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Generative adversarial networks (GANs) have recently been successfully used to create

realistic synthetic microscopy cell images in 2D and predict intermediate cell stages. In

the current paper we highlight that GANs can not only be used for creating synthetic

cell images optimized for different fluorescent molecular labels, but that by using GANs

for augmentation of training data involving scaling or other transformations the inherent

length scale of biological structures is retained. In addition, GANs make it possible to

create synthetic cells with specific shape features, which can be used, for example,

to validate different methods for feature extraction. Here, we apply GANs to create 2D

distributions of fluorescent markers for F-actin in the cell cortex of Dictyostelium cells

(ABD), a membrane receptor (cAR1), and a cortex-membrane linker protein (TalA). The

recent more widespread use of 3D lightsheet microscopy, where obtaining sufficient

training data is considerably more difficult than in 2D, creates significant demand for

novel approaches to data augmentation. We show that it is possible to directly generate

synthetic 3D cell images using GANs, but limitations are excessive training times,

dependence on high-quality segmentations of 3D images, and that the number of z-slices

cannot be freely adjusted without retraining the network. We demonstrate that in the

case of molecular labels that are highly correlated with cell shape, like F-actin in our

example, 2D GANs can be used efficiently to create pseudo-3D synthetic cell data from

individually generated 2D slices. Because high quality segmented 2D cell data are more

readily available, this is an attractive alternative to using less efficient 3D networks.

Keywords: GAN, generative models, cell image synthesis, data augmentation, live cell fluorescence microscopy

INTRODUCTION

The rapid development of imaging technologies in life sciences is causing a surge in high
resolution 2D and 3D microscopic images of cells, mostly employing fluorescent molecular
labels. What follows is a demand for easily accessible and significant collections of biological
image data that can be used for either testing existing solutions for feature extraction and cell
classification, or developing new ones. Two prominent examples of applications that require
large datasets are (1) assessing the quality of 2D/3D segmentation algorithms and (2) training of
artificial deep neural networks. The first case requires manual or guided segmentation to generate
ground truth data, which is costly and laborious, and in 3D often prohibitive. Here, generative
models can help enriching small validated datasets. The second case naturally also benefits from
augmented collections of diverse training data. However, as we demonstrate here, traditional image
transformations used in data augmentation can produce biologically improper images.
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In the current paper we propose a simple and efficient
method for synthesizing large collections of realistic cell images
from corresponding binary masks by means of generative
adversarial networks (GANs, Goodfellow et al., 2014). Generative
models are not new in cell biological imaging or even more
generally in optical microscopy, but recent developments in
deep learning have raised the quality of these models to a new
level. We utilize the concept of image-to-image translation by
conditional GANs proposed by Isola et al. (2017). A similar
application of GANs for generating natural cell images was
proposed recently by Goldsborough et al. (2017) who built
generative models of human cells from the BBBC021 dataset
and explored its ability to synthesize realistic 2D distributions
of cellular components visualized by fluorescence microscopy
(DNA, F-Actin and β-Tubulin). Osokin et al. (2017) conducted
a quantitative analysis of biological images synthesized by GANs
which perform well in producing biologically realistic, previously
unseen datasets. A slightly different application of 2D generative
models was proposed by Johnson et al. (2017). They developed
an adversarial autoencoder that resembles a non-parametric
model of cells, used for predicting the outcome of unobserved
experiments, and reducing the probabilistic dimensionality of
complex experimental data. Other cell generative models prior to
GANs employed various techniques, such as physical simulations
of the process of image formation (Svoboda et al., 2009) and were
used to generate 3D cell images. Other 3D cell generators using
explicit shape and texture features learned from experimental
data have been developed by Shariff et al. (2010) and, recently,
model-based 3D cell generators employing Perlin textures have
been devised (Svoboda and Ulman, 2017; Peterlík et al., 2018;
Sorokin et al., 2018; Wiesner et al., 2019a).

GANs are capable of learning a mapping between input
and output images from training data and then utilize this
knowledge to synthesize new, previously unseen images that
come from the distribution of training data. GANs employ
two networks, one that is trained to discriminate between
real and fake images, and a generative network that aims to
produce images that fool the discriminatory network. Using the
implementation by Isola et al. (2017) the generator is based
on a “U-Net” architecture (Ronneberger et al., 2015), and the
discriminator uses a convolutional “PatchGAN” classifier (Li and
Wand, 2016). Our results are obtained using L1+cGAN losses
as described in Isola et al. (2017). We utilize this concept for
creating a mapping between segmented cells and their equivalent
microscopic images, with the aim to recreate realistic cell images
from either 2D or 3D binary masks based on arbitrary cell shapes.
Both the generator and discriminator take the binary masks as
additional conditions to make a decision, which is why this type
of GAN is called a conditional GAN.

We investigated three separate conditional GAN networks
(net_ABD, net_cAR1 and net_TalA) based on the architecture
proposed in Isola et al. (2017) that were trained with cell
images ofDictyostelium cells labeled by three different fluorescent
markers: (a) a marker for the F-actin cytoskeleton (ABD-
GFP) which is important in driving cellular shape changes, (b)
a membrane receptor for the chemoattractant cAMP (cAR1-
GFP) which in Dictyostelium controls directed cell motility and

development, and (c) a protein that links the cell membrane
and the F-actin cell cortex (TalA-GFP or TalA-mNeon), also
important for cell motility and cellular shape changes. The
training images of Dictyostelium cells are very similar to that
of other amoeboid cells, for example cells of our immune
system. For the three networks input cell images consisted of
individual frames of a timeseries recording. Because each frame
was processed by the network independently, information about
correlation in time was not available to the network.

We show that each GAN network is able to correctly relate
the distribution of each individual florescent protein to the
specific shape of cells and to successfully synthesize realistic
images for arbitrary input shapes. Importantly, when augmenting
training data, GANs prevent errors normally introduced by
standard geometric transformations, such as blurring introduced
by scaling. Because scaling or shearing will be applied to binary
masks before texturizing, the intrinsic length scale of specific cell
features like membrane thickness is not changed.

We extended the 2D architecture to 3D (net_3D), generating
synthetic 3D light sheet microscopy datasets of the F-actin
marker Lifeact-GFP from volumetric binary masks. net_3D
produces realistic label distributions across neighboring z-slices
of 3D microscopic images, but in practice suffers from a number
of technical limitations. Above all these are computational
complexity and the difficulty to obtain sufficiently large sets of
high-quality training data. To overcome these limitations, we
are proposing an approach where 2D networks are used for
synthesizing pseudo-3D datasets by reconstructing each z-slice
separately. Comparison with real data shows that important
features are still preserved very well, reducing computational cost
and training effort significantly.

MATERIALS AND METHODS

The software used (pix2pix implementation from https://github.
com/affinelayer/pix2pix-tensorflow) and the repository (https://
pilip.lnx.warwick.ac.uk/Frontiers_2019) with training data and
our modified 3D multichannel version of pix2pix are described
in more detail in Supplementary Information.

Training datasets for each 2D network (net_ABD, net_cAR1
and net_TalA) consisted of experimental timeseries of cell images
acquired at different developmental stages and under different
experimental conditions. The only common denominator
was the molecular label (Table 1). The motivation behind
pooling data from different conditions was to achieve a good
spread in input data, needed, for example, when attempting
to develop robust methods for cell segmentation. Other
applications might demand selecting more specific subsets of
experimental data.

The cell lines used were as follows. The axenic strain A× 2 of
Dictyostelium discoideum (DBS0235521 at http://dictybase.org)
was transformed with markers for F-actin (GFP–ABD120) or the
membrane bound cyclic AMP receptor (cAR1-GFP). TalinA/B-
double knockout cells were a kind gift of M. Tsuijioka to the
Kay laboratory (strain HM1554). This strain was rescued by
expressing TalinA-GFP or TalinA-mNeon.
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TABLE 1 | Summary of datasets used for training net_ABD, net_cAR1, net_TalA,

and net_3D.

ABD

(Zatulovskiy et al., 2014)

Dictyostelium A × 2 cells expressing ABD-GFP, an

F-actin marker. Developed cells randomly migrating

in low fluorescence buffer, using actin-driven

pseudopodia (200 images).

Same cells and marker as in (1), but cells are forced

to chemotax under a thin agarose overlay of 1%

concentration. Cells migrate using both, slower

actin-driven pseudopodia and fast protrusions in the

form of blebs, where the cell membrane detaches

from the actin cortex (102 images).

(3, 4) A 2% agarose overlay results in cell migration

employing mostly blebs (600 images).

cAR1

(Tyson et al., 2014)

Developed A × 2 cells expressing the membrane

receptor cAR1-GFP, moving under 0.7% agarose

(751 images).

Same cells as in (1), moving in buffer (200 images).

(3) Vegetative cells, moving in buffer (309 images).

TalA

(Collier et al., 2017)

Developed Dictyostelium talin A-/B- double

knockout cells, transformed with talin A-GFP,

moving in buffer (100 images).

(2) Same cells but expressing talin A-mNeon,

moving under either 0.7% or 2% agarose

(330 images).

3D Vegetative Dictyostelium cells in buffer expressing

Lifeact-GFP labeling F-actin, imaged by 3D diSPIM

light sheet microscopy (new data generated for the

current paper, 38 timepoints).

All 2D images were recorded on standard confocalmicroscope
setups at 2 frames per second (fps) with a 63× oil immersion
objective (NA1.4, 488 nm laserline, typically using zoom factors
of 1 or 2, resulting in a pixel size of 0.264 and 0.132µm
in the original images; typical exposure time 200ms). Where
required, images were rescaled from 512 × 512 to 256
× 256 pixels using bilinear scaling or cropped to a size
of 256 × 256. Subsequently, cells were segmented using
QuimP2018 (Baniukiewicz et al., 2018) with either of two,
or a combination of an active contour algorithm and a
customized random walk algorithm. Quality was validated
visually for each dataset, and manual corrections made
where necessary.

Finally, the 2D training datasets yielded 902, 1,260, and
430 input-output pairs of binary masks and corresponding
fluorescent images for net_ABD, net_cAR1, and net_TalA,
respectively (Figure 1), but the effective number of training
samples was enlarged three-fold by data augmentation (through
mirroring, rotation, and translation). We excluded image scaling
from transforms used for data augmentation, due to reasons
explained later in the Results section.

The training dataset for net_3D was built from 38 3D
image stacks (Table 1) recorded on a 40× diSPIM light
sheet microscope (3i) using a single sheet (width 4µm) with
a spacing of 0.2µm, with each imaging plane acquired at
10ms (NA0.8, water dipping objective, 150 slices, pixel size
0.165µm, slice thickness 0.2µm). The amount of training
data was then increased to 250 volumes by augmentation as
used in the 2D case. Finally, the whole dataset was segmented

with the aid of the 3D Trainable Weka Segmentation plugin
in ImageJ (Arganda-Carreras et al., 2017). A small subset
(three timepoints) selected from recorded (but not augmented)
datasets was also segmented manually by an expert in order
to validate the performance of the Weka plugin. Although
the level of recall is high (0.98, 0.98, and 1.0), the level of
precision is comparatively low (0.72, 0.67, and 0.73), yielding
low Jaccard scores (0.71, 0.66, and 0.73). The low level of
precision results in fine cellular processes (filopodia) appearing
somewhat more stubby. For a proof of concept, however, we
regarded this as acceptable, noting that manual segmentation
of the entire training data set was beyond the scope of
this paper. High-quality manually curated 3D image stacks
(n = 11) were however used as input masks to test the
output of net_3D and pseudo-3D synthetic data generated
by net_ABD.

We utilized the network architecture described in Isola
et al. (2017) assuming one channel (binary mask) as input
and output layers (fluorescent channel) for 2D networks. The
3D extension (net_3D) incorporates 66 channels for input and
output, matching the number of z-slices of experimental data
needed to capture a cell. Each 2D model took ∼15 h to train
on a single GPU of an NVIDIA Tesla K80 card, whereas the 3D
network needed∼32 h to converge.

One practical pitfall with net_3D is that artifacts in the
form of void regions occur when not using the separable
convolution option. This option is now the default in
pix2pix, however. Some of the generated images show a
faint checkerboard pattern, which is a known problem of
GANs (Odena et al., 2016).

RESULTS

Synthetic Data Based on Arbitrary Input
Masks Capture the Characteristic
Distributions of Different Molecular Labels
Figure 2 shows five artificial shapes decorated by the three
GAN models trained with the ABD, cAR1 and TalA datasets,
in an attempt to reproduce the characteristic features of the
individual labels seen in Figure 1. The ABD label is generally
enriched in the actin cortex, but most strongly associated with
protrusions, i.e., areas of high curvature. cAR1 decorates the cell
membrane, with a somewhat more granular appearance. TalA
forms smooth shallow gradients, with a higher concentration
at the cell rear, and the cell nucleus excluded. Overall, the
reconstructed images in Figure 2 capture the original features
very well for ABD and TalA. Although the membrane labeling
is roughly captured for the cAR1 label, the highly artificial
star shape in column 4 shows filamentous structures that
most likely match filopodia in Figure 1 (see cAR1, column 4),
but erroneously point inwards and not outwards. The wrong
localization of these filamentous structures is likely due to
problems with the original segmentation of filopodia, struggling
with the noisier cAR1 data. Output images were not post-
processed apart from contrast adjustment for the sake of
better readability.
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FIGURE 1 | Confocal laser scanning microscopy images of Dictyostelium cells labeled with different fluorescent markers exhibiting characteristic patterns (scale bars:

10µm). Row 1: ABD, a label for F-actin filaments in the cell cortex. Row 2: cAR1, receptors in the cell membrane binding the chemoattractant cAMP. Row 3: TalA, a

cortex-membrane linker protein. Representative images were taken from a library of cell images acquired under a range of experimental conditions, in order to capture

a large variety of cell shapes and textures. The image library was used for training three different GANs: net_ABD, net_cAR1, and net_TalA. In each row, cells are

ordered from left to right according to their developmental stage and experimental conditions (movement in buffer vs. under agar). Notably, with increasing agarose

concentration (toward the right) cells exhibit less distinct protrusions and appear larger and rounder because they are flattened. Experimental details for individual

images from left to right (v, vegetative cell; d, developed cells ∼6 h after starvation; r, random movement; c, chemotaxis toward cAMP; b, in buffer; 0.7%/1%/2%,

agarose concentration of an agar overlay; N, mNeon instead of GFP as fluorescent label): ABD, drb-drb-dc1%-dc2%-dc2%; cAR1, vrb-vrb-drb-dc0.7%-dc0.7%;

TalA, drb-dc0.7%N-dc2%N-dc2%N-dc2%N.

FIGURE 2 | For arbitrary binary input masks (row 1) three different GANs are

able to reproduce the characteristic protein distributions of real molecular

labels from Figure 1. For a circular input mask (column 1) the synthetic ABD

label (row 2, generated by net_ABD) shows a typical cortical localization, and

association with the tips of extended structures, reminiscent of cellular

protrusions (columns 2–5). cAR1 (row 3, net_cAR1) is distinctly found at the

edge, mimicking the cell membrane in real cells, and like in the training data

exhibits significant levels of noise. In column 4, artifacts in form of filamentous

structures can be seen inside the star object (see main text for discussion).

TalA (row 4, net_TalA) reproduces the shallow gradients seen in real cells, with

a dark region spared out, which in real cells is the cell nucleus.

Real Cell Masks as Input to GANs Provide
Visually Realistic, Synthetic Images of Cells
Expressing Different Fluorescent Markers
In the next experiment we fed each of the network with real
cell masks. The testing set for each network consisted of masks
belonging to the training sets of the remaining two networks
so that there was no correlation between training and testing
datasets, as they were taken in different experiments and for
different labels. Representative results are shown in Figure 3.
They demonstrate the ability of GANs to produce realistic cell
images with complex shapes, as confirmed after visual inspection
by an expert biologist who is familiar with the specific molecular
labels. A quantitative evaluation of the image quality follows
below. On these genuine cell shapes the cAR1 label shows no
obvious artifacts.

Upon Scaling, GANs Preserve the Inherent
Length-Scale of Biological Structures
A so far little recognized feature of GANs is their ability to create
more realistic augmented training data of biological cells. Typical
techniques used in machine learning are affine and perspective
transformations, copying, padding, contrast changes, etc. For
many practical applications, however, especially with regards
to cell biology, problems arise because affine transformations
like image shearing or scaling will not only change an object’s
overall size and shape, but also that of all embedded features.
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FIGURE 3 | Examples of synthetic label distributions using masks of real cell shapes as input to net_ABD (1st row), net_cAR1 (2nd row), and net_TalA (3rd row).

F1-scores of 0.98, 0.97, and 1.0 obtained by an expert classifier (see Table 3) underline that these synthetic images are highly realistic in their appearance.

In fluorescence microscopy this could result, for example, in
altering the thickness of the cell membrane, which biologically
however is the same for cells of any size. Augmentation by GANs
can overcome these issues, because image transformations are
applied to the binary mask only. Masks are then textured by
the network, preserving most of the learnt features and their
characteristic length scales. This advantage is demonstrated in
Figure 4. Cell images up-scaled using bilinear interpolation are
blurred and contain less detail. Moreover, the thickness of the
membrane grows proportionally with the scaling factor. Cells
scaled with GANs preserve the same membrane thickness and
level of detail, including noise, which can be demonstrated using
the S3 metrics proposed by Vu et al. (2012). This metric measures
the local perceived sharpness in an image utilizing both spectral
and spatial properties of the image. To obtain the S3 metrics as a
function of scale we resized the whole dataset of cell images up to
a factor of 3× by means of two popular interpolation algorithms;
bilinear, and bicubic. Next, we rescaled binary masks from the
same dataset with the nearest neighbor method and processed
them by our GAN networks to obtain synthetic images, which
were then evaluated using the S3 metrics. Averaged results for the
three methods are plotted in Supplementary Figure S1. It can be
seen that images scaled by GANs preserve their sharpness when
compared to bilinear and bicubic methods, which cause strong
degeneration of image quality.

Generating 3D Cell Images From Binary
Volumes
In the next experiment, we investigated the possibility of
generating full 3D cell images from binary volumes, using
images of a marker for F-actin (LifeAct-GFP) obtained by a
diSPIM lightsheet microscope as training data. Artificial test
input data for the network were generated by applying 10
random Gaussian deformations to nodes of a triangulated

sphere of a size comparable to that of our 3D cell data.
Resulting meshes were voxelized and saved as binary stacks
of 66 slices each, which matches the depth of experimental
data used for training net_3D. An exemplary volume and its
reconstruction are depicted in Figure 5 with individual cross-
sections shown in Supplementary Figure S2. The generated
volumes reproduce the main features of an F-actin cell cortex,
where F-actin is enriched in ridges and invaginations of the
cell surface, similar to ABD-GFP in the 2D case (see Figure 1).
However, the 3D network is much more difficult to train
due to the high number (66) of channels at the input layer,
which is identical to the number of slices needed to capture
a cell in the 3D image stacks. The total training time for this
case was ∼32 h on an NVIDIA K80 GPU, as compared to
∼15 h for the two-dimensional net_ABD (Figure 6). The net_3D
architecture imposes restrictions on the physical dimensions of
regenerated volumes, particularly with regards to the number
of z-slices which cannot be freely adjusted without retraining
the network. Because the number of z-slices will vary from
experiment to experiment in order to keep the imaging volume
as small as possible and training times down, this is a
severe limitation.

The biggest limitation in creating synthetic 3D cell data using
genuine 3D input data is, however, the difficulty of obtaining
manually validated training data. The approach taken above
only serves as a proof of concept. In order to be able to
have sufficient training data (N = 38) we used the trainable
Weka segmentation for producing 3D masks, followed by visual
inspection to check for errors. Although the quality of 3D
Weka segmentation at first sight looks reasonably good it does
not constitute validated ground truth and precision was found
to be low (see Materials and Methods). In the next section,
we present an approach to generate 3D synthetic data using
a much larger number of training data based on high quality
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FIGURE 4 | Comparison of two augmentation methods for scaling images of Dictyostelium cells expressing ABD (row 1) or cAR1 (row2) fluorescent proteins

(scalebars: 10µm). Column 1: Original images; Column 2: 150% upscaling with bilinear interpolation; Column 3: 150% upscaling of the binary input mask used as

input to net_ABD GAN (row 1) or net_cAR (row 2). For upscaling binary masks the nearest neighbor method has been used; Column 4: 200% of original; Column 5:

providing 200% scaled input masks to GANs. The GAN based method does not modify membrane thickness and preserves more details.

FIGURE 5 | Output from applying net_3D to synthetic shapes (A–D) and a manually segmented cell shape (E–G). Increased F-Actin intensity can be observed at some

invaginations in the synthetic shape-based output, reminiscent of macropinocytic cups in the training data of Dictyostelium cells, which are membrane deformations

involved in the uptake of fluid from the extracellular medium (B,D). The output of net_3D applied to the real cell shape (G) shows some similarities with the original

image (F), in particular ridges on the cell surface are highlighted in green. The synthetic cell in (G) and shapes in (B,D) are reduced in size, which is likely due to low

precision in the segmentation of training data (see Materials and Methods). Scale bars represent 10µm. Blue represents low intensities, green high intensities.

2D segmentations. The latter are much easier to acquire and
validate than 3D data. It also has the advantage of reduced
training times and does not require retraining for stacks of
different dimensions.

Generating 3D Cell Images Using 2D
Networks
To overcome the limitation of lacking sufficient 3D training data,
we applied the 2D networks to 3D binary volumes, processing
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FIGURE 6 | Plot of the Generator Loss L1 for the training of net_ABD (red) and

net_3D (blue). A decrease in the generator Loss L1, defined as the mean of

the absolute differences between targets and outputs, is a minimum

requirement for reproducing realistic cell images. Training times to achieve

good quality outputs are ∼15 h for the two-dimensional net_ABD and 32 h for

net_3D which is trained on 3D volume data. Note the prominent transient

spikes during training of net_3D, which indicate that training using the 3D input

data (66 channels input) is significantly more challenging when compared to

2D (1 channel input).

each slice separately and independently. Reconstructed volumes
still demonstrated convincing label-specific texturing and
consistency in intensity distributions across slices. Exemplary
synthetic ABD textures for three different cell volumes are
depicted in Figure 7, showing good levels of correspondence
with features of another F-actin marker (LifeAct-GFP) in the
corresponding volumes of real cells. Full stacks are included in
Supplementary Figures S3–S6. Generation of high-quality 3D
datasets from networks trained with 2D timeseries cell images
has significant advantages: 2D timeseries are usually fairly easy
to segment by automated tools as cells are well-separated from
background and much easier to validate by visual inspection.
The easy access to large amounts of training data simplifies the
training process and makes networks more robust (see Figure 6).
Overall, our pseudo-3D approach significantly reduces the effort
to generate artificial 3D datasets of high quality.

The training data used in this approach are identical to
the original data shown in Figure 1 and were obtained by
confocal laser scanning microscopy at 2 fps providing strong
local contrast using a higher numerical aperture objective. In
addition, most of the cells have been flattened using an agar
overlay, which specifically increases the contrast at the cell edge.
Because Dictyostelium cells are highly dynamic and too light-
sensitive for spinning disk confocal microscopy, 3D experimental
data were acquired using fast, i.e.,∼1 cell volume per second, 3D
sectioning on a diSPIM light sheet microscope. Because of the
faster imaging at lower light levels the steepness of the intensity
profile across the cell edge is much reduced (Figures 8A,D,E).
Using net_ABD in the pseudo-3D approach reproduces the
strong local contrast at the cell edge of the original 2D images

(Figure 8B). To accommodate for the reduced contrast of the
3D experimental data, a 3D blur (σ x,y,z = 2) was applied to
the mask, which was fed into net_ABD so that the width of the
actin cortex (Figure 8C) matches that of the experimental data in
Figure 8A. Similarly to what we noted before, when highlighting
the benefits of GANs in retaining structures when scaling,
post-processing the reconstruction to achieve a more realistic
(blurred) intensity profile across the cell edge would inevitably
also change the resolution of internal cellular structures, which is
not wanted. Blurring the mask before passing it through GANs
gives perceptually much improved results.

Model Evaluation
Quantitative evaluation of the quality of GAN models is not a
trivial task. Among those available, we chose a classification-
based approach to evaluate the performance of net_ABD,
net_cAR1, and net_TalA, similar to the assessment that would be
performed by an expert. To this end, we have trained an image
classifier on the three experimental classes, ABD, cAR1, and
TalA. Subsequently we tested whether the GAN produces images
with sufficiently distinct features so that they can be classified
according to the three experimental classes with high confidence.

We prepared the image classifier based on the standard
convolutional neural network (CNN) architecture shown in
Table 2. Due to relatively small (as for CNN standards) number
of samples, we used a relatively simple architecture consisting of
four convolutional layers and two fully connected layers at the
output. Input cell images were classified into three classes ABD,
cAR1, and TalA, corresponding to the three fluorescent markers
used in our experiments.

Subsequently, the classifier was trained with 2,592 real 2D
microscopic cell images labeled by those markers. These datasets
were augmented by shear, rotation and translation operators. We
did not use scaling due to reasonsmentioned before in the Results
section. The training set was then randomly divided into training
(85%) and validation (15%) subsets. We used a categorical cross-
entropy loss function and Adam optimiser. The training process
finished after 150 epochs, when the validation error dropped
below 5e-6 and the training error was close to 0. The resulting
classifier perfectly identified all images in the validation dataset
(374 images).

Finally, we used our classifier to predict the fluorescentmarker
type for synthetic cell images produced by the three networks
net_ABD, net_cAR1, and net_TalA (see Figure 3) from binary
masks that were not seen by the network during training (as
described in the previous section). The classification results
are summarized in Table 3 and the accompanying confusion
matrix is depicted in Table 4. According to both tables our GAN
generated cell images where the majority of samples within each
class were predicted correctly. The highest misclassification rate
(∼5%) is observed between cAR1 and ABD markers, while the
other errors are negligible. It is essential that the binary masks
used as input of GANs for synthesizing artificial images did
not originate from cells used for training the classifier (within
each class). Therefore, each network net_ABD, net_cAR1, and
net_TalA was able to extract (during training stage) and then
reproduce (during image generation stage) features characteristic
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FIGURE 7 | 3D rendering of binary masks (left column), real LifeAct-GFP images (middle column), and images generated by applying net_ABD to blurred masks (right

column). Increased fluorescence in protruding structures can be seen in both real and network-generated images. This similarity reflects the fact that both LifeAct-GFP

and ABD are markers for F-actin, and therefore produce a similar fluorescence pattern. Scale bars represent 10µm, LifeAct-GFP, and net_ABD images are

pseudocolored with blue representing low intensities and green representing high intensities.

for each label and properly correlate them with cell shape. High
confidence of synthetic images was also confirmed during visual
inspection by biologists familiar with the specific molecular
labels. The higher rate of confusion between ABD and cAR1
can be explained because both markers label the cell edge, with
ABD often only having a distinctively wider distribution in highly
concave of the cells where its binding partner, F-actin, is enriched.
For individual time points, where no local enrichment of F-
actin is discernible, ABD and cAR1 will show a very similar
distribution and are also easily confused by human experts.

In order to evaluate the capability of reproducing realistic
3D actin fluorescence patterns using pseudo-3D method, we
have computed Pearson’s correlation coefficients (PCC) for
real vs. synthetic data for net_3D (PCC = −0.0871, full 3D,
Figures 5E–G, one image stack) and net_ABD (pseudo 3D, see
Figure 7, 11 image stacks in total, blurred mask average PCC
= 0.2762, raw mask average PCC = 0.2774). The negative

correlation obtained for the full 3D network occurs because
masks used for training suffer from the comparatively poor
accuracy of the WEKA segmentation. In effect the generated
cells will be smaller than the input masks. High intensities in the
cortex of real cells therefore are matched with very low intensities
just outside the volume of synthetic cells. The weak but positive
correlation for net_ABD reflects that actin localizes to highly
curved structures, but still shows a high degree of variability,
and is therefore not precisely matched between synthetic and real
fluorescence patterns.

In order to compare the textures generated by net_ABD
applied to 3D masks with those of real data we used 3D
Haralick’s textural descriptors as utilized previously by Sorokin
et al. (2018). This method involves comparing the intensity
of each pixel to that of its (26) neighbors and generating
textural measures by averaging comparison measures over the
whole image. We restricted this analysis to the segmented mask,
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FIGURE 8 | Comparison of LifeAct fluorescence patterns with the output of

net_ABD applied to the binary and blurred 3D mask. (A) slice through the

original LifeAct volume, (B) slice through synthetic image generated by

net_ABD applied to the binary mask, (C) slice through image generated by

net_ABD applied to the blurred mask, (D,E) normalized intensity profiles of

each along line scans across the cell boundary (lines d,e). The use of a blurred

mask yields an output that more strongly resembles the real image than when

using a binary mask, owing to differences in the imaging modalities of high

contrast training (confocal) and lower contrast target data (lightsheet). The

intensity profiles (D,E) show that the gradient across the cell boundary from

the real image (blue) is better matched when using a blurred mask (red) than

when using a binary mask (yellow). Scale bars represent 10µm.

and computed values for contrast, correlation, homogeneity,
maximum correlation coefficient, and entropy, as used previously
(Sorokin et al., 2018). Box plots for these values calculated for real
images and images generated by applying net_ABD to blurred
and raw masks are shown in Supplementary Figure S7. These
plots show that, with the exception of entropy, all images from
the blurred mask method have values within the range of real
data. The median values from the blurred mask method are
higher than those for real data in contrast and entropy, but
lower in the other features. This is likely due to low amplitude
intensity fluctuations present in the synthetic images caused
by the previously mentioned checkerboard pattern. Correlation
measures for the raw mask method are outside the range of
values in real data, which is possibly due to the sharp boundaries
of the output images and supports our choice of using blurred

TABLE 2 | The architecture of the classifier used for assessing the quality of GAN

reconstructions.

Layer No. Layer type Output shape

Input Conv2D (256, 256, 32)

2 Conv2D (254, 254, 32)

3 MaxPooling2D (127, 127, 32)

4 Dropout (127, 127, 32)

5 Conv2D (127, 127, 64)

6 Conv2D (125, 125, 64)

7 MaxPooling2D (62, 62, 64)

8 Dropout (62, 62, 64)

9 Flatten (246016)

10 Dense (512)

11 Dropout (512)

Output Dense (3)

TABLE 3 | Classification results of GAN-generated synthetic cell images [TP, true

positive; FP, false positive; FN, false negative; F1-score =

2*(precision*recall)/(precision + recall)].

Network Recall

TP/(TP+FN)

F1-score PRECISION

TP/(TP+FP)

net_ABD 0.96 0.98 1.0

net_cAR1 0.99 0.97 0.95

net_TalA 1.0 1.0 1.0

TABLE 4 | Confusion matrix of the synthetic cell image classification by the expert

classifier.

Actual class

ABD cAR1 TalA

Predicted class ABD 1619 71 0

cAR1 8 1323 1

TalA 0 0 2162

Images within each class ABD, cAR1, and TalA were synthesized by their respective

networks, net_ABD, net_cAR2, and net_TalA. The classifier training dataset only consisted

of true cell images that belonged to either of these three categories.

input masks. The overall spread of values is lower in synthetic
images than in real images, with the exception of maximum
correlation coefficient. This suggests that net_ABD is producing
consistent textures for all images, and may require the addition
of some noise to replicate the full range of textures present in
the real data, similar to previously devised GAN-based methods
(Osokin et al., 2017). However, preliminary testing of this method
showed only minor improvements in the variation of textures.
Previous work by Sorokin et al. (2018) employed Perlin noise
to generate realistic textures, which produced a range of textural
descriptor values that closely resembled that of real cell images.
This suggests that applying Perlin noise instead of Gaussian
noise, as used previously (Osokin et al., 2017) could improve the
range of textures.
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DISCUSSION

Creating label-specific microscopy training data is in high
demand, particularly as manual segmentation of 3D timeseries
data is by far too costly. In this paper, we investigated two
architectures of generative adversarial networks applied for
synthesizing 2D/3D images of single cells from their segmented
counterparts. Each network was trained with fluorescence
microscopy images labeled by different molecular markers. We
showed these networks can successfully generate realistic 3D
image stacks of cells and preserve features characteristic for each
molecular label. Because the field is moving so fast, it needs
to be pointed out that unlike in 3D GANs, using, for example,
convolutional deep belief networks (Wu et al., 2015), we are
dealing with fully texturized 3D image stacks and not only 3D
binary shapes. Also, although the use of GANs in biomedical
imaging is rapidly advancing, for example, for synthesizing
artificial brain magnetic resonance images (Han et al., 2018;
Kazuhiro et al., 2018) or thyroid tissue imaged by optical
coherence tomography (Zhang et al., 2018), 3D applications like
GANs for segmentation of liver CT scans (Yang et al., 2017) are
still rare.

Creating synthetic 3D test data, above all, demands accurately
segmented and validated ground truth data for training. For a
proof of concept, we resorted to cells that were segmented in
3D using a supervised method (Weka) resulting in good recall
but low precision. One reason for the low precision is that cells
were segmented using the F-actin label which is heterogeneously
distributed throughout the cell. To improve on the quality
of training data it is possible, in principle, to combine labels
of interest (here F-actin, cAR1, or TalA) with an additional
homogeneous volume marker, or membrane markers that allows
more accurate and easier verifiable segmentation. Thus, it is also
possible to create a library of 3D cell shapes that can serve as test
data. Traditionalmethods like spherical harmonic transform, and
deep autoencoders can then be used to expand the real cell shape
space through generative modeling of synthetic shapes, and even
to model the evolution of cell shapes over time (Du et al., 2013;
Ruan and Murphy, 2019).

We note that although net_3D, the convolutional network
for generating “genuine” synthetic 3D cell data, has been
trained with 3D volume data, individual z-slices are represented
as separate input channels. As a result, convolutions are
only performed in the x and y direction, and not across
z. Consequently, cellular structures oriented along the z-
direction can be expected to be of lower quality than those
lying in the (x,y)-plane. Because of the already significant
cost of training net_3D, we did not test more advanced
architectures that support convolutions and pooling in all three
directions (Çiçek et al., 2016), thus increasing the number
of parameters and demanding more memory. Adapting the
current pix2pix code would require time and is beyond the
scope of the current paper. Wiesner et al. (2019b) recently
used a full 3D convolutional GAN to translate cell volumes
to cell masks, but with smaller inputs (64 × 64 × 64) and
no texturing of the output. Although efficient methods for
3D segmentation using 3D convolutional networks have been

devised recently (Kamnitsas et al., 2017) these employ a patch-
based approach (for example patches of 17 × 17 × 17) which
is much less memory demanding. Because we need to create
patterns over the length of a cell, a patch-based approach is
not feasible.

Similarly, using a technically less elegant but practically
efficient method that still produces good quality output,
our work shows that three-dimensional cell volumes can be
also successfully synthesized by networks trained with images
obtained from two dimensional time-lapse movies. In effect,
this significantly reduces the network complexity, training time
and the effort needed for preparing fully three-dimensional
training dataset. We used 3D blurring of input masks in a
very ad hoc manner to match the confocal training data,
with a high local contrast at the cell edge due to cells
flattened under an agar overlay, to the lightsheet output data.
Note that this cannot be easily generalized to accommodate
other modalities.

Our pseudo-3D method for generating cell textures from
blurred binary masks does not appear to perform as well
as previous work by Sorokin et al. (2018) when using
Haralick’s texture descriptors as a means of comparison with
real images. It should be noted that the texture comparisons
made here do not directly correspond to those made by
Sorokin et al. (2018), since they only consider regions
interior to the cells, whereas we have computed texture
descriptors for the whole cells, including the cell cortex, which
has a much higher variability in fluorescence distributions.
One advantage of our method over model-based approaches
(Sorokin et al., 2018) is that it is more general and faster
to construct, given that no underlying model of molecular
transport and reactions is required. Furthermore, potential
improvements could be made to the range of textures
achieved by our method by applying noise to the blurred
input masks.

Among many possible applications of such networks is
image augmentation, which we think has received too little
attention so far. Here, GANs have clear advantages over
standard geometric methods, because specific length scales of
biological structures become invariant to transformations.
Using data augmentation to generate collections of
artificial cell images with known shape will be a valuable
tool, for example, to evaluate the quality of different
segmentation methods.
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