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The throughput of electron microscopes has increased significantly in recent years,

enabling detailed analysis of cell morphology and ultrastructure in fairly large tissue

volumes. Analysis of neural circuits at single-synapse resolution remains the flagship

target of this technique, but applications to cell and developmental biology are also

starting to emerge at scale. On the light microscopy side, continuous development

of light-sheet microscopes has led to a rapid increase in imaged volume dimensions,

making Terabyte-scale acquisitions routine in the field. The amount of data acquired

in such studies makes manual instance segmentation, a fundamental step in many

analysis pipelines, impossible. While automatic segmentation approaches have improved

significantly thanks to the adoption of convolutional neural networks, their accuracy

still lags behind human annotations and requires additional manual proof-reading. A

major hindrance to further improvements is the limited field of view of the segmentation

networks preventing them from learning to exploit the expected cell morphology or other

prior biological knowledge which humans use to inform their segmentation decisions. In

this contribution, we show how such domain-specific information can be leveraged by

expressing it as long-range interactions in a graph partitioning problem known as the

lifted multicut problem. Using this formulation, we demonstrate significant improvement

in segmentation accuracy for four challenging boundary-based segmentation problems

from neuroscience and developmental biology.

Keywords: biomedical image analysis, instance segmentation, biological priors, EM segmentation, LM

segmentation, connectomics, lifted multicut

1. INTRODUCTION

Large-scale electron microscopy (EM) imaging is becoming an increasingly important tool in
different fields of biology. The technique was pioneered by the efforts to trace the neural circuitry
of small animals at synaptic resolution to obtain their so-called connectome – a map of neurons
and synapses between them. In the 1980’s White et al. (1986) mapped the complete connectome
of C. elegans in a manual tracing effort which spanned over a decade. Since then, throughput has
increased by several orders of magnitude thanks to innovations in EM imaging like multi-beam
serial section EM (Eberle et al., 2015) and TEM camera arrays (Bock et al., 2011) and stitching
techniques, like hot-knife stitching (Hayworth et al., 2015) and gas cluster milling (Hayworth
et al., 2018), which enable parallel acquisition. This allows to image much larger volumes up to
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the complete brain of the fruit-fly larva (Eichler et al., 2017) and
even the adult fruit-fly (Zheng et al., 2018). Recently, studies
based on large-scale EM have become more common in other
fields of biology as well (Nixon-Abell et al., 2016; Pereira et al.,
2016; Russell et al., 2017; Otsuka et al., 2018).

In light microscopy, very large image volumes became routine
even earlier (Keller et al., 2008; Krzic et al., 2012; Royer et al.,
2016), with Terabyte-scale acquisitions not uncommon for a
single experiment. While the question of segmenting cell nuclei
at such scale with high accuracy has been addressed before (Amat
et al., 2014), cell segmentation based on membrane staining
remains a challenge and a bottleneck in analysis pipelines.

Given the enormous amount of data generated, automated
analysis of the acquired images is crucial; one of the key
steps being instance segmentation of cells or cellular organelles.
In recent years, the accuracy of automated segmentation
algorithms has increased significantly thanks to the rise of deep
learning-based tools in computer vision and the development
of convolutional neural networks (CNNs) for semantic and
instance segmentation (Turaga et al., 2010; Ciresan et al.,
2012; Beier et al., 2017; Lee et al., 2017; Funke et al., 2018b;
Januszewski et al., 2018). Still, it is not yet good enough to
completely forego human proof-reading. Out of all microscopy
image analysis problems, neuron segmentation in volume EM
turned out to be particularly difficult (Januszewski et al., 2018)
due to the small diameter and long reach of neurons and
astrocytes, but other EM segmentation problems have not yet
been fully automated either. Heavy metal staining used in the
EM sample preparation labels all cells indiscriminately and forces
segmentation algorithms to rely on membrane detection to
separate the objects. The same problem arises in the analysis
of light microscopy volumes with membrane staining, where
methods originally developed for EM segmentation also achieve
state-of-the-art results (Funke et al., 2018a).

One of the major downsides of CNN-based segmentation
approaches lies in their limited field of view which makes them
overly reliant on local boundary evidence. Staining artifacts,
alignment issues or noise can severely weaken this evidence and
often cause false merge errors where separate objects get merged
into one. On the other hand, membranes of cellular organelles
or objects of small diameter often cause false split errors where a
single structure gets split into several segmented objects.

Human experts avoid many of these errors by exploiting
additional prior knowledge on the expected object shape
or constraints from higher-level biology. Following this
observation, several algorithms have recently been introduced to
enable detection of morphological errors in segmented objects
(Rolnick et al., 2017; Zung et al., 2017; Dmitriev et al., 2018;
Matejek et al., 2019). By looking at complete objects rather than
a handful of pixels, these algorithms can significantly improve
the accuracy of the initial segmentation. In addition to purely
morphological criteria, in Krasowski et al. (2017) suggested an
algorithm to exploit biological priors such as an incompatible
mix of ultrastructure elements.

Building on such prior work, this contribution introduces
a general approach to leverage domain-specific knowledge for
the improvement of segmentation accuracy for methods based

on boundary predictions. Our method can be understood as a
post-processing step for CNN predictions that pulls in additional
sparse and distant sources of information. It allows to incorporate
a large variety of rules, explicit or learned from data, which can
be expressed as the likelihood of certain areas in the image to
belong to the same object in the segmentation. The areas can
be sparse and/or spatially distant. In more detail, we formulate
the segmentation problem with such rules as a graph partitioning
problem with long-range attractive or repulsive edges.

For the problem of image segmentation, the graph in the
partitioning problem corresponds to the region adjacency graph
of the image pixels or superpixels. The nodes of the graph can be
mapped directly to spatial locations in the image. When domain
knowledge can be expressed as rules that certain locations must
ormust not belong to the same object, it can be distilled into lifted
(long-range) edges between these locations. The weights of such
lifted edges are derived from the strictness of the rules, which can
colloquially range from “usually do/do not belong to the same
object” to “always/never ever belong to the same object.”

In Horňáková et al. (2017) showed that this problem,
which they term Lifted Multicut as it corresponds to the
Multicut partitioning problem with additional edges between
non-adjacent nodes, can be solved exactly in reasonable time for
small problem sizes, while in Beier et al. (2016) introduced an
efficient approximate solver.

In the following, we demonstrate the versatility of the Lifted
Multicut based-approach by applying it to four segmentation
problems, three in EM and one in LM. We incorporate starkly
different kinds of prior information into this framework:

• Based on the knowledge that axons are separated from
dendrites in mammalian cortex, we use indicators of
axon/dendrite attribution to avoid merges between axonal and
dendritic neural processes (Figure 1, left);

• Based on the knowledge of plausible neuron morphology,
we correct false merge errors in the segmentation of neural
processes (Figure 1, center);

• Based on the knowledge that certain biological structures
form long continuous objects, we reduce the number of
false splits in instance segmentation of sponge choanocytes
(Figure 1, right);

• Based on the knowledge that a cell should only contain one
nucleus, we improve the segmentation of growing plant lateral
roots (Figure 4).

Aiming to apply the method to data of biologically relevant
size, we additionally introduce a new scalable solver for the
lifted multicut problem based on our prior work from Pape
et al. (2017). Our code is available at https://github.com/
constantinpape/cluster_tools.

2. RELATED WORK

Neuron segmentation for connectomics has been the main driver
of the recent advances in boundary-based segmentation for
microscopy. Most methods (Andres et al., 2012; Nunez-Iglesias
et al., 2013; Beier et al., 2017; Lee et al., 2017; Funke et al., 2018b)
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FIGURE 1 | Mapping domain knowledge to sparse lifted edges for mammalian cortex (left), drosophila brain (middle) and sponge choanocyte chamber (right). The

raw data is shown in (A). Based on local boundary evidence (not shown) predicted by a Random Forest or a CNN, we group the volume pixels into superpixels, which

form a region adjacency graph. The edges of the graph correspond to boundaries between the superpixels as shown in (B). The edges are weighted, with weights

derived from boundary evidence, or predicted by an additional classifier. Weights can make edges attractive (green) or repulsive (red). (C) Shows the domain

knowledge mapped to superpixels: axon (blue) and dendrite (yellow) attributions (left); an object with implausible morphology (red, center); semantically different

objects (one color per object, right). Superpixels with mapped domain knowledge are connected with lifted edges as shown in (D), with green for attractive and red for

repulsive edges (only a subset of edges is shown to avoid clutter). (E) Displays the solution of the complete optimization problem with local and sparse lifted edges as

the final segmentation.
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follow a three step procedure: in the first step they segment
boundaries, in the second compute an over-segmentation into
superpixels and finally agglomerate the superpixels into objects.

The success of a CNN (Ciresan et al., 2012) in the
ISBI 2012 neuron segmentation challenge (Arganda-Carreras
et al., 2015) has prompted the adoption of this technique
for the boundary prediction step. Most recent approaches use
a U-Net (Ronneberger et al., 2015) architecture and custom
loss functions (Lee et al., 2017; Funke et al., 2018b). The
remaining differences between methods can be found in the
superpixel merging procedure. Several approaches are based
on hierarchical clustering, but differ in how they accumulate
boundary weights: Lee et al. (2017) use the accumulated mean
CNN boundary predictions, Funke et al. (2018b) employ quantile
based accumulation and (Nunez-Iglesias et al., 2013) re-predict
the weights with a random forest (Breiman, 2001) after each
agglomeration step. In contrast Andres et al. (2012) and Beier
et al. (2017) solve a NP-hard graph partitioning problem,
the (Lifted) Multicut. Notable exception from this three step
approach are the flood filling network (FFN) (Januszewski et al.,
2018) and MaskExtend (Meirovitch et al., 2016) which can go
directly from pixels to instances by predicting individual object
masks one at a time, as well as 3C (Meirovitch et al., 2019), which
can simultaneously predict multiple objects.

Krasowski et al. (2017) showed that the common three-step
procedure can be modified to incorporate sparse biological priors
at the superpixel agglomeration step. They use the Asymmetric
Multi-Way Cut (AMWC) (Kroeger et al., 2014), a generalization
of the Multicut for joint graph partition and node labeling.
The method is based on exploiting the knowledge that, given
the field of view of modern electron microscopes, axon- and
dendrite-specific ultrastructure should not belong to the same
segmented objects in mammalian cortex. While this approach
can be generalized to other domain knowledge, it has two
important drawbacks. First, it is not possible to encode attractive
information just with node labels. Second, it is harder to express
information that does not fit the node labeling category, even if it
is repulsive in nature. A good example for this is themorphology-
based false merge correction. In this case, defining a labeling for
only a subset of nodes is not possible.

The Lifted Multicut formulation has been used for neuron
segmentation before by Beier et al. (2017). However, the lifted
edges were added densely and their weights and positions
were not based on domain knowledge, but learned from
groundtruth segmentations by the Random Forest algorithm.
Only edges over a graph distance of 3 were considered.
These lifted edges made the segmentation algorithm more
robust against single missing boundaries, but did not counter
the problem of the limited field of view of the boundary
CNN and did not prevent biologically implausible objects.
Note that this approach can be seen as a special case
of the framework proposed here, using generic, but weak
knowledge about local morphology and graph structure of
segments. Besides Lifted Multicut, the recently introduced
Mutex Watershed (Wolf et al., 2018, 2019) and generalized
agglomerative clustering (Bailoni et al., 2019) can also exploit
long-range information.

While all the listed methods demonstrate increased
segmentation accuracy, they do not offer a general recipe
on how to exploit domain-specific knowledge in a segmentation
algorithm. We propose a versatile framework that can
incorporate such information from diverse sources by mapping
it to sparse lifted edges in the lifted multicut problem.

3. METHODS

Our method follows the three step segmentation approach
described in section 2, starting from a boundary predictor and
using graph partitioning to agglomerate super-pixels. First, we
review the lifted multicut problem (Horňáková et al., 2017)
in subsection 3.1. We follow by proposing a general approach
to incorporate domain-specific knowledge into the lifted edges
(subsection 3.2). Finally, we describe four specific applications
with different sources of domain knowledge and show how our
previous work on lifted multicut for neuron segmentation can be
positioned in terms of the proposed framework.

3.1. Lifted Multicut Graph Partition
Instance segmentation can be formulated as a graph partition
problem given a graph G = {V ,E} and edge weights
W ∈]−∞,∞[. In our setting, the nodes V correspond to
fragments of the over-segmentation and edges E link two nodes
if the two corresponding fragments share an image boundary.
The weights W encode the attractive strength (positive values)
or repulsive strength (negative values) of edges and are usually
derived from (pseudo) probabilities P via negative log-likelihood:

we = log
1− pe

pe
∀ e ∈ E. (1)

The resulting partition problem is known as multicut or
correlation clustering (Chopra and Rao, 1993; Demaine et al.,
2006; Andres et al., 2012). Its objective is given by:

min
ye∈YE

∑

e∈E

weye under the constraints (2)

∀C ∈ cycles(G)∀e ∈ C : ye ≤
∑

ê∈C\{e}

yê, (3)

where YE are binary indicator variables linked to the edge state;
0 means that an edge connects the two adjacent nodes in the
resulting partition, 1 means that it doesn’t. The constraints forbid
dangling edges in the partition, i.e., edges that separate two nodes
(ye = 1) for which a path of connecting edges (ye = 0) exists.

The lifted multicut (Horňáková et al., 2017) is an extension
of the multicut problem, which introduces a new set of edges F
called lifted edges. These edges differ from regular graph edges
by providing only an energy contribution, but not inducing
connectivity. This is motivated by the observation that it is often
helpful to derive non-local features for the connectivity of (super)
pixels. The presence of an attractive non-local edge should not
result in air bridges though, i.e., non-local edges that connect two
pixels without a connection via local edges. In our setting, lifted
edges connect nodes v and w that are not adjacent in G. With the
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sets of original edges E, lifted edges F, binary indicator variables
Y , and weights W associated with all edges in E ∪ F the lifted
multicut objective can be formulated as:

min
ye∈YEF

∑

e∈E∪F

weye under the constraints (4)

∀C ∈ cycles(G)∀e ∈ C : ye ≤
∑

ê∈C\{e}

yê (5)

∀vw ∈ F∀P ∈ vw− paths(G) : yvw ≤
∑

e∈P

ye (6)

∀vw ∈ F∀c ∈ vw− cuts(G) : 1− yvw ≤
∑

e∈C

(1− ye). (7)

The constraints (5) correspond to Equation (2) and enforce a
consistent partition without dangling edges. Constraints (6) and
(7) ensure that the state of lifted edges is consistent with the
connectivity, i.e., that two nodes connected by a lifted edge
are also connected via a path of regular edges and two nodes
separated by a lifted edge are not connected by any such path.

3.2. Sparse Lifted Edges
Our main contribution is a general recipe how to express
domain-specific knowledge via sparse lifted edges that are only
added between graph nodes where attribution of this knowledge
is possible. The right part of Figure 2 shows a sketch of this idea:
nodes with attribution are shown by shaded segments and sparse
lifted edges by green dashed lines.

The sparse lifted edges are constructed in several steps,
see Figure 1. We compute the superpixels by running the
watershed algorithm on boundary predictions and construct the
corresponding region adjacency graph. Figure 1B shows regular,
not lifted, edges between superpixels, green for attractive and
red for repulsive weights. Then, we map the domain specific
knowledge to nodes as shown in Figure 1C, and derive attractive
and repulsive lifted edges, again shown as green and red lines
in Figure 1D. The sign and strength of the lifted edge weights
can be learned or introduced explicitly, reflecting the likelihood
of incident nodes being connected. Equation (1) is used to
obtain signed weights. Finally, we solve the resulting lifted
multicut objective to obtain an instance segmentation, shown in
Figure 1E.

3.2.1. Mouse Cortex Segmentation, EM
This application example shows how the framework described
above can be used to incorporate the axon/dendrite attribution
priors first introduced in Krasowski et al. (2017). We detect
the axon- and dendrite-specific elements and map them to the
nodes in the same way as (Krasowski et al., 2017; Figure 1C),
with blue shading for axon and yellow for dendrite attribution).
The difference comes in the next step: instead of introducing
semantic node labels for “axon” and “dendrite” classes, we
add repulsive lifted edges between nodes which got mapped
differently. subsection 4.1 includes more details on the problem
set-up and results.

3.2.2. Drosophila Brain Segmentation, EM
For neurons in the insect brain, the axon/dendrite separation
is not pronounced and the approach described in the previous
section can not be applied directly. Instead, morphological
information can be used to identify and resolve errors in
segmented objects. This was first demonstrated by Rolnick et al.
(2017), where a CNNwas trained on downsampled segmentation
masks to detect merge errors. Meirovitch et al. (2016) detect
merge errors with a simple shape-based heuristic and then
correct these with a MaskExtend algorithm. Zung et al. (2017)
were the first to combine CNN-based error detection and flood
filling network-based correction. In their formulation both false
merges and false splits can be corrected. Recently, Dmitriev et al.
(2018) and Matejek et al. (2019) have introduced an approach
based on CNN error detection followed by a simple heuristic to
correct false merges and lifted multicut graph partitioning to fix
false splits.

Based on all this prior work which convincingly demonstrates
that false merge errors can be detected in a post-processing
step, we concentrate our efforts on error correction, emulating
the detection step with an oracle. We extract skeletons for all
segmented objects and have the oracle predict, for all paths
connecting terminal nodes of a skeleton, if this path goes
through a false merge location (passes through an unidentified
boundary). Note that the oracle is not perfect and we evaluate the
performance of the algorithm for different levels of oracle error.

If the oracle predicts the path to go through a false merge,
we introduce a repulsive lifted edge between the terminals of the
path. The weights of the edges are also predicted by the oracle.
Figure 1 shows an example of this approach: the red object in
the middle of Figure 1C has been detected as a false merge. The
corresponding lifted edges are shown in Figure 1D.

3.2.3. Sponge Segmentation, EM
In this example, we tackle a segmentation problem in a sponge
choanocyte chamber (Musser et al., 2019). These structures
are built from several surrounding cells, the choanocytes, that
interact with a central cell via flagella which are surrounded by a
collar of microvilli. Our goal is to segment cell bodies, flagella and
microvilli. This task is challenging due to the large difference in
sizes of these structures. Especially the segmentation of the small
flagella and microvilli is difficult. Without the use of domain
specific knowledge on their continuity, the Multicut algorithm
splits them up into many pieces.

In order to alleviate these false split errors, we predict which
pixels in the image belong to flagella and microvilli and compute
an approximate flagella and microvilli instance segmentation
via thresholding and connected components. We map the
component labels to nodes of the graph, see right column in
Figure 1C. Then, we introduce attractive lifted edges between the
nodes that were covered by the same component and repulsive
lifted edges between nodes mapped to different components, see
Figure 1D.

3.2.4. Lateral Root Segmentation, LM
Finally, we tackle a challenging segmentation problem in light-
sheet data: segmentation of root cells in Arabidopsis thaliana.
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FIGURE 2 | (Left) Graph neighborhood of a single node (blue shaded segment) with local edges (blue lines) and dense lifted edges (orange dotted edges). (Right)

Neighborhood with sparse lifted edges (green dotted edges), connecting nodes with projected domain knowledge (red shaded segments).

This data was imaged with two channels, showing cell membrane
and nucleus markers. We use the first channel to predict cell
boundaries and the second to segment individual nuclei. The
nuclei then serve as bases to force each segmented cell to
only contain one nucleus: we introduce repulsive lifted edges
between nodes which are covered by different nuclei instances.
subsection 4.4 shows how this setup helps prevent false merge
errors in cell segmentation.

3.3. Hierarchical Lifted Multicut Solver
Finding the optimal solution of the lifted multicut objective
is NP-hard. Approximate solvers based on greedy algorithms
(Keuper et al., 2015) and fusion moves (Beier et al., 2017) have
been introduced. However, even these approximations do not
scale to the large problem we need to solve in the sponge
segmentation example. In order to tackle this and even larger
problems, we adapt the hierarchical multicut solver of Pape et al.
(2017) for lifted multicuts.

This solver extracts sub-problems from a regular tiling of
the volume, solves these sub-problems in parallel and uses the
solutions to contract nodes in the graph, thus reducing its size.
This approach can be repeated for an increasing size of the
blocks that are used to tile the volume, until the reduced problem
becomes feasible with another (approximate) solver.

We extend this approach to the lifted multicut by also
extracting lifted edges during the sub-problem extraction. We
only extract lifted edges that connect nodes in the sub-graph
defined by the block at hand. This strategy, where we ignore
lifted edges crossing block boundaries, is in line with the
idea that lifted edges contribute to the energy, but not to the
connectivity. Note that lifted edges that are not part of any
sub-problem at a given level will still be considered at a later
stage. See Appendix Algorithm 1 (Supplementary Material) for
pseudo-code. The comparison to other solvers in Table A2

(Supplementary Material) shows that it indeed scales better to
large data. Note that this approach is conceptually similar to
the fusion move based approximation of Beier et al. (2016),
which extracts and solves sub-problems based on a random graph
partition and accepts changes from sub-solutions if they increase

the overall energy, repeating this process until convergence.
Compared to this approach, we extract sub-problems from a
deterministic partition of the graph. This allows us to solve only
a preset number of sub-problems leading to faster convergence.

Note that our approximate solver is only applicable if the
graph at hand has a spatial embedding, which allows to extract
sub-problems from a tiling of space. In our case, this spatial
embedding is given by the watershed fragments that correspond
to nodes.

4. RESULTS

We study the performance of the proposed method on four
different problems: (i) neuron segmentation in murine cortex
with priors from axon/dendrite segmentation, (ii) neuron
segmentation in drosophila brain with priors from morphology-
based error detection, (iii) instance segmentation in a sponge
choanocyte chamber with priors from semantic classes of
segmented objects, (ix) cell segmentation in Arabidopsis roots
with priors from “one nucleus per cell” rule. Table A1

(Supplementary Material) summarizes the different problem set-
ups. We evaluate segmentation quality using the variation of
information (VI) (Meilă, 2003), which can be separated into split
and merge scores, and the adapted rand score (Arganda-Carreras
et al., 2015). For all error measures used here, a lower value
corresponds to higher segmentation quality.

4.1. Mouse Cortex Segmentation, EM
We present results on a volume of murine somatosensory cortex
that was acquired by FIBSEM at 5× 5× 6 nanometer resolution.
The same volume has already been used in Krasowski et al.
(2017) for a similar experiment. To ensure a fair comparison
between the twomethods for incorporating axon/dendrite priors,
we obtained derived data from the authors and use it to set-up the
segmentation problem.

This derived data includes probability maps for cell
membrane, mitochondria, axon and dendrite attribution
as well as a watershed over-segmentation derived from
the cell membrane probabilities and ground-truth instance
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segmentation. From this data, we set up the graph partition
problem as follows: we build the region adjacency graph G from
the watersheds and compute weights for the regular edges with
a random forest based on edge and region appearance features.
See Beier et al. (2017) for a detailed description of the feature
set. Next, we introduce dense lifted edges up to a graph distance
of three. We use a random forest based on features derived
from region appearance and clustering to predict their weights,
see Beier et al. (2017) for details. In addition to the region
appearance features only based on raw data, we also take into
account the mitochondria attribution here. Next, we map the
axon/dendrite attribution to the nodes of G and introduce sparse
lifted edges between nodes mapped to different classes. We infer
weights for these edges with a random forest based on features
from the statistics of the axon and dendrite node mapping. We
use the fusion move solver of Beier et al. (2016) for optimizing
the lifted multicut objective.

We divide the volume into a 1 × 3.5 × 3.5 micron block that
is used to train the random forests for edge weights and a 2.5 ×

3.5 × 3.5 micron block used for evaluation. The random forest
predicting pixel-wise probabilities was trained by the authors
of Krasowski et al. (2017) on a separate volume, using ilastik
(Sommer et al., 2011).

We compare the multicut and AMWC solutions reported in
Krasowski et al. (2017) with different variants of our methods,
see Table 1. As a baseline, we compute the lifted multicut only
with dense lifted edges and without features from mitochondria
predictions (LMC-D).We compute the full model with dense and
sparse lifteds (LMC-S) with and without additional features for
dense lifted edges frommitochondria predictions. In addition, we
compare to an iterative approach (LMC-SI) similar to the error
correction approach in subsection 4.2, where we perform LMC-
D segmentation first and introduce sparse lifted edges only for
objects that contain a false merge (identified by presence of both
axonic and dendritic nodes in the same object).

The LMC-D segmentation quality is on par with the AMWC,
although it does not use any input from the priors, showing the
importance of dense lifted edges. Our full model with sparse
lifted edges shows significantly better quality compared to LMC-
D. Mitochondria-based features provide a small additional boost.
The segmentation quality of the iterative approach LMC-SI
is inferior to solving the full model LMC-S. This shows the
importance of joint optimization of the full model with dense and
sparse lifted edges.

4.2. Drosophila Brain Segmentation, EM
We test the false merge correction on parts of the Drosophila
medulla using a 68 × 38 × 44 micron FIBSEM volume imaged
at 8 × 8 × 8 nanometer from Takemura et al. (2015), who also
provide a ground-truth segmentation for the whole volume.

First, we train a 3D U-Net for boundary prediction on a
separate 2 × 2 × 2 micron cube. We use this network to
predict boundaries on the whole volume, and run watershed
over-segmentation based on these predictions. Then, we set
up an initial Multicut with edge weights derived from
mean accumulated boundary evidence. We obtain an initial

TABLE 1 | Variants of our approach compared to the method of Krasowski et al.

(2017).

Method VI-Split VI-Merge Rand error

MC (Krasowski et al., 2017) 0.3471 0.6347 0.0787

AMWC (Krasowski et al., 2017) 0.4578 0.4935 0.0754

LMC-D 0.4144 0.4445 0.0891

LMC-S 0.4133 0.3788 0.0362

LMC-S (No Mitos) 0.4038 0.3966 0.0363

LMC-SI 0.5054 0.3998 0.0586

The rand error measures the over-all segmentation quality, while VI-Split measures the

degree of over-segmentation and VI-Merge the degree of under-segmentation. For all

measures, a lower score corresponds to a better segmentation.

TABLE 2 | Results on the drosophila medulla dataset.

Full Whitelist

VI-Split VI-Merge Rand error VI-Split VI-Merge Rand error

MC 1.5246 1.9057 0.6055 1.2189 0.6532 0.4143

LMC-S 1.6110 0.9405 0.4501 1.3050 0.2544 0.3891

LMC-SI 1.5773 0.5403 0.3335 1.2369 0.0122 0.2943

FFN 1.4653 0.6340 0.2838 0.8702 0.0559 0.1963

We compare the segmentation results of Multicut (MC), LiftedMulticut solved for the whole

volume (LMC-S), and Lifted Multicut solved separately for all sub-problems arising from

falsely merged objects (LMC-SI) with the results of FFN from Januszewski et al. (2018).

We use a cutout for validation and evaluate with the complete ground-truth segmentation

(Full) and a subset of closely proof-read objects (Whitelist).

segmentation by solving it with the block-wise solver of Pape et al.
(2017).

In order to demonstrate segmentation improvement based
on morphological features, we skeletonize all sufficiently large
objects using the method of Lee et al. (1994) implemented in
Van der Walt et al. (2014). We then predict false merges along all
paths between skeleton terminal nodes, using the ground-truth
segmentation as oracle predictor. Note that (Dmitriev et al., 2018)
have shown that it is possible to train a very accurate CNN to
classify false merges based on morphology information in this
set-up. Given these predictions, we set up the Lifted Multicut
problem by selecting all objects that have at least one path with
a false merge detection. For these objects, we introduce lifted
edges between all terminal nodes corresponding to paths and
derive weights for these edges from the false merge probability
(note that we use an imperfect oracle for some experiments, so
the merge predictions are not absolutely certain). We solve two
different variants of this problem, LMC-S, where we solve the
whole problem using the solver introduced in subsection 3.3 and
LMC-SI, where we only solve the sub-problems arising for the
individual objects. For this, we use the Fusion Moves solver of
Beier et al. (2016).

Table 2 compares the results of the initial Multicut (MC)
with LMC-S and LMC-SI (using a perfect oracle) as well as the
current state of the art FFN based segmentation (Januszewski
et al., 2018). We adopt the evaluation procedure of Januszewski
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FIGURE 3 | Overview of results on the drosophila medulla dataset. We detect merges in the initial segmentation result (A) using an oracle. The red, blue and yellow

segments in (B) were flagged as false merges. (C,D) show merged / correctly resolved objects. (E) shows the performance of our approach when tuning the F-Score

of our oracle predictor from 0.5 to 1.

et al. (2018) and use a cutout of size 23 × 19 × 23 micron for
validation.We use two different versions of the ground-truth, the
full segmentation and only a set of white-listed objects that were
more carefully proofread. The FFN segmentation and validation
ground-truth was kindly provided by the authors of Januszewski
et al. (2018). The results show that our initial segmentation is
inferior to FFN in terms of merge errors, but using LMC-SI
we can improve the merge error to be even better than FFN.

Interestingly, LMC-SI performs better than LMC-S. We suspect
that this is due to the fact that we only add lifted edges inside
of objects with a false merge detection, thus LMC-S does not see
more information then LMC-SI, while having to solve a much
bigger optimization problem.

In Figure 3 we show the initial segmentation and three
corrected merges. Figure 3E evaluates LMC-S and LMC-SI on
the full ground-truth when using an imperfect oracle: we tune
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the oracle’s F-score from 0.5 to 1.0 and measure VI-split and VI-
merge. The curves show that LMC-SI is fairly robust against noise
in the oracle predictions; it starts with a lower VI-merge than the
initial MC, even for F-Score 0.5 and its VI-split gets close to the
MC value for F-Score 0.75+.

4.3. Sponge Segmentation, EM
The two previous experiments mostly profited from repulsive
information derived from ultrastructure or morphology. In
order to show how attractive information can be exploited,
we turn to an instance segmentation problem in a sponge
choanocyte chamber. The EM volume was imaged with FIBSEM
at a resolution of 15 × 15 × 15 nanometer. We aim to
segment structures of three different types: cell bodies, flagella
and microvilli. Flagella and microvilli have a small diameter,
which make them difficult to segment with a boundary based
approach. On the other hand, cell bodies have a much larger
diameter and touch each other, which makes a boundary based
approach appropriate.

In order to set-up the segmentation problem, we first
compute probability maps for boundaries, microvilli and flagella
attribution using the autocontext workflow of ilastik (Sommer
et al., 2011). We set-up the lifted multicut problem by first
computing watersheds based on boundary maps, extracting the
region adjacency graph and computing regular edge weights from
the boundary maps accumulated over the edge pixels. We do not
introduce dense lifted edges. For sparse lifted edges, we compute
an additional instance segmentation of flagella and microvilli by
thresholding the corresponding probability maps and running
connected components. Then, we map the components of this
segmentation to graph nodes and connect nodes mapped to the
same component via attractive lifted edges and nodes mapped
to different components via repulsive lifted edges. We use the
hierarchical lifted multicut solver introduced in subsection 3.3
to solve the resulting objective, using the approximate solver of
Keuper et al. (2015) to solve sub-problems. Note that the full
model contained toomany variables to be optimized by any other
solver in a reasonable amount of time.

We run our segmentation approach on the whole volume,
which covers a volume of 70 × 75 × 50 microns, corresponding
to 4,600 × 5,000 × 3,300 voxels. For evaluation, we use three
cutouts of size 15 × 15 × 1.5 microns with ground-truth for
instance and semantic segmentation. We split the evaluation
into separate scores for objects belonging to the three different
structures, extracting them based on the semantic segmentation
ground-truth. See Table 3 for the evaluation results, comparing
the sparse lifted multicut (LMC) to the multicut baseline (MC).
As expected the quality of the segmentation of cell bodies is not
affected, because we don’t introduce lifted edges for those. The
split rate in flagella and microvilli decreases significantly leading
to a better overall segmentation for these structures.

4.4. Lateral Root Segmentation, LM
We segment cells in light-sheet image volumes of the lateral
root primordia of Arabidopsis thaliana. The time-lapse video
consisting of 51 time points was obtained in vivo in close-to-
natural growth conditions. Each time point is a 3D volume

TABLE 3 | Quality of the sponge chonanocyte segmentation for the three different

types of structures.

Method VI-Split VI-Merge Rand error

Cells

MC 0.6058 0.0116 0.0783

LMC 0.6004 0.0116 0.0782

Flagella

MC 0.4728 0.0812 0.1205

LMC 0.2855 0.0812 0.0429

Microvilli

MC 3.1760 1.1101 0.7409

LMC 2.2745 1.1807 0.6973

TABLE 4 | Comparison of Multicut and Lifted Multicut segmentation results for

two time points taken from the light-sheet root primordia data.

MC LMC-S

VI-Split VI-Merge Rand error VI-Split VI-Merge Rand error

Timepoint 45 0.3596 0.5918 0.1641 0.3740 0.5527 0.1517

Timepoint 49 0.4586 0.7116 0.2019 0.5153 0.5485 0.1873

of size 2,048 × 1,050 × 486 voxels each with resolution
0.1625 × 0.1625 × 0.25 micron. The volume has two channels,
one showing membrane marker, the other nucleus marker.
We work on two selected time points, namely: T45 and T49

taken from the later stages of development where the instance
segmentation problem is more challenging due to growing
number of cells. The time points have dense ground-truth
segmentation for a 1,000 × 450 × 200 voxels cutout centered
on the root primordia. Both cells and nuclei ground truth
are available.

A variant of 3D U-Net (Çiçek et al., 2016) was trained in
order to predict cell membranes and nuclei, respectively. The
two networks were trained on dense ground-truth from time
points which were not part of our evaluation. Apart from the
primary task of predicting membranes and nuclei, respectively,
both networks were trained on an auxiliary task of predicting
long-range affinities similarly to Lee et al. (2017) which proved
to improve the effectiveness of the main task.

Using these networks, we predict cell boundary probabilities
and nucleus foreground probabilities. We use the nucleus
predictions to obtain a nucleus instance segmentation by
thresholding the probability maps at pthreshold = 0.9 and running
connected components analysis.

We compute superpixels from the watershed transform on the
membrane predictions and compute weights for the regular edges
via mean accumulated boundary evidence. We set up lifted edges
by mapping the nucleus instances to superpixels and connecting
all nodes whose superpixels were mapped to different nuclei with
repulsive lifted edges.
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FIGURE 4 | Overview of results on the plant root dataset. (A) Shows one complete image plane with membrane channel and overview of the LMC segmentation for

timepoint 49. (B,C) Show zoom ins of the yz plane with raw data and nucleus segmentation (left), MC segmentation (middle) and LMC segmentation (right) with

avoided merge errors marked by white arrows. The two dashed lines in (A) show cut planes for the zoom-ins. In (B,C) the nuclei instances inside of cells falsely

merged in the MC segmentation are highlighted. Note that not all merge errors can be resolved by LMC; in some cases the watersheds are already merged, see red

arrow in (C).

Table 4 shows the evaluation of segmentation results on the
ground-truth cutouts. We can see that LMC-S clearly improves
the merge errors as well the overall Rand Error while only
marginally diminishing the split quality. Figure 4 shows an
overview of the LMC result and two qualitative comparisons of
MC and LMC results, highlightingmerges that were prevented by
LMC.Note that not all merges can be prevented, even if the nuclei
were segmented correctly, because some merges occur already in
the watersheds.

5. DISCUSSION

We propose a general purpose strategy to leverage domain-
specific knowledge for instance segmentation problems arising
from EM image analysis. This strategy makes use of a graph
partitioning problem known as lifted multicut by expressing the
domain knowledge in the long-range lifted edges. Clearly, not
every kind of domain knowledge can be expressed in this form,
and the final accuracy improvement depends on the information
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content of the prior knowledge. Also, our method cannot fix
merge errors in the watershed segmentation underlying the
graph, even if priors indicating such an error are available, see
results in subsection 4.4.

We apply the proposed strategy to a diverse set of difficult
instance segmentation problems in light and electronmicroscopy
and consistently show an improvement in segmentation
accuracy. The improvement can be demonstrated even for
imperfect prior information: segmentation quality only starts to
degrade at fairly high error levels in the lifted edges, see results in
subsection 4.2.

For an application with ultrastructure based priors, we also
observe that the lifted multicut based formulation yields higher
quality results than the AMWC formulation of Krasowski et al.
(2017). We believe that this is due to joint exploitation of dense
short-range and sparse long-range information. A complete
joint solution, with both lifted edges and semantic labels, has
recently been introduced in Levinkov et al. (2017). We look
forward to exploring the potential of this objective for the neuron
segmentation problem.

Similar to the findings of Kroeger et al. (2014), we
demonstrated that prevention of merge errors is more
efficient than their correction: the joint solution of LMC-S
is more accurate than iterative LMC-SI. However, not all prior
information can be incorporated directly into the original
segmentation problem. For these priors we demonstrate how to
construct an additional resolving step which can also significantly
reduce the number of false merge errors. In the future we plan
to further improve our segmentations by other sources of
information: matches of the segmented objects to known cell
types, manual skeletons, or correlative light microscopy imaging.
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