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measurement at time t, z(t), is approximated by a linear sum 
of basis vectors ψ

1
, ψ

2
,…called “principal components”, i.e., 

z( ) ( ) ( ) .t t t1 2= + +α α1 2ψ ψ �  The principal components ψ
i
 are 

selected such that they maximize an objective function defi ned 
as the power of the associated time course of the coeffi cients α

i
(t). 

Moreover, the n components with maximal power provide the best 
linear approximation of the data using n components in a well-
defi ned mathematical sense. For neuroscientifi c measurements, 
which are typically redundant, a small number of components 
suffi ce for approximating the data, and the dimensionality can 
be dramatically reduced.

While highly successful in dimensionality reduction, PCA often 
performs poorly in terms of separating the signal from the noise. 
It is rarely the case that a particular principal component can be 
associated solely with the signal, and it is much more common 
that the principal components are “non-interpretable” and refl ect 
useless mixtures of signal and noise. As a result, PCA is often disre-
garded as a rigorous method for data analysis. We observe that both 
the success of PCA in dimensionality reduction and its failure in 
separating the signal from the noise follow from the PCA objective 
function. While maximizing the power guarantees an optimal low 
dimensional representation, this objective function is completely 
“blind” to the fact that data combines a signal, which is of inter-
est, and a noise, which should be suppressed. Moreover, the PCA 
construction is ignorant to the fact that the data constitutes a mul-
tidimensional time-series, in which the samples, i.e., measurements 
at different points in time, are correlated.

In this contribution we propose an algorithm suitable for the 
analysis of multichannel measurements. We refer to the algorithm 
as “temporally structured components analysis” (TSCA). The algo-
rithm adheres to the PCA framework by seeking components with 
high power. However, in order to avoid the mixing of the signal and 
the noise, it seeks components that maximize the power originating 
from the signal while minimizing power arising from the noise. 
The main challenge here is to tell apart the signal from the noise. 

INTRODUCTION
Contemporary methods in neuroscience research, ranging from 
multielectrode recordings, through optical imaging, to fMRI, EEG 
and MEG allow the collection of large volumes of multichannel 
data in a single experiment. Such data can be highly informative 
about the underlying neuronal machinery, as it can reveal its rich 
and complex dynamics, as well as its spatial structure. However, 
this data is inherently diffi cult to analyze due to two fundamental 
issues (Mitra and Pesaran, 1999). First, there are problems associ-
ated with the nature of high dimensional structures, such as the 
diffi culty to visualize them or to fi t them with statistical models. 
Second, the signal-to-noise ratio is often very low. A typical example 
for the latter problem is when the signal, which is identifi ed with 
neuronal activity, is masked by strong non-neuronal sources, which 
are considered noise. In this contribution however we deal with the 
signal-to-noise ratio problem from a broader perspective: we view 
the signal as any aspect of the data that is of interest in a particular 
context; everything else is considered noise.

A general approach for analyzing multichannel data is to reduce 
its dimensionality. Since in many neuroscientifi c measurements 
the different channels are correlated, the data is redundant, and its 
dimensionality can be reduced without causing a signifi cant loss of 
information. Moreover, one can seek a low dimensional represen-
tation that retains the signal’s structure but suppresses the noise. 
If such a representation is attainable, the new representation not 
only exhibits an improved signal-to-noise ratio but is also easier 
to analyze, merely due to its reduced dimensionality.

Out of the numerous dimensionality reduction methods, 
one of the simplest and most popular is principal component 
analysis (PCA; e.g., Jolliffe, 2002)1. In PCA, the multichannel 
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1A closely related method is singular value decomposition (SVD); PCA is commonly 
solved by performing SVD on the data, typically after its mean was subtracted as 
preprocessing step. In the analysis presented here, we do not subtract explicitly the 
mean, so our discussion is applicable to SVD as well as PCA. For consistency with 
standard formulations of PCA, one can assume that the data is already centered.
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We address this problem by making use of the fact that the signal 
and the noise typically have different temporal structures, and that 
prior information about their temporal characteristics is often at 
hand. For example, neuronal responses evoked by a stimulus can 
be characterized by their expected timing within the recording, 
which is set by the stimulation protocol, and by quantities such as 
the neural delay, which can be estimated. Another example is the 
approximately periodic artifacts originating from heartbeat pul-
sation. These artifacts can be characterized by their fundamental 
frequency, which can be measured independently or estimated from 
the data. In both cases, the information required for the charac-
terization of the signal and the noise is either known a-priori, or 
can be estimated.

In the following sections we show how the prior temporal 
 information can be systematically incorporated in a PCA-like 
 framework. The main building block of the mathematical construc-
tion is the expression of the prior information in terms of correlation 
matrices, i.e., matrices of second order moments of the signal and 
the noise. This defi nition is very versatile, and allows the treatment 
of a very broad class of signal or noise sources, as well as dealing with 
statistical dependencies between the signal and the noise.

Our goal in this contribution is to present the algorithm and 
the theoretical construction underlying it. To this end, we fi rst pro-
vide the mathematical derivation of the algorithm for a simplifi ed 
case that captures the essence of the algorithm. Then, we discuss 
some results for the general case (full analysis is presented in Section 
1 and 2 of the Supplementary Material). We next present simulation 
results to validate the algorithm, and to demonstrate some of its 
additional properties, such as robustness to errors in the assumed 
temporal structure of the data. We fi nish with a discussion, focus-
ing on how the algorithm can be applied in practical cases, and on 
comparison with other algorithms.

MATERIALS AND METHODS/RESULTS
ANALYSIS OF A SIMPLIFIED CASE
We consider the data to be a matrix Z with dimensions P times 
T, where P is the number of channels and T is the number of 
time samples. The matrix Z is stochastic (i.e., Z is a matrix-val-
ued random variable), and constitutes a multidimensional time-
series. A basic operation in the analysis is to transform Z into 
a one-dimensional time-series by projecting it onto a P-dimen-
sional unit vector ψ, an operation written as ψTZ. One measure 
of the importance or dominance of a particular direction ψ is the 
expected power of ψTZ, a quantity we write as s EZ

T2 2( ) (|| || ),ψ ψ= Z  
where E(·) denotes expectation taken over realizations of Z. The 
approach taken by PCA is to fi nd components ψ such that sZ

2 ( )ψ  
is maximized. The solution to this maximization problem is given 
by eigenvectors of the theoretical covariance matrix, which is given, 
up to a scaling, by E(ZZ T). In practice, the theoretical covariance 
matrix is replaced by the empirical covariance matrix, estimated 
from the observations.

We further assume the matrix Z to be the sum of a signal X 
and a noise Y, i.e., Z = X + Y. Since PCA maximizes sZ

2 ( )ψ , it is not 
guaranteed, in general, that the power of the projection of the signal 
on ψ, i.e., sX

2 ( )ψ , is high. Our approach is to replace the maximiza-
tion of the PCA objective function with either the maximization 
of sX

2 ( )ψ , the minimization of sY
2 ( )ψ , or an interplay between these 

two objectives. Clearly, neither the maximization of sX
2 ( )ψ  nor the 

minimization of sY
2 ( )ψ  can be done directly, because neither X nor 

Y are observed; only their sum Z is known.
We will develop a solution to this problem by studying a sim-

plifi ed but instructive case. We assume the signal to be a multidi-
mensional process with a fi xed spatial structure whose amplitude 
fl uctuates according to a stochastic process. Thus, we express X 
as X = u

X
a

X
 where the spatial component u

X
 is a fi xed, length P, 

column vector, and a
X
 is a stochastic process, represented by a 

length T row vector (note that throughout the manuscript column 
vectors are used for space, and row vectors are used for time). We 
choose the noise to be of a similar form Y = u

Y
a

Y
, with u

Y
 being 

fi xed and a
Y
 stochastic. No particular assumptions about the prob-

ability distribution of a
X
 are made, but for the noise we assume 

that it is statistically independent of the signal and has zero mean 
in all its entries, i.e., E(a

Y
) = 0. Our approach for maximizing 

sX
2 ( )ψ  assumes that some prior knowledge about the temporal 

structure of the signal and the noise is available. Specifi cally, we 
require that the autocorrelation matrices of the signal and the 
noise are known, up to scaling. We denote these matrices by C

X
 

and C
Y
, and defi ne them respectively by E(a

X
 T a

X
) and E(a

Y
 T a

Y
). 

These matrices are of size T × T. For C
X
 (or C

Y
), the entry at row 

t, column t′, measures the correlation between the value of the 
signal (or the noise) at times t and t′.

An example of such data is given in Figure 1A. The signal X 
has a fi xed spatial component u

X
, which we chose, rather arbi-

trarily, to be an image of a circle in a square frame (left top). The 
random vector a

X
, which defi nes the temporal evolution of the 

signal, was selected to mimic the time course of a stimulus- triggered 
response. The response starts at times 0,100,…,900. It has a constant 
 exponential shape, but variable amplitude. A particular realization 
of a

X
 is shown on the right. The noise Y was constructed with a 

sinusoidal-gratings spatial component (u
Y
, Figure 1A, left bottom). 

Its time course was defi ned by an autoregressive process of order 
5, for which we show a particular realization on the right. The 
observed data Z is constructed summing X and Y, so every frame is 
a linear combination of the circle and the gratings (Figure 1B). The 
autocorrelation matrices for the signal and the noise processes are 
shown in Figure 1C (left: C

X
, right: C

Y
). Intuitively, analysis of the 

signal requires the recovery of the circle image u
X
 from the data Z. 

This intuition is met by the mathematical formulation presented 
above, because sX

2 ( )ψ  is maximized when ψ = u
X
.

In order to (indirectly) maximize sX
2 ( )ψ  or minimize sY

2 ( )ψ  
based on the data Z, we will fi rst try to estimate these quantities 
for a fi xed ψ. To this end, we consider a quadratic estimator of 
the form:

m Z ZQ
T TQ( )ψ ψ ψ=

 
(1)

where Q is an arbitrary symmetric T × T matrix. Our goal now is to 
constrain Q such that m

Q
(ψ) will enable us to estimate sX

2 ( ),ψ  sY
2 ( ),ψ  

or some combination of them. Thus, we calculate the expectation 
(taken over realizations) of m

Q
(ψ), and express it in terms of sX

2 ( )ψ  
and sY

2 ( )ψ . We fi nd that:

E
Q,C

tr(C )
s

Q,C

tr C
sQ

X

X
X
2 Y

Y
Y
2( ( )) ( )

( )
( )m ψ ψ ψ= +

 
(2)
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FIGURE 1 | Application of the algorithm on simple artifi cial data. 

(A) Construction of the data. The signal (top) and the noise (bottom) have fi xed 
spatial components (uX and uY, correspondingly), which are normalized to have 
unit norm. The time course for the signal is determined by a stochastic process: 
a r ll lX t g t( ) ,= ∑ −( )=0

9 100  with g(t) = Θ(t)e−t/25, Θ(·) being the Heaviside step 
function, and rl denoting random variables independently drawn from a Gaussian 
distribution N(1, 0.0625). The time course for the noise is an AR(5) process: 
aY(t) = 1.2aY(t − 1) − 0.215aY(t − 5) + ε(t), with ε(t) independently drawn from a 
Gaussian distribution N(0, 0.0008). The standard deviation of ε(t) was selected 

such that the power of aY matches approximately the power of aX. A particular 
realization of these processes is shown on the right. The data at time t is 
constructed by a linear sum: aX(t)uX + aY(t)uY. (B) Examples of data frames. 
(C) Autocorrelation matrix of the signal (left) and the noise (right). (D) Spatial 
components extracted by TSCA. The fi rst spatial component is similar to uX.
 (E) Spatial components extracted by TSCA with the signal and noise switched. 
The fi rst spatial component is now similar to uY. (F) Spatial components 
extracted by PCA. Unlike the results from TSCA, here the fi rst principal 
component is a mixture of uX and uY.

where A,B tr B AT= ( ) is the matrix inner product. Eq. 2 implies 
that m

Q
(ψ) is an unbiased estimator for a weighted sum of sX

2 ( )ψ  
and sY

2 ( )ψ  that takes the form:

m s sX X Y Y
2( ) ( ) ( )ψ γ ψ γ ψ= +2

 
(3)

Moreover, Eqs. 2 and 3 together imply that if we know C
X
 and C

Y
 

up to a scaling factor, then expressions of the form given by Eq. 3 
can be estimated for any γ

X
 and γ

Y
, by fi nding Q such that:

Q , C tr C and Q , C tr CX X X Y Y Y= ( ) = ( )γ γ  
(4)
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Expressions of the form in Eq. 3 are useful objective functions. 
For example, choosing γ

X
 = 1, γ

Y
 = 0, produces an estimator of 

sX
2 ( )ψ . A direct calculation shows that this objective function is 

maximized for ψ = u
X
. Thus, the maximization of m(ψ) with γ

X
 = 1, 

γ
Y
 = 0, is a strategy for recovering u

X
 from the data. Another choice 

which is of interest is γ
X
 = 0 and γ

Y
 = −1. When this expression is 

maximized, sY
2 ( )ψ  is minimized, and more generally, a tradeoff 

between maximizing sX
2 ( )ψ  and minimizing sY

2 ( )ψ  follows when 
selecting γ

X
 = 1 and γ

Y
 < 0. Later, we address how the value of γ

Y
 

affects the solution of the optimization problem, but for now, we 
restrict neither γ

X
 nor γ

Y
.

Eq. 4 constitute a linear system with two equations and (T + 1)T/2 
variables (the number of independent entries in the symmetric 
matrix Q). Unless C

X
 and C

Y
 are the same up to a scaling factor and 

therefore are linearly dependent, an infi nite number of solutions 
exists for any selection of γ

X
 and γ

Y
. This degeneracy can be utilized 

to minimize the variance of the estimator m
Q
(ψ). In general, this 

variance cannot be expressed only in terms of the correlation matri-
ces, as it depends on moments of Z of order higher than 2. So as not 
to require knowledge of higher order moments, we use an upper 
bound obtained by applying the Cauchy-Schwarz inequality to the 
variance (Eq. A12, see Section 1 of the Supplementary Material). 
This bound holds for any Q satisfying Eq. 4, and is given by:

Var( ) Q E Z mQm T( ) ( )ψ ψ ψ≤ ( ) −2 4 2

 
(5)

where ||Q||2 = tr(QTQ) is the squared Frobenius norm. Since the 
bound depends on Q only through the factor ||Q||2, a reasonable 
strategy for minimizing the estimation variance is simply to mini-
mize ||Q||2. Given C

X
, C

Y
, γ

X
, and γ

Y
, the solution for Eq. 4 with 

minimal ||Q||2 is a linear combination of C
X
 and C

Y
 given by:

Q + C
C ,C C ,C

C ,C C ,C

tr C
X X Y Y

X

Y

X X Y X

X Y Y Y

X X
C=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

(−

α α
α
α

γ
,

1 ))
( )

⎡

⎣
⎢

⎤

⎦
⎥γ Y Ytr C

 

(6)

Having derived an expression for Q, we can estimate m(ψ) by 
m

Q
(ψ), and therefore we can treat m(ψ) as an objective function 

to be maximized over all ψ’s. The solution to this maximization 
problem is analogous to the PCA solution. Here, it is given by eigen-
vectors of ZQZT, and the eigenvalue of a particular eigenvector ψ

i
 is 

equal to the estimate of m(ψ
i
). If we sort the eigenvectors accord-

ing to their eigenvalues in a descending order, the fi rst eigenvector 
obtains the global maximum of the objective function; the second 
eigenvector obtains the maximum in the subspace orthogonal to 
the fi rst eigenvector; and so forth.

Based on the analysis above, we can summarize the basic algo-
rithm. First, we select an objective function m(ψ) of the form in 
Eq. 3 by choosing γ

X
 and γ

Y
. Using prior knowledge of the autocor-

relation of the signal C
X
 and the noise C

Y
 we construct the estimator 

for m(ψ) by calculating Q according to Eq. 6. We then diagonal-
ize ZQZ T and sort the eigenvectors according to their eigenvalues. 
Those with highest eigenvalues maximize the objective function.

We demonstrate this procedure on the data in Figure 1. We 
selected the objective function by choosing γ

X
 = 1, γ

Y
 = 0, so the 

objective function is simply sX
2 ( )ψ . Then, Q was calculated using the 

autocorrelation matrices in Figure 1C. Applying the algorithm for 
the realization of Z in Figure 1A, we diagonalized ZQZ T. The fi rst 

eigenvector ψ
1
 is shown in Figure 1D, top panel. It is highly  similar 

to the spatial component of the signal ( , . ).〈 〉 >ψ1 0 99uX  The algo-
rithm therefore successfully recovered the spatial component of 
the signal, as desired by this choice of objective function. In this 
simplifi ed example all columns of Z belong to the two dimensional 
linear subspace spanned by u

X
 and u

Y
. The rank of Z is therefore 2, 

and there is only one more non-zero eigenvalue. The corresponding 
eigenvector is shown at the bottom of Figure 1D. Note that if we 
were interested in the spatial component of the noise, we could still 
use TSCA by switching the roles of the signal and the noise. Applying 
the algorithm this way produces the eigenvectors in Figure 1E. Now, 
the fi rst eigenvector (top) corresponds to the noise spatial com-
ponent ( , . ).〈 〉 >ψ1 0 99uY  For comparison, we applied PCA on the 
same data. This resulted in the usual mixing of the signal and noise 
(Figure 1F; 〈 〉 > 〈 〉 >ψ ψ1 10 51 0 92, . , , .u  uX Y ). This phenomenon 
can be understood using the formulation developed above: PCA 
is obtained by selecting Q to be the identity matrix. Plugging Q = I 
in Eq. 2, and observing that I , C tr C  and I , C tr CX X Y Y= ( ) = ( ), 
we see that the quantity maximized in this case is s sX

2
Y
2( ) ( ),ψ ψ+  

which cannot be expected to appropriately separate the signal from 
the noise.

THE GENERAL CASE
The analysis presented above makes the rather strong assumption 
that both the signal and the noise have one, fi xed, spatial compo-
nent, and that they are uncorrelated. Clearly, these assumptions are 
unrealistic for complex biological data. However, using mathemati-
cal principles similar to the ones presented above, we can generalize 
the algorithm such that the restrictive assumptions are replaced by 
weaker ones. Detailed discussion is presented in Section 1 and 2 of 
the Supplementary Material. Here, we briefl y sketch the general-
ized formulation and summarize the main results. We clearly state 
the underlying assumptions, which defi ne the algorithms’ scope 
of applicability.

In the general case, we assume that the data Z originates from 
N

X
 signal sources X X1,..., NX

 and N
Y
 noise sources Y Y1,..., NY

, which 
combine additively. Each of the sources is an arbitrary matrix valued 
random variable. The objective function is generalized and takes 
the form: m s sX

N
X
2

Y
N

Y
2X Y( ) ( ) ( ).ψ γ ψ γ ψ= ∑ + ∑= =j j j j1 1  As before, the free 

parameters of the objective function γ
X
 and γ

Y
 control a trade-

off between maximizing signal power, now given by ∑ =j j1
N

X
2X s ( ),ψ  

and minimizing noise power, i.e., ∑ =j j1
N

Y
2Y s ( )ψ . The estimation of 

the objective function is obtained by using an unbiased estimator 
m

Q
(ψ) of the form given by Eq. 1, with Q being a linear combina-

tion of correlation matrices (Eqs. A13 and A14, Section 1 of the 
Supplementary Material). The maximization of m

Q
(ψ) is solved by 

diagonalizing ZQZ T, and the leading eigenvectors of ZQZ T maxi-
mize the objective function, as in the simplifi ed case.

The main difference between the simplifi ed and general cases is 
the defi nition of the correlation matrices. Whereas in the simplifi ed 
case there was one correlation matrix for the signal and one cor-
relation matrix for the noise, in the general case there are three sets 
of matrices: (1) Signal correlation matrices, representing the tem-
poral correlations within each of the signal sources; (2) Noise cor-
relation matrices representing the temporal correlations within 
each of the noise sources; and (3) Interaction correlation matrices, 
accounting for potential correlations between the  different signal 
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and noise sources. In order to defi ne these matrices, we consider a 
 decomposition of each of the signal and noise sources: X

j
 = U

Xj
A

Xj
 

and Y
j
 = U

Yj
A

Yj
. Here, each matrix U

Xj
, U

Yj
 is a fi xed matrix of size 

P by RX
j  or P by RY

j , respectively, and each of the matrices A
Xj

, A
Yj

 is 
a matrix valued random variable of compatible size. The number 
of columns in U

Xj
, U

Yj
, i.e., RX

j  or RY
j , is arbitrary, although hav-

ing a decomposition with small RX
j  and RY

j  simplifi es the actual 
calculation of the correlation matrices. Note that there is always 
an infi nite number of such decompositions for each source, as U

Xj
 

or U
Yj

 can be defi ned as any invertible matrix, and A
Xj

, A
Yj

 as the 
inverse of that matrix multiplied by X

j
 or Y

j
. However, the precise 

choice of U
Xj

, A
Xj

, U
Yj

 and A
Yj

 is not important because all choices 
lead to a valid matrix Q. Moreover, all choices of U

Xj
, U

Yj
 such that 

their columns are linearly independent are equivalent, and lead 
to precisely the same matrix Q. Using these decompositions the 
defi nition of the signal, noise, and interaction correlation matrices 
is, respectively, the set of symmetrized expected outer products 
between any two rows of (1) the same matrix in the set {A

Xj
}, (2) 

the same matrix in the set {A
Yj

}, and (3) different matrices in 
the set {A

Xj
} ∪ {A

Yj
} (see Eq. A3, Section 1 of the Supplementary 

Material). In order to construct Q however, it is suffi cient to know 
only arbitrary bases for the linear span of the three set of matrices 
(see Eq. A10, Section 1 of the Supplementary Material). In par-
ticular, it follows that similarly to the simplifi ed case, it is enough 
to know the correlation matrices only up to a scaling factor. Note 
also that the defi nitions of the correlation matrices reduce to the 
defi nitions of the simplifi ed case whenever the conditions for the 
simplifi ed case are satisfi ed.

Overall, we make only two assumptions about the processes 
generating the data in the general case: additivity of the different 
sources, and a technical condition we refer to as “contrastability” 
of the signal and the noise. The latter condition requires the tem-
poral structure of the signal and the noise to be suffi ciently dif-
ferent, such that objective functions m(ψ) that contrast the signal 
and noise, i.e., objective functions with γ

X
 ≠ γ

Y
, can be estimated. 

Mathematically it requires the linear independence between the lin-
ear spaces spanned by the signal, noise, and interaction correlation 
matrices. While additivity is a rather strong assumption, we expect 
contrastability not to be very restrictive except for special cases. An 
example of contrastability violation is when a signal component 
and a noise component have identical autocorrelation matrices, up 
to scaling. Another example is when the sum of dimensions of the 
subspaces spanned by the signal, noise, and interaction correlation 
matrices exceeds the dimension of the space of real symmetric 
matrices T(T + 1)/2. This case refl ects that the correlation structure 
of the sources is too complex compared with the temporal length 
of the data.

In addition to the two assumptions about the processes gen-
erating the data, we also assume that suffi cient amount of data is 
available. This is required because the theoretical analysis relies on 
the diagonalization of E(ZQZ T), whereas in practice this matrix 
has to be approximated with the fi nite amount of observed data. 
Such an approximation is valid if several independent realizations 
of Z are available, e.g., when measurements from several trials are 
available. In this case, all realizations can be used simultaneously 
(see section “Maximization of the objective function” Section 1 of 
the Supplementary Material), and the formal demand is that the 

number of realizations is large enough. Alternatively, if there is only 
one realization of Z, the processes producing the data have to be 
ergodic, and T has to be large enough.

We view the assumptions mentioned above to be either stand-
ard or weak. In contrast to many algorithms, we did not assume 
the sources to be Gaussian, stationary, space-time separable, 
 independent, or orthogonal in any sense. This generality however 
comes with a price: we do make the strong assumption that the 
correlation matrices are known a-priori, or at least can be estimated. 
Whether or not this is a reasonable assumption is application spe-
cifi c, and depends on the characteristics of the sources.

A limiting factor in this context is the number of correlation 
matrices: although any source has a well-defi ned set of correlation 
matrices and thus can in principle be dealt with by the algorithm, 
it is unlikely that a very large number of correlation matrices can 
be known a-priori or reliably estimated. Generally, the number of 
correlation matrices associated with any particular source can be as 
high as the order of the number of channels P squared. We suggest 
however, that sources with a simple enough temporal structure 
will be associated with a set of correlation matrices of a reason-
able size. This suggestion is supported by the common observation 
that the number of signifi cant principal components in standard 
PCA applied to datasets of the type considered here is limited. 
When this holds, any source, e.g., a signal source X

j
, is likely to be 

well approximated by X
j
 = U

Xj
A

Xj
 with U

Xj
 having a small number 

of columns RX
j . Thus, in this case, X

j
 will contribute at most the 

order of RX
j 2

, and not P2, to the total number of correlation matrices. 
Furthermore, in some cases the number of correlation matrices 
originating from a particular source can be smaller, even if RX

j  
or RY

j  is large. For example, a noise source Y
j
 with independent 

zero-mean white noise at each of its entries requires a decomposi-
tion with R PY

j = . Nonetheless, there is only one correlation matrix 
associated with such a source: the identity matrix.

Although estimation of the correlation matrices can be diffi cult 
in some cases, they need not be known to perfect precision. Some 
robustness follows from the mathematical construction because 
the algorithm uses only continuous operations, so a suffi ciently 
small perturbation of the correlation matrices leads only to a small 
perturbation of the algorithm’s output. Below, we use simulations 
performed on an artifi cial dataset to further demonstrate the algo-
rithm’s robustness to perturbations of the correlation matrices, as 
well some of its other properties.

SIMULATIONS
We constructed an artifi cial dataset as the sum of 10 sources. Each 
source i admitted a decomposition u

i
a

i
, with a fi xed u

i
 and stochastic 

a
i
, i.e., Z ai i i= ∑ =0

9 u . We used 10 different defi nitions for what is 
the signal and what is the noise in the data. Each time, we defi ned 
one of the sources to be the signal X (e.g., X = u

0
a

0
), and all other 

sources to be nine noise sources Y
1
,..,Y

9
 (e.g., Y

1
 = u

1
a

1
,…,Y

9
 = u

9
a

9
). 

As discussed above, having a single spatial component u
i
 for each 

source is not a requirement of the algorithm, but this particular case 
simplifi es the performance analysis presented below, as each source 
has a single correlation matrix associated with it. On the other hand, 
we did introduce complexities into the dataset by constructing the 
vectors u

i
 and a

i
 such that they exhibited various spatial and tem-

poral correlations. The spatial components u
i
 were P = 900 length 
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vectors, constructed by a 30 × 30 pixels rendering of the digits 0 
to 9, normalized to have zero mean and unit norm (Figure 2A). 
There are marked correlations between different components, 
ranging from 0.22 (for u

0
 and u

7
) to 0.89 (for u

6
 and u

8
) with the 

mean correlation, u ui j, , i ≠ j, being 0.57 (std: 0.18). The temporal 
components of each source a

i
 were constructed as  realizations of 

stochastic processes of different types. Processes 0 to 4 are stationary 
and include a white noise process (process 0), autoregressive proc-
esses with broad (1) and concentrated (3) spectra, and an harmonic 
process (4). Process 2 was constructed by smoothing realizations 
of process 1, making processes 1 and 2 statistically dependent and 
correlated. Processes 5 to 9 were non-stationary and modeled dif-
ferent types of stimulus-triggered responses, including responses 
of different shapes (exponential: 6,7,9, α-function: 5,8), a response 
to a non-periodic stimulation (8), a response with a stochastic 
decay time-constant (9) and a response with variable sign (5). Two 
non-stationary processes were coupled by taking process 7 to be a 

delayed version of process 6. Defi ning equations for the 10  processes 
are given in Section 3 of the Supplementary Material. Exemplar 
realizations of the processes are shown in Figure 2A. In Figure 2B 
we show a realization of the observed data Z at 8 points in time. 
This fi gure demonstrates that individual digits were diffi cult to 
recognize by visual inspection of Z at specifi c times. Figure 2C 
shows the fi rst 10 principal components obtained with standard 
PCA for the same data. As expected, these components do not 
correspond to individual digits.

In Figure 3A, we present an example of the results obtained by 
applying the algorithm to the artifi cial data. In this example, we 
used one realization of the data with length T = 1000. The objective 
function here was defi ned by taking γ

X
 = 1, γ

Y
 = 0. We ran the algo-

rithm 10 times on the same realization, using the 10  defi nitions of 
the signal and the noise. Figure 3A shows ψ1

( )i , i = 0,…9, the leading 
eigenvector obtained when the signal was defi ned as the i-th source. 
These eigenvectors are highly similar to the spatial component of 

FIGURE 2 | Construction of the artifi cial dataset. (A) construction
 of the data as a sum of 10 sources with fi xed spatial components 
(left columns; u0,…,u9) and stochastic temporal components for which 
an exemplar realization of length T = 250 is shown (right columns; a0,…,a9). 

(B) Example of the observed data Z u ai i i( ) ( )t t= ∑ =0
9  for 10 values

 of t. The realizations of ai used in this example are those shown in 
(A). (C) Ten principal components obtained with standard PCA for 
the same data.
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the source defi ned as signal, i.e., ψ1
( )i

i≈ u , and illustrate the success 
of the algorithm in recovering the signal’s spatial components in 
this particular case.

A more rigorous and quantitative study of the performance 
of the algorithm applied on the artifi cial data is presented in 
Figures 3B–F. In Figure 3B we studied the effect of the  temporal 
length of the data T on the performance of the algorithm by  running 
the algorithm as in Figure 3A for 10000 realizations of Z and for 
several values of T. Similarity between ψ1

( )i  and the corresponding 
spatial component u

i
 was quantifi ed by ρ ψs

i
i= 〈 〉| , |,( )

1 u  equivalent 
here to the Pearson correlation coeffi cient due to normalization 
of the vectors; the subscript s is used here to indicate that the cor-
relation is spatial. Figure 3B (left) shows the values of ρ

s
 averaged 

over the 10000 realizations of Z, plotted against T for each of the 10 
 processes. As expected, increasing T improved the performance of 
the algorithm. For T ≥ 1000, all 10 processes had an average value of 
ρ

s
 greater than 0.9, but even for T = 250 the average ρ

s
 was greater 

than 0.9 for most process and greater than 0.8 for all processes. For 
a very large T, the average ρ

s
 approached 1. This result is in fact 

guaranteed by the mathematical formulation, and implies a near 
prefect match between ψ1

( )i  and u
i
 for every realization of Z. This 

behavior can be also seen in Figure 3B (right), which shows that 
the standard deviation of ρ

s
 decays to zero as T increases. We fur-

ther observed that the standard deviation of ρ
s
 was of the order of 

1 − ρ
s
. Since this behavior was found in all subsequent simulations, 

standard deviations are not shown in subsequent panels.

FIGURE 3 | TSCA application on the artifi cial dataset. (A) Spatial components 
extracted by the algorithm from one realization of the data of length T = 1000. 
(B–G) Quantitative study of the performance of the TSCA algorithm. 
(B) Left – mean value of ρs, a measure of the quality of reconstruction of the 
spatial components, plotted against T. Right – standard deviation of ρs. 
(C) Left – mean value of ρs as a function of γY for γX = 1. Right – mean value of ρt, 
a measure of the quality of reconstruction of the temporal components, plotted 
as a function of γY. (D) Mean values of ρs (left) and ρt (right) as a function of η, the 
amplitude of perturbation of the correlation matrices used by the algorithm. 

(E) Mean values of ρs (left) and ρt (right) as a function of Δt, perturbation to 
simulation timing assumed when constructing correlation matrices involving 
processes 6 and 7. (F) Mean values of ρs (left) and ρt (right) as a function of Δτ, 
perturbation to decay time constant assumed when constructing correlation 
matrices involving processes 6 and 7. (G) Comparison of mean values of ρs (left) 
and ρt (right) in three cases: when the algorithm had access to all necessary 
correlation matrices (*), when crosscorrelation matrices were assumed null (**), 
and when noise was assumed white (***). In all panels, the shaded area 
corresponds to a performance measure higher than 0.9.
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For further investigations we fi xed T to the intermediate value 
of 1000 and repeated similar simulations while varying other 
parameters. In Figure 3C we studied the effect of γ

X
 and γ

Y
 on the 

performance. Since multiplying both γ
X
 and γ

Y
 by a factor does 

not affect the resulting eigenvectors, we fi xed γ
X
 = 1 and varied 

only γ
Y
. In Figure 3C (left) we plotted the average value of ρ

s
 as a 

function of γ
Y
. Decreasing γ

Y
 reduced ρ

s
 for all processes, albeit at 

different rates. However, there was an advantage to decreasing γ
Y
: 

the projection of the data on the fi rst eigenvector ψ1
( )i ZT  tended 

to be more correlated with the temporal component of the signal 
source a

i
. This behavior is quantifi ed in Figure 3C (right), where 

we plotted the average value of ρ
t
, the Pearson correlation between 

ψ1
( )i ZT  and a

i
, against γ

Y
; the subscript t is used here to indicate that 

the correlation is temporal. The average ρ
t
 increased when γ

Y
 was 

decreased, and reached values close to 1 for γ
Y
 = −4. Comparing 

the left and right panels of Figure 3C, we observe that γ
Y
 offers a 

tradeoff between the quality of spatial ( 1
( )ψ i ) and temporal ( 1

( )Tψ i Z) 
outputs of the algorithm. In general however, it is not guaranteed 
that ρ

t
 converges to 1 for large negative γ

Y
. This occurs only when 

there exist directions with non-zero signal power that are orthogo-
nal to all directions with non-zero noise power. In this example 
one such direction indeed existed for each signal/noise defi nition: 
it was the direction in the 10 dimensional linear subspace spanned 
by all u

i
 that was orthogonal to the 9 dimensional linear subspace 

spanned by the vectors u
i
 designated as noise.

As discussed above, we view the requirement for knowing the 
correlation matrices to be the most restrictive assumption we make. 
In generating Figures 3B,C we used the true correlation matri-
ces, obtained from our knowledge of the generating processes. 
Clearly, parameters of the generating processes are unknown for 
real datasets, and the algorithm must use estimates of the correla-
tion matrices. We used the artifi cial data to test the performance of 
the algorithm when provided with correlation matrices that were 
perturbed away from their true values. In view of the results in 
Figure 3C, we quantifi ed the algorithm’s performance using both 
ρ

s
 and ρ

t
, with ρ

s
 evaluated for γ

X
 = 1, γ

Y
 = 0, and ρ

t
 evaluated for 

γ
X
 = 1, γ

Y
 = −4. In Figure 3D we show the results of perturbing 

the correlation matrices by adding to them a random symmetric 
matrix with independent, zero-mean, normally-distributed entries. 
All correlation matrices were perturbed independently. The scal-
ing of the perturbing matrix was determined such that the ratio 
between its Frobenius norm and the Frobenius norm of the correla-
tion matrix was fi xed to a predefi ned value η. In Figure 3D (left) we 
show the average value of ρ

s
 for different values of η (the average 

was taken over realizations of the both the data and the perturba-
tions). For most processes, ρ

s
 remained above 0.9 even when η was 

4, i.e., when the amplitude of the perturbation was four times the 
amplitude of the true correlation matrices. For η ≤ 1/2 the pertur-
bation had only a marginal effect for all processes. Performance in 
terms of ρ

t
 was somewhat less resistant to the perturbation, with a 

sharp decrease in ρ
t
 when the perturbation and the true correlation 

matrices had similar amplitudes (η = 1). Still, most processes were 
almost unaffected by perturbations with η ≤ 1/2.

Although the analysis in Figure 3D validates the algorithm’s 
robustness with respect to random perturbations of the correlation 
matrices, the perturbation scheme we used might not capture the 
type of errors in estimated correlation matrices that are likely to 

occur in practical applications, as it is unlikely that these errors will 
be random. Thus, in Figure 3E we studied another type of pertur-
bation by replacing the true correlation matrices related to proc-
esses 6 and 7 with matrices calculated based on the true generating 
processes but with perturbed parameters. Specifi cally, the response 
onset times were delayed by Δt with respect to the true onset times. 
Marked reduction in performance was observed for perturbations 
of size greater than Δt = 5 time samples, which is 10% of the inter 
stimulus interval (50 time samples) and 20% of the exponential 
decay time constant (25 time samples). We note that the reduction 
in performance for large Δt was limited to process 6 and 7, even 
for Δt as high as 25. A different perturbation of the correlation 
matrices related to processes 6 and 7 is presented in Figure 3F. 
Here, we manipulated the exponential decay time constant used in 
the calculation of the correlation matrices by increasing it by Δτ. 
In this case, performance for all processes was either unaffected or 
affected very moderately by the perturbation, even when the decay 
time constant was assumed twice its true value (Δτ = 25). Based 
on Figures 3E,F, we conclude that the algorithm always showed 
some degree of robustness with respect to the perturbation of the 
generating process parameters, but with different sensitivity for dif-
ferent parameters. Similar behavior was observed for perturbation 
of the parameters of other processes (data not shown).

In Figure 3G, we show that in some cases the algorithm can retain 
good performance even if some of the correlation matrices involved 
are completely unknown. Specifi cally, we tested the performance 
of the algorithm when (a) only the autocorrelation matrices but 
not the cross correlation matrices were assumed to be known and 
(b) when only the signal’s autocorrelation matrix was known and 
the noise was assumed to be white. These two approaches can be 
viewed as the result of heuristically replacing unknown auto- and 
cross-correlation matrices with generic matrices, i.e., the identity 
and zero matrices, respectively. Omission of the cross correlation 
matrices led to a decrease in performance that was limited to the two 
pairs of coupled processes (1,2 and 6,7). Still, both ρ

s
 and ρ

t
 reached 

reasonable values of 0.8 or higher for these processes. The white 
noise approach led to a more pronounced decrease in performance. 
However, this reduction was again limited mainly to the coupled 
processes, with an only moderate decrease in performance for the 
other processes. This result suggests that the white noise approach, 
which reduces signifi cantly the number of correlation matrices that 
have to be known or estimated, can be useful for certain datasets. The 
fact that the algorithm performed well for most processes despite the 
strong deviation between the true and putative correlation matrices 
is a further indication of the algorithm’s robustness.

DISCUSSION
We presented an algorithm for the analysis of temporally structured 
multidimensional data. Our approach in designing the algorithm 
was to allow it to benefi t as much as possible from prior knowledge 
about the temporal structure of the data. We proposed a frame-
work in which this knowledge can be expressed mathematically, 
and an algorithm for using it to extract spatial structures and fi ner 
temporal details from the data.

A principal feature of the algorithm is the characterization of the 
temporal structure of the underlying sources through correlation 
matrices. This approach allows the algorithm to deal with a very 
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the Fourier transform was chosen because t takes discrete values). 
In order to construct the correlation matrix for stationary sources 
of this type it is therefore suffi cient to have an estimate of the power 
spectrum of the fl uctuations, up to scaling. We suggest that such 
estimation is possible in some cases. For example, approximately 
periodic processes, such as those related to heartbeat or respiration, 
have highly concentrated spectra with most energy concentrated 
around a fundamental frequency and possibly around higher order 
harmonics. Estimation of the spectrum in this case reduces to the 
estimation of the fundamental frequency, and the relative contri-
bution of different harmonics. We also note that in the case where 
the signal’s spectrum is assumed to take a constant value within a 
narrow band around a particular frequency, there is an interesting 
relation to the theory of multitaper spectral estimation (Thomson, 
1982; Percival and Walden, 1993). The estimator m

Q
(ψ) can be then 

viewed as a weighted sum of an estimator for the signal power and 
an estimator for the noise power, where the signal estimator is a 
multitaper spectral estimator constructed with all Slepian tapers 
scaled by their eigenvalues.

As a fi nal example of processes that can be dealt with by 
the algorithm we consider a simple traveling wave of the form 
[X]

pt
 = sin (Kp − ft − φ), where K is the spatial frequency, p is the 

channel index that corresponds in this case to some location on 
a line, f is the temporal frequency, and φ is the random phase. 
This example is qualitatively different from the previous examples 
because a traveling wave cannot be described as fl uctuations of a 
fi xed spatial pattern, and therefore it cannot be dealt with by the 
simplifi ed algorithm. Calculating the correlation matrices, we fi nd 
that depending on the distribution of φ, either a single correlation 
matrix is required, [C]

tt′ = cos(f(t − t′)), or three correlation matri-
ces are required, [C1]

tt′ = cos(f(t − t′)), [C2]
tt′ = cos(f(t + t′)), and 

[C3]
tt′ = sin(f(t + t′)) (the latter case occurs whenever E(e2iφ) ≠ 0). In 

this case, all the information required to construct the correlation 
matrices is the wave’s temporal frequency, and a specifi c charac-
teristic of the distribution of the phase.

Though different, the three examples of source types given 
above illustrate a common scheme that can be used to construct 
the correlation matrices in practical applications. First, theoretical 
correlation matrices are calculated based on an idealized genera-
tive process or a “toy model” for a source, e.g., the equation for the 
synchronized stimulus-triggered response given above. Then, the 
actual matrices are calculated, either by estimating the remaining 
free parameters of the correlation matrices, e.g., the shape of the 
response function, or simply by plugging in known values for these 
parameters, e.g., stimulation times. What limits the method in this 
respect is thus the ability to postulate appropriate generative equa-
tions for the model, calculate the theoretical correlation matrices, 
and estimate the free parameters.

Regardless of the exact way by which the correlation matrices are 
constructed, they can be viewed as “weak models” of the data in the 
sense that they describe its structure not by specifying a full prob-
ability density function but only through its second order moments. 
The method can be therefore placed somewhere between parametric 
and non-parametric methods. Non-parametric methods such as 
PCA incorporate the assumption that the temporal structure of the 
data is unknown. Other methods such as independent component 
analysis (ICA; e.g., Hyvärinen and Oja, 2000) usually make very weak 

broad class of signal and noise sources. Specifi cally, we have shown 
that if the necessary correlation matrices are known, the algorithm 
is applicable whenever the following assumptions hold: (1) the 
signal and the noise combine additively; (2) the “contrastability” 
condition is satisfi ed, which, loosely speaking, means that the signal 
and the noise are suffi ciently different; and (3) there is suffi cient 
amount of data. Thus, common assumptions such as independence 
of the signal and noise or stationarity are not required (these cases 
are respectively dealt with by the appropriate interaction correla-
tion matrices and non-Toeplitz correlation matrices); the algorithm 
can in principle be applied to arbitrarily complex signal or noise 
sources. Still, this versatility critically depends on the knowledge 
of the necessary correlation matrices. Below we demonstrate how 
prior temporal knowledge can be used to construct the correlation 
matrices for several prototypical types of sources.

Processes 5–8 in Figures 2 and 3 represent a specifi c type of 
stimulus-triggered response, where the temporal structure of the 
response is equal for all channels, up to scaling. Equivalently, a 
response of this type can be described as the synchronous emer-
gence over all channels of a particular spatial pattern, i.e., an “acti-
vation map”. We can consider a general form for such a signal, 
[X]

pt
 = Σ

l
ς

p
r

l
g(t − t

l
), with p and t denoting respectively channel 

and time indices, ς
p
 denoting the scaling of channel p, t

l
 denot-

ing the time of stimulation l, g(·) being the temporal profi le of 
the response, and r

l
 being independent and identically distributed 

random variables representing the amplitudes of the responses. 
When calculating the necessary correlations matrices we fi nd that 
there is a single correlation matrix associated with sources of this 
class; this correlation matrix is given by

C
c

c
g t t g t t

tt[ ] = +
+

− ′ −′
′

′
′

∑1

1

2

2

δll v

v
l l

l l

( ) ( ),
,

where c
v
 is the coeffi cient of variation of any of the variables r

l
, and 

δ is Kronecker’s delta. Thus, the temporal information required for 
constructing the correlation matrix is the time of stimulation, the 
coeffi cient of variation of the response amplitude, and the temporal 
profi le of the activation, which has to be known only up to scaling. 
In practical applications, these quantities are either known or can 
be estimated: the time of stimulation is known as it is set by the 
experimental protocol; the activation function can be estimated 
based on a preliminary analysis or on some canonical form (as it is 
commonly done for fMRI data, where the activation function is the 
hemodynamic response function); and the coeffi cient of variation, 
which measures the regularity of the response, can be estimated 
based on a preliminary analysis or on theoretical grounds.

Another class of sources is represented by processes 0–4. These 
sources are stationary fl uctuations of a fi xed spatial pattern; the 
amplitude of these fl uctuations is determined by a zero-mean sta-
tionary process a(t) : [X]

pt
 = ς

p
a(t). In this case, the single correla-

tion matrix associated with the process is a Toeplitz matrix whose 
value at row t and column t′ is given by the value of the autocov-
ariance sequence of a(t) at lag t − t′. In turn, the autocovariance 
sequence can be expressed as the Fourier transform of the power 
spectrum of the process a(t), a quantity denote by S(f), with f being 
the frequency in radians per sample. The correlation matrix can 
thus be expressed as: C S f ff t t[ ] = ∫′ −

− ′
tt π

π ( ) ( )e di  (this particular form of 
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assumptions about the temporal structure of the data, e.g., that the 
signal and noise are statistically independent. These methods can be 
highly useful in many cases and offer the best solution one can hope 
for in situations where indeed temporal information is unavailable. 
However, many times this is not the case. Information about the 
frequencies of different signals or about points in time where they 
emerge is often at hand. Moreover, some of the temporal aspects 
of the data are in fact defi ned by the experimental protocol, and 
therefore can be controlled by the experimentalist, e.g., by setting 
the stimulation frequency. On the other hand, parametric methods 
such as Bayesian methods make the opposite extreme assumption, 
by requiring a complete statistical description of the data. Under 
such strong assumptions, Bayesian methods are optimal. In practice, 
the true probability function generating the data is rarely known 
and may be very diffi cult to estimate. This limits the applicability 
of parametric methods in many neuroscience contexts.

The present method offers a compromise between these two 
approaches. In this respect, it is similar in spirit to the common 
practice of fi ltering the data at a specifi c frequency band or apply-
ing other Fourier-theoretical tools. In these cases,  frequency-
domain information is used without an explicit specifi cation of 
a full probability function. However, such procedures assume 
stationarity, at least locally, and ignore any information about 
the signal’s temporal phase. In addition, Fourier based methods 
are often applied independently for each channel, and there-
fore ignore the multidimensionality of the data. One spectral 
method that is inherently multidimensional is “space frequency 
SVD” (Mitra and Pesaran, 1999). The mathematical formulation 
of this method, which involves multitaper spectral estimators, 
is somewhat similar to the formulation presented above for the 
application of the algorithm on stationary data. However, whereas 
space frequency SVD assumes the different signals to be station-
ary, with well-localized non-overlapping spectra, our approach 
relaxes these assumptions and is therefore applicable to a wider 
class of problems.

The idea of exploiting temporal structures in the data has been 
incorporated into both PCA and ICA frameworks before (Molgedey 
and Schuster, 1994; Ziehe and Müller, 1998; Sornborger et al., 2005; 
de Cheveigné and Simon, 2007), albeit for more specifi c setups. 
Out of these algorithms, we fi nd constrained ICA (cICA; Lu and 
Rajapakse, 2000, 2005; James and Gibson, 2003) to be most similar 
to TSCA in several aspects. The cICA algorithm fi nds independent 
components in the data that satisfy user-defi ned temporal con-
straints. This algorithm thus elegantly incorporates prior knowl-
edge about the temporal structure of the data into the analysis 
procedure, and is similar in this respect to our algorithm. There are, 
however, several fundamental differences between our algorithm 
and the family of ICA methods, and in particular cICA. Specifi cally, 
our algorithm does not require the data to be a mixture of a fi nite 
number of statistically-independent signals, which is the basic ICA 
assumption. This assumption is restrictive in many practical cases, 
because it doesn’t allow any correlations between the signal and the 
noise. Moreover, for signals such as the traveling wave considered 
above, no ICA decomposition is feasible. In contrast, our algorithm 
readily deals with statistical dependencies in the data, as demon-
strated by Figures 2 and 3. Another difference between ICA and our 
algorithm is that ICA typically requires the number of components 

constituting the data to be known a-priori, whereas TSCA is more 
fl exible as this number is not explicitly required. Rather, the number 
of signal autocorrelation matrices supplied to the algorithm serves 
only as a lower bound for the number of signal components. An 
additional difference between ICA algorithms and TSCA is that 
ICA typically allows only one component to be Gaussian. No such 
restriction is imposed in our case. This is demonstrated in Figures 2 
and 3, in which processes 0–4 are Gaussian.

The cICA algorithm, while in rationale very similar to our algo-
rithm, uses a mathematical construction very different from ours. 
In particular, our objective function is quadratic, so its maximi-
zation requires the solution of a linear system, given by a matrix 
diagonalization problem. Standard linear algebra methods are 
applicable and, unlike cICA, a search for locally optimal solutions 
is not necessary. An additional difference is that TSCA not only 
takes into account the temporal structure of the signal, through 
the signal correlation matrices, but also that of the noise, through 
the noise correlation matrices. More importantly, although cICA 
is defi ned using a very general theoretical framework that allows 
for a wide range of temporal constraints, practical applications of 
cICA and the development of stable numerical schemes for solv-
ing the cICA problem have been mainly restricted to constrain-
ing the time course of the components to be correlated with an 
a- priori known reference signal. The reference signal, whether 
derived from an independent measurement, a preliminary analy-
sis, or theoretical considerations, requires the knowledge of the 
approximate behavior of the time course on a single trial basis. 
Thus, reference cICA addresses only a subclass of problems that 
are addressable with TSCA, which requires only knowledge of long 
term second order statistics.

While parallels between ICA methods and our algorithm can 
be drawn, we fi nd TSCA to be most similar to PCA, as our objec-
tive function is a direct generalization of the PCA objective func-
tion. The utility of PCA for data of the type we considered here is 
often questioned on the merit that it produces non-interpretable 
components. We endorse this observation, but point out that the 
typical failure of PCA stems not from the uselessness of the PCA 
strategy, i.e., the extraction of components with high power, but 
from the fact that it fails to distinguish between components of 
interest (signal) and nuisance components (noise). Our algorithm 
tackles this problem directly, and while maintaining the basic PCA 
principles, uses an objective function that contrasts the signal to 
the noise. To estimate the objective function we take into account 
the temporal structure of the data, which is ignored in naïve PCA 
applications. The output of the algorithm, is analogous to the PCA 
output, and is given by spatial components ranked by their score on 
the objective function and associated with temporal projections. 
PCA itself is often described as a rotation of the (spatial) coor-
dinates followed by a projection on the leading coordinates. The 
same description holds here. The main difference is that the rota-
tion performed here yields projections that have some prescribed 
temporal properties. Finally, there is an even stronger relation 
between PCA and TSCA for the particular choice of an objec-
tive function with γ

X
 = 1, γ

Y
 = 0. As it follows from the analysis in 

Section 1 of the Supplementary Material, the operation of TSCA 
in this case is nothing but PCA performed on the signal alone, 
with the noise completely ignored.
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could be construed as a potential confl ict 
of interest.
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From a computational perspective, the difference between PCA 
and the present algorithm amounts to the diagonalization of a 
matrix of the form ZQZ T instead of ZZ T. A related difference is 
that the objective function used here is not necessarily positive; 
correspondingly, neither Q nor ZQZ T are necessarily positive semi 
defi nite. As a result, the eigenvalues of ZQZ T can be either positive 
or negative. Throughout the paper we have focused on components 
with the largest eigenvalues, which estimate leading components of 
the signal. However, components with highly negative eigenvalues 
can be of interest as well in some cases. Consider for example the 
case where the signal and the noise are spatially orthogonal, i.e., all 
directions with positive signal power are orthogonal to all directions 
with positive noise power. If an objective functions with γ

X
 = 1, 

γ
Y
 < 0 is selected, the trailing TSCA components, which achieve 

highly negative scores on the objective function, are the dominant 
components of the noise, regardless of the precise value of γ

Y
. In 

more realistic cases, where the signal and noise are only approxi-
mately spatially orthogonal, we can still expect trailing components 
to exhibit some resemblance to dominant noise components. This 
can be seen in Figure 1D, where the spatial components of the 
signal and noise are approximately orthogonal ( , . ),〈 〉 ≈u uX Y 0 14  
and the trailing TSCA eigenvector ψ

2
 is similar to the noise spatial 

component u
Y
. In Figure 1E, where the roles of the signal and noise 

are switched, ψ
2
 resembles u

X
. This observation gives rise to an 

interesting interpretation of TSCA for cases where the signal and 
noise are approximately orthogonal. The algorithm can be viewed 
as splitting the data space into two orthogonal subspaces. One space, 
spanned by the leading eigenvectors with positive eigenvalues, cor-
responds to the signal, while the other one, spanned by the trailing 
eigenvectors with negative eigenvalues, corresponds to the noise. 
We note that the dimensionality of these subspaces is related to the 
eigenspectrum of Q: by Sylvester’s law of inertia (Ostrowski, 1960) 
the number of positive (or negative) eigenvalues of Q sets an upper 
bound for the dimension of the signal (or noise) subspace.

More generally, the algorithm puts forward a unifi ed framework 
by which many types of signals can be characterized and studied 
in a systematic manner. Because of its generality and versatility, 
we propose that this method can be highly useful for exploratory 
analysis. In an exploratory context the construction of the weak 
models, i.e., the estimation of the correlation matrices, can be 
based on hypotheses rather than on well-established knowledge. 
In other words, if one can make a good guess about the tempo-
ral structure of the data and formulate it through appropriate 
correlation matrices, the algorithm can be applied to fi nd both 
spatial components and a more detailed temporal structure. Our 
studies show that the algorithm always displays at least some 
degree of robustness to perturbations of the correlation matri-
ces (Figure 3). Thus, the algorithm exhibits some tolerance to 
errors in the hypotheses under which the correlation matrices are 
constructed. This robustness suggests an interesting possibility of 
learning the correlation matrices from the data, through an itera-
tive scheme. Such an adaptive algorithm can be highly benefi cial, 
as it might make use of even more limited knowledge about the 
temporal structure of the data. However, transforming this idea 
into a rigorous algorithm is beyond the scope of the current con-
tribution and it is left for future research.
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