a neurite infl uences its
shape (Shefi et al., 2004), and its growth rate (Dennerll et al.,
1989), and can determine between an axonal vs. dendritic fate
(Lamoureux et al., 2002). In addition to mechanics, the deve-
lopment of biological tissues depends strongly on the ability of
cells to communicate and infl uence one another, either by con-
tact (Kageyama et al., 2008) or by release of diffusible signaling
molecules (Chilton, 2006).

CX3D is an open-source software written in Java for modeling
all stages of corticogenesis, such as cell division and migration,
extension of axonal and dendritic arbors, and establishment of
synaptic connections. It provides a simulated physical space gover-
ned by a physics engine which computes the forces between objects,
and the diffusion of substances through the extracellular space.
With this framework, we successfully simulated three important
developmental processes: the division and migration of neural pre-
cursors to form the cortical plate in an inside-out sequence; the
differentiation of pyramidal cells forming layer-specifi c branching
patterns guided by diffusible guidance cues; and the growth of
cultured dissociated neurons forming a connected network. The
source code and a user tutorial are freely available at http://www.
ini.uzh.ch/projects/cx3d/.

MATERIALS AND METHODS
ORGANIZATION OF THE EXTRACELLULAR SPACE
Neighborhood relation
Neurons in our simulator are composed of discrete physical com-
ponents such as spheres (somata) and cylinders (neurites), each
located at a particular point in 3D space, where they interact locally
with one another, simulating the physical and biological processes
occurring in the tissue (Figure 1). Each evaluation for a possi-
ble interaction between object i and j has a computational cost.
Clearly, to evaluate each possible pair (i, j) at each time step would
become prohibitively expensive as the number and complexity of
the neurons grow. Instead, we maintain for each object a list of
neighboring objects with which it might interact. This list is upda-
ted when an object moves, or when an object is added or deleted
from the space.

To defi ne this neighborhood relation we use a 3D Delaunay
triangulation (Schaller and Meyer-Hermann, 2004). Given a set P
of points in 2D, a triangulation T is a collection of non-overlapping
triangles whose vertices coincide with the members of P, that covers
the convex hull formed by P. The points and the edges of the triangle
defi ne a graph structure. Two points are defi ned as neighbors if
and only if there is at least one triangle t ∈ T of which both are a
vertex, i.e. if they share a common edge in the graph. The Delaunay

FIGURE 1 | Typical CX3D simulation. The fi gure shows the result of a
simulation in which two neurons extend dendritic (red) and axonal (black)
arbors in a dense cortical column, according to the model specifi cation
described in Figure 7. The physics engine prevents a branch from passing
through another cell. (Half of the cells in the column were removed for better
visualization). The 3D rendering was obtain by exporting the result of the CX3D
simulation into the free program Blender (http://www.blender.org). The mesh
used for the rendering was created with the free java-based software
ImageJ3DViewer (http://www.neurofl y.de/ImageJ3DViewer).

http://www.ini.uzh.ch/projects/cx3d/
http://www.blender.org
http://www.neurofl y.de/ImageJ3DViewer

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 3

Zubler and Douglas Simulation framework for neural development

triangulation is a special triangulation, defi ned by the condition
that no point of P is inside the circumsphere of any triangle of T.
In 3D, the method generalizes to the Delaunay tetrahedralization,
where a set of points in space defi nes a set of tetrahedrons (for
simplicity, we will nevertheless use the term triangulation even in
the 3D case). In our framework, each discrete object is associated
with a vertex in a 3D triangulation. CX3D uses the package Dyna3D
written by Goehlsdorf1.

If the cell density is very low, it might happen that two physical
objects far apart are considered as being neighbors, just because
there is no other object between them. In this situation, for com-
putational reasons, the user might want to add additional ‘empty’
vertices to the triangulation, so that physical interactions between
pairs of remote objects are not evaluated (Figures 2A,B).

Diffusion processes
For the simulation of diffusion, we use an approach similar to
the fi nite volume method (Barth and Ohlberger, 2004). The
extracellular space is decomposed into small non overlapping
domains. When a physical object secretes a certain quantity of a
signaling substance, the concentration of this substance increases
in the domain containing this object. Let i and j be two compart-
ments with respective volume V

i
 and V

j
, containing the amount

Q
i
 and Q

j
 of a given substance (hence the concentrations are

u
i
 = Q

i
/V

i
 and u

j
 = Q

j
/V

j
). If they are in contact, Fick’s fi rst law

tells us that the net fl ux J
i→j

 (in units of quantity per time) going
from i to j is:

J D
S

d
u ui j

ij

ij

j i→ = − ,() (1)

where D is the diffusion coeffi cient of the substance, S
ij
 the area of

contact between the compartments and d
ij
 the distance between

their centers.
A fi rst approach would be to multiply the fl ux J

i→j
 by the simu-

lation time step Δt to compute the quantity transfered from i to j
during the time step, to subtract it from Q

i
 and add it to Q

j
. The

new concentrations could be found by dividing the new quantities
by the respective volumes. Using this formula in our simulation is
equivalent to the Euler explicit method. But it comes with a very
high risk of overshoot if the time steps are too large, especially
in our case with an irregular decomposition of space. It is thus
preferable to solve analytically the diffusion between each pair of
neighbors: Remembering that Q

x
 and u

x
 vary with time, we obtain

the following ordinary differential equation:

d

dt
Q t D

S

d
u t u t D

S

d

Q t

V

Q t

Vi j i

j

j

i

i

() [() ()]
() ()= − = −

⎛

⎝⎜
⎞

⎠⎟
. (2)

u(x,t)

x1

x2

 A B

C D E

FIGURE 2 | 2D illustration of the Delaunay triangulation and its dual

graphs. (A) Each discrete physical object (blue) in the simulation is linked to a
vertex in the Delaunay triangulation (green). Additional vertices represent empty
regions of space. Two objects are considered as being neighbors when their
vertices are linked by an edge. (B) When existing objects move or are deleted, or
when new objects are created, their associated Delaunay vertex is automatically
moved, deleted or inserted, and the triangulation locally updated. (C) The Voronoi
graph (orange) is an example of a dual graph used to defi ne a vertex-centered
volume decomposition based on the Delaunay triangulation. The volume around
each vertex contains every point in space that is closer to this vertex than to any

other. (D) Another dual graph: the median dual graph is the set of lines joining
the centroids (or barycenters) of all edges and triangles adjacent to a vertex (in
3D: all the edges, triangular faces and tetrahedrons adjacent to a vertex). (E) In
the fi nite volumes method, for a given substance, only the average
concentration ui(t) over a domain Vi is known. The total quantity Qi(t) of the
substance inside the domain is equal to ui(t)·Vi (the volume of the orange
column). If the domain is defi ned by the median dual graph, a linear vertex-
centered function with peak of ui contains exactly the same quantity (volume of
the green pyramid). This representation is extremely convenient when we have
to interpolate the concentration outside the vertices.

1http://www.ini.uzh.ch/~dennis

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 4

Zubler and Douglas Simulation framework for neural development

To get rid of the dependence on the quantity in the compartment j,
we defi ne the total amount T = Q

i
 + Q

j
 that is time-invariant. We

can now solve the equation above and obtain:

Q t Ke
n

mi
mt() = +− (3)

with m D n DS
d V V

S
d

T
Vj i j

= + =() ,1 1 and and the integration constant
K Q ti

n
m= −() .0

The median dual graph
The Delaunay triangulation that we use for near-object detection
already provides us with a decomposition of space in discrete volu-
mes (the tetrahedrons). But since all substances are produced and
probed at the vertices of the triangulation (where the cell elements
are located), it makes sense to use a dual graph, i.e. another decom-
position containing the Delaunay nodes in the center of its volumes.
The most popular graph with this property is the Voronoi graph
(Figure 2C), but for computational reasons we use the median
dual graph (Figure 2D). Firstly because it is not necessary to
compute the boundaries of a domain to compute its volume (it’s
simply one-fourth of the volume of the adjacent tetrahedrons).
Secondly, because if we consider that the average concentration
u

i
(t) for domain i given by the fi nite volumes method corresponds

to the real concentration at the vertex position, and that we use
linear interpolation between the vertices to defi ne the concentra-
tion elsewhere, we get a better numerical approximation with the
median dual graph (Figure 2E).

To defi ne the gradient on the Delaunay vertices, we recall that
the directional derivative of the concentration u at the point x

i

along the unitary vector ê is equal to the dot product of ê with the
gradient of u at x

i
:

D u ui iˆ () ˆ ()e x e x= ⋅ ∇ (4)

We can approximate the directional derivative at x
i
 along a vector

pointing to any neighbor vertex x
j
 by taking the difference of the

two concentrations divided by the distance between them. With
three different x

j
, we obtain a system of three equations that we

solve to fi nd the three components of the gradient at x
i
:

∇ ⋅ − = − , = , , .u u u ji j i j i() () () () { }x x x x x for 1 2 3 (5)

The smaller the volumes of the dual graph are, the better the
precision of the diffusion simulation. This is another justifi cation
for having additional vertices added to the Delaunay graph even
in absence of physical objects at that location.

Figure 3A shows a test system introduced to illustrate the perfor-
mance of our simulator on various aspects of diffusion. It consists of
500 vertices randomly distributed into a 200 × 200 × 200 µm3 cubic
volume. The points are triangulated, with the median dual graph
defi ning 500 volumes surrounding the vertices. Inside each discrete
volume, we place a precise quantity of three diffusible substances in
order to get a desired concentration, varying with the position of
the vertex along one spatial dimension: The concentration profi le
of chemical R (red) is a step function, of G (green) a linear function
and of B (blue) a cosine. Figures 3B,C show the evolution of the
concentration profi les over time due to diffusion.

Chemical reactions
In addition to diffusion and secretion by cells, the substances in
the extracellular space are subject to concentration changes due to
degradation and possibly other chemical reactions. Degradation
is processed together with diffusion (a diffusion and a degrada-
tion constant can be specifi ed for each extracellular substance). To
introduce chemical reactions, the user has the possibility to defi ne
changes of concentrations that are applied at each time step on
each discrete volume of the extracellular space.

As an illustration, we implemented in our test system the reac-
tion R G Bk

k+
−1

1 (with k
1
 = 10 and k−1

 = 0.5), which corresponds
to the combination of one molecule of the red and one molecule of
the green substance forming one molecule of the blue substance,
by applying the following concentration changes in each volume
at each time step:

− = − = = − .−
d R

dt

d G

dt

d B

dt
k R G k B

[] [] []
[][] []1 1 (6)

Figures 3D,E show the result without and with concurrent dif-
fusion respectively.

Infl uence of grid deformations on the concentration profi le
Modifi cations of the Delaunay mesh have dramatic effects on the dual
graph that we use to numerically solve diffusion. Thus we needed to
incorporate a mechanism to automatically redistribute the different
quantities of substances after each operation on the triangulation
(physical object displacement, duplication or removal). The two
major requirements are to preserve the concentration profi les, and to
ensure mass conservation. Consider the case where the Delaunay ver-
tex at position x

i
 moves. If we didn’t update the quantity of substance

located inside the surrounding volume, moving the point would
result in substance transport. Our update mechanism consists of two
phases: fi rst we interpolate the concentration u′

i
 of the chemical at

the new location x′
i
 of the moving vertex, and modify the quantity in

the newly formed volume V ′
i
 to obtain this desired concentration, i.e.

defi ne new Q′
i
 so that Q′

i
/V ′

i
 = u′

i
. Then we compensate for total mass

conservation by multiplying the concentrations and the quantities
in the surrounding volumes by the ratio between the total quantities
before and after the displacement. Similar update mechanisms are
used for vertex insertion or removal.

The procedure is tested in our bench test by moving three inner
vertices 100 times (Figure 3F). The displacement is a random 3D
vector of less than 5 µm, with a re-centering mechanism to ensure
that the points stay inside the convex hull of all other points. This
minimally disruptive procedure allows for gradient ascent even in the
extreme case where all physical objects are moving (Figure 3G).

MECHANICAL PROPERTIES OF NEURONS
The complex shape of neurons, composed of dendritic and axo-
nal arbors, makes the computation of their mechanical properties
and interactions a diffi cult task. Following a technique that is used
commonly in mechanical engineering and virtual reality contexts
(Ng and Grimsdale, 1996; Ward et al., 2007), neurons in CX3D
are composed of chains of springs and masses in series to provide
structural integrity and propagate tension. Spherical and cylindrical
wrappers enclose the spring-mass chain to confer volume on the

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 5

Zubler and Douglas Simulation framework for neural development

cell and defi ne spatial interactions between neighboring objects.
Each wrapper is an independent object containing a single point
mass. At each time step, it computes the local forces on its point
mass and moves it accordingly.

Somata are defi ned by a sphere with a central point mass, whe-
reas neurites are composed of cylinders, each containing one spring
and one point mass at its distal end (Figure 4). The disadvantage of
this confi guration is the asymmetry of the cylinders. The substantial
advantage, on the other hand, is that we can neglect rotations of
cylinders. Indeed each one is responsible for moving only its distal
end (where the point mass is located), whereas its proximal end
is defi ned by the position of its attachment point on the proximal
discrete object. During neurite extension, some cylindrical elements

are elongated. If their length exceeds a specifi ed threshold, they split
into two elements. Similarly, in case of retraction, short cylinders
fuse. By this mechanism we ensure the suitable discretization of
the cell. This discretization also permits intracellular diffusion. The
simulation is performed in a similar way as for extracellular diffu-
sion, but the volumes are defi ned by the cylinders and the sphere
composing the neuron, and substances fl ow along the chains of
elements regardless of the triangulation or its dual graph.

FORCES
Three different types of forces can be applied to each point mass.
The fi rst type arises from the interaction between the physical
objects when they come into close contact. The second type is the

B C

E F

FIGURE 3 | Test system for diffusion and chemical reactions. (A) Initial
chemical concentrations in the discrete volumes created by the triangulation
of 500 vertices randomly placed inside a cube. The concentration of three
substances defi ne a particular profi le, dependent on the volume’s central
vertex location along the horizontal axis (red substance: step concentration
profi le; green substance: linear profi le; blue substance: cosine profi le).
(B) Evolution of the concentration profi les due to diffusion after 50 simulation
time steps. (C) Concentration profi les after 500 simulation time steps.
(D) Concentration profi les after 500 simulation time steps due to the

chemical reaction R G B+ (see text), without diffusion. (E) Concentration
profi le after 500 steps of the same chemical reaction with diffusion included.
Compare with diffusion without reaction in (C). (F) Minor alteration in the
concentration profi les after 100 sequences of movements of three central
vertices, without diffusion or reaction. (G) Use of diffusion in simulation: 1000
yellow cells and 1000 violet cells, secreting respectively ‘yellow’ and ‘violet’
diffusible cues, are distributed randomly in a 3D volume. They aggregate by
following the gradient of their cell-type specifi c cue (results after 0, 300, 800
and 6000 time steps).

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 6

Zubler and Douglas Simulation framework for neural development

internal tension arising when a neurite is stretched, which is mode-
led by the springs connecting the masses. This internal tension both
infl uences, and is infl uenced by, metabolic growth. The third type
of forces represents the active movement of cell elements. It follows
from the biological properties of the model specifi ed by the user.

Inter-object forces
Cells in a tissue have strong resistance to compression. They also have
adhesive properties. Consequently they are conveniently modeled as
a granular medium with additional bindings (Schaller and Meyer-
Hermann, 2005; Shinbrot, 2006). The physical interaction between
two spherical somata is then a function of their diameter, their relative
distance, and possibly their expression of adherence molecules.

It is possible for users of CX3D to defi ne their own cell–cell
interaction function. However, by default a modifi ed version of
(Pattana, 2006) is used, in which the force from sphere s

i
 onto

sphere s
j
 contains a repulsive component (preventing two cells to

overlap) and an attractive component (representing the integrity of
the tissue and forces resulting from cell adhesion molecules):

F eij

i j

i j

k
rr

r r
= −

+
,

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

δ γ δ ˆ (7)

where k is the repulsion coeffi cient, γ the attraction coeffi cient,
r

i
, r

j
 the radii of the spheres, δ the overlap: max(0,r

i
 + r

j
 − dist

ij
),

and ê the unitary vector pointing from the center of sphere i in
direction of sphere j.

The radius r
i
 used in the previous equation needs not to be exactly

the radius of the sphere s
i
. For instance, to reproduce the different

neuron densities observed one can use larger effective radii, which

increases the range of interaction and hence pushes cells further
apart from each other. Or one can use smaller radii for migrating
cells, and thereby model the possible deformations of moving cells
that are less perturbed by the surrounding tissue.

In CX3D, we must also consider cylindrical objects, which
means that there are in fact three different sorts of interactions:
sphere–sphere, sphere–cylinder and cylinder–cylinder. For instance,
to compute the interaction between a sphere s

1
 and a cylinder c, we

defi ne on c a virtual sphere s
2
, and then compute the interaction

between the two spheres s
1
 and s

2
 as described above.

Cylinders have their unique point mass located at their distal
end. So, if the inter-object forces applied to a particular cylinder
only affect its own point mass, it means that only one of its extre-
mities will ever move. Therefore, part of this force has to be tran-
smitted to its proximal segment (i.e. the object responsible for the
mass situated at the proximal end of the cylinder). This repartition
of forces along chains of cylinders is essential for stability.

In addition to the attractive component of the inter-object
interaction, additional specifi c adhesive bonds, permanent or
transient, can be added between neighboring objects. These links
consist of additional springs between two discrete physical objects.
Such links can be used, for example, to stabilize the pre- and post-
synaptic cell elements with respect to one another at the location
of a synapse.

Intracellular tension
Dennerll et al. (1989) have reported that neurites show passive
viscoelastic properties when stretched with a force smaller than
1 nN. During the 10 fi rst minutes they observed two passive phases:
a rapid increase in length and tension, followed by a damped phase.
Mechanical models with a spring and a Voigt element (spring and
dashpot in parallel) or a Burger element fi t these data well. If a
larger force is applied for a longer time, a third phase is observed in
which the neurite continues to extend while the tension diminishes,
sometimes to less than the tension before the application of the
perturbing force. This third phase corresponds to active growth,
including reorganization of the cytoskeleton and incorporation of
membrane components. This phenomenon explains ‘towed growth’
(growth not generated by the growth cone).

Our model does not differentiate between the two passive pha-
ses, since we consider only springs in series, which is a reasonable
approximation to neurite passive mechanical properties (Dennerll
et al., 1988). The absence of a dashpot is compensated for by the
use of the overdamped approximation in the equation for move-
ment (see below). The tension vector due to the internal spring in
a cylinder is thus:

T einternal = − ,k
a r

r
L L

L

ˆ (8)

where k is the linear spring constant of the neurite, a
L
 the actual

length of the spring (length of the cylinder), r
L
 the resting length

of the spring and ê the unitary vector aligned with the central line
of the cylinder.

The metabolic phase is modeled by changing the resting length
of the springs; for instance, r

L
 → r

L
 + ΔL for elongation, which auto-

matically decreases the tension. As described above, the number
of discrete cylinders scales with the length of the neurites. The

–F

F
Fi–1

Fi

FIGURE 4 | Cartoon representation of the physical discretization and

inter-object mechanical forces in CX3D. Neurons are discretized into small
physical objects, composed of a single point mass and a spherical (for the cell
body) or cylindrical (for the neurite elements) envelope. The envelopes are
used to defi ne inter-object forces when two objects come into close contact.
In this example, a cylinder in a neurite (red) and the sphere of an other cell’s
soma (violet) overlap, which triggers opposite repulsive forces (F and −F). To
determine the repulsion intensity, we defi ne a virtual sphere (black circle) on
the cylinder. The forces are proportional to the overlap of the virtual sphere and
the soma sphere. Spheres have a central point mass, and the force is directly
applied on it. Cylinders have their point mass at the distal extremity, so only a
fraction of their inter-object force is applied on it (Fi), while the rest is
transmitted to the proximal element’s point mass (Fi − 1). In addition, cylindrical
elements contain a spring which is always attached to another proximal
element, and propagates tension along the chain of point masses.

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 7

Zubler and Douglas Simulation framework for neural development

 discretization mechanism is based on the resting length: if it exceeds
a certain threshold, the cylinder is split into two, each half retaining
the same tension.

Active displacement
The biological properties specifi ed by users often require the
active movement of spheres and of neurites’ terminal cylin-
ders, for instance in the case of cell migration or neurite exten-
sion. In this case, an additional force is applied to the physical
objects’ point mass. The moving objects do not modify their
trajectories ahead of time in case of an upcoming collision. But
if after the displacement two objects have come too close (or
interpenetrate), a repulsive force is triggered between them.
This system is as stable as trajectory interpolation, but is less
computationally demanding.

In the case of neurite extension, the displacement of the
distal point mass must result in an increase in the resting length
of the corresponding spring (as in towed growth). It has been
shown (Lamoureux et al., 1989) that the extension rate of an
axon is proportional to the tension its growth cone is applying,
in the following sequence: movement → stretching (increase in
actual length) → increase in tension → active growth (increase
in resting length). Although we could reproduce this sequence
in CX3D, for computational reasons we usually take a short cut:
First the growth cone is moved and then the resting length is set
in order to obtain the desired tension. Similar mechanisms are
possible for retraction: A reduction of the resting length will
induce an increase in tension and then a backward movement
of the distal point mass. Alternatively, the point mass can be
moved fi rst, and then the resting length is updated to maintain
the desired tension.

MOVEMENT
During the simulation, each discrete physical object evaluates all
instances of the three forces applied to it, and sums them to obtain
the total force acting on it. If the total force exceeds a certain thre-
shold, the object moves its point mass appropriately (Figure 5). For
instance, the cylinder i checks if any neighbor in the triangulation
is exerting a force F

ij
 on it, including possible adhesive bonds b. It

also takes into account the tension in its internal spring (T
i
) and in

the springs of the daughter cylinders directly attached distally to it,
if any (note that a terminal cylinder has no daughters, a cylinder in
a chain has one daughter and a cylinder proximal to a branching
point has two daughters).Finally, it might also have some biological
movement M to take into account:

F F F T T Mi ij
j

b i
k

d
d

ktot

Neighbors Bonds |Daughters

= + + + + .
| | | | |

∑ ∑ ∑ (9)

In classical mechanics, the equation for movement in a medium
with friction is

mx x F+ = ,∑β (10)

where x is the acceleration, x the speed, m the mass and β the kinetic
friction. Neuron elements in a tissue have a low Reynolds number
(typically 10−7 for a growth cone; Aeschlimann, 2000), which means
that the ratio of the inertial forces to the viscous forces is low. It is
then perfectly reasonable to make the overdamped approximation:
That is, to assume mx 0= . The consequences of this assumption are
(1) that an element doesn’t move if it is not currently subject to a
force and (2) that the major obstacle to movement is no longer the
mass but the friction coeffi cient. Consequently, physical objects in
CX3D move according to:

A B C

FIGURE 5 | CX3D simulation snapshots demonstrating the mechanical

interactions in a test system, composed of a chain of cylinders attached to a

small sphere (red), and three bigger spheres (blue). The total force applied to
each point mass is represented by a black arrow. (A) We start with the artifi cial
situation where the chain of cylinders and the three spheres are strongly
overlapping. This condition triggers a radial force on each of the cylinders’ point
masses, pushing them outside the spheres. The spheres are subject to the sum
of the opposite forces, plus the sphere–sphere interactions. (B) After the system
has started to relax due to objects being displaced, the magnitudes of the forces

start to diminish. The radial movement of the cylinder point masses has resulted
in an elongation of the internal springs joining them, which triggers an intra-object
force that adds to the component due to the object overlap, and hence results in
a less radial total force on the cylinders. (C) After complete relaxation, there is no
object overlap anymore, and the distances between the point masses of the
cylinders chain correspond to the springs resting lengths. Therefore there is no
force present anymore. For each discrete object in the system, the link to its
neighbors, defi ned by the 3D Delaunay triangulation is shown (grey). Note the
additional vertices that are not corresponding to a physical object.

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 8

Zubler and Douglas Simulation framework for neural development

βx F= .∑ (11)

In addition, we have a term for static friction that provides a
threshold for the initiation of movement. If the total force exceeds
the static friction, then the actual movement is computed using the
explicit Euler method: Multiplying the speed with the time step to
obtain the actual displacement:

Δ =
⎛
⎝⎜

⎞
⎠⎟

Δ .∑x F
1

β
t (12)

IMPLEMENTATION
CX3D is written in Java because it is an object-oriented language;
it benefi ts from many libraries (for visualization for instance); it
does not have to be recompiled to run on different platforms; and
it provides methods for distributing processes across multiple com-
puters, which will be crucial for future development.

Our software design is modular, keeping a clear separation
between the biological processes on the one hand, and the infra-
structure needed to run the physics and computationally organize
the simulation on the other hand. Four abstract layers are used in

the representation of cells (Figures 6A,B and Appendix). In addi-
tion, CX3D contains several utility packages that are not discussed
in this paper.

To design a particular cellular model, users must write modules
(small java classes implementing a special interface) that are inser-
ted into the cells to engender their specifi c functionality. There
are two different types of modules: Local biology modules; and
cell modules.

Local biology modules represent all the local biological proces-
ses. Each one is attached to a particular physical object (one of the
spheres or cylinders used to represent the neuron) and reads from
it physical data such as current volume, tension, or concentration of
an extracellular substance. Likewise, the module sends instructions
to the physical object, for example to move, change its shape, or to
extend a new branch. For instance, the simplest module for per-
forming chemotaxis would repeatedly execute the following three
steps: (1) query from the associated physical object the gradient of
an extracellular substance’s concentration, (2) compute a desired
movement, (3) transmit a movement direction and speed to the
physical object. CX3D would perform the displacement, update the
physical values (e.g. defi ne a new length in the case of a cylinder),
and update the triangulation. If the movement had brought the

SpaceNode

Triangulation
Package

PhysicalNode

PhysicalObject

PhysicalCylinderPhysicalSphere

Cell

 CellElement

NeuriteElementSomaElement

CellModule

LocalBiologyModule

has one
has a collection of
derives from
 (class inheritance)

Cell 314

Cell 271

A

B C D

E F

FIGURE 6 | Program architecture of CX3D. (A) Java class diagram and
(B) cartoon representation of the four abstract layers used in the representation
of a cell in the CX3D framework: the Delaunay triangulation defi ning a
neighborhood relation between space regions and physical objects (green); the
physical layer containing the classes representing the discrete space regions
and the physical objects contained in them (blue); the local biology layer, with
biological elements associated with the physical objects (red), and fi nally the

higher level biological properties expressed at the cell level (white). See
Appendix for a detailed description of the java classes. (C–F) Local biology
modules specifying the simulation properties are associated with specifi c cell
elements. When new objects are created, the local biology modules can be
automatically copied according to four different schemes: when cells divide,
when neurite elements branch, when new neurites are being formed from the
soma, and during neurite elongation.

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 9

Zubler and Douglas Simulation framework for neural development

object too close to another physical object, a symmetrical force will
be applied on both objects at the next time step, possibly pushing
them away from one another again. Local biology modules can
be copied automatically into new discrete cell elements in case of
soma division, new neurite extension, neurite branching, or neurite
elongation (Figures 6C–F).

Cell modules are used to model biological processes affecting
the whole cell, such as cell cycles, or gene expression. Because they
characterize the entire cell, these modules cannot be linked to any
particular spatially located spheres or cylinders that represent the
spatial discretization of the cell.

RESULTS
CX3D provides a general framework for various types of neural
growth simulations. In this section we present fi ve examples of
different kinds of problems that could be simulated with CX3D.
Each example was obtained by writing appropriate local biology
modules and cell modules that provide the biological functiona-
lity required for each case. The fi rst three examples are original
models, and the fi nal two are previously published models now
re-implemented in CX3D.

FORMATION OF A LAYERED CORTEX
Our fi rst example models the formation of a layered cortical-
like structure (Figure 7 and Videos S1 and S2 in Supplementary
Material). During corticogenesis, neuron precursors are generated
by division of the progenitor cells in the ventricular and subven-
tricular zone (Kriegstein and Noctor, 2004). These precursors
then migrate radially, climbing along long processes attached
to the radial glial cells (Rakic, 1972), from which they detach
before entering the cells that will form the future layer 1 (L1). It

is remarkable that each generation of neurons migrates through
all its predecessors, leading to an inside out formation of the
cortex, with fi rst cells of layer six (L6), then fi ve (L5), four (L4)
and fi nally three and two (here considered together as L2/3).
L1 cells are continuously pushed further away from the ventri-
cular zone. The exact control mechanisms for the detachment
is not clear, but the protein reelin, produced by some L1 cells is
necessary. We simulated a model in which reelin is the only signal
present (Cooper, 2008).

The simulation is initialized with an array of 8 by 8 radial glial
cells, each having a long process that extends vertically through a
volume of preplate cells (subplate cells and future layer one cells on
the top). These glial cells divide asymmetrically and form neuronal
precursors. Depending on time, they form fi rst L6 cells, then L5, L4
and L2/3 (colored in blue, violet, red and green respectively). The
neuron precursors have inside their local biological modules the
instructions to execute the following sequence: (1) To move ran-
domly until they touch a radial fi ber on which they fi x themselves.
(2) To migrate (distally) along the radial fi ber. (3) To leave the fi ber
when they encounter an L1 cell, and thus stop their migration. Due
to the physical properties of the spheres, the neuron precursors split
the preplate and push the L1 cells, so progressively displacing the
stopping signal. The fact that we can reproduce the inside-out lami-
nation of the cortex with this extremely simple set of instructions
highlights the importance of incorporating mechanical interactions
in the simulation of developmental processes.

LAYER SPECIFIC DENDRITIC GROWTH
The second example (Figures 1 and 8 and Video S3 in
Supplementary Material) illustrates the use of diffusible guidance
molecules and how they can be used to produce layer- specifi c

A B C D

FIGURE 7 | Simulation of cortical layers formation. The fi gure shows a
section through a volume of developing tissue. (A) Layer 6 neuron precursors
(blue) are produced by asymmetrical division of the progenitor cells (larger grey,
at the bottom). They migrate along radial glial processes (green fi bers). (B) Once
the neuron precursors detect a contact with the top-most L1 cells (orange), they
stop their migration by detaching from the radial fi bers. Due to the mechanical

interactions between cells, the fi rst layer is pushed upward. (C) When L5
neurons are produced, they follow the same path, passing through L6 cells until
they contact L1. (D) Similarly with L4 and L2/3. Each generation passes through
all the predecessors, to form a layered structure. Due to the large mechanical
forces, a few cells in this simulation end up in the wrong layer, as observed in
the cortex (Polleux et al., 2001).

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 10

Zubler and Douglas Simulation framework for neural development

 branching patterns of neurites (Castellani and Bolz, 1997;
Dantzker and Callaway, 1998). The simulation begins with an
already-formed three layer cortex that could have been produ-
ced by mechanisms similar to those of the previous example.
The layers are formed of three different types of cells (L6, L5
and L4), all secreting a diffusible, layer-specifi c substance (for
instance each L4 soma produces only the ‘L4’ substance, etc.).
These substances diffuse through the environment, establishing
chemical gradients that will guide the development of the axonal
and dendritic neurites from two test cells inserted in L6, leading
to a branching pattern that respects the layer specifi city of pyra-
midal cells of layer 6. Namely, a down-going main axonal shaft,
which produces side branches in L6 that move up to L4, where
they ramify, and an apical dendrite, also terminating in L4, but
starting to branch earlier than the axons.

In this simulation, each cell type forming the layers contains a
single module, responsible for secreting the appropriate substance.
The diffusion is performed automatically by the physics engine of
CX3D. For the development of the branches, we wrote two small
modules modeling the growth-cone functions and inserted them
into the initial neurites. One of the modules elongates its neurite
by moving its cylinder point mass either down the gradient of
the L5 substance (for the axonal main trunk) or up the gradient
of the L4 substance (for all other branches). The other module
allows branching to occur with a probability that depends on the
local concentration of a specifi c substance (L6 for the initial axon,
L4 for the others branches). Different concentration thresholds for
branching have been defi ned for the axons and the dendrites, and
therefore the latter start their ramifi cation earlier. Both modules are
copied at branch points into the two new daughter growth cones.
Neurite diameters decrease during elongation and at branch points,
and the growth stops when the diameter has become smaller than
a certain threshold.

The purpose of this simulation was not to reproduce exactly the
morphological properties of specifi c cell types, but rather to illu-
strate the importance of long range inter-cellular communication
through secretion and detection of diffusible cues.

DISSOCIATED CULTURE
Much can be learned from dissociated cell cultures, because their
architecture is simpler than cells developing in-vivo, and because
they are more accessible to imaging technics. Also, by growing cells
on multiple electrode arrays it becomes possible to selectively record
from, and to simulate, elements of a network. Some research groups
have been interested in modeling this neuron–silicon interface, and
have made growth simulations of neurons on a plate (Massobrio
et al., 2007).

By restricting the cell movements to a very thin section of
space, we can reproduce the 2.5D environment of cell cultures
on a Petri dish. Our next simulation (Figure 9A and Video S4 in
Supplementary Material) shows 12 isolated cells on a plate, exten-
ding an axon and several dendrites. As in the previous example,
each terminal neurite element contains a movement module and
a branching module responsible for the extension of the cells. The
main difference is that no guidance molecules are produced, so
leading to the formation of an isotropic network.

This example illustrates two other features of CX3D. First, the
possibility to change the cell–cell physical force. In this example, by
increasing the range and the strength of attraction in the interac-
tion between cylinders, we reproduce the fasciculation of neurites
often observed in cultures. Secondly, the formation of a neuronal
network: If an axonal neurite element comes into close contact
with a dendritic neurite element, a synapse is formed with a certain
probability between the two elements (Stepanyants et al., 2002).
Neurons and their connections defi ne a network (Figure 9B), whose
description can be exported as an XML document that conforms to

L4

L5

L6

FIGURE 8 | Branching pattern based on extracellular signaling molecules. In
this simulation, we started with a column of a cortex-like tissue, with three layers
composed of specifi c cell types (L6, L5 and L4, depicted in medium, dark and light
grey respectively). Each cell secretes a layer-specifi c diffusible chemical, serving as

guidance cue for the layer specifi c growth of the axonal and dendritic arbor of two
test cells. The usual layer preference of typical L6 pyramidal branch could be
reproduced: an apical dendrite (red) branching at the L5-L4 transition, and a down-
going axon (black), with side branches in L6, moving up to ramify in L4.

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 11

Zubler and Douglas Simulation framework for neural development

the NeuroML (Goddard et al., 2001) description used for specifying
electrophysiological simulations. This bridge from developmental
to electrophysiological simulation offers a valuable tool for scienti-
sts interested in studying electrical activity in developing networks.
Of course, it would be possible in future to extend CX3D to provide
direct simulation of electrophysiology.

CONTACT INHIBITION
Lateral inhibition is an important mechanism for selecting – in
an homogeneous population – individual cells that will adopt
specifi c characteristics. One of the most studied pathway invol-
ves the transmembrane proteins Delta and Notch, from which
Collier et al. (1996) published a model: Notch is activated by
the expression of Delta on the neighboring cells, whereas Delta
is inhibited by the Notch level on the same cell. Additionally,

both proteins are subject to exponential decay. This gives rise
of a pattern of cells with a low Notch and high Delta profi le,
surrounded by cells with high Notch expression.

Collier et al. (1996) were mainly inspired by observations
on Drosophila, but the Delta-Notch system is commonly found
throughout neural systems development, including in the mam-
malian cortex where it is used to determinate which cells will
acquire a neuronal or a glial fate. Therefore, we took it as a test
example of how other models can be re-implemented in our
framework. By doing so, the model originally developed on a
2D regular grid could be extended to a 3D agent-based ver-
sion (Figure 10). In addition, now that it is coded in CX3D, it
can be combined with other models in larger simulations. For
instance to select the cells that will divide in a tissue (Video S5
in Supplementary Material).

A B

FIGURE 9 | Dissociated culture neurons forming a network. (A) Eleven
excitatory (grey) and one inhibitory (red) cells are randomly disposed in a 2.5D
environment. They extend 4–7 neurites; one of them, thinner and growing faster,
represents the axon. An attractive force between the cell elements induces a
tendency to fasciculate. After the growth is completed, synaptic connections are

formed randomly between neighboring axons and dendrites (black links).
(B) Graph representation of the circuit shown on the left, drawn from a
NeuroML description of the network, exported from CX3D after the simulation
(black arrows: excitatory projections; red arrows: inhibitory projections; line
thickness proportional to the number of synapses between cells).

FIGURE 10 | Simulation of pattern formation by lateral inhibition (surface

molecules). The simulation starts with a homogeneous population of cells
expressing equal concentrations of the membrane bound ligand Delta (D) and
its receptor Notch (N). According to the model of (Collier et al., 1996), each
cell activates over time N in the neighboring cells, depending on its own

D level, while decreasing its own D concentration based on its N level. The
result is the selection by lateral inhibition of cells with a low N and high D.
Such cells are not contiguous. (Red color intensity proportional to N,
green proportional to D. Equal level of red and green intensity
appears yellow).

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 12

Zubler and Douglas Simulation framework for neural development

Cell elements in CX3D can express membrane-bound substances.
We designed a local biological module to regulate the expression for
Delta (D) and Notch (N), according to the following dynamics:

dN

dt
f D N

dD

dt
g N D

= −

= −

()

()

with f(x) = min(1,20x), g(x) = max(0,1 − x) and D is the average
value of Delta on all the cells in close contact. This example is another
illustration of the importance of modeling physics in a general pur-
pose simulator (here to detect contact between close neighbors).

INTERNAL RESOURCE COMPETITION
For this last example, we demonstrate the implementation in CX3D
of a previously published model of neurite outgrowth. Kiddie et al.
(2005) presented a 2D model based on a production-consumption
mechanism: the soma produces two substances, tubulin (T) and
microtubule associated proteins (MAPs), which diffuse intracel-
lularly to the distal branches of the neuron. T accounts for exten-
sion and retraction of growing neurites by polymerization and
depolymerization of microtubules. MAPs, after transformation into
several isoforms, regulate the branching probability by modifying
microtubule stability.

To implement their model in CX3D (Figure 11), we wrote an
intracellular secretion module for the soma production of T and
MAPs at a fi xed rate, and a growth cone module which extends
or retracts based on the local concentration of T, and bifurca-
tes with a probability depending on the concentration of MAPs.
The growth cone module is copied at each branching point. The
intracellular diffusion is processed automatically by the physics
engine of CX3D.

This last example was well-suited to the CX3D framework
because it relies on local computation by independent agents
(in this particular case each growth cone’s behavior depends exclu-
sively on its intracellular concentration of T and MAP), and because
it requires the modeling of physical processes (the intracellular
diffusion).

PERFORMANCE TESTING
The execution speed of a CX3D simulation depends on the type
of operations performed (in particular the proportion of physical
objects that are moving). To test the performance of our framework,
we present the CPU time required per time step for three different
models. The simulation time step is 10−2 h, and the speed of actively
moving cell components is uniformly set at 100 µm/h. All tests were
performed on a MacBook Pro with a 2.4 GHz Intel Core 2 Duo
processor, running Java 1.6.0.

The simulation of cell clustering shown in Figure 3G is close
to the worst case scenario, with each single physical object moving
at each time step, and each cell element containing a local biology
module. For 2000 cells and 400 additional triangulation vertices
(i.e. 2000 PhysicalObjects, LocalBiologyModules, CellElements
and Cells, and two substances diffusing across 2400 extracellular
volumes), the initialization, i.e. the creation of all objects with the
initial triangulation was done in 3.3 s, and the simulation of one
time step took 400 ms. The images taken at 300 and 800 time steps
are obtained respectively after 2 and 5 min 20 s. It took much more
time to have already formed clusters move and fusion into larger
cells assemblies; the last image taken after 6000 time steps required
40 min of simulation.

The situation is much more favorable in our model of lateral
inhibition, where objects don’t move (and thus the triangulation
is not modifi ed), and where the substances are membrane-bound
and thus don’t diffuse in the extracellular space. For 2000 cells and
no additional triangulation vertex, the simulation takes 63 ms per
time step. The pattern presented in Figure 10 is complete after 400
time steps, i.e. 25 s.

Most simulations in practice correspond to intermediate cases,
in which only a fraction of the physical objects are actively moving,
as for instance in the model presented in Figure 8. For 1800 static
somata and 100 additional triangulation vertices, with three extra-
cellular substances diffusing, the simulation takes initially 135 ms
per time step (at an early stage where the growing cells are compo-
sed of 140 non-terminal cylinders plus nine terminal cylinders with
local biology modules in total). It requires 285 ms per time step at
a later stage where there are 840 non-terminal cylinders plus 585
terminal cylinders. The total simulation time was 85 s.

DISCUSSION
Current efforts in developmental neuroscience research focus on
reductive characterization of specifi c biological processes, such as
biochemical pathways or gene expression patterns. These studies
are essential to understand the mechanisms of brain development.
However, even in the most studied systems, it is often diffi cult to
understand how the higher level process of brain development
emerges from interactions between these lower level mechanisms.
Simulation offers a means of studying these organizational processes
(van Ooyen, 2003). CX3D, with its physics engine, its multi-agency

FIGURE 11 | Simulation of branching pattern based on intracellular

protein concentrations. The fi gure shows a 3D implementation in CX3D of
the neurite outgrowth model of (Kiddie et al., 2005). Tubulin is produced in the
soma, diffuses internally and is consumed distally for branch elongation. The
intracellular concentration is color coded (light pink: higher concentration).
Additionally, microtubule associated proteins are also secreted at the soma,
diffuse distally where they are transformed in several isoforms, regulating the
branching behavior.

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 13

Zubler and Douglas Simulation framework for neural development

and modular architecture is well suited for exploring these issues in
neural development. Users describe the simulation specifi cations
by writing small mechanistic modules that are incorporated into
the cells, defi ning the biological properties locally or at cell level.
Using this approach, one can study growth and development in
simulations of hundreds of cells.

In self constructing systems, the environment (including phy-
sical laws) plays an active role in constraining the local interac-
tions between agents. For instance, our fi rst original simulation
(Figure 7) showed how a very simple sequence of instructions could
reproduce the inside-out migration pattern of cortical neurons; but
the division and migration of neural precursors would have failed
to produce a layered structure if the inter-cell physical interac-
tions had not participated in displacing the L1 cells upward. This
result shows that CX3D could also be used for simulating other
situations where mechanical forces play a major role in nervous
systems development, for instance the formation of the neural tube
(Shinbrot, 2006), or cortical folding. In the latter case, a simulation
might help to distinguish between causes and consequences (see
for instance the different hypotheses linking cortical folding to
intra-areal connections or respective cell numbers in supra- and
infra-granular layers in gyrii and sulcii; VanEssen, 1997; Hilgetag
and Barbas, 2006; Kriegstein et al., 2006).

In the model presented in Figure 8, we could reproduce a layer-
specifi c branching pattern, because the biological modules active
in the terminal branches of the neurites could detect the diffusi-
ble signaling molecules produced by other cells. Associated with
the possibility of expressing and detecting membrane substances,
it offers the possibility to investigate by simulation a number of
classical problems in developmental neuroscience, such as optical
tectum map formation (Goodhill and Richards, 1999; Willshaw,
2006), midline crossing (Goodhill, 2003), and, of course, more
accurate models of cortical neuronal development.

These simulation methods demonstrate how morphology and
function can arise out of implicit rules. For instance in our second
example (Figure 8), the desired shape of the adult neuron was not
explicitly specifi ed in the code. Instead, local decisions on whether
to turn or to branch were taken independently in the growth cones,
based on local chemical conditions, which lead to the fi nal cell
architecture. If the guidance cues had been secreted at different
locations, or if they were absent, the resulting branching pattern
would have been completely modifi ed. Due to its modularity CX3D
provides the ability to run the same biological models in different
test environments, which is a valuable tool for a modeler interested
in studying the relative importance of extrinsic and intrinsic factors.
The model for a cortical cell can be tested in a cortex-like layered
structure with several guidance cues, or in a sparse in vitro environ-
ment like the one of Figure 9. This kind of approach is interesting,
in that it provides the modeler with two sets of constraints on a
single set of parameters in the growth cone module. The fact that
similar simulations can be run with various parameters, or after
having selectively de-activated specifi c functions is also of interest
for the study of mutations. For instance, in a more elaborated model
of cortical plate formation incorporating various signaling molecu-
les, it will be possible to suppress their activity totally or partially,
to try to reproduce well-known phenotypes (Assadi et al., 2003;
Herms et al., 2004), or maybe even to predict new ones.

Our goal was to provide a general purpose simulation fra-
mework for the simulation of the physical development of neuronal
networks. We showed how two models from the literature could
easily be implemented in CX3D. Indeed, we could rely on the phy-
sics engine for technicalities like neighbor detection or diffusion,
and did not have to code them anew. An obvious advantage in using
the same framework for several types of simulations is that they
can easily be combined in a larger simulation. As an illustration, we
added a cell cycle to the Delta-Notch model of Collier et al. (1996)
(Video S5 in Supplementary Material).

FUTURE WORK
We have given several examples of how CX3D can be used to simu-
late growth of neurons in 3D space. Although we have the ability to
generate synapses at contact points between neurons, these synapses
are not functional, because our program does not yet incorporate
electrophysiology. However, where the electrophysiology is reque-
sted, we provide the ability to export a description of a grown
network as an XML document with the NeuroML level 3 specifi ca-
tion2 (Goddard et al., 2001). These documents can be used to con-
fi gure a simulation in a point neuron electrophysiology simulator
such as PCSIM3 (Pecevski et al., 2009). Future versions of CX3D
could include an electrophysiology module directly inside neurites.
Alternatively, modules could implement an interface for online
communication with a coexisting electrophysiology simulator. This
feature would of course be of great interest, because of the direct
infl uence of electrical activity on neurite outgrowth (Hutchins and
Kalil, 2008), or on interneuron migration (de Lima et al., 2009);
and in a later phase to study phenomena like synaptic competi-
tion (Turrigiano, 2008) and learning (Butz et al., 2009). A further
limitation of the present version of CX3D is that it runs on a single
processor, so limiting both the speed and the size of simulations.
However, we are currently developing a parallel implementation.

APPENDIX
PROGRAM ARCHITECTURE
This section describes the general organization of the CX3D pla-
tform by introducing the principal classes of each package.

There are four abstract layers in the representation of a cell in
CX3D (Figures 6A,B). One purely technical with which the user
never interacts, one representing the physics of the simulation,
on which the user has to call some methods, and two layers with
which the user interacts by writing small modules describing
the model’s specifi cations. Each layer correspond to a distinct
java package:

(1) ini.cx3d.spatialOrganization: this layer defi nes the Delaunay
triangulation and median dual graph needed to spatially
organize the elements of the simulation, and decompose the
extracellular volume. We use the package Dyna3D develo-
ped by Dennis Goehlsdorf4. Vertices are defi ned by the class
SpaceNode, of which each discrete object or space volume
has one instance.

2http://neuroml.org
3http://www.igi.tugraz.at/pcsim
4http://www.ini.uzh.ch/~dennis

http://neuroml.org
http://www.igi.tugraz.at/pcsim
http://www.ini.uzh.ch/~dennis

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 14

Zubler and Douglas Simulation framework for neural development

(2) ini.cx3d.physics: the second layer represents the physical pro-
cesses, both of the extracellular matrix (extracellular diffusion)
and of the neurons (mechanics and intracellular diffusion),
for which we use instances of the PhysicalSpace class, and
sub-classes of the abstract PhysicalObject, respectively. To
have the latter derived from the class defi ning the extra-cellular
matrix volumes ensures that any object in the simulation, as
soon as it is instantiated, automatically comes with a minimal
defi nition of the space it occupies. To embody the neurons in
the simulation framework we discretize them into small sphe-
res (for the somata) and cylinders (for the neurite segments)
with the classes PhysicalSphere and PhysicalCylinder.
They contain the methods needed for the simulation of the
mechanics and offer an interface for communication with the
biological modules so that the physical shape of the neurons
can be modifi ed by growth, branching, retraction etc.

(3) ini.cx3d.localBiology: the third layer specifi es the local
 biological properties of the simulation, namely the behavior of
the spheres and cylinders, with the classes SomaElement and
NeuriteElement respectively (both subclasses of the abstract
LocalBiologyObject). Instances of these are always asso-
ciated with a particular PhysicalObject. These instances
contain modules written by the users to defi ne the specifi c
rules governing the behavior of each discrete object in the
model he wants to simulate. These modules are classes that
implement the LocalBiologyModule interface.

(4) ini.cx3d.cell: the fourth and last layer defi nes the higher level
biological processes, infl uencing the whole neuron. As for the
local biology level, it is composed of modules that the user
can write, implementing a special interface (CellModule).
These modules are contained in the class Cell, of which
there is only one instance per neuron.

Finally, the user should be familiar with the package ini.cx3d.
Simulation, which contains two important classes:

ECM contains a list of all the objects currently active in the simula-
tion (instances of the classes described above). This class is also used
for adding supplementary vertices to the triangulation, to defi ne
chemicals or chemical reactions, and to add boundary conditions.

Scheduler contains methods to execute the simulation. That
means that it calls the run() method of each object. Consequently,
the physical objects process diffusion, compute their mechanical
interactions and move accordingly. The local biology objects and
the cells run all their modules (and thus the models are execu-
ted). The triangulation, on the other hand, is not run by the
scheduler but only updated in case of vertex displacement, remo-
val or insertion. The fi rst time that the scheduling methods are
executed, a GUI window appears, and graphically displays the
physical objects.

A COMMENTED EXAMPLE
The usage of CX3D is described in a tutorial available on the
CX3D website5. We briefl y illustrate the programming interface
by implementing a simplifi ed version of the model presented in
Figure 11: The soma secretes the intracellular substance ‘tubulin’

which diffuses along the neurite branches. The neurite distal
segments (the growth cones) consume tubulin to move at a
speed proportional to its concentration, and bifurcate with a
constant probability.

To encode this simulation, we write three short java classes:
two modules (a java class implementing the nine methods of the
LocalBiologyModule interface, or extending the abstract class
AbstractLocalBiologyModule), and one additional class to
initialize the simulation.

Recall that each module is located within a CellElement.
Instances of this fi rst module will be located in a soma, where
they secrete tubulin at a constant speed:

public class InternalSecretor extends
 AbstractLocalBiologyModule {
 // secretion rate (quantity/time):
 private double secretionRate = 100;
 // (required by the super class):
 public AbstractLocalBiologyModule getCopy() {
 return new InternalSecretor();
 }
 // This method is executed at each time step:
 secretion of tubulin in the extracellular space with
 the modifyIntracellularQuantity method of
 PhysicalObject.
 public void run() {
 super.cellElement.getPhysical().
 modifyIntracellularQuantity("tubulin", secretionRate);
 }
}

The second module represents the growth cone. There is one
instance of this class in each terminal neurite compartment. It
performs a smooth random walk (the direction is slightly per-
turbed after each step), with a speed depending on the concen-
tration of tubulin, which is also consumed in proportion to the
speed. In addition, the growth cones bifurcate occasionally, in
which case copies of the module are inserted into the new dau-
ghter branches:

public static class GrowthCone extends
 AbstractLocalBiologyModule{
 // some parameters
 private static double speedFactor = 5000;
 private static double consumptionFactor = 100;
 private static double bifurcationProbability = 0.003;
 // direction at previous time step:
 private double[] previousDir;
 // the initial direction is parallel to the cylinder axis
 // therefore we override this method from the superclass:
 public void setCellElement(CellElement cellElement){
 super.cellElement = cellElement;
 this.previousDir = cellElement.getPhysical().
 getAxis();
 }
 // to ensure distribution in all terminal segments:
 public AbstractLocalBiologyModule getCopy() {return
 new GrowthCone();}
 public boolean isCopiedWhenNeuriteBranches() {return
 true;}
 public boolean isDeletedAfterNeuriteHasBifurcated()
 {return true;}5http://www.ini.uzh.ch/projects/cx3d/

http://www.ini.uzh.ch/projects/cx3d/

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 15

Zubler and Douglas Simulation framework for neural development

 // growth cone model
 public void run() {
 // getting the concentration and defining the speed
 PhysicalObject cyl = super.cellElement.
 getPhysical();
 double concentration = cyl.
 getIntracellularConcentration("tubulin");
 double speed = concentration*speedFactor;
 // movement and consumption
 double[] direction = Matrix.add(previousDir,
 Matrix.randomNoise(0.1,3));
 previousDir = Matrix.normalize(direction);
 cyl.movePointMass(speed, direction);
 cyl.modifyIntracellularQuantity("tubulin",
 -concentration*consumptionFactor);
 // test for bifurcation
 if(ECM.getRandomDouble()<bifurcationProbability)
 ((NeuriteElement)(super.cellElement)).
 bifurcate();
 }
}

Now we can set up and run the simulation, i.e. write a class
to (1) defi ne the substance ‘tubulin’; (2) create a cell (quadruple
Cell-SomaElement-PhysicalSphere-SpaceNode); (3) with
an initial neurite segment; (4) place the local biology modules;
and (5) start the scheduler:

public class ProductionConsuption{
 public static void main(String[] args) {
 // (1) properties of the intracellular substance
 double D = 1000; // diffusion constant
 double d = 0.01; // degradation constant
 IntracellularSubstance tubulin = new
 IntracellularSubstance("tubulin",D,d);
 tubulin.setVolumeDependant(false);
 // registering the substance with the ECM class
 ECM.getInstance().
 addNewIntracellularSubstanceTemplate(tubulin);
 // (2) getting a cell (with the four abstract
 layers) at position (0,0,0)

 Cell c = CellFactory.getCellInstance(new double[]
 {0,0,0});
 // (3) create a neurite (pointing along the z-axis)
 NeuriteElement ne = soma.extendNewNeurite(new
 double[] {0,0,1});
 ne.getPhysical().setDiameter(1.0);
 // (4) insert production module in the cell’s soma
 SomaElement soma = c.getSomaElement();
 soma.addLocalBiologyModule(new InternalSecretor());
 // insert growth cone module into the neurite
 element
 ne.addLocalBiologyModule(new GrowthCone());
 // (5) run the simulation
 Scheduler.simulate();
 }
}

This model is extremely simplistic, but it already exhibits intere-
sting properties: The elongation speed decreases with the number
of terminal branches, but the bifurcation probability over time is
constant, and so the distance between two branch points beco-
mes shorter. In addition the tortuosity also increases as the speed
decreases.

ACKNOWLEDGMENTS
We thank Dennis Goehlsdorf for providing the Delaunay trian-
gulation, Matthew Cook, Jason Rolfe, Andreas Steimer for helpful
discussions on simulating diffusion, Sabina Pfi ster for her contribu-
tions to biological models, Fabian Roth for help with the software
architecture, Albert Cardona for his expertise in Blender, Adrian
Whatley for his help with PCSIM, and Roman Bauer, Klaus Hepp,
Giacomo Indiveri, Kevan Martin, and Rudolf Zubler for useful
comments on the manuscript. This work was supported by the
EU grant 216593 “SECO”.

SUPPLEMENTARY MATERIAL
The Supplemental Material for this article can be found online
at http://www.frontiersin.org/computationalneuroscience/paper/
10.3389/neuro.10/025.2009/

REFERENCES
Aeschlimann, M. (2000). Biophysical

Models of Axonal Path Finding. Ph.D.
Thesis, University of Lausanne.

Alves, R., Antunes, F., and Salvador, A.
(2006). Tools for kinetic modeling of
biochemical networks. Nat. Biotechnol.
24, 667–672.

Ascoli, G. A., Krichmar, J. L., Scorcioni, R.,
Nasuto, S. J., and Senft, S. L. (2001).
Computer generation and quan-
titative morphometric analysis of
virtual neurons. Anat. Embryol. 204,
283–301.

Assadi, A. H., Zhang, G., Beffert, U.,
McNeil, R. S., Renfro, A. L., Niu, S.,
Quattrocchi, C. C., Antalffy, B. A.,
Sheldon, M., Armstrong, D. D., Wynsh
aw-Boris, A., Herz, J., D’Arcangelo, G.,
and Clark, G. D. (2003). Interaction of
reelin signaling and lis1 in brain deve-
lopment. Nat. Genet. 35, 270–276.

Barth, T., and Ohlberger, M. (2004).
Encyclopedia of Computational
Mechanics, Volume 1, Fundamentals.
John Wiley & Sons, Ch. Finite Volume
Methods: Foundation and Analysis,
pp. 439–474.

Bower, J. M., and Beeman, D. (1995). The
Book of Genesis: Exploring Realistic
Neural Models with the General Neural
Simulation System, Electronic Library
of Science. New York, Springer-Verlag.

Butz, M., Worgotter, F., and van Ooyen, A.
(2009). Activity-dependent structural
plasticity. Brain Res. Rev. 60, 287–305.

Cai, A. Q., Landman, K. A., and Hughes,
B. D. (2006). Modelling directional
guidance and motility regulation in
cell migration. Bull. Math. Biol. 68,
25–52.

Castellani, V., and Bolz, J. (1997).
Membrane-associated molecules
regulate the formation of layer- specifi c

cortical circuits. Proc. Natl. Acad. Sci.
U.S.A. 94, 7030–7035.

Chilton, J. K. (2006). Molecular mecha-
nisms of axon guidance. Dev. Biol.
292, 13–24.

Collier, J. R., Monk, N. A., Maini, P. K., and
Lewis, J. H. (1996). Pattern formation
by lateral inhibition with feedback: a
mathematical model of delta-notch
intercellular signalling. J. Theor. Biol.
183, 429–446.

Cooper, J. A. (2008). A mechanism for
inside-out lamination in the neocor-
tex. Trends Neurosci. 31, 113–119.

da Fontoura Costa, L., and Coelho, R. C.
(2005). Growth-driven percolations:
the dynamics of connectivity in neu-
ronal systems. Eur. Phys. J. B Condens
Matter Complex Syst. 47, 571–581.

Dantzker, J. L., and Callaway, E. M. (1998).
The development of local, layer-speci-
fi c visual cortical axons in the absence

of extrinsic infl uences and intrinsic
activity. J. Neurosci. 18, 4145–4154.

de Gennes, P.-G. (2007). Collective neu-
ronal growth and self organization of
axons. Proc. Natl. Acad. Sci. U.S.A. 104,
4904–4906.

de Lima, A. D., Gieseler, A., and Voigt, T.
(2009). Relationship between gabaer-
gic interneurons migration and early
neocortical network activity. Dev.
Neurobiol. 69, 105–123.

Dennerll, T. J., Joshi, H. C., Steel, V. L.,
Buxbaum, R. E., and Heidemann, S. R.
(1988). Tension and compression in
the cytoskeleton of pc-12 neurites. ii:
Quantitative measurements. J. Cell
Biol. 107, 665–674.

Dennerll, T. J. , Lamoureux, P.,
Buxbaum, R. E., and Heidemann, S. R.
(1989). The cytomechanics of axonal
elongation and retraction. J. Cell Biol.
109(Pt 1), 3073–3083.

http://www.frontiersin.org/computationalneuroscience/paper/10.3389/neuro.10/025.2009/

Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 25 | 16

Zubler and Douglas Simulation framework for neural development

Goddard, N. H., Hucka, M., Howell, F.,
Cornelis, H., Shankar, K., and
Beeman, D. (2001). Towards neu-
roml: model description methods
for collaborative modelling in neuro-
science. Philos. Trans. R. Soc. Lond., B,
Biol. Sci. 356, 1209–1228.

Goodhill, G. J. (2003). A theoretical model
of axon guidance by the robo code.
Neural. Comput. 15, 549–564.

Goodhill, G. J., Gu, M., and Urbach, J. S.
(2004). Predicting axonal response to
molecular gradients with a computa-
tional model of fi lopodial dynamics.
Neural. Comput. 16, 2221–2243.

Goodhill, G. J., and Richards, L. J. (1999).
Retinotectal maps: molecules, models
and misplaced data. Trends Neurosci.
22, 529–534.

Hamilton, P. (1993). A language to
describe the growth of neurites. Biol.
Cybern. 68, 559–565.

Hentschel, H. G., and van Ooyen, A.
(1999). Models of axon guidance and
bundling during development. Proc.
Biol. Sci. 266, 2231–2238.

Herms, J., Anliker, B., Heber, S., Ring, S.,
Fuhrmann, M., Kretzschmar, H.,
Sisodia, S., and Müller, U. (2004).
Cortical dysplasia resembling human
type 2 lissencephaly in mice lacking
all three app family members. EMBO
J. 23, 4106–4115.

Hilgetag, C. C., and Barbas, H. (2006).
Role of mechanical factors in the
morphology of the primate cerebral
cortex. PLoS Comput. Biol. 2, e22. doi:
10.1371/journal.pcbi.0020022.

Hines, M. L., and Carnevale, N. T. (1997).
The neuron simulation environment.
Neural. Comput. 9, 1179–1209.

Huang, H., Kamm, R. D., and Lee, R. T.
(2004). Cell mechanics and mechano-
transduction: pathways, probes, and
physiology. Am. J. Physiol. Cell Physiol.
287, C1–C11.

Hutchins, B. I., and Kalil, K. (2008).
Differential outgrowth of axons and
their branches is regulated by loca-
lized calcium transients. J. Neurosci.
28, 143–153.

Izhikevich, E. M., and Edelman, G. M.
(2008). Large-scale model of mam-
malian thalamocortical systems.
Proc. Natl. Acad. Sci. U.S.A. 105,
3593–3598.

Kageyama, R., Ohtsuka, T., Shimojo, H.,
and Imayoshi, I. (2008). Dynamic
notch signaling in neural proge-
nitor cells and a revised view of
lateral inhibition. Nat. Neurosci. 11,
1247–1251.

Kiddie, G., McLean, D., Ooyen, A. V., and
Graham, B. (2005). Development,

dynamics and pathology of neuronal
networks: from molecules to functio-
nal circuits, progress in brain research
147. In Biologically Plausible Models
of Neurite Outgrowth, J. Van Pelt,
M. Kamermans, C. N. Levelt, A. Van
Ooyen, G. J. A. Ramakers, and P. R.
Roelfsema, eds (Elsevier Science), pp.
67–80.

Kliemann, W. (1987). A stochastic dyna-
mical model for the characterization
of the geometrical structure of den-
dritic processes. Bull. Math. Biol. 49,
135–152.

Kriegstein, A., Noctor, S., and Martínez-
Cerdeño, V. (2006). Patterns of neural
stem and progenitor cell division
may underlie evolutionary cortical
expansion. Nat. Rev. Neurosci. 7,
883–890.

Kriegstein, A. R., and Noctor, S. C. (2004).
Patterns of neuronal migration in the
embryonic cortex. Trends Neurosci. 27,
392–399.

Krottje, J. K., and van Ooyen, A. (2007).
A mathematical framework for mode-
ling axon guidance. Bull. Math. Biol.
69, 3–31.

Lamoureux, P., Buxbaum, R. E., and
Heidemann, S. R. (1989). Direct evi-
dence that growth cones pull. Nature
340, 159–162.

Lamoureux, P., Ruthel, G., Buxbaum, R. E.,
and Heidemann, S. R. (2002).
Mechanical tension can specify axonal
fate in hippocampal neurons. J. Cell
Biol. 159, 499–508.

Lindenmayer, A. (1968). Mathematical
models for cellular interactions in
development. parts 1 and 2. J. Theor.
Biol. 18, 280–315.

Luczak, A. (2006). Spatial embedding of
neuronal trees modeled by diffusive
growth. J. Neurosci. Methods 157,
132–141.

Markram, H. (2006). The blue brain project.
Nat. Rev. Neurosci. 7, 153–160.

Maskery, S., and Shinbrot, T. (2005).
Deterministic and stochastic ele-
ments of axonal guidance. Annu. Rev.
Biomed. Eng. 7, 187–221.

Massobrio, P., Massobrio, G., and
Martinoia, S. (2007). Multi-program
approach for simulating recorded
extracellular signals generated by neu-
rons coupled to microelectrode arrays.
Neurocomputing 70, 2467–2476.

Mulchandani, K. (1995). Morphological
modelling of neurons. Ph.D. Thesis,
Texas A&M University.

Ng, H. N., and Grimsdale, R. L. (1996).
Computer graphics techniques for
modeling cloth. IEEE Comput. Graph.
Appl. 16, 28–41.

Pattana, S. (2006). Division d’un milieu
cellulaire sous contraintes mecani-
ques. utilisation de la mecanique des
materiaux granulaires. Ph.D. Thesis,
Université Montpellier II.

Pecevski, D. A., Natschläger, T., and
Schuch, K. (2009). PCSIM: a parallel
simulation environment for neural
circuits fully integrated with Python.
Front. Neuroinformatics 3, doi:
10.3389/neuro.11.011.2009.

Polleux, F., Dehay, C., Goffi net, A., and
Kennedy, H. (2001). Pre- and post-
mitotic events contribute to the pro-
gressive acquisition of area-specifi c
connectional fate in the neocortex.
Cereb. Cortex 11, 1027–1039.

Rakic, P. (1972). Mode of cell migra-
tion to the superfi cial layers of fetal
monkey neocortex. J. Comp. Neurol.
145, 61–83.

Reber, M., Burrola, P., and Lemke, G.
(2004). A relative signalling model for
the formation of a topographic neural
map. Nature 431, 847–853.

Ryder, E. F., Bullard, L., Hone, J.,
Olmstead, J., and Ward, M. O.
(1999). Graphical simulation of early
development of the cerebral cortex.
Comput. Methods Programs Biomed.
59, 107–114.

Samsonovich, A. V., and Ascoli, G. A.
(2005). Statistical determinants of
dendritic morphology in hippocampal
pyramidal neurons: a hidden markov
model. Hippocampus 15, 166–183.

Samuels, D. C., Hentschel, H. G., and
Fine, A. (1996). The origin of neu-
ronal polarization: a model of axon
formation. Philos. Trans. R. Soc. Lond.,
B, Biol. Sci. 351, 1147–1156.

Schaller, G., and Meyer-Hermann, M.
(2004). Kinetic and dynamic delau-
nay tetrahedralizations in three
dimensions. Comput. Phys. Commun.
162, 9.

Schaller, G., and Meyer-Hermann, M.
(2005). Multicellular tumor spheroid
in an off-lattice voronoi-delaunay cell
model. Phys. Rev. E. Stat. Nonlin. Soft
Matter Phys. 71(Pt 1), 051910.

Shefi, O., Harel, A., Chklovskii, D. B.,
Ben-Jacob, E., and Ayali, A. (2004).
Biophysical constraints on neuronal
branching. Neurocomputing 58–60,
487–495.

Shinbrot, T. (2006). Simulated morpho-
genesis of developmental folds due to
proliferative pressure. J. Theor. Biol.
242, 764–773.

Stepanyants, A., Hirsch, J. A. ,
Martinez, L. M., Kisvárday, Z. F.,
Ferecskó, A. S., and Chklovskii, D. B.
(2008). Local potential connectivity

in cat primary visual cortex. Cereb.
Cortex 18, 13–28.

Stepanyants, A., Hof, P. R., and Chklovskii,
D. B. (2002). Geometry and structu-
ral plasticity of synaptic connectivity.
Neuron 34, 275–288.

Stiefel, K. M., and Sejnowski, T. J. (2007).
Mapping function onto neuronal
morphology. J. Neurophysiol. 98,
513–526.

Turrigiano, G. G. (2008). The self-tuning
neuron: synaptic scaling of excitatory
synapses. Cell 135, 422–435.

VanEssen, D. C. (1997). A tension-based
theory of morphogenesis and compact
wiring in the central nervous system.
Nature 385, 313–318.

van Ooyen, A. (2003). Modeling Neural
Development. The MIT Press.

van Ooyen, A., and Willshaw, D. J. (1999).
Competition for neurotrophic factor
in the development of nerve connec-
tions. Proc. Biol. Sci. 266, 883–892.

van Pelt, J., and Verwer, R. W. (1983).
The exact probabilities of branching
 patterns under terminal and segmen-
tal growth hypotheses. Bull. Math.
Biol. 45, 269–285.

Ward, K., Bertails, F., Kim, T.-Y., Marschner,
S. R., Cani, M. P., and Lin, M. C. (2007).
A survey on hair modeling: styling,
simulation, and rendering. IEEE Trans.
Vis. Comput. Graph 13, 213–234.

Willshaw, D. (2006). Analysis of mouse
epha knockins and knockouts
suggests that retinal axons pro-
gramme target cells to form ordered
 retinotopic maps. Development 133,
2705–2717.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
should be construed as a potential con-
fl ict of interest.

Received: 05 June 2009; paper pen-
ding published: 17 July 2009; accepted:
19 October 2009; published online: 20
November 2009.
Citation: Zubler F and Douglas R (2009)
A framework for modeling the growth and
development of neurons and networks.
Front. Comput. Neurosci. 3:25. doi:
10.3389/neuro.10.025.2009
Copyright © 2009 Zubler and Douglas. This
is an open-access article subject to an exclu-
sive license agreement between the authors
and the Frontiers Research Foundation,
which permits unrestricted use, distribu-
tion, and reproduction in any medium,
provided the original authors and source
are credited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

