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connection, i.e. only one vesicle, or quantum, can be released in 
the event of a pre-synaptic spike from each contact (Gulyas et al., 
1993; Silver et al., 2003; Lawrence et al., 2004; Biró et al., 2005), in 
agreement with the ‘single vesicle hypothesis’ (Korn et al., 1981, 
1994). At the hippocampus, this constraint is relieved when the 
release probability increases (either through short-term facilita-
tion or pharmacologically), and multiquantal release from single 
contact points was implicated (Oertner et al., 2002; Biró et al., 2006; 
Christie and Jahr, 2006). In the neocortex, though, at connections 
from layer-4 spiny stellate cells onto layer 2/3 pyramidal neurons, 
the baseline release probability is high (∼0.8), yet uniquantal release 
was observed (Silver et al., 2003).

The amplitudes of neocortical synaptic responses can be 
signifi cantly stronger than those studied in Silver et al. (2003; 
∼0.5 mV), with comparable number of contact points (2–8 
 contacts). In the framework of the single vesicle hypothesis, 
this would imply a higher quantal size at the stronger synap-
tic connections, or a higher release probability. An alternative 
explanation would be that at stronger synapses, several quanta, 
or vesicles, could be released from a given synaptic contact upon 
pre-synaptic activation. The different alternatives lead to dis-
tinct predicted effects on the properties of synaptic transmission 
beyond the changes to the response amplitude. For example, a 
higher release probability, or a higher number of release sites, 
results in a decrease in response variability, which is not the case 
for larger quantal size.

INTRODUCTION
Synaptic transmission is a key element in information processing 
in neuronal circuits. Revealing the mechanisms underlying syn-
aptic properties is thus crucial to our understanding of the neural 
code. One such property, which is repeatedly observed at different 
brain regions and across layers, is the wide distribution of synaptic 
effi cacies (Sayer et al., 1990; Mason et al., 1991; Markram et al., 
1997; Sjostrom et al., 2001; Isope and Barbour, 2002; Holmgren 
et al., 2003; Song et al., 2005; Feldmeyer et al., 2006; Lefort et al., 
2009). Although ubiquitous, little is known about the relative con-
tribution of different synaptic characteristics to this wide range. In 
particular, synaptic transmission can be described via the standard 
‘Quantal model’, by assigning a synaptic connection with a given 
number of release sites, N. From each release site, a vesicle can be 
released following a pre-synaptic action potential, with probability 
p, and contribute a quantum of amplitude, q, to the post-synaptic 
response (del Castillo and Katz, 1954). Accordingly, the distribution 
of synaptic effi cacies could potentially be explained by differences 
in all three parameters.

Here, we focused on neocortical excitatory synaptic connec-
tions, for which the range of EPSP amplitudes can cover two orders 
of magnitudes (0.1–10 mV; e.g. Markram et al., 1997; Song et al., 
2005; Lefort et al., 2009), and asked: which of the parameters of the 
quantal model (N, p or q) best explains this wide range? Previous 
estimations of the parameters at cortical synapses suggest that N 
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constrained by the number of synaptic contacts that form a synaptic 
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THE DETERMINISTIC MODEL FOR SHORT-TERM SYNAPTIC DEPRESSION
The average temporal dynamics of short-term depression can 
be captured by assuming that a synaptic connection has a fi nite 
amount of resources (Abbott et al., 1997; Tsodyks and Markram, 
1997; Tsodyks et al., 1998). When an action potential arrives to 
the pre-synaptic terminal, a fraction of the resources is utilized to 
evoke a post-synaptic response. If a subsequent action potential 
arrives before all the utilized resources have recovered, the following 
post-synaptic response will be smaller. In mathematical terms, the 
model is represented by the following:

dx

dt

x
U x t t= − − ⋅ ⋅ −1

τrec
spδ( )

 
(1a)

dI

dt

I
A U x t tsyn syn

syn
sp= − + ⋅ ⋅ ⋅ −

τ
δ( )

 

(1b)

where x(t) denotes the fraction of available synaptic resources; 
U determines the fraction of the resources utilized at each spike; 
and τ

rec
 is the time constant that underlie the recovery process of 

the utilized resources back to the available state. I
syn

(t) denotes 
the post-synaptic current that increases, at each spike, in propor-
tion to the amount of utilized resources; and decays with a time 
constant τ

syn
. The proportionality factor, A, represents the absolute 

synaptic effi cacy of the connection. δ(t) is in the Dirac notation, 
and t

sp
 represent the timing of a spike. To avoid ambiguity we 

note that any dynamic quantity ω(t) multiplying a delta function 
(here and in the equations below), is evaluated just before the 
delta function, i.e.

ω δ ω ε δ( ) ( ) ( ) ( )t t t t t t⋅ − = − ⋅ −sp sp  
(2)

where ε is an arbitrarily small positive number.
Completing the model is the equation for the membrane 

 potential of the post-synaptic neuron:

τmem in syn

dV

dt
V R I= − +

 
(3)

where τ
mem

 is the membrane fi lter constant. For convenience, 
R

in
, which represents the input resistance, was absorbed in A in 

the following.
We note that for the type of synaptic connections studied here 

the model presented is suffi cient in capturing the observed short-
term plasticity dynamics, with synaptic facilitation effects being 
negligible (Markram et al., 1998; Richardson et al., 2005).

THE STOCHASTIC MODEL FOR SYNAPTIC DEPRESSION
The stochastic model we used follows the quantal model of 
synaptic release, where a synaptic connection is assumed to be 
composed of N independent release sites (del Castillo and Katz, 
1954). From each release site a single vesicle, at most, is released 
with a probability p upon the arrival of an action potential, and 
contributes a quanta q to the post-synaptic response. Short-
term synaptic depression is included by considering that after a 
vesicle release, the  corresponding site remains empty until it is 

To illuminate these different scenarios, we studied  synaptic 
 connections between layer-5 pyramidal neurons, with EPSP ampli-
tudes ranging from 0.54 to 7.2 mV. Our analysis method is based on 
the extension of the quantal model that accounts for the dynamics 
of short-term synaptic depression (Thomson and Deuchars, 1994; 
Fuhrmann et al., 2002). The extended model captures the effects of 
short-term depression by assuming that once a vesicle is released, 
the corresponding release site remains empty until being refi lled by 
a new vesicle, as suggested by experimental observations (Thomson 
et al., 1993; Debanne et al., 1996; Varela et al., 1997; Silver et al., 
1998; Zucker and Regehr, 2002). When considering the average 
response to a pre-synaptic spike train, this model is equivalent to 
the deterministic model of synaptic depression (Abbott et al., 1997; 
Tsodyks and Markram, 1997). Hence, the probability of release can 
be estimated from the temporal dynamics of the average response 
of a synaptic connection to the spike train, and subsequently, the 
number of release sites, N, and quantal size, q, can be evaluated 
from the variance and mean of the response in the standard way. 
This novel approach allowed us to estimate the quantal parameters 
from a single set of experimental conditions, as opposed to previous 
studies (Silver et al., 1998, 2003; Foster and Regehr, 2004; Biró et al., 
2006; but see Biró et al., 2005; Brémaud et al., 2007).

Our main fi nding is that the estimated number of release sites 
increases linearly with synaptic effi cacy, indicating that it is the 
main determinant of the distribution of synaptic effi cacies. As 
the number of release sites can be much higher (>100) than the 
number of synaptic contacts between layer-5 pyramidal neurons, 
we  suggest that multiquantal release is a common feature of neo-
cortical  synaptic transmission.

MATERIALS AND METHODS
SLICE PREPARATION AND ELECTROPHYSIOLOGY
All experimental procedures were carried out according to the 
regulations of the Swiss Federation and the Stockholm Regional 

Ethics Committee. Neocortical slices (Sagittal, 300-µm thick) 
were obtained from Wistar rats (postnatal days 13–16). Slices 
were incubated for 30 min at 33–35°C and then at room tem-
perature (20–22°C) until transferred to the recording chamber 
(35 ± 0.5°C). Thick tufted pyramidal neurons in layer-5 of the 
somato-sensory area were selected for recording according to the 
morphology of their somata and proximal dendrites. The slice was 
visualized by IR-DIC optics using a Zeiss Axioscope and infrared 
camera (TILL photonics). The bathing solution consisted of (mM): 
NaCl 125, NaHCO

3
 25, glucose 25, KCl 2.5, CaCl

2
 2, NaH

2
PO

4
 1.25, 

MgCl
2
 1. Whole-cell recordings were made using patch pipettes 

(5–10 MOhm), containing (mM): potassium gluconate 110, KCl 
10, Hepes 10, phosphocreatine(Na) 10, MgATP 4, NaGTP 0.3 and 
biocytin 4 mg/ml. Recordings were obtained using Axopatch 200B 
and Multiclamp 700B amplifi ers (Axon Instruments). Data acqui-
sition and analysis were performed using IgorPro (WaveMetrics, 
Inc.) and Matlab (Mathworks).

Once a pair of neurons was verifi ed to be connected, the post-
synaptic responses to a train of eight action potentials at 20 Hz, 
followed by a recovery test 550 ms later, were recorded (hereafter 
termed a single trace). The stimulation was repeated between 30 to 
45 times, with a 5-s interval between repetitions. In 9 out of 20 pairs 
the stimulation protocol was repeated after a period of 10 min.
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refi lled with a new vesicle (Fuhrmann et al., 2002). The stochastic 
 differential equation that describes these two processes of release 
and  recovery is:

d

dt
r t t t ti

i i

σ σ δ σ δ= − ⋅ ⋅ − + − ⋅ −( ) ( ) ( )sp rec1 i

 
(4)

where σ
i
 is the stochastic variable that represents whether a vesicle 

is present (σ
i
 = 1 with a probability ρ) or absent (σ

i
 = 0 with a 

probability 1−ρ) from release site i, r
i
 is the stochastic variable that 

represent whether a vesicle is released (r
i
 = 1 with a probability p) 

or not (r
i
 = 0 with a probability 1−p) at the time of a spike, t = t

sp
, 

and {t
rec

} is a Poisson point process with rate 1/τ
rec

, i.e. the prob-
ability of refi lling at any time interval dt is dt/τ

rec
. The stochastic 

post-synaptic current, I
syn

(t), is described by:

dI

dt

I
q n t tr

syn syn

syn
sp= − + ⋅ ⋅ −

τ
δ( )

 

(5)

where n t r tr i
N

i i= ∑ ⋅=1 σ ( ) ( )sp sp  is the overall number of vesicles 
released at the time of a spike. Completing the model is the equa-
tion for the membrane potential of the post-synaptic neuron, which 
has the same form as Eq. 3.

The above model provides a simple description of the vesicle 
restock dynamics (the restock rate is constant), that is suffi cient 
for the data studied here. Proposals for more detailed models, 
that might be relevant at higher stimulation rates, can be found in 
Matveev and Wang (2000).

THE RELATION BETWEEN THE DETERMINISTIC 
AND STOCHASTIC MODELS
The relation between the stochastic model (Eqs. 4 and 5) and the 
deterministic model of synaptic depression (Eq. 1) can be shown 
from averaging the stochastic equations over the random proc-
esses of release and recovery, for a given train of spikes {t

sp
}. The 

dynamics of the average of σ σi i r ti
, ,,〈 〉

rec
= ρ  and the synaptic current, 

are then given by:

d

dt
p t t

ρ ρ ρ δ= − − ⋅ ⋅ −1

τrec
sp( )

 
(6)

d I

dt

I
q N p t t

〈 〉 〈 〉syn syn

syn
sp= − + ⋅ ⋅ ⋅ ⋅ −

τ
ρ δ( )

 

(7)

where 〈n
r
〉 = N·p·ρ. This last relation follows from that the release 

sites are independent, and that the probability of release is a con-
stant, and do not depend on past events.

Comparing Eqs 6 and 7 with Eqs 1 leads to the following equiva-
lency relations between the parameters of the deterministic and 
stochastic models:

p ↔ U, ρ ↔ x and A ↔ N · q (8)

ESTIMATION OF THE NUMBER OF RELEASE SITES WITH THE 
JACKKNIFE-MONTE-CARLO APPROACH
The fi rst step in the estimation of the number of release sites, N, 
was to evaluate the synaptic release parameters from the fi t of the 
deterministic model of synaptic depression to the average response 

of a synaptic connection. τ
syn

 and τ
mem

 were estimated by fi tting the 
time course of the recovery-test EPSP to the response of the model 
to a single pre-synaptic activation (Eqs. 1 and 3):

V t e e

t t

( ) =
−

⋅ −( )− −ατ
τ τ

in

syn mem

syn mem
τ τ

 

(9)

where α is a scaling factor. Subsequently, the remaining parameters 
(A,

 
U

 
and τ

rec
) were estimated from comparing the amplitudes of 

the nine EPSPs (measured from their initial rising point) to an 
analogous set of amplitudes derived analytically from the model 
(e.g., Figure 1A).

In the second step of the estimation process the release param-
eters were integrated in stochastic Monte-Carlo simulations of the 
synaptic connection, and simulated single traces were produced in 
response to the same stimulation protocol used in experiments, i.e. 
same spike train stimulus and number of repetitions. The coeffi cients 
of variation (CV) of the simulated and recorded EPSPs were then 
compared. In both experiment and simulation, the CVs of the nine 
EPSPs of a synaptic connection were calculated from the Jackknife 
version of its single traces (Efron and Tibshirani, 1998), i.e. from a set 
of averages that each excludes a different single trace. The advantage 
of this approach is that it allows for an accurate measurement of the 
EPSPs’ amplitudes from smooth average-like traces, and not from 
single noisy traces. The appropriate equations for the CVs are:

CV
Std

Amp
μ

μ

μ=
〈 〉

〈 〉Amp Ampμ μ=
=
∑1

1J i
i

J

 
(10)

Std Amp Ampμ μ μ= − −( )
=
∑J

J i
i

J1 2

1

〈 〉

here J is the number of single traces measured for a connection, 
and Ampi

μ is the amplitude of the µth EPSP (µ = 1..9), measured 
from its initial rising point, at the ith Jackknife trace.

In a single comparison iteration, a set of simulations were per-
formed with an increasing value of N over a certain range (usually 
between 1 and a 100, with the upper limit adjusted for the stronger 
connections), and the estimated value was the one that resulted in 
the minimum mean-least-square distance between the CVs of the 
simulated and recorded EPSPs. Repeating this evaluation process 
for 100 iterations resulted in a distribution of values of the param-
eter N, which determined its expectation and confi dence intervals 
(e.g. Figure 1C).

VERIFYING THE ACCURACY OF THE ESTIMATION METHOD
To verify the accuracy of our method of analysis in estimating the 
number of release sites under various types of noise elements, we 
applied it to two categories of simulations of virtual synaptic con-
nections. The fi rst category focused on examining the effect of the 
uniformity assumption of the dynamic parameters, i.e. that

 
p = U 

and τ
rec

 are equal at all of the release sites. Virtual synapses were 
simulated with the stochastic model, assuming a certain number 
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of release sites, N (ranging between 10 and 80), and with the  values 
of p

i
 and τ

rec,i
 chosen randomly from some distribution, e.g. p

i 

∈ Guassian(λP,0.5·λP) and τ ∈ λτ τ
rec Gaussian rec rec

, ( , . ),i λ 0 5 ⋅  where 
i = 1...N. The mean values of the distributions that governed p

i
 and 

τ
rec,i

, i.e. λP and λτrec , were chosen such that the eventual values of 
U and τ

rec
, evaluated from the average response, were in the range 

of values found for the experimental data (Figure 2). The lower 
and upper cut offs for the values of the probabilities of release 
(p

i
) were 0.05 and 0.95, and the lower cut off for the recovery 

time constants (τ
rec,i

) was 50 ms. Other distributions than Gaussian 
were also examined, i.e. uniform, binomial and gamma distri-
butions, resulting in the same observations as for the Gaussian 
distributions. Finally, q

i
 = 1, τ

mem
 = 30 ms and τ

syn
 = 3 ms. One 

hundred single traces were simulated with the same stimulation 
protocol used in experiments, and the estimated set of parameters 
(τ

syn
, τ

mem
, τ

rec
, A and

 
U) that describes their average response was 

subsequently calculated as for the experimental average response. 
This enabled us to compare the expected CVs for the EPSPs of the 
virtual synapses to that of their ‘uniform synapse’ counterpart 
(Eqs. 11 and 12, respectively):

CVnon-uniform
μ

μ μ

μ
=

⋅ −
=

=

∑
∑

p p

p

i ii

N

ii

N

( )1
1

1  

(11)

CVuniform
μ

μ μ

μ

μ

μ

μ

μ

=
⋅ −( )

=
−( )
⋅

= ⋅
−( )

=

=

∑
∑
U U

U

U

N U

N

U

U

i

N

i

N

1 1

1 1

1

1

 

(12)

where p pi i i
μ μρ= ⋅  and Uµ = U·ρµ. The ρμ

i  and ρµ represent the 
expected probability of fi nding a vesicle at a release site at the time of 
arrival of the µth pre-synaptic action potential (µ = 1..9), obtained 
from the solution of the following iterative equations derived from 
Eqs 6 and 1a, respectively:

ρ ρ ρμ μ

Δ

τ

Δ

τ
μ μ

i i i ip e ei i+
− −

= ⋅ − ⋅ + − =1 11 1 1( ) ,, ,rec rec

 (13)

ρ ρ ρμ μ

Δ

τ

Δ

τ
μ μ

+
− −

= ⋅ − ⋅ + − =1 11 1 1( ) ,U e erec rec

 (14)

where Δ
µ
 = t

µ+1
−t

µ
 is the time between pulses µ and µ + 1.

The second category of simulations of virtual synapses focused 
on evaluating the effects of additional sources of variability on the 
accuracy of the estimation of N. Specifi cally, in addition to the non-
uniformity in p

i
 and τ

rec,i
, different average quantal contributions 

from each release site were considered, i.e. q
i
∈Guassian(λq,0.25·λq); 

the quantum released at each site varied at different instances of 
pre-synaptic activation, i.e. q t ti

q qi iμ μ ∈ λ λ( ) ( , . );= ⋅sp Gaussian 0 25  the 
synaptic onset latency varied from spike to spike, i.e. t

onset
 = t

sp
 + 

Guassian(1,0.2 ms) (t
sp

 being the timing of the pre-synaptic action 
potential along the stimulus spike train) (Markram et al., 1997); and 
spontaneous voltage fl uctuations, measured from layer-5 pyramidal 
cells in several slice experiments, were added to the simulated single 

traces. The addition of the spontaneous fl uctuations, refl ecting 
noise elements that originate from sources outside of the synaptic 
release process, follows the assumption that the two processes are 
independent. Importantly, the value of λq, the average quantal con-
tribution of a vesicle, was matched to that found in the analysis of 
the experimental data. Hence the range of amplitudes of the EPSPs 
of the virtual synapses were similar to the range of EPSPs found 
in experiments (for the same values of N), preserving the ratio 
between the fl uctuations that originate from the synaptic trans-
mission process, and those that originate from the background 
spontaneous activity.

DIRECT AMPLITUDE MEASUREMENT USING VOLTAGE DECONVOLUTION
To complement the Jackknife-Monte-Carlo (JMC) approach pre-
sented above, we used a recently developed voltage-deconvolution 
method that allows EPSP amplitudes to be measured directly from 
noisy, single-sweep traces (Richardson and Silberberg, 2008). The 
method removes the membrane fi ltering of the intracellular voltage 
by de-fi ltering them at a time scale equal to the membrane fi lter 
constant, τ

mem
. This is achieved by re-arranging Eq. 3 to yield:

R I
dV

dt
Vin syn mem= +τ

 
(15)

and directly evaluating the right-hand side using the voltage trace, 
its derivative and τ

mem
. Due to the derivative in Eq. 15 the decon-

volved trace is noisier than the voltage, and it is therefore smoothed 
over a 10-ms window. However, the linearity of the deconvolution 
procedure and the smoothing means that the de-fi ltered amplitudes 
are proportional to those in the voltage trace. They can therefore 
be renormalized using the ratio of the mean of the fi rst EPSP and 
its deconvolved analogue as a conversion factor for the entire set 
of single-sweep traces.

The resulting deconvolved trace resolves the EPSPs into well 
separated pulses, reminiscent of the current measured in voltage-
clamp mode, from which the amplitudes can be measured even in 
cases of highly variable traces; see Figures 4A–D. Voltage-clamp 
recordings would be preferable for electrotonically compact cells as 
they limit the effects of voltage-activated currents. Layer-5 pyrami-
dal cells, however, are electrotonically extended cells and volt-
age-clamp recordings have been demonstrated to show signifi cant 
distortions due to the poor space clamp (Williams and Mitchell, 
2008). These distortions are less severe in voltage-deconvolved 
current-clamp recordings – see Richardson and Silberberg (2008) 
for a detailed comparison. In addition, for the layer-5 pyrami-
dal cells examined here, the membrane response was similar to 
that of a passive, leaky membrane requiring only an exponential 
deconvolution, with the EPSP decay providing the deconvolution 
time constant.

Binomial fi tting procedure using the deconvolved amplitudes
The statistics of the directly measured amplitudes can also be 
treated using the binomial mean-variance analysis. The mean and 
standard deviation of the amplitude of the µth pulse follows:

〈 〉Amp μ μ= ⋅ ⋅q N U  (16)
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Std Varμ μ μ χ= ⋅ ⋅ − +q N U U2 1( ) ( )
 

(17)

where Uµ = U·ρµ is the probability of a vesicle being released on 
the arrival of the µth pre-synaptic pulse (see Eq. 14). The effects of 
the background noise χ on the variance can be corrected for by 
including it in Eq. 17 where χ may be measured in a region away 
from the stimulated EPSPs. From a fi t to the mean and the CV the 
quantities τ

rec
, U, q and N can be extracted. Both results for the 

background uncorrected variance (for comparison with the JMC 
approach) and the background corrected variance are given, where 
the latter yields a marginally higher value of N.

Failure analysis using the deconvolved amplitudes
Information on the number of release sites may also be gleaned 
from the number of synaptic transmission failures. The probability 
of a failure is:

F U
Nμ μ= −( )1

 
(18)

from which an estimate of N can be obtained. For the correct 
identifi cation of failures, the effects of the background noise and 
spontaneous arrival of EPSPs must be carefully accounted for. 
Here we choose a highly conservative method that over-counts 
failures, and hence underestimates the value N and gives a lower 
bound N

lb
. This lower bound is nevertheless potentially suffi cient 

for demonstrating that the data are incompatible with the single-
release hypothesis.

To over count release failures, the threshold below which a 
measured amplitude is considered a failure is set high. This yields 
a high false-positive rate (true EPSPs over counted as failures) 
and low false-negative rate (true failures counted as EPSPs). The 
background noise, measured in a part of the trace away from the 
evoked EPSPs, comprises a Gaussian component from intrinsic 
fl uctuations with a positive tail coming from spontaneous EPSPs 
(see the inset to Figure 4D). To ensure failures are over counted 
two thresholds are considered: (i) Any amplitude falling below 
the fi rst threshold θ

1
 is considered a release failure. This fi rst 

threshold is set at the point where the cumulative integral of the 
unity-normalized Gaussian component of the background noise 
is equal to 0.999. This results in a high false-positive rate and 
very low false-negative rate (a one in a thousand chance that a 
strong intrinsic fl uctuation causes a true failure to be misidenti-
fi ed); (ii) A second threshold is also considered that addresses 
the arrival of the spontaneous EPSPs. A measured voltage ampli-
tude above θ

1
 at the point of an expected EPSP (within 4 ms) 

could still be a true failure masked by the chance arrival of a 
spontaneous EPSP. The probability p

s
 of a spontaneous EPSP of 

amplitude exceeding θ
1
 arriving near (±4 ms) of a triggered pulse 

can be calculated from the portions of the experimental traces 
separated from the evoked EPSPs. However, the spontaneous 
EPSPs are of small amplitude (see tail of the distribution in the 
inset to Figure 5D) and any amplitude measured at the time of 
an evoked EPSP above some threshold is highly likely to have 
been a spontaneous one. This yields a second threshold θ

2
(>θ

1
) 

which is defi ned as where the cumulative distribution of the full 
background noise distribution (Gaussian plus tail) reaches 0.999. 
If an amplitude is measured between θ

1
 and θ

2 
then an amount 

p
s
 is added to the failure count. To summarise, if an amplitude 

Λ is measured then: if Λ < θ
1
 it is considered a failure; if θ

1
 < Λ 

< θ
2
 an amount p

s
 is added to the failure count; and if Λ > θ

2
 it 

is not considered a failure.

RESULTS
We began our analysis with computing the average response of a 
synaptic connection to a spike train that consists of eight action 
potentials at a frequency of 20 Hz, followed by a recovery-test action 
potential 550 ms later (Figure 1A). Subsequently, we fi tted the aver-
age response with the deterministic model of synaptic depression 
(Abbott et al., 1997; Tsodyks and Markram, 1997). The model 
assumes that each synaptic connection is characterized by a fi nite 
amount of resources that defi ne the maximum synaptic effi cacy 
(the parameter A). When a pre-synaptic spike arrives, a fraction 
(U) of the resources is utilized. The utilized resources subsequently 
recover exponentially with a characteristic time (τ

rec
). From the fi t 

of the model to the average response these parameters (A,U and 
τ

rec
) can be estimated for each synaptic connection (see Materials 

and Methods, Figure 1A). All estimated parameter values were 
comparable to those reported previously for this type of connec-
tion (mean ± std, A = 6.06 ± 4.1 mV, U = 0.46 ± 0.1, τ

rec
 = 525 ± 

134 ms, n = 20) (Markram et al., 1997; Tsodyks and Markram, 1997; 
Richardson et al., 2005; Le Be and Markram, 2006).

In order to estimate the number of release sites for a given syn-
aptic connection, we computed the CV of its nine responses to the 
repeated presentations of the stimulus train. Here, the CV values 
were calculated using the Jackknife method (Efron and Tibshirani, 
1998), i.e. from a set of averages that each excludes a different single 
trace (see Materials and Methods). The advantage of this approach 
is that it allows for an accurate measurement of the EPSP ampli-
tudes from smooth average-like traces, and not from single noisy 
traces. A deconvolution method is also applied later on, in which 
the EPSPs are transformed into well separated pulses (Richardson 
and Silberberg, 2008). This will allow for a second, complimentary 
estimation of the CV, as well as the extraction of the synaptic failure 
rate. The CV values of the responses to the fi rst action potential 
in the train, ranging between 0.054 and 0.5, were similar to those 
reported previously for comparable mean response amplitudes 
(Markram et al., 1997).

A connection’s set of nine CVs was compared with a set obtained 
from Monte-Carlo simulations of the extended quantal model of 
synaptic release, characterized by N, the number of release sites, 
p, the probability of release, q, the quantal size of a vesicle, and 
τ

rec
, the time constant governing the refi lling process of an empty 

release site (see Materials and Methods). The probability of release 
and recovery time constant were those obtained from the fi t of the 
connection’s average post-synaptic response to the train of inputs, 
as the average response of the stochastic model can be described 
by the deterministic model of synaptic depression with p = U (see 
Materials and Methods). The exact value of the quantal size, when 
assumed to be equal for all vesicles, has no impact on the following 
analysis (the validity of this assumption is examined below). Thus, 
the number of release sites remains the only unknown. A series of 
simulations were run with a range of values for N, and the esti-
mated value of N for that series was from the simulation with the 
CV values most similar to the experimental CVs (Figure 1B). We 
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repeated this estimation step many times (100 repetitions), which 
resulted in a distribution of values for N (Figure 1C). The mean 
of the distribution was the value of N we assigned to the specifi c 
synaptic connection, while the spread of the distribution provided 
the confi dence interval. In nine of the synaptic connections two 
sets of single traces were recorded with a 10-min interval, and the 
values of N found for both sets were very close, with a ratio of 0.94 
± 0.1 (mean ± std; e.g. Figure 1C).

The number of release sites we found in 20 recorded connec-
tions was 53.3 ± 42 (mean ± std), with a range of 7–170. The 
number of release sites was linearly related to the EPSP ampli-
tudes, with higher estimated number of release sites for stronger 
response amplitudes (Figure 2A). It was similarly correlated with 
the maximum synaptic effi cacies, the parameter A of the deter-
ministic model of synaptic depression. From the relation A = N·q 
(see Materials and Methods), we could compute the average quan-
tal size of a single vesicle for a synaptic connection. The quantal 
size was not correlated with the EPSP amplitudes (Figure 2B). 
The average quantal size for the recorded connections was 0.13 
± 0.04 mV(mean ± std), which is similar to that found in synap-
tic connections between layer-4 spiny stellate neurons and layer-
2/3 pyramidal neurons in the same brain area (0.15 mV) (Silver 
et al., 2003). The release probability and recovery time constant 
were not signifi cantly correlated with the EPSP amplitudes as well 

(Figure 2B). Hence, we conclude that the number of release sites 
N is the primary factor that accounts for the observed range of 
synaptic effi cacies between layer-5 pyramidal neurons.

EFFECTS OF RELEASE-PARAMETER NON-UNIFORMITY ON THE 
ESTIMATION OF THE NUMBER OF RELEASE SITES
In our estimation process, we assume that the probability of 
release and the recovery time constants are uniform across release 
sites. However, this assumption is most probably not true for the 
synaptic connections in the nervous system, and it is therefore 
important to examine its effect on the estimation of the number 
of release sites.

To this end, we ran simulations of virtual synaptic connections 
in which the release parameters were non-uniform, i.e. a connection 
had a certain number of release sites, N (ranged between 10 and 80), 
with the values of the p

i
 and τ

rec,i
 (i = 1…N) distributed with the 

corresponding Gaussian distributions (see Materials and Methods). 
The synaptic connection was then presented with the stimulation 
protocol we used in the experiments. The average of the simulated 
single traces was subsequently used as an input to the fi rst step of 
the estimation process, which yielded the fi tted set of parameters, 
U and τ

rec
. We could then compare the CVs of the responses of the 

non-uniform connection (Eq. 11), to the CVs of the responses of 
the corresponding ‘uniform synaptic connection’, where the release 
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FIGURE 1 | Estimating the number of release sites N. (A) Bottom to top: the 
pre-synaptic spike train, two examples of noisy post-synaptic single traces and 
the average response for that synaptic connection. The top panel shows the fi t 
of the deterministic model of short-term synaptic depression (gray line) to the 
set of average EPSPs amplitudes (in black). (B) Estimation of N: the CVs of the 
nine EPSPs of the synaptic connection in (A) (black trace) were compared to the 
CVs calculated from the Monte Carlo simulations, each with a different value of 
N (thin blue traces). In the simulations, the parameters that govern the release 

process, the probability of release and the recovery time constant, were those 
estimated from the connection’s average response. Here, the simulation with 
N = 37 resulted in the best fi t (red trace). The x-axis labelling represents the nine 
synaptic responses along the spike train (the fi rst eight) and the recovery test 
[the ninth EPSP; see in (A)]. (C) The histograms of the estimated number of 
release sites from a 100 repetitions of the procedure presented in (B), for two 
recordings of the synaptic connection in (A) taken 10 min apart. The mean of the 
right and left distributions were 32.8 and 33.3.
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parameters for all N release sites were U and τ
rec

 (Eq. 12). The CVs 
were computed analytically from the extended binomial model. As 
observed in Figure 3A, the two sets of CVs were very similar for 
all values of N

 
considered. Indeed, when we compared, for a given 

virtual connection, Eq. 12 to Eq. 11 using different values of the 
number of release sites (while keeping the fi tted values of U and 
τ

rec
 unchanged), we found that for most synaptic connections, the 

estimated N that resulted from the best fi t was equal to the chosen 
N (Figure 3B). This result was repeated for other distributions from 
which p

i
 and τ

rec,i
 were drawn, i.e. uniform (Figure 3B), binomial 

and gamma distributions (data not shown). We thus concluded 
that the uniformity assumption has only a minor effect on our 
estimation of the number of release sites.

EFFECTS OF NOISE ON THE ESTIMATION OF THE NUMBER OF 
RELEASE SITES
In addition to the non-uniformity of the parameters that  determine 
the release process, there are various other sources of variability 
that exist in synaptic connections or that originate from the meas-
urement itself, which potentially may affect the observed responses 
and thus the estimation outcome (Saviane and Silver, 2006). In 
order to evaluate the effects of such noise sources on our method 
of estimation of the number of release sites, we conducted an 
extensive set of simulations that considered the following (see 
Materials and Methods): non- uniformity of the parameters of 
release, different quantal contributions between release sites and 
within a site at different occasions of pre-synaptic activations, fl uc-
tuations in synaptic onset latencies, and experimentally measured 
background activity from slices, which was added to the simulated 
traces. The mean quantal size followed our estimations from the 

 experimental data, resulting in simulated EPSP amplitudes similar 
to those found in experiments for similar values of N. Hence, the 
signal to noise ratio between the stimulated synaptic responses 
and the background activity was preserved. The resulting simu-
lated single traces were very similar to single traces measured in 
experiments, as can be observed in Figure 3C. We found that under 
these conditions, the estimated number of release sites is 0.88·N 
± 0.1·N, which suggests that the values found for the number of 
release sites by fi tting the experimental data underestimate the 
actual number by about 10% (Figure 3D).

DIRECT AMPLITUDE MEASUREMENT USING VOLTAGE DECONVOLUTION: 
ESTIMATES OF THE NUMBER OF RELEASE SITES AND ITS LOWER BOUND
The second method we used for measuring the amplitudes of EPSPs 
implemented a voltage deconvolution procedure (Richardson and 
Silberberg, 2008). The deconvolution method de-fi lters voltage 
traces to transform EPSPs into well separated pulses from which the 
amplitude may be readily measured (see Materials and Methods). 
First, we present the results for the mean-variance analysis using 
this approach and compare them with the distinct JMC approach 
presented above. The deconvolution method is then used to provide 
an analysis of the failure rate, which results in the independent lower 
bound estimate on the number of release sites N.

Mean-variance analysis from voltage deconvolution
The deconvolution procedure is shown in Figures 4A,B for the 
mean voltage trace for one of the connections analysed. Despite 
the very different approach, the deconvolution method is in close 
agreement with the JMC approach for the parameters extracted 
from the mean amplitudes: the results for the release  probability U 
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FIGURE 2 | Synaptic effi cacy is correlated with the number of release sites, 

but not with the probability of release or quantal size. The synaptic 
parameters were plotted vs. the EPSP amplitude of the connections’ response 
to the fi rst stimulus of the input spike train. (A) The number of release sites, N, 

was signifi cantly correlated to the EPSP amplitude (t-test, p < 0.00001). (B) The 
quantal size, q (t-test, p > 0.34), the probability of release, U (t-test, p > 0.38), 
and the recovery time constant, τrec (t-test, p > 0.4), were not correlated to the 
EPSP amplitude.
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and depression time constant τ
rec

 are given in the inset to Figure 4B 
for all connections. Individual traces may also be deconvolved 
and their amplitudes measured (Figures 4C,D). This allow for 
the variance of the synaptic response to be calculated yielding 
the CV and an estimate for N (Figure 4E; Eqs 16 and 17). The 
deconvolution procedure was applicable to a majority subset of 
the connections (18 out of the 20) and yielded a population mean 
of N = 53.8 which is close to the JMC approach (N = 55.8) for the 
same set of 18 traces. This very close agreement between the two 
different methods of amplitude measurement is further illustrated 
in Figure 4G. The CV analysis may also be performed with the 
background noise  corrected for (see Materials and Methods) and 
yields the marginally higher result of N = 62.1 vesicles for the 
population mean. This is in agreement with the results derived 

in the  previous section on the effects of noise (Figure 3D), where 
correctly accounting for background fl uctuations increases the 
estimate of N by about 10%.

Failure analysis and a lower bound on N from voltage deconvolution
Finally, we calculated a lower bound on the number of release 
sites through the analysis of the release failures. This approach 
requires fewer model-based assumptions, as only the all-or-
none occurrence of a response is essential, but not the response 
amplitude. To provide the lower bound on N, we used a method 
that results in a high false-positive rate and low false-negative 
rate for  detecting release failures, and so the number of failures 
is overestimated  substantially. This was achieved by carefully 
setting the thresholds for failures θ

1
 and masking of failures by 
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FIGURE 3 | The estimation method is robust for various types of noise 

elements. Verifying the validity of the release-parameters uniformity 
assumption: (A) The analytically calculated CV values of the nine responses of 
three different virtual synapses, each with a different number of release sites 
(marked in fi gure) and with non-uniform sets of the release parameters (pi and 
τrec,i, i = 1…N; solid lines, Eq. 12); and the computed CV values of the 
corresponding three uniform synapses, in which the release parameters, U and 
τrec, were equal for all N release sites (dashed lines, Eq. 13). x-axis labelling 
represents the nine synaptic responses along the spike train. As in Figure 1B, 
the CV of the ninth EPSP is similar to that of the fi rst EPSP, refl ecting the 
recovery of the synaptic responses from depression (e.g. Figure 1A). The pi and 
τrec,i were drawn from a Gaussian distribution with the standard deviation half the 
value of the mean. (B) 500 virtual synapses were simulated for each of the 
distributions of the release parameters considered. With the calculated uniform 
release parameters for each synapse, U and τrec, Eq. 12 was fi tted to Eq. 11 to 
produce an estimated value of N. The distributions of the ratio of the estimated 

value and the true value of N are shown for the cases in which pi and τrec,i were 
fi xed for all release sites; were drawn from a narrow Gaussian distribution 
(standard deviation was 0.25 of the mean); a wide Gaussian distribution 
(standard deviation was 0.5 of the mean); and from a uniform distribution [with 
boundaries of (0.05 0.95) for pi, and 50 ms 1200 ms for τrec,i]. Simulations of 
realistic synaptic connections: (C) Examples of simulated single traces, in which 
various sources of synaptic variability were considered and background slice 
activity was added, (iii) and (iv) (see Materials and Methods); compared to single 
traces recorded in experiment, (i) and (ii). The values of the synaptic parameters 
in the simulated traces were similar to the values estimated for the measured 
synaptic connection. (D) Estimating the number of release sites from the 
simulations of the noisy synaptic connections reveals a slight bias toward lower 
values than the true number of release sites considered. The broken-line curve 
represents the best Gaussian fi t with 0.88 ± 0.1 (mean ± std). In the simulations, 
the values of N were either 10, 20, 30, 40 or 80, and the release parameters 
were drawn from the wide Gaussian distribution (see B, Materials and Methods).
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spontaneous EPSPs θ
2
 – see inset to Figure 4D and Materials and 

Methods for further details. The overall failure probability is thus 
computed from the single traces of a given synaptic connection, 
and it is fi tted to the failure probability (Eq. 18) derived from 
the binomial model (Figure 4H). This provides a conservative 
lower bound of the number of release sites with the results for 
15 of the 18 connections provided in Figure 4I and compared 
to the estimation of N in Figure 4J. The population mean for 
the conservative lower-bound over these 15 connections was 
N

lb
 = 20.8. We note that three of the connections (those with 

N > 100 in Figures 4F,G) were not amenable to failure analysis 
because not a single failure could be seen across the entire set of 
>40 sweeps each comprising nine EPSPs (i.e. no failures in ∼400 
EPSPs for each of these connections).

DISCUSSION
We presented the analysis of synaptic transmission between 
 neocortical layer-5 pyramidal neurons. The method we developed 
for the analysis is based on the extension of the quantal model of 
synaptic release that accounts for the dynamics of short-term syn-
aptic depression (Thomson and Deuchars, 1994; Fuhrmann et al., 
2002). Our approach allows for the estimations of the number of 
release sites, the probability of release and the quantal contribution 
of a vesicle by utilizing the dynamics of the synaptic response to 
a series of inputs. The extended model of synaptic release suc-
cessfully captures the relation between the CV of the synaptic 
responses and their amplitudes over the whole range of amplitudes 
we recorded (2 orders of magnitude). In particular, the model cap-
tures the CV-Amplitude relation of each of the synaptic responses 
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FIGURE 4 | Direct amplitude measurement using voltage deconvolution. 

Mean-variance estimation for N and its lower bound from failure analysis. 
(A) The average voltage trace for an example connection, (B) and its 
corresponding deconvolved trace (membrane fi lter constant τmem = 42 ms). The 
fi t (dotted line) to the deterministic synaptic depression model (Eq. 18) yields 
τrec = 390 ms, U = 0.51 and A = q·N = 4.1 mV. Insets compare the fi t 
parameters τrec and U (deconvolution method x-axis, JMC method y-axis) 
showing excellent agreement between the distinct approaches to amplitude 
measurement. (C) An example of one of the experimental single traces of the 
connection in (A), (D) and its deconvolution. The inset shows the distribution of 
background noise (required for the failure analysis – see Materials and Methods) 
measured between pulse 8 and 9 during all single traces. The distribution is part 
Gaussian (fi t, black line) with a tail at higher voltages due to spontaneous EPSPs. 

An amplitude below θ1 = 0.22 mV (red dashed line) is considered a failure, an 
amplitude between θ1 and θ2 = 0.69 mV (blue dashed line) adds an amount ps to 
the failure count, and amplitudes above θ2 are not considered a failure (see 
Materials and Methods for further details). (E) Estimation of N via a fi t to the CV 
(bold lines) for this connection with the CVs for N ± 10 (dotted lines) shown for 
comparison, (F) and the histogram of N for all connections, with the average 
equal to 53.8. (G) Comparison with the JMC approach, showing close 
agreement between the different methods of mean-variance measurement. 
(H) Fit to the failure probability for the connection in (A–E), giving a conservative 
lower bound Nlb = 18. The failure probabilities for Nlb ± 3 (dotted lines) are shown 
for comparison. (I) Distribution of lower bounds for all connections analyzed with 
the failure analysis, with the average Nlb value of 20.8 (J) and their comparison 
to estimated number of release sites from the CV analysis.
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FIGURE 5 | The extended binomial model captures the relation between 

the CVs and the EPSP amplitudes over the whole range of amplitudinal 

response. The CVs of the synaptic responses from the 20 connections were 
plotted vs. their mean EPSP amplitudes (on a log-log scale, black dots), 
grouped by the stimulus’ index along the pre-synaptic spike train. In red are 

the corresponding CVs as predicted by the extended binomial model: 
CVμ μ μ= ⋅ ⋅ −1 1/ ( ),M q U  where M is the EPSP amplitude as 
measured in experiments, q is the computed quantal size and Uµ = U·ρµ 
is the effective probability of release for the µth response (with ρ1 = 1, 
see Eq. 14).

along the spike train (Figure 5). This supports the model’s main 
assumption that the synaptic depression observed at layer-5 syn-
apses results from the decrease in the effective probability of release 
due to depletion of available vesicles, as suggested by experimental 
observations (Thomson et al., 1993; Debanne et al., 1996; Varela 
et al., 1997; Silver et al., 1998; Zucker and Regehr, 2002).

Our main fi nding is that the observed systematic decrease in 
response variability, as the synaptic effi cacy increases (Figure 5), 
is best explained by attributing increasing numbers of release sites 
to the stronger synaptic connections. In particular, we found that 
the number of release sites can be much larger than the number 
of synaptic contacts reported for the type of synaptic connections 
we studied (Markram et al., 1997; Kalisman et al., 2005; Le Be and 
Markram, 2006). The probability of release and the quantal size 
varied between synaptic connections, but their values were not 
correlated with the synaptic effi cacy.

Our fi ndings thus suggest that synaptic transmission from a 
single contact can involve the simultaneous release of several vesi-
cles. Indeed, there could be more than one docked vesicle at active 
zones of cortical synaptic contacts (Schikorski and Stevens, 1997, 
1999; Rollenhagen and Lubke, 2006). In particular, excitatory syn-
aptic contacts found on the basal dendrites of layer-5 pyramidal 

 neurons could have more than one active zone (between 1–5), and 
the number of docked vesicles at each active zone ranges between 2 
and 6. Hence for a given synaptic contact the number of docked ves-
icles is between 2 and 30 (Rollenhagen and Lubke, 2006). Although 
the pre-synaptic origin of these contacts was not identifi ed, a large 
portion of them is known to originate from neighbouring layer-
5 pyramidal neurons (Markram et al., 1997). Considering that 
stronger synaptic connections between layer-5 pyramidal neurons 
have more synaptic contacts than weaker ones (in the range of 4–8; 
Markram et al., 1997; Le Be and Markram, 2006), and that their 
synaptic contacts could have more than one active zone, our esti-
mated number of release sites (between 7–170) would then match 
the size of the readily releasable vesicle pool at these synapses. We 
are thus tempted to speculate that the anatomical correlate of the 
release sites in our analysis is the identifi ed pre-synaptic docked 
vesicles, and not, as previously suggested, the synaptic contacts or 
active zones. In that sense, we return to the original interpretation 
of the question ‘what constitutes a release site?’ (del Castillo and 
Katz, 1954; Stevens, 2003).

Our fi ndings differ from previous studies at hippocampal synapses, 
in which multiquantal release was correlated to the release probabil-
ity (Oertner et al., 2002; Biró et al., 2006; Christie and Jahr, 2006). 
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Our fi ndings also differ from previous studies of excitatory cortical 
synapses, which show equivalence between the estimated number 
of release sites and the observed number of synaptic contacts. The 
difference may be due to the different cortical location (neocortex 
vs. hippocampus; Gulyas et al., 1993; Biró et al., 2005), type of post-
synaptic neuron (pyramidal vs. interneuron; Gulyas et al., 1993; Biró 
et al., 2005), different neocortical layer (layer-5 vs. synaptic connec-
tions from layer-4 to layer 2/3; Silver et al., 2003), and strength of the 
synaptic connections (Gulyas et al., 1993; Silver et al., 2003).

The average contribution of a single quantum, as measured in 
the cell soma, was similar to that found for synaptic connections 
between layer-4 to layer 2/3 (Silver et al., 2003). This may  indicate 
that at neocortical synaptic connections between  pyramidal 
 neurons, the range of the average quantal size is relatively small. 
Subsequently, according to the quantal model, differences in 
 synaptic effi cacy could originate either from changes in release 
probability or the number of release sites, or a combination of both. 
For example, in our study the average estimated number of release 
sites is higher than at the synapses in layer-2/3 (Silver et al., 2003), 
and the average probability of release is lower (∼0.45 vs. ∼0.8). The 
two potential mechanisms for modulation of synaptic effi cacy have 
different functional implications. Modulating the synaptic effi cacy 
via the release probability has a limited range, as it is constrained by 

the number of available vesicles. In addition, changes to the release 
probability affect the dynamics of the synaptic response (Tsodyks 
and Markram, 1997). Modulating synaptic effi cacy via the number 
of release sites, on the other hand, has a potentially wider range, and 
it preserves the temporal response structure (Le Be and Markram, 
2006). A higher number of release sites also increases the reliability 
of synaptic transmission to all of the components of a stimulus 
spike train. In Figure 6 we show the synaptic responses for one of 
the stronger connections we recorded (with an estimated N of a 
110), and compare it with the synaptic responses for a much weaker 
connection (N = 15). It can be seen that individual PSP’s of the 
stronger connection are strikingly similar, as opposed to the highly 
variable response of the weaker connection. The observed decrease 
in synaptic response variability, as the synaptic effi cacy increases, 
is not unique to layer-5 and is observed at cortical synaptic con-
nections across layers (Feldmeyer et al., 1999, 2002, 2006; Lefort 
et al., 2009). Hence, we suggest that multiquantalrelease might be 
a general mechanism for underlying the distributions of synaptic 
effi cacies in the cortex. It is the challenge for future experimental 
and theoretical studies to try and understand the functional impli-
cations of such differences in synaptic transmission reliability on 
the neural code. That we found strong correlation between the 
synaptic effi cacy and the estimated number of release sites, but not 

2 mV

250 ms

A B

FIGURE 6 | Reliability of synaptic connections increases with their 

response amplitude. Four typical single traces from one of the strongest 
and highly reliable synaptic connection measured (A), and one of the 
weakest and noisiest connection recorded (B). The estimated numbers of 
release sites were 110 and 15, respectively. Arrows mark few of the response 

failures for the weaker connection. No failures were observed in 
any of the single traces recorded for the connection in A (>400 PSP’s).
 Other synaptic parameters were similar: release probability 0.46 vs. 0.39; 
recovery time constant 398 ms vs. 461 ms; and quantal size
 0.12 mV vs. 0.19 mV.
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Sakmann, B. (1999). Reliable synaptic 
connections between pairs of excita-
tory layer 4 neurones within a single 
‘barrel’ of developing rat somatosen-
sory cortex. J. Physiol. 521, 169–190.

Feldmeyer, D., Lübke, J., and Sakmann, 
B. (2006). Effi cacy and connectivity 
of intracolumnar pairs of layer 2/3 
pyramidal cells in the barrel cortex 
of juvenile rats. J. Physiol. 575(Pt 2), 
583–602.

Feldmeyer, D., Lubke, J., Silver, R. A., and 
Sakmann, B. (2002). Synaptic con-
nections between layer 4 spiny neu-
rone-layer 2/3 pyramidal cell pairs 
in juvenile rat barrel cortex: physi-
ology and anatomy of interlaminar 
signalling within a cortical column. 
J. Physiol. 538(Pt 3), 803–822.

Foster, K. A., and Regehr, W. G. (2004). 
Variance-mean analysis in the pres-
ence of a rapid antagonist indicates 
vesicle depletion underlies depression 
at the climbing fi ber synapse. Neuron 
43, 119–131.

Fuhrmann, G., Segev, I., Markram, H., 
and Tsodyks, M. (2002). Coding of 
temporal information by activity-
dependent synapses. J. Neurophysiol. 
87, 140–148.

Gulledge, A. T., Kampa, B. M., and Stuart, 
G. J. (2005). Synaptic integration 
in dendritic trees. J. Neurobiol. 64, 
75–90.

Gulyas, A. I., Miles, R., Sik, A., Toth, 
K., Tamamaki, N., and Freund, T. F. 
(1993). Hippocampal pyramidal cells 

between the synaptic effi cacy and the release probability,  suggests 
that the two alternatives for modifying synaptic effi cacy are gener-
ated by different learning rules.

Our fi ndings may suggest that increasing the effi cacy of a syn-
aptic connection involves the addition of release sites at already 
existing synaptic contacts, without necessarily adding new contacts. 
This rationale follows from the simple observation that the range 
of the number of synaptic contacts (4–8) is much lower than the 
range of EPSP amplitudes (0.1–10 mV) and  estimated number of 
release sites (7–170). Such a mechanism may also be advantageous 
from an energetic point of view, as it does not require the formation 
of new synaptic contacts but can rely upon the infrastructure of the 
existing synapses. Indeed, cortical synaptic connections exhibit a 
wide range of active zones and post-synaptic density sizes, which 
are highly correlated, i.e. larger active zones face larger post-synaptic 
densities; and the larger the active zone, the more docked vesicles 
it has (Schikorski and Stevens, 1997, 1999). Hence when several 
vesicles are released simultaneously from a given pre-synaptic ter-
minal, they have a larger pool of postsynaptic receptors ready to 
accept them, thus preventing receptor saturation. This could be 
the justifi cation for the linear summation of multiquantal release 
that we assume in the model, and would explain the similarity in 
the quantal size that we found across the wide range of synaptic 
effi cacies. The mechanism of modulating synaptic effi cacy by the 

addition/subtraction of release sites at existing synaptic contacts 
enables the preservation of the exact dendritic location of synapses, 
which has a strong effect on the computation performed by the 
dendrites (Segev and London, 2000; Gulledge et al., 2005; London 
and Hausser, 2005).

We are planning to expend the method presented here so it will 
include the effects of short-term synaptic facilitation as well. This 
will allow us to estimate the quantal parameters for more types of 
synaptic connections, e.g. between pyramidal to inhibitory neurons 
at the somato-sensory area (Markram et al., 1998), and between 
pairs of pyramidal neurons located at the pre-frontal cortex (Wang 
et al., 2006). We could then compare the underlying bio-physical 
attributes of different types of synaptic connections at the same 
brain region, and of synaptic connections between anatomically 
similar neurons at different cortical locations.
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