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We present a method for the analysis of the finger-string interaction in guitar

performances and the computation of fine actions during the plucking gesture. The

method is based on Motion Capture using high-speed cameras that can track the

position of reflective markers placed on the guitar and fingers, in combination with audio

analysis. A major problem inherent in optical motion capture is that of marker occlusion

and, in guitar playing, it is the right hand of the guitarist that is extremely difficult to capture,

especially during the plucking process, where the track of the markers at the fingertips

is lost very frequently. This work presents two models that allow the reconstruction of

the position of occluded markers: a rigid-body model to track the motion of the guitar

strings and a flexible-body model to track the motion of the hands. In combination with

audio analysis (onset and pitch detection), the method can estimate a comprehensive

set of sound control features that include the plucked string, the plucking finger, and the

characteristics of the plucking gesture in the phases of contact, pressure and release

(e.g., position, timing, velocity, direction, or string displacement).

Keywords: motion capture, guitar performance, hand model, audio analysis, neural networks

1. INTRODUCTION

The interaction between a musician and a musical instrument determines the characteristics
of the sound produced. Understanding such interaction is a field with growing interest,
driven in recent years by technological advances that have allowed the emergence of more
accurate yet less expensive measuring devices. The ability to measure the actions that control
a musical instrument (i.e., instrument control parameters) has applications in many areas of
knowledge, such as acoustics (Schoonderwaldt et al., 2008), music pedagogy (Visentin et al.,
2008), sound synthesis (Erkut et al., 2000; Maestre et al., 2010; Pérez-Carrillo et al., 2012),
augmented performances (Wanderley and Depalle, 2004; Bevilacqua et al., 2011), or performance
transcription (Zhang and Wang, 2009).

In the classical guitar, this interaction occurs with the left hand (fingering) and right hand
(plucking). Fingering mainly determines the tone (pitch), while plucking determines the qualities
of the sound. Guitar control parameters can also be divided into excitation gestures that introduce
energy into the system, and modification gestures that relate to changes applied to the guitar after
playing a note (Cadoz and Wanderley, 2000). In this work we are focusing mainly on the former
type (excitation gestures).

Although plucking can be considered an instantaneous event, it is actually a process with three
main phases (Townsend, 1996): (a) a preparation stage during which the player places his/her finger
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above the string; (b) a pressure stage during which the string
is taken away from its resting position; (c) and a release stage
during which the string slides over the fingertip and then it is left
to oscillate freely. The excitation gestures determine the initial
conditions with which the string is released at the end of the
interaction with the finger.

The parameters of the excitation gesture that have the greatest
influence on the sound are (Scherrer, 2013): the plucked string;
the fingering (which fret); the plucking force, which is related
to the string displacement; the position in which the string is
pulled (distance to the bridge); the direction in which the string
is released at the end of the plucking interaction; and whether the
interaction occurs with the nail or flesh.

The methods used for the acquisition of control parameters
in music performances fall into three main categories (Miranda
and Wanderley., 2006): direct acquisition, which focuses on the
actual realization of the gesture, is performed using sensors to
measure various physical quantities, such as distance, speed,
or pressure; indirect acquisition (Wanderley and Depalle, 2004;
Pérez-Carrillo and Wanderley, 2015), which considers the
consequence of the gesture, that is, the resulting sound, as the
source of information about the gesture. It is based on the
analysis of the audio signal; and physiological acquisition, which
analyzes the causes of the gesture by measuring muscle (or even
brain) activity.

In guitar playing, we mostly find reports on direct and
indirect methods or combinations or both. Indirect methods are
mainly related to the detection of pitch, and together with the
tuning of the strings, provide a good estimate of the plucked
string and the pressed fret. It is also common to find methods
that can calculate the plucking position on the string, that is,
the distance to the guitar bridge (Traube and Smith, 2000;
Traube and Depalle, 2003; Penttinen and Välimäki, 2004). More
advanced methods are capable of detecting left and right hand
techniques (Reboursière et al., 2012), expression styles (Abesser
and Lukashevich, 2012) and even more complex features such
as the plucking direction (Scherrer and Depalle, 2012) that
is retrieved by combination of sound analysis informed with
physical models. The audio recording devices used range from
microphones that measure sound pressure to pickups that
measure mechanical vibration of guitar plates, and also opto-
electronic sensors (Lee et al., 2007).

The use of sensors allows to extract more parameters with
greater precision. Somemethods use capacitive sensors placed on
the fret board (Guaus and Arcos, 2010) or video cameras (Burns
and Wanderley, 2006). However, the most reliable methods are
based on a 3D representation of the motion. They are mainly
based on mechanical (Collins et al., 2010), inertial (Linden
et al., 2009), electro-magnetic (EMF, Maestre et al., 2007; Pérez-
Carrillo, 2009), or optical systems. With the exception of optical
systems, these methods remain too intrusive to measure the fine
movement of the fingers.

Regarding optical systems, they are becoming more popular,
since they are generally low or non-intrusive. A low-cost video
camera was mounted on the head of the guitar by Burns and
Wanderley (2006) to capture the position of left-hand fingertips
with respect to the grid of strings and frets, being able to identify

chords without the use of markers on the hands. Although very
practical for some applications, such a system cannot capture
fine movements in the fingers due to the low sampling rate,
the difficulty of current computer vision algorithms to recognize
fingertips, and it is limited to the tracking of fingertips in
the left hand. Heijink and Meulenbroek (2002) used an active
optical motion capture system with infrared light emitting diodes
placed on the hands and guitar to track the motion of the left-
hand fingertips.

Chadefaux et al. (2012) used high-speed video cameras to
manually extract features during the plucking of harp strings.
Colored dots were painted on the fingertips and a small marker
was attached to the string. The marker had a corner to measure
the string rotation. This advanced method provides very high
resolution and accuracy in analyzing the finger-string interaction.
However, it needs an extremely controlled setup. We discarded
such an approach due to the complexity of obtaining 3D
coordinates and also due to the unfeasability of measuring all the
joints of the fingers.

Norton (2008) was also interested in analyzing fine motion
of the fingers and compared several motion capture systems to
track the 3D position of most hand joints (e.g., passive cameras,
active cameras, or gloves). The main experiment was based on an
active system based on cameras that detect light-emitting diodes.
The author faced very similar problems to ours and reports the
difficulty of dealing with marker occlusion, especially those at
the finger nails. Norton focuses on the methodology and does
not provide details on feature computation or on the statistics
of marker dropouts and the approach to deal with dropouts is
linear interpolation of 3D positions. In addition, he reported
complications due to the reflection of the LEDs in the body of the
guitar, which forced him to fix black felt on the plate of the guitar.
Another difference is that he does not measure the position of the
strings, and therefore, it is not possible to compute finger-string
interaction features.

The most similar work regarding objectives (analysis of
finger-string interaction) and methodology (motion capture
based on high-speed passive markers) is by Perez-Carrillo
et al. (2016). An acknowledged obstacle in that work is
that of marker occlusion, especially in the fingertips of the
right hand during the process of plucking, where the string-
finger interaction occurs. The reported percentage of correctly
identified markers on the fingertips during plucking is very low
(around 60%), meaning that it looses the track of half of the
plucks. In addition, the plucking gesture was considered as an
instantaneous event that happens at note-onsets and therefore, it
cannot extract information about the different stages during the
plucking process.

The presented method is able to track 3D motion of each
joint in both hands along with the position of the guitar strings.
This allows to track the finger-string interaction with high
accuracy and time resolution, and to calculate a comprehensive
set of interaction features that are directly related to the
characteristics of the sound produced. The method is based on
high-speed cameras that track the position of reflective (passive)
markers. This method is intrusive to some extent (markers are
placed on the joints of the hand) and it requires a careful
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FIGURE 1 | General Schema for the calculation of excitation gestures in guitar performances. From the audio signal we extract the pitch and the onsets, which

determine the plucking instants and help in the detection of the string and fret. From the trajectories of 3D markers as provided by the MoCap system, we can obtain

the position of the strings and fingers, by applying a guitar and a hand model respectively. Then, we analyze the fingertip (TIP) trajectories around the note onset times

and we compute a comprehensive set of string excitation features.

and controlled setup (maker protocol and camera placement).
However, according to the participants, it still allows to perform
in conditions very close to those in a practice environment.

Beyond the methodology for data acquisition, the main
contribution of this research is a hand model that is able to
reconstruct the position of occluded markers on the finger tips.
This approach allows observing and analyzing the trajectories
of the fingertips during the plucks, gaining spatial-temporal
accuracy during the finger-string interaction, as well as a more
robust and accurate feature estimation algorithm.

In section 2 we present the materials and equipment used to
acquire the motion and audio data. In section 3 we describe the
Guitar Body Model used to track the position of the strings and in
section 4 we present the Hand Model, which is used to track the
hands and recover lost markers. Later, in section 5, we disclose
the analysis of the plucking process and we give details about
the computation of the finger-string interaction features. Finally,
conclusions are drawn in section 6.

2. MATERIALS AND METHODS

2.1. Overview
The objective of this work is to analyze and characterize the
interaction between the finger and the string during the process
of plucking. Therefore, we need to know the position of the
(plucked) string and themotion trajectory of the (plucking) finger
during a time window around the note onset. To achieve this,
we combine audio with Motion Capture (MoCap) analysis. From
the audio we can obtain note onsets and pitch. Note onsets will
determine the plucking times and the pitch will help determine
the string. From the MoCap we obtain the 3D position of the
strings and finger joints. The position of the strings can be easily
estimated through the definition of a Rigid Body (section 3) and
the major concern is how to correctly track the motion of the
hands since the small markers placed on them can be very easily
occluded, specially during the plucks. For this reason, we define a
hand model that is capable of reconstructing lost markers in the

hand (section 4). Once all themarkers are correctly reconstructed
and identified, we proceed to analyze the trajectories of the
fingertips (section 5.1) and finally, a large set of guitar excitation
features is computed (section 5.2). The complete procedure is
represented in Figure 1.

2.2. Database Corpus
The methods and algorithms presented are based on a dataset
of multimodal recordings of guitar performances that contain
synchronized audio and motion data streams. The corpus of
the database is composed of ten monophonic fragments from
exercises number V, VI, VII, VIII, XI, and XVII of Etudes Faciles
by Leos Brouwer 1. Each fragment averaged about a minute and
was performed by two guitarists. In total, the collection contains
around 1.500 plucks (i.e., notes). For model training we use 150
frame windows centered in the note onsets, making a total of
about 225.000 data frames.

The recording sessions opened with an information sheet
outlining the topic and purpose of the study and instructing
respondents that they were providing informed consent. Ethical
approval for the study, including consenting procedures, was
granted by the Conservatoires UK Research Ethics Committee
following the guidelines of the British Psychological Society.

2.3. Equipment and Setup
Audio and Motion streams were recorded on two different

computers and synchronized bymeans of a world clock generator
that controls the sampling instants of the capture devices and
sends a 25 Hz SMPTE signal that is saved as timestamps with the
data. Audio to motion alignment consists simply of aligning the
SMPTE timestamps.

2.3.1. Audio Recording and Analysis
Audio was recorded using a piezoelectric contact transducer
(a Schaller Oyster S/P) that measures the vibration of the top

1https://www.scribd.com/doc/275517165/187736084-6786545-Leo-Brouwer-20-

Estudios-Sencillos-pdf
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TABLE 1 | Marker detection rates. PIP, DIP, and TIP refer to the last three finger

joints as shown later in section 4.1.

Marker % all frames % at plucks

String-ends 99 99 100 100

PIP DIP TIP PIP DIP TIP

Left-index 99 99 83 100 100 87

Left-mid 99 99 60 100 99 58

Left-ring 100 99 77 100 99 71

Left-small 99 99 75 100 99 69

Right-thumb 99 97 90 100 95 80

Right-index 99 95 75 100 87 66

Right-mid 99 97 82 100 95 65

Right-ring 99 97 73 100 95 54

The string-ends are correctly identified in 99% of the frames, as well as most of the joints.

The most difficult joints to track are the fingertips (TIP), being the most important ones in

our analysis.

plate of the guitar. Sampling frequency was set to 48 kHz and
quantization to 16 − bits. The piezo cutoff frequency is around
15 kHz, which is enough for our analysis. The captured signal is
better adapted for audio analysis than that of a microphone, since
it is not affected by room acoustics or sound radiation. The audio
stream is segmented into notes by onset detection (Duxbury
et al., 2003) and pitch tracking was performed based on the
auto-correlation function (de Cheveigné and Kawahara, 2002).

2.3.2. MoCap Analysis
Motion capture was performed with a Qualysis 2 system. This
system uses high-speed video cameras that emit infrared light and
detect the 3D coordinates of reflective markers by triangulation
(i.e., each marker must be identified by at least three cameras
placed in different planes). The sampling frequency of the
cameras is 240 Hz and determines the sampling rate of our data.
From the 3D coordinates of the markers, the Qualysis software
tracks the trajectory over time of each marker and assigns a
label to each trajectory (i.e., trajectory identification). In our
configuration, we used twelve cameras and they were installed
very carefully around the guitarist to maximize the correct
detection of markers and the identification of their trajectories
as well as to minimize the manual cleaning of the data, that
is, assign the appropriate labels to incorrectly identified and
non-identified trajectories.

Statistics of correct marker detection are shown in Table 1.
We can observe how markers on the strings and on most of
the finger joints have a 99% rate of correct detection. However,
the rate for the fingertips (TIP) decreases dramatically, especially
in the right hand during plucking instants, where the finger-
string interaction takes place and, therefore, the most important
instants in this study. To overcome this issue, we propose a
hand model that is capable of reconstructing the position of lost
markers (section 4).

2http://www.qualisys.com/

The 3D marker trajectories retrieved with the Qualisys system
undergo a pre-processing stage consisting of small-gap filling
and smoothing. We perform linear interpolation to gaps of a
maximum size of 25 frames (around 100 ms) and smoothing
is performed by 20-points moving average. An example of the
Smoothing and Gap Filling (S.GF) process is shown in Figure 2

for a maker trajectory corresponding to the index fingertip.

3. GUITAR RIGID BODY

The position of the strings is determined by the definition of a
guitar Rigid Body (RB). A RB is a rigid structure of six degrees-of-
freedom (6DOF) defined by the position of a set of markers and
associated with a local system of coordinates (SoC). This allows
to track the 3D position and orientation of the RB with respect to
the global SoC. The position of the markers is constant, relative
to the local SoC and their global coordinates can be obtained by
a simple rotation and translation from the local to the global
SoC. The guitar RB is built by placing markers at each string-
end as well as reference markers attached to the guitar body.
The markers at the string-ends cannot remain attached during
a performance as it would be very intrusive, so they are defined
as virtual markers. Virtual markers are only used for calibration
to define the SoC structure. During the actual tracking, virtual
markers are reconstructed from the reference markers.

Special care has to be taken when placing the reference
markers to the guitar body as the plates are reflective to
light, causing interference with the markers. In order to avoid
these unwanted reflections, the markers are placed on the edge
of the guitar body and outside the guitar plates by means
of antennas (extensions attached to the body). Five reference
markers were used and they were placed as shown in Figure 3

(green markers). The tracking of the position of the strings
following this procedure achieves almost 100% of correctly
reconstructed frames.

4. HAND MODEL

4.1. Marker Placement Protocol
Hand motion is tracked by placing reflective markers on
the joints of the hands and fingers, as shown in Figure 4.
These joints involve four bones for each finger: metacarpal,
proximal phalanx, middle phalanx, and distal phalanx. The
joint between the metacarpal and proximal phalanx is named
the metacarpophalangeal joint (MCP). The joint between the
proximal phalanx and the middle phalanx is called the proximal
interphalangeal joint (PIP), and the joint between the middle
phalanx and the distal phalanx is called the distal interphalangeal
joint (DIP). The exception is the thumb, which does not have a
middle phalanx and therefore it does not have a DIP joint.

The right hand has markers on every finger expect for the
little finger, and the left hand has markers in every finger except
for the thumb, since those are the fingers used in traditional
guitar playing. The red circles indicate the position of the virtual
markers, whose position is computed from the position of the
real ones. The position of the virtual marker wrist is defined at
the midpoint between the line wout − win, and the position of the

Frontiers in Computer Science | www.frontiersin.org 4 November 2019 | Volume 1 | Article 8

http://www.qualisys.com/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Perez-Carrillo Guitar Hand Model

FIGURE 2 | Smoothing and small gap filling corresponding to the x-coordinate of the right index fingertip. Small gaps of maximum 100 ms are filled by linear

interpolation and trajectories are smoothed in order to clean the data from jitter and other noise.

FIGURE 3 | Rigid Body model for the guitar. The green dots are the auxiliary

markers of the guitar, and are used to track the motion of the guitar as a rigid

object. The red dots represent the virtual markers at the strings-ends, and are

only present during the calibration of the model. During the performance, their

position is reconstructed form the auxiliary ones.

virtual marker thumb1 is defined at 1/3 of the length of the line
MCPthumb − wout .

Although markers are very small and light, placing them on
the nails is intrusive to some extent and may affect the musical
performance. The participants agreed that the markers were not
really interfering physically, but the feeling of having them on
their nails made them play with less confidence. The good news
is that, even if the way of performing is altered, the relationship
between control parameters and the sound produced remains
the same.

4.2. Finger Model
The main problem during hand tracking is that of marker
occlusion and it occurs mainly in the fingertips and more
specifically during the plucks, which are precisely the instants
that we intend to analyze. We need hand model that can
reconstruct the position of lost makers at the fingertips.
We propose a model that considers the fingers as planes
and translates 3D marker positions into 2D angles on the

planes. Marker recovery in the angle domain is much more
straightforward as there is a high correlation among joint angles
of the same finger.

The procedure for modeling the hands is shown in Figure 5.
The MoCap system provides the 3D trajectories of the markers
(0), which is followed by an automatic process of cleaning (2),
i.e., smoothing and small-gap filling as explained in section 2.3.2.
Then, we find the plane that represents each finger (3), computed
as the plane that minimizes the distances to its markers.
We immediately translate the general 3D coordinates into 2D
coordinates in the plane (4) and translate 2D coordinates into
joint angles in the plane (5). After a second process of cleaning
and outlier removal (6), the missing angles (θ2 and θ3) are
reconstructed from models trained with ground truth data (7).
The process is finally reversed to get the reconstructed 3D
positions of the markers. In addition, a process of correcting the
position of the markers to match the center of rotation (CoR) of
the joints is applied to the 2D local coordinates (4).

4.2.1. Define Finger Planes (3)
Each of the fingers is represented as a plane (Figure 6). The plane
of a finger is estimated from the position of its five joints as
the plane with minimum distance to them. In order to estimate
the best fitting plane, we need at least three correctly identified
markers, which is a reasonable condition since the first joints of
each finger, thewrist,MCP and PIP are correctly identified in 99%
of the frames.

The planes are obtained by Singular Value Decomposition
(svd) of matrix A, i.e., USV = svd(A). Where A = [XYZ] and
X, Y , and Z are column vectors representing the 3D coordinates
of the finger joints after having subtracted out the centroid (i.e.,
the column means). The normal vector of the best-fitting plane
is the third column vector of the right singular matrix (matrix
V). Intuitively, the vectors in matrix V are a set of orthonormal
eigenvectors, ordered by the spacial direction in which data has
more variance. Therefore, the first two vectors represent the
base for the plane and the third vector is the vector normal to
the plane.
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FIGURE 4 | Placement of hand markers. The red circles indicate the position of the virtual markers that do not exist physically (their position is computed from the

position of the real ones). Virtual marker wrist is the middle point between wIn to wOut and thumb1 is at 1/3 of the line that goes from wOut to the MCP joint of the

thumb.

FIGURE 5 | Procedure to model the hands. 3D marker trajectories are provided by the MoCap system. After pre-processing the data (2) 3D marker coordinates are

translated into 2D finger plane coordinates (3). Then, the CoR is corrected (4) and 2D coordinates are translated to angles. Later, missing angles are reconstructed (7)

and finally the process is reversed (except the CoR correction) to obtain the 3D coordinates of the joints.

4.2.2. Convert to 2D Local Positions (4)
The next step is to project the finger joints on to their own plane
to get 2D local coordinates (local to the plane). To compute local
coordinates, we must first define coordinate system of the finger
plane. Let x-axis be the unit vector that goes from theMCP joint
to the virtual marker wrist and the y-axis is computed as the
cross-product yaxis = xaxis× zaxis, where zaxis is the plane normal
vector. Following this procedure, we can also get rotation and
translation matrices for each plane that we will need later for the
reconstruction of the 3D position of the markers.

The projection of any point p = (px, py, pz) onto a plane
(the projection with closest distance) is computed based on the
dot product. Given a plane determined by point A and the plane

normal vector En, the projection is obtained as pproj = p − ((p −
A) · En)× En.

4.2.3. Center of Rotation Correction
The next step is to correct the position of themarkers tomatch

the Centers of Rotation (CoR) of the joints or, in the case of the
fingertips, the part of the finger flesh that makes contact with the
string (Figure 6). This step is very important especially to correct
the position of the fingertips as shown in Figure 7. This figure
presents 2D projections of several trajectories of the thumb-tip
during the plucking process. It can be observed how marker
positions are shifted upwards and to the left with respect to the
actual plucked string. The computation of the CoR allows for the
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FIGURE 6 | Representation of the plane for the index finger (translucent green) obtained from the position of the joints and bones. CoR correction is depicted in blue

as well as the angles θ1, θ2, θ3.

FIGURE 7 | Finger vs. Marker Position. On the left we can observe several trajectories of the thumb-tip during the process of plucking and the corresponding plucked

strings (with red arrows). We can clearly see how the trajectories are shifted upwards and to the left with respect to the plucked string. The reason is that the position

of the marker is on the nail and, therefore, shifted with respect to the part of the finger that comes into contact with the string.

correction of this displacement. For simplicity,CoR’s are assumed
to be at 0.5 cm distance to the actual marker positions, toward
the center of the plane and at the half of the inter-bone angle
(Figure 6). This distance was arbitrarily set as an average estimate
of the finger width (the approximate distance from center of the
markers to the actual joint rotation center).

4.2.4. Translation Into 2D Inter-Bone Angles (5)
Once we have an estimation of the local coordinates of the CoR,
we compute the angles between the bones (θ1, θ2, and θ3 as
depicted in Figure 6). From this step, we need to store the length
of the bone segments in order to reconstruct later the 2D-plane
positions from angles (forward kinematics). The length of the
bones are calculated as the average length of all frames.

4.2.5. Missing Angle Reconstruction (7)
This step consists of reconstructing the missing angles due to
marker occlusion. From Table 1, we know that MCP and PIP
joints are correctly identified in 99% of the frames, but DIP and

Tip may be lost during the plucking process. This means that
θ1 has a 99% of correct identification rate but θ2 and θ3 only
about 60%. The good news is that the three angles are highly
correlated and a specific finger posture has always a very similar
combination of angles. This allows for the estimation of missing
θ2 and θ3 from θ1 by training machine learning algorithms.

Our approach was to train Non-linear Autoregressive
Networks with Exogenous Inputs (NARX) in Matlab 3, a kind
of Neural Network with recursive connections and tapped
delays that considers previous inputs and outputs. The recursive
connection is a link from the output layer directly to the input.
The reason for choosing NARX networks was because such
architectures are very well adapted to time series prediction.
First, they can handle information of several previous inputs and
also, they have a recursive input, which adds very important
contextual information to the network. In addition, NARX

3https://www.mathworks.com/help/deeplearning/ug/design-time-series-narx-

feedback-neural-networks.html
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networks do not need large amounts of data when trained as
other architectures such as LSTM networks.

We trained two networks per finger, the first one, Net1, has as
input θ1 and as output θ2. The second network,Net2, has as inputs
θ1 and θ2 and predicts θ3. The internal structure of such networks
is depicted in Figure 8. The parameters of the selected networks
were the following: 10 frames of input delays, 10 feedback delays,
and hidden layer size of 10 neurons. The optimization method
was Levenberg-Marquardt withMean Squared Error (MSE) as the
cost function. The weights of the neural connections returned
a MSE of about 4 × 10−4 after about 12 epochs. The size of
the dataset was of about 225.000 frames, corresponding to 150
plucks. From these, 30 plucks were allocated for testing and no
validation set was used due to the small size (in plucks) of the
dataset. The evaluation results were obtained by performing a
10-fold cross-validation.

4.2.6. Inverse Kinematics and 3D Reconstruction
Once the missing angles are recovered, we preform the reverse
process to get the reconstructed 3D position of the missing
markers. First we apply inverse kinematics to get the 2D local
positions of the joints from the angles and finally, 2D positions
are converted into 3D coordinates using plane information (the
normal vector and the coordinates of the common wrist joint).
The only process that is not reversed is the displacement of the
CoR so that we recover the estimated position of the joints instead
of the markers.

The improvement of correct TIP marker detection with
respect to the baseline rates reported in Table 1 when this
algorithm is applied is very satisfactory. As the algorithm
outputs an estimation for every TIPmarker, the theoretic marker
detection percentage is of 100%. However, there is an average
error in the estimation of less than 3mm (obtained from theMSE
error in angle space and later 3D geometric data reconstruction).

5. FINGER-STRING INTERACTION

5.1. Plucking Process Analysis
Once we have recovered the position of the occluded joints, we
can visualize and analyze the 3D trajectories and the interaction
between the finger and the string during the pluck. The plucking
action is not an instantaneous event, but a process that involves

several phases (Scherrer, 2013). It starts with the finger getting
in contact with the string (preparation phase), then the finger
pushes the string (pressure phase), and finally the finger releases
the string (release phase). The note onset occurs after the release
of the string. The precise instants when these events occur can be
determined by observation of the motion data.

In Figure 9we can see a representative example of the thumb-
TIP trajectories in a short window of 150 frames (0.625 s) around
the note onset, and a series of subfigures that show different
parameters during the pluck. The note onset is represented in
each plot as a red cross along with a vertical dashed line in
red. Plucking trajectories of other fingertips look very similar,
except that they occur in the opposite direction in the x-axis. In
Figure 9B the guitar strings are depicted along with the reference
coordinate system: axis ŷ is a unit vector in the direction of the
sixth string (lowest pitch). A temporary vector x̂ is defined as the
unitary vector that goes from the sixth string notch on the bridge
to the first string notch on the fret. x̂ and ŷ define the strings
plane. Axis ẑ is the cross product ẑ = x̂ × ŷ and finally the x̂ axis
is corrected (at this point, x̂may not be completely orthogonal to
ŷ) by computing the cross product x̂ = ŷ× ẑ.

Figure 9A shows the TIP trajectory projected into the XZ
plane. From this projection, the displacement in the z-axis
(Figure 9C) and x-axis (Figure 9D) are computed, as well as
their respective derivatives, i.e., the velocity in the X (vX) and
Z (vZ) directions (Figures 9E,F). Additionally, the plucking
direction (angles) at the contact and release instants are also
computed (Figures 9G,H).

Velocity in the X direction (vX , Figure 9F) resulted to be

specially relevant in our analysis. This feature presents two peaks

right before the onset of the note, which are directly related to

the different phases of the pluck. The instants where the peaks

occur are located in each plot as small blue circles, and the
valley between both peaks as a green circle. During the pluck
preparation phase, the finger starts moving toward the string (left
slope of the first peak) until it gets in contact (first peak). Then,
the velocity of the finger starts to decrease until the tension of the
string is greater than the kinematic energy of the finger, when the
string is released (valley between themain peaks). After the finger
is released there is a second peak and later, it takes place the note
onset (in red). With this information, we can estimate the contact
and release instants.

FIGURE 8 | Architecture of NARX Net1 that predicts θ2 from θ1. It has 10 tapped input delays (i.e., it takes the inputs of the last 10 frames) 10 tapped recursive

connections that route the output (y(t)) directly into the input. It has a hidden layer with 10 neurons and a Sigmoid activation function. Net2 is very similar, except that it

takes an extra tapped delay input (θ2) and the output is θ3.
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FIGURE 9 | Trajectory and features of the right hand thumb-TIP during a pluck. In (B) there is a representation of the pluck with the hand and the strings and

indications regarding the reference coordinate axis. In (A) we can observe the trajectory of the TIP projected into plane XZ. The blue dots represent the strings. We

can observe how the TIP comes in contact with the string, the string displacement and the release. In (C,D) the displacement in time along the X and Z axes is

plotted; in (E,F) the directional velocity along Z and X axes; and in (G,H) the angles of the pluck. The shape of Vx is very informative. A typical pluck has two peaks in

vX , the first peak corresponds to the contact instant and the valley between both represents the release time.

5.2. Excitation Features
There is a myriad of gesture features that can be extracted using
the presented MoCap method. The most important for us are
the parameters that directly affect the qualities of the sound.
From Townsend (1996) and Scherrer (2013), we know that
these parameters are (a) the plucking position, (b) the plucking
direction (c) the plucking force; and (d) the nature of the pluck

(nail or flesh). Except for the latter, all these parameters can be
estimated after applying the models of the guitar (section 3) and
hands (section 4) and after determining the instants of contact
and release (section 5.1).

Previous to the computation of these parameters, there is
the need for the estimation of the basic controls, that is,
string, fret, and plucking finger. Basic controls are computed
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following previous work of Perez-Carrillo et al. (2016) with
the main improvements that we have greater spacial resolution
(reconstruction of occluded markers and CoR correction) and
temporal resolution (estimation of the instants of plucking)
thanks to our hand model:

• Plucked string. It is estimated as the most likely string to be
plucked during a short window around the note onset. The
likelihood that a string is being played (lS) is determined as
a function of the pitch and the distances of the strings to the
left and right hand fingers, dL and dR. The pitch restricts the
possible string candidates and the left hand distance to the
frets will determine almost uniquely the string among those
candidates. Finally, the right hand TIPs distance to the strings
will confirm the string.

• Pressed fret. Once the string is known, obtaining the fret
is straight-forward based on the pitch and the tuning
of the strings.

• Plucking finger. It is the finger whose TIP is closest to the
estimated string.

After the estimation of these basic parameters, we can proceed
to the computation of the excitation parameters that take place
during the pluck.More details on the computation of the position,
velocity, and direction can be found in Perez-Carrillo et al. (2016):

• Plucking position. This feature refers to the distance from
the bridge of the guitar to the excitation point on the string.
It is obtained by projecting the TIP of the finger on the
string (Figure 9B).

• Plucking direction. This feature refers to the angle at which
the string is released. As can be observed in Figure 9B, we can
compute two angles, one in the X-Z plane, the other in the X-
Y plane. The angle X̂Z is almost negligible being the angle X̂Y
the one that has an important influence on the sound. Also,
we can compute the angles at the contact and release instants
(Figures 9G,H), although only the release angle is relevant in
the production of the sound.

• Plucking velocity. This feature is computed as the derivative
of the displacement of the TIP. We can compute different
velocities: the speed is the derivative of the displacement
of the marker in 3D and then we can compute the
directional velocities for each dimension. The most relevant
movements occurs along the Xaxis(vX) and its contour is
used to determine the exact points of contact and release
(section 5.1). Contours of vX and vZ can be observed
in Figures 9E,F).

• Plucking force and string displacement. The strength of the

plucking force is related to the displacement of the string

before release and, therefore, to the intensity of the sound
pressure (Cuzzucoli and Lombardo, 1997). The presented
method cannot measure the plucking force, but it is able to

estimate the string displacement by assuming that the string

moves with the finger from the contact until the release

instants. This displacement is an Euclidean distance computed

from the 3D positions of the TIP. In Figure 9A we can

observe the displacement in the XZ plane and in Figures 9C,D
we plot the displacement over time along the X and Z
axis respectively.

Additional parameters can be extracted using our method, such
as the fretting finger, the duration of plucking phases, the shape
of the TIPs trajectories during the plucks or acceleration profiles
among others. However, they are not included in this report as
they do not directly affect the qualities of the sound.

6. CONCLUSION

This work presents a method to analyze the finger-string
interaction in guitar playing and the extraction of a
comprehensive set of string excitation gestures. The method is
based on motion capture and audio analysis. Motion is measured
through high-speed cameras that detect the position of reflective
markers attached to the guitar and hands of the performer, and
audio is recorded using a vibration transducer attached to the
top plate of the guitar. Audio analysis is performed to obtain the
onset and pitch of the notes. Onsets are used to find a window
around which the process of plucking occurs and pitch is used
along with Euclidean distances to estimate the plucked string,
the fret and the plucking finger. Motion data is processed to
recover occluded markers and to correct the position of the
Center-of-Rotation of the joints. The positions of the strings are
reconstructed by applying a Rigid Body Model and the position
of the hand joints by applying a Hand Model that takes into
account the correlation among joint angles. Once the strings
and hands are correctly identified and located, we proceed to
the computation of excitation gestures based on Euclidean
Geometry. The computed excitation features are directly related
to the characteristics of the sound produced and include the
plucking position, velocity, direction and force (or, in fact, its
related magnitude, the string displacement during the pluck).

The major contributions in this work are the hand model
and the analysis of the trajectories of the fingertips during the
plucking instants. The handmodel considers the fingers as planes
and translates 3D joints position into 2D local coordinates at the
finger planes. Then, 2D coordinates are converted into 2D joint
angles because angles in the same finger are highly correlated. A
recursive Neural Network is trained to model these correlations
and used to recover the missing angles due to occluded markers.
Then, inverse kinematics are applied to translate the angles back
into 3D joint positions. In addition, the model can correct the
position of the markers to fit the Centers-of-Rotation of the
joints. After this process of joint recovery and correction, we
proceed to the analysis of the trajectories of the fingertips in
a window around the note onset and we find patterns in the
velocity of the trajectories that allow to accurately determine the
instants when the finger contacts the string and also when the
string is released. These instants demarcate the different phases
of the plucking gesture (i.e., contact, pressure, and release) and
allow to extract a handful of features, especially those considered
as the most important in shaping the quality of the sound.

Evaluation of the method against a validation data set, shows
a very low MSE Error, meaning that the accuracy of the marker
recovery is very high. The method allows for the correct tracking
of plucking in monophonic melodies without overlapping notes.
In the future, based on a more robust pitch detection algorithm,
we will attempt to extend the work to polyphonic scores with
no restriction on note overlapping. We also plan to use the
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presented method to analyze and compare different performers
and playing styles.
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