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Despite the significant increase in cybersecurity solutions investment, organizations are

still plagued by security breaches, especially data breaches. As more organizations

experience crippling security breaches, the wave of compromised data is growing

significantly. The financial consequences of a data breach are set on the rise, but the

cost goes beyond potential fines. Data breaches could have a catastrophic impact not

only in loss of company’s reputation and stock price, but also in economic terms. Threat

Intelligence has been recently introduced to enable greater visibility of cyber threats, in

order to better protect organizations’ digital assets and prevent data breaches. Threat

intelligence is the practice of integrating and analyzing disjointed cyber data to extract

evidence-based insights regarding an organization’s unique threat landscape. This helps

explain who the adversary is, how and why they are comprising the organization’s

digital assets, what consequences could happen following the attack, what assets

actually could be compromised, and how to detect or respond to the threat. Every

organization is different and threat intelligence frameworks are custom-tailored to the

business process itself and the organization’s risks, as there is no “one-size-fits-all”

in cyber. In this paper, we review the problem of data breaches and discuss the

challenges of implementing threat intelligence that scales in today’s complex threat

landscape and digital infrastructure. This is followed by an illustration of how the future of

effective threat intelligence is closely linked to efficiently applying Artificial Intelligence and

Machine Learning approaches, and we conclude by outlining future research directions

in this area.

Keywords: data breaches, threat intelligence, data intelligence, machine learning, cybersecurity,

artificial intelligence

1. INTRODUCTION

Data breaches are one of the top cybersecurity problems affecting the digital economy (Confente
et al., 2019; Tao et al., 2019). Recent studies show that data breaches continue to grow year after year,
and 2019 broke all previous records with millions of dollars of losses (Ponemon Institute, 2019).
For example, in May 2019, Canva suffered a data breach that exposed email addresses, usernames,
names and salted and hashed passwords of 137 million users. Equifax, one of the largest credit
bureaus experienced a data breach as a result of vulnerability in their website, exposing confidential
information of about 147.9 million consumers. The fitness app MyFitnessPal was hit where 617
million customer accounts were leaked and offered for sale on the Darkweb. Unfortunately, data
breaches comes with multiple direct and indirect cost factors that are significant to the survival and
competitiveness of businesses, including financial, reputational, operational, regulatory aspects.
Due to the exponential increase in data breaches, new compliance and regulation laws such as the
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GDPR and NDBS regulations (Adams and Bennett, 2018) have
been introduced, in an attempt to mitigate their impacts (Voigt
and Von dem Bussche, 2017; Hopkins et al., 2019).

According to many data breach detection gap analysis studies
(Cheng et al., 2017; Verizon, 2017), most data breach incidents
could take several months or even more than a year to be
discovered. The latest report from Verizon’s security research
(Verizon, 2017), that analyzed hundreds of data breach incidents
reported by tens of organizations, shows that more than a quarter
of incidents had gone unnoticed for many months and one in 10
had gone unnoticed for over a year. For instance, Sony’s latest
data breach incident had gone unnoticed for almost a year, with
an estimated breach loss of 1 Billion $. A data breach not only
affects the competitive edge of an enterprise in the marketplace,
but also reduces trust from a viewpoint of the consumers. Rosati
et al. (2019) conducted a study to analyse the effect of data
breach announcements on market activity and stock price. They
found that data breach announcements have a critical effect
on both bid-ask spread and trading volume. For example, the
recent Equifaxs data breach announcement had a negative impact
on their market activity and stock price. Avoiding reputation
deterioration and regulatory sanctions deliver non-quantifiable
businesses benefits but have a great added-value to business
operations and success, respectively.

Whilst data loss and data leakage are both aspects of data
breaches, the handling of data loss and data leakage are addressed
very differently. Data loss is usually a result of an insider hacker
or enterprise user that could be unintentional and is usually
relatively straightforward to handle using Data loss prevention
(DLP) solutions. DLP ensures that internal users do not send
sensitive information outside the corporate network. DLP uses
business rules to classify and protect business data so that
unauthorized users cannot accidentally or maliciously share
data. Data leakage is almost always intentional, where enterprise
data is placed at significant risk for malicious purposes, and is
conducted by external hackers. DLP solutions focus mainly on
internal hackers and enterprise users to detect data breaches
(Taal et al., 2017). However, the greater source of data breaches
is from external hackers (George and Emmanuel, 2018; Dongre
et al., 2019). Moreover, incident response plans to a data breach
usually take place after data is leaked outside corporate walls.
The security team of an enterprise then analyses system logs as
the primary way of conducting forensics, and properly managed
logs can be used as evidence in a court of law for prosecution
purposes. This approach does not limit the effect of a data breach
nor stop a data breach.

Threat intelligence has been recently introduced as an enabler
to predict future potential security threats even before they reach
targeted organizations, by applying basic building blocks of data
intelligence and data-driven architectures. Data intelligence are
influencing many new technologies with the support of AI to
achieve predictive powers. Threat intelligence is changing the
current reactive defense approach to a proactive approach that
can defend against threats that emerge outside the business threat
landscape before they even take place. Threat intelligence is
about prioritizing, reducing false alarms that overwhelm security
operations and discovering potential threats the organization is

most vulnerable to. Threat intelligence allows security teams to
know if the existing defense controls can actually handle those
threats or not. At this stage of research, the kind of research
questions that are asked are: (i) How to classify and separate
threat data feeds (adversarial machine learning) from genuine
cyber threat intelligence? and (ii) What kind of intelligence
can help organizations predict threats, and how to develop and
implement these intelligent solutions?

Threat Intelligence has been recently introduced to enable
greater visibility of cyber threats that creates a significant
difference to the organization’s ability to maneuvering threat
countermeasure mechanisms into place, prior to and during the
attack. The aim is to enable predicting future potential security
threats even before they reach targeted organizations, by applying
basic building blocks of machine learning with the support of AI
to achieve predictive powers. Moreover, we see a change in the
current reactive defense approach where, rather, the approaches
are proactive to ensure defending against threats that emerge
outside the business threat landscape before they even take place.
Threat intelligence is about prioritizing, reducing false alarms
that overwhelm security operations and discovering potential
threats the organization is most vulnerable to.

In this paper, we discuss the problem of data breaches and the
challenges of implementing threat intelligence to stop advanced
security threats such as data breaches. The paper is structured
as follows: first, we discuss the data breaches problem from both
defensive and offensive perspectives, and how threat intelligence
can become key enabler to stop data breaches. Then, we discuss
the challenges of enabling threat intelligence, and finally, we point
out future research directions.

2. BACKGROUND

Organizations handle a vast amount of sensitive personal
financial and business data, some of which are governed by
laws and regulations in local and international jurisdictions.
Organizations must view protection of sensitive data as a
top priority, given the potentially severe consequences of data
breaches. Organizations need to secure their digital infrastructure
by adopting appropriate risk management plans that enable
businesses to comply with federal laws; reduce financial losses
that result of confidential data leakage and ensuring a secure
digital environment to business customers and partners to
support competitiveness in the marketplace. Existing DLP
solutions focus on deploying data discovery agents within an
enterprise’s digital infrastructure to track and monitor corporate
data by monitoring internal users. Unfortunately, this does not
actually stop a data breach or even limit its impact.

To be able to defend against data breaches, the first step is
to understand how data breaches takes place. A data breach,
or what we technically call it data exfiltration, is the process
of transmitting confidential data outside the enterprise network
boundaries to the internet (Giani et al., 2006; D’Orazio et al.,
2016). It is commonly achieved after hackers establish a foothold
in an organization’s internal network by using sophisticated
techniques to remain hidden for long periods of time while
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actively hunting for valuable data. Hackers can use multiple
pathways to steal data, but the one that is often unknowingly
left open is using botnets and Advanced Persistent Threats
(APTs) (Chen et al., 2014a). APTs are aggressive types of attacks
that enable hackers remain anonymous and hidden thereby
allowing them to gain access to enterprise systems, compromise
infrastructure and steal data (Marchetti et al., 2016). APT
attacks are highly targeted attacks with clear goals and targets
are typically governments or enterprises possessing substantial
intellectual property value or digital assets that bring competitive
advantage or strategic benefits.

The actors behind APTs are typically a group of skilled
hackers, working in a coordinated way. They may work in a
government/military cyber unit, or be hired as cyber mercenaries
by governments and enterprises. This provides them with the
ability to work for a long period, and have access to zero-day
vulnerabilities and attack tools. When they are state-sponsored,
they may even operate with the support of military or state
intelligence (Chen et al., 2014b). APT attacks are stealthy,
possessing the ability to stay undetected, concealing themselves
within enterprise network traffic, and interacting just enough
to achieve the defined objectives. Hackers find their target
data using various data collection and monitoring tools. Once
found, the hackers then need to extract as much data from
the enterprise network and slowly exfiltrate the data to avoid
detection. To transmit data, hackers typically use backdoors or
exploit a vulnerability in the operating system to establish a
shell between the compromised host and the hackers servers
using a predetermined protocol to facilitate exfiltration such as
Domain Name System (DNS) or Hypertext transfer protocol
secure (HTTPS). For example, DNS can be misused by hackers
to facilitate command and control with a compromised host,
move malicious code into a network and exfiltrate data. In this
approach, hackers send and receive data via DNS by effectively
converting it into a covert transport protocol (Nadler et al.,
2019). HTTPS can also be used to exfiltrate data to minimize
the risk of detection, as its flexible structure provides a lot of
benefits to hackers. It can facilitate command and control with
a compromised host and enable undetected large data transfers.

The final step is exfiltrating stolen data to remote servers in
encrypted traffic through anonymous networks (e.g.,, Tor and
I2P networks). Anonymous networks consist of a network of
relay servers that run by volunteers all over the world. When
a hacker connects to the Tor network using a Tor client, a
path is created from the user to the destination server to which
the hacker needs to connect. This path consists of three relay
servers and all the communications through the Tor network are
relayed through this pre-built path. All the data going through
the Tor network is completely encrypted such that nobody who
intercepts the communication has a clue as to who the sender
is (Winter et al., 2014). This makes it challenging to identify
the source of the attack. With APTs, data leakage might not
actually occur until several months after a target system has been
compromised. The time hackers take to exfiltrate data depends
on many factors such as attack strategy, data size, link speed and
installed detection defenses at the target network. For example,
the Carbanak APT is an ultra-massive money-stealing campaign

with total losses summing up to 1B to date; the campaign has
been active since December 2013, with peak infections and
compromised banking systems recorded in June 2014. Hackers
may also use other attacks such as distributed denial of service
(DDoS) as a means of distraction from the real thrust of data
exfiltration. For example, hackers used DDOS against Carphone
Warehouse websites to distract its IT team from a coordinated
data breach of their customer database that resulted in the theft
of 2.4 million customer details.

Detecting APTs is very challenging as it requires a deep
analysis of system events at all the Open Systems Interconnection
(OSI) model layers that are spaced out over a large period
(i.e., months) in a distributed environment that originates from
different networks, systems and applications. In other words,
detecting APTs and preventing data breaches requires greater
visibility into all layers of the digital infrastructure, digital
asset activities and the threat landscape. Since APT actors use
various stealthy and evasive techniques, there is no known
pattern that traditional security solutions could and due to the
massive amount of data the need to be analyzed, traditional
anomaly detection techniques are no longer an effective solution
to detection APTs. Moreover, with the complexity of today’s
businesses and their digital infrastructure, enterprises now need
to understand why and how a breach has happened with
logical reasoning to enable effective security operations and risk
management plans. Also, when it comes to decision making (i.e.,
the actions that need to be taken); currently depend on notifying
security teams to take investigate the incident and take an action,
which limits system capabilities. Automating security operations
is no longer a luxury in enterprises, it is a must. Not only because
of the increasingly complexity of managing different complex
security systems manually, it is also inefficient as it adds human
errors factor into the equation. Human intelligence is no longer
able to provide a reasonable reasoning and quick and thoroughly
make decisions in such complex environments. In a Security
Operation Center (SOC), it is difficult to get security teams
to streamline attack response and mitigation actions. With the
complexity of today’s business digital infrastructure and security
threats, security teams need a new way to become more agile
and autonomous.

Intelligence-driven solutions, such as threat intelligence and
data analytics, have been recently introduced to mitigate the risks
of such APT threats and data breaches. Threat Intelligence gives
organizations a better visibility of their cyber threats, especially
data breaches, to better protect their digital assets (Culnan and
Williams, 2009; Roberds and Schreft, 2009; Chou, 2013). Threat
intelligence is the practice of analyzing, integrating disjointed
cyber and business operational data to extract evidence-based
insights regarding an organization’s unique threat landscape.
This helps to explain who the adversary is, how and why they are
comprising the organization’s digital assets, what consequences
could follow an attack, what assets are possibly compromised,
and how to detect and respond to a threat. Proper threat
intelligence implementation enables organizations to predict and
prevent data breaches and APTs threats targeting to move data
outside an organization’s secure perimeters at the initial stages
before data exfiltration can take place. The key idea behind
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threat intelligence can be easily explained with the following use
case; consider that a security team of an organization analyses
all data breaches that happened in the past along with all
the vulnerabilities and exploits that led to the breaches. The
outcome of the analysis may be informative to them to gain an
understanding what happened in the past but does not help in
stopping possible future threats, because it does not provide the
power of predicting potential future threats that could lead to a
breach. Threat intelligence should provide accurate insights into
the implications of the threat landscape, allowing organizations
to reduce cybersecurity risks (Mavroeidis and Bromander, 2017).

A key enabler to implement threat intelligence is data
intelligence, or in other words, cyber data management. Threat
intelligence will then turn the cyber data into useful insights
to drive effective decisions to defend against potential future
cybersecurity threats. Data intelligence provides organizations
with a better understanding of their business and threat data
to automate and speed risk management and incident response,
allowing developing effective and measurable security controls.
Applying basic building blocks of data intelligence enables
predicting future potential security threats even before they could
reach targeted organizations. Data intelligence provides context-
rich transparency, visibility and interpretation of cyber data and
decisions, to improve productivity, efficiency and effectiveness
across organization security posture (Sillaber et al., 2016).

Data and threat intelligence can be achieved with the support
of Artificial Intelligence (AI) and Machine Learning (ML) to
achieve predictive powers by automating and enhancing the
process of regression, analysis, classification and prediction.
Roughly speaking, artificial intelligence is the science of finding
solutions to complex problems like humans do, where a decision
mechanism that is similar to a real human decision mechanism
is modeled with some algorithms. Machine learning at its most
basic is the practice of utilizing different algorithms to parse data,
learn from it, and then make a decision or prediction something
about the world based on the outcome of the training and the
learning stages. ML is capable of learning from experience, not
only to achieve the AI goals (e.g.,, imitating human behavior), but
also to reduce efforts and time spent to take decisions with high
accuracy. ML systems learn constantly, make decisions based
on data rather than programmed algorithms, and thus change
their behaviors accordingly. Cybersecurity is a promising area for
AI/ML and in the following section we discuss the hype around
the ability of AI-powered security security solutions that claim to
“do it all.”

3. MACHINE LEARNING FOR

CYBERSECURITY

Cybersecurity is a critical area in which AI/ML is becoming more
significant. Implementing the building blocks of practical AI and
ML together with security solutions, facilitates automation and
orchestration to build autonomic security solutions that can keep
up with the scale, speed, complexity and adaptability of today’s
cybersecurity threats. Over the past decade ML techniques have
been used heavily to enable systematic learning and building

of enterprise systems’ normal profiles to detect anomalies and
zero-day threats. The core focus has been on detecting security
threats in real-time in different contexts such as networks,
operating systems, traffic, etc. rather than achieving predictive
powers. Hence, with all the hype surrounding AI/ML for
cybersecurity, one potential question is how AI/ML techniques
can be utilized in cybersecurity to achieve predictive powers
to solve different cybersecurity problems such as data breaches
problem. In the real-world, not all machine learning techniques
are implemented equally or designed as a one-size-fits-all
solution. The effectiveness of an ML model is usually determined
by its accuracy in predicating the future or making accurate
decisions. Implementing ML in cybersecurity to achieve threat
and data intelligence has long-standing challenges that require
methodological and theoretical handling. These challenges are
discussed in the below sections.

3.1. The Complexity of the Threat

Landscape
The increasing volume and the quick evolution of the threat
landscape makes organizations less immune to the evolving
capabilities of modern cyberthreats that consist of a multitude
of complex attacks. While organizations are adopting AI/ML
to better protect their digital infrastructure, hackers are also
adopting them to better identify and more quickly exploit
vulnerabilities. This increases the potential for serious impact
affecting organizations as it becomes more challenging to predict
possible future data leakage strategies. With the significant
potential of AI in the threat landscape, hackers are weaponizing
it to automate and scale up their hacking activities to avoid
detection. Hackers are leveraging new automated hacking
and scripting techniques to drastically increase the speed
and scale of their attacks by adopting AI to automatically
map networks, assess vulnerabilities, define attack vectors and
compromise systems.

AI is being used to automate attacks on a larger scale, and
not relying anymore on the human element to execute attacks,
thus giving birth to new types of security threats. Hackers are
undergoing their own digital transformation and leveraging agile
development to quicken the pace of malware development to
outpace threat analysis techniques and outmaneuver modern
security solutions. Countering security threats is a constant game
of cat and mouse. The eventual adoption of AI will accelerate
this process further. Threat intelligence should deal with the
evolving nature of threats and to be adapted continuously for
better detection and performance results.

3.2. The Complexity of Cyber Data
To stay protected, enterprises who want to run an agile
business need log analysis to navigate the complex world of
cyber threats in search of actionable mitigation. Enterprises
generate an immense volume of cyber data, which presents
security teams with both an opportunity and a challenge.
Businesses progressively work toward collecting, aggregate and
correlating logs for cybersecurity analytics. All applications,
services, operating systems, and networking appliances produce
logs full of both useful and useless information. But without
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an agile-based log management, much of this data can not be
utilized. Logging and log analysis requires substantial amounts of
operational time to properly develop analysis rules, criteria and
alerts to enable protection (Roberts, 2018; Stevens and Wirth,
2018). The exponential rate of growth of data over the last few
years has led to the coinage of novel terminology, “big data.”
Every minute, millions of cyber data from different sources
in multiple formats are being collected; generating a massive
amount of log data and alerts that creates a deafening noise level.
With such massive amount of cyber data collected frequently,
many organizations are unable to prioritize the most meaningful
data, accurately discern patterns and pinpoint trends. It is vital
that organizations address these shortcomings to systematically
analyse, classify and make sense of the data, in order to discover
data-driven competitive features.

Log analytics could be ineffective for threat analysis if it is
poorly mined. Poor data management and analytics can lead
to too many false alarms being raised, and thus, a higher
risk of successful breaches. Cyber data management must deal
with a massive flow of extremely granular and diversified data
produced in real-time. Clean cyber data is the key to effectively
implementing ML approaches. Data leads to metadata that is
used by the ML models, and unclean data can lead to inaccurate
metadata and, subsequently, wrong results and predictions.

Automation is necessary to get rid of all irrelevant data, while
extracting useful insights coming from all kinds of unstructured
data sources. Without a precise systematic analysis to classify and
make sense of this data, organizations are at risk of not being
able to discover data-driven competitive features. Cyber data
usually comes in raw formats from different sources, including
tracing, logging and resource monitoring events. Hence, log
data on its own is insufficient for a holistic analysis and
predicting threatening behavior. Other data types such as tracing,
performance, operational and business data are important to
externalize the state of the system by combining different aspects
of the data from an end-to-end execution path with structured
and related execution traces.

Another important challenge is training data from multiple
distributed sources consumes large amounts of computational
resources for a thorough analysis. One common approach to
training a global data collected from multiple sources is to
collect all training data in a central storage location (Chen et al.,
2005; Hazelwood et al., 2018). While such an approach has
benefits, it consumes a significant amount of network resources
because of the large data transmission and continuous generation
nature of training data. For the purposes of dealing with
distributed data, the concept of distributed data training has been
introduced, where edge computing has been utilized to locally
train data and then exchange the model parameters with the
other edge servers (Wang and Joshi, 2018; Park et al., 2019). This
presents a new challenge in implementing intelligence-driven
security architectures.

3.3. Feature Engineering
Machine learning algorithms require a significant amount of data
to build classifiers that can effectively identify malicious behavior.
Determining the right data sources, data sets, and exactly how

much data can be considered to be enough to train a ML model
is a challenge, and is associated with the feature engineering
problem. This problem is often one of the challenging stages in
the development of ML models for cybersecurity. Features are
simply the information that characterize a given data sample,
and feature engineering is the process of pre-processing existing
data to build new and more interesting features. The quality of
features selected is more important than the number of features
fed into the system. For example, if training data is paired to the
wrong set of features, the resulting model produced can be highly
unreliable. Hence, it is of vital importance that the right features
are used to train an ML algorithm.

Nonetheless, feature engineering is usually guided by domain
knowledge, and with the inherent complexity of cyber data,
this approach is typically ineffective. This makes it almost
impossible to implement an efficient ML model because of the
aforementioned complexities, the continuous threat landscape
and the evolution of digital transformation. This is why the focus
in recent times has been shifted toward deep learning, as it does
not require the process of feature engineering.

Deep learning is a type of supervised learning that uses many
layers of inter-connected mathematical processes Schmidhuber
(2015). Thus, it can be considered as a highly non-linear
decision-making engine. The deep learning approach for
cybersecurity enables creating a classifier that could identify
malicious activities. This can be achieved in multiple ways,
but the basic approach is usually the adaptations of traditional
artificial neural network (ANN), such as Convolutional Neural
Network (CNN) or the Bidirectional Long Short-Term Memory
Network (BiLSTM).

ANNs, the underlying structure of deep learning, mimic the
human brain.When you provide a neural network with a training
set, it runs the set through layers of artificial neurons, which
then adjust their inner parameters to classify future data with
similar properties. Neurons are the atomic unit of a biological
neural network. Each neuron is composed of dendrites, nucleus,
and axons. They receive signals through dendrites which are
carried by axons. The computations are performed in the nucleus
and the entire network is made up of a chain of neurons. In
similar fashion, the ANN consists of atomic units, called neurons,
that accumulate and sum up inputs from the other neurons and
then call an activation learning function. A collection of neurons
are the able to classify whether or not a set of inputs belong
to a specific class (Schmidhuber, 2015; Albawi et al., 2017). In
the context of cybersecurity, ANNs enable taking a decision by
looking at past behavior and applying reasoning to understand
the behavior by closely considering current and predictive data. A
common implementation of ANN architecture is a Feed Forward
Neural Network (FFNN), where neurons are arranged linearly in
the forward direction inside the network. The first layer consists
of input neurons and the input neurons connect to neurons in
the hidden layer. In turn, the neurons of the hidden layer are
connected to the neurons of the output layer.

Deep learning-based classifiers often outperform traditional
classifiers, especially when large datasets are being used. For
example, if one needs to train a classifier to analyse data to
detect data exfilteration activities, then the output layer is the
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only one that needs retraining, and all the other layers can be
kept the same. Whereas other ML classifiers will need to be
retrained for the entire dataset, which significantly affects their
performance and resources required increase drastically. In deep
learning, the aim is to use existing data to learn a hierarchy
of representations useful for a certain task with no feature
engineering involved. The model learns the best representation
of the data by itself, enabling scalability and accuracy. Given
these advantageous characteristics, deep learning can currently
be considered as the most suitable ML technique to address the
complexity and dynamic nature of cyber data. Previous research
in the field of cybersecurity has indeed shown that this is the
case, where for example, deep learning can produce results with
over 99% accuracy in detecting unknown threats with 0.0001%
false alarms, compared to traditional ML with 50–70% accuracy
for unknown threats and 1–2% false positives (Hains et al., 2018;
Jiang et al., 2020).

The fact that domain experts are not involved enables
continuous training and this can address the problem of the
ever-changing threat landscape. A feature-less approach also
provides great flexibility without requiring that domain experts
and data scientists continually tweak the system. Deep learning
is capable of (i) training directly on raw data, with no need for
feature extraction, (ii) scales well in dealing with the complexity
of cyber data training samples, (iii) continuously improves
as training datasets get large, and (iv) picks up on complex
patterns, insights and correlations in raw data. These unique
features of effective training and learning allows both axiomatic
and predictive capabilities, thereby effectively predicting security
flaws that might lead to future sudden or gradual data leakage.
This makes deep learning unique among all otherML approaches
for mitigating data breaches (Guo et al., 2018; Choi et al., 2019).

3.4. Transparency and Visibility
Human intelligence is unable to provide useful and effective
reasoning, and hence, well thought-out decisions in such
complex environments. Businesses need a greater transparency
into how ML operates in practice and the entire workflow
of training and learning. ML transparency enables taking
the right actions that might be needed to fine-tune the
ML model to achieve more accurate results and also help
businesses to understand their threat landscape to automate
incident response and risk management. This understanding is
increasingly important as findings obtained fromMLmodels can
be admitted as official evidence. The key points of explainability
or interpretability ofMLmodels can be expected to play a key role
in cybersecurity. Thus, transparency in decision-making is a very
important factor to assess ML model efficiency and accuracy in
cybersecurity. ML algorithms should be able to tell what data was
used to reach a particular conclusion and this is a key problem
with many ML approaches.

ML models have a reputation of being “black boxes,” where
usually the conclusions found are hard to understand or explain.
One of the key issues with ML, and especially deep learning,
is that they do not provide explanation or reasoning for the
decisions they make (Lipton, 2018). Deep learning models are
no different, in that they tend to be black boxes. It is even more

complex with deep learning models due to the complexity of
the neural networks and mathematical function employed. The
explainability problem of ML in threat intelligence is crucial
to learn more about potential attack vectors that could be
exploited to lead to data breaches. Hence, an explainable multi-
layered neural network is needed in cybersecurity. Misleading
ML explanations and lack of transparency of ML predictive
models could have serious consequences in the risk management
plans of organizations.

Roughly speaking, explainable ML models can be of two
types. First, local interpretation that explains a single prediction
made by a model, or explains a group of predictions. Typically,
this is the most common interpretation approach. One of the
simple methods to implement a local scope interpretation is
using dependency graphs to represent the dependency of a target
prediction, however, this is ineffective when considering higher-
order interactions. Another local approach is Permutation
Importance, which assessed the impact of a feature on the
performance of an ML algorithm. This is simply achieved by
removing the target features from the learning dataset to assess
the impact of the feature on the prediction sample. This approach
suffers from the inherent problem that it may give varying results
based on which features are being removed in each iteration
as it is greatly influenced by correlated features. Second, global
interpretation to explain the entire model’s behavior and this is
challenging even for algorithms with the capacity to achieving
interpretability, such as linear models (Hohman et al., 2020).
For example, explaining the behavior of a linear model with 100
parameters requires a network of 100 dimensions. This makes it
compulsory to utilize feature engineering to achieve interpretable
model and this is not an effective approach in cybersecurity as
discussed above.

Technically, we can also categorize ML explaining models
into two types. First, Ante-hoc models that give explanations
starting from the beginning of the model with an indication
of how certain an ANN is about its predictions (Lipton, 2018).
Bayesian Rule List (BRL) (Letham et al., 2015) is an example of an
ante-hoc model that yields a posterior distribution over possible
decision lists which consist of a series of if-then-statements. “if ”
statements define a partition of a set of features and the “then”
statements correspond to the predicted outcome. This is Similar
to DeepRED (Zilke et al., 2016), which applies an if-then-rule for
each neuron, layer by layer. The CIE model (Hainmueller and
Hazlett, 2013) is used to compare between different predictions
and explains why a decision it taken compared to another.
Second, post-hoc models add explainability to a model from its
outcome—that is, what part of the input data is responsible for
the final decision. Yosinski et al. (2015) introduced a newmethod
to interpret neural networks in a global way by considering the
number of neurons activations in each layer.

The existing explainability work is applied to images, texts
and tabular data, but not to cyber data yet. Until now,
ML explainability in cybersecurity has seen little to almost
no research. In cybersecurity, ML-based models should be
inherently interpretable, so they are able to provide their own
explanations. Previously, we used to think that ML explainability
decreases for better prediction accuracy, as the prediction
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accuracy increase according to complexity of the ANN. Complex
ML models are not necessarily more accurate; in other words, a
black box is not necessary for accurate predictive performance. In
cybersecurity, a key difference between different ML algorithms
is their ability to interpret results and process the data better at
the next iteration.

3.5. Adversarial Machine Learning
Machine learning will never be a silver bullet in cybersecurity
industry to stop hackers, in comparison to fields such as image
recognition or natural language processing (two areas where
machine learning is prospering). Hackers will always try to find
weaknesses in ML models to bypass the implemented security
mechanisms, especially since many more hackers are now able to
utilize ML to carry out their nefarious endeavors. This has led to
the field of adversarial machine learning, which has been a topic
of substantial interest in the last few years (Huang et al., 2011;
Kurakin et al., 2016; Biggio and Roli, 2018). The problem arises
in systems which employ ML models. ML models are typically
trained and tested on input data that are assumed to come from
the same original distributions. However, if malicious inputs are
fed as input to theMLmodels, the systems could be compromised
and security issues such as data breaches can become a lot more
straightforward to achieve.

A machine learning model is expected to perform well on
unseen testing data after being deployed in the real-world.
However, this is often violated in an adversarial real-world, where
hackers tries to morph its input adversarial data to increase
the mis-classification rate in the ML model. Adversarial attacks
begin with a reconnaissance step to observe the behavior of the
model and then the gathered information are leveraged to morph
the adversarial data. This way hackers can feed their malicious
payloads without being detected to execute data exfiltration
attacks. Adversarial attacks in systems underpinned by ML can
pose a serious threat and feeding adversarial data into deep
learning is arguably more complex. Deep learning algorithms are
only as good as their data and hackers could feed an ANN with
carefully tailored training data that can compromise the model
behavior. Because of the opaque nature of neural networks,
finding and fixing the adversarial examples of a deep learning
algorithm is extremely complex. Ren et al. (2020) investigated
deep learning in this context and have confirmed its susceptibility
with increasingly complex threats.

There are several open questions, and substantial research
must be conducted at the intersection of ML and cybersecurity to
deal with the adversaries of ML models. Using multi-faceted ML
models could potentially overcome this challenge by detecting
difference between results of multiple ML models used to
detect a threat scenario. However this approach is not effective
with reverse engineering adversarial where the trained model
is probed to reverse engineer it to get a better understanding
of the prediction model in the underlying system. Adversarial
reverse engineering enables hackers to subvert the model itself,
where new training data can be created without being detected.
Obfuscating the model results is a possible solution that require
further research to ascertain its applicability.

Moreover, deep learning has a number of vulnerabilities that
could affect the accuracy of the results as discussed by Xiao et al.
(2018). The authors analyzed the top 10 deep learning algorithms
and has proved that hackers could exploit these algorithms to
launch DoS attacks that crash or hang the system, or control-
flow hijacking attacks that lead to either system compromise or
recognition evasions. It is also notable that the explainability
problem could be a double edged sword for deep learning. Full
transparency into how ML models operate may expose them
to adversarial attacks to alter how they make inferences from
live cyber data or to poison them by injecting poison data
into the training workflows. Even exposing partial information
about how ML algorithms work make them more vulnerable to
adversarial attacks.

4. RELATED WORK

Machine Learning has proven to be useful in detecting security
threats, by analyzing security and log data to identify potential
threats. Over the past decade ML techniques have been widely
used to enable systematic learning and building of enterprise
systems’ normal profiles to detect anomalies and zero-day
threats (Conti et al., 2018). ML includes a large variety of
models in continuous evolution, presenting weak boundaries
and cross relationships, and has already been successfully
applied within various contexts in cybersecurity (Dua and Du,
2011; Ford and Siraj, 2014; Singh and Silakari, 2015; Buczak
and Guven, 2016; Fraley and Cannady, 2017; Ghanem et al.,
2017; Yadav et al., 2017; Apruzzese et al., 2018). The book
by Dua and Du (2011) provides a comprehensive guide to
how ML and data mining are incorporated in cybersecurity
tools, and in particular, it provides examples of anomaly
detection, misuse detection, profiling detection, etc. This study
also provides a thorough analysis of where ML approaches can
achieve maximum impact and a discussion of their limitations.
The concluding chapters discuss emerging challenges and
how ML and data mining can be used to effectively deal
with them.

Buczak and Guven (2016) survey ML and data mining
approaches in intrusion detection whilst Fraley and Cannady
(2017) discussed the future possibilities of incorporating
ML into the cybersecurity landscape. In particular, problems
such as malware detection, data breaches, profiling, etc. can
significantly enhance the threats to organizations. Deep learning
in cybersecurity has also been investigated (e.g., by Apruzzese
et al., 2018). This study looks at whether current state of the art
approaches in ML are effective for identifying malware, spam
and intrusions and also allude to the current limitations of
these approaches. Studies have also considered support vector
machines for dealing with cybersecurity issues (Singh and
Silakari, 2015; Ghanem et al., 2017; Yadav et al., 2017). Singh and
Silakari (2015) explore support vector machines for cyber attack
detection, and in similar fashion, Yadav et al. (2017) focus on the
problem of classifying cyberattacks. The study by Ghanem et al.
(2017) develop an intrusion detection system which is enhanced
by support vector machines. Among other cybersecurity issues,
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the study by Ford and Siraj (2014) investigates ML approaches
for detecting phishing, intrusions, spam detection, etc.

As we have previously mentioned, a few studies have focused
on supervised and unsupervised learning and in particular,
methods such as support vector machines, artificial neural
networks and deep learning for dealing with a range of
cybersecurity related issues. Given the availability of large
amounts of data, these approaches and their enhancements
provide great potential for future work. Additionally, recent
trends in ML have shown that reinforcement learning can be
very effective (Sutton and Barto, 2018). In this direction, a
recent study demonstrates the usefulness of a deep reinforcement
learning approach for cybersecurity (Nguyen and Reddi, 2019). A
number of problems such as the detection of intrusions, breaches,
etc. can be effectively dealt with this approach given that they
are constantly evolving. Another promising ML technique is
modeling with Bayesian networks (BNs), which developed in the
ML community since the late 1980s (Neapolitan, 2003; Korb
et al., 2010). They are causal probabilistic models and there are
several studies in a number of domains that demonstrate the
applicability (Straub, 2005; Bonafede and Giudici, 2007; Fenton
and Neil, 2012; Sýkora et al., 2018). The book by Fenton and
Neil (2012) provides a comprehensive overview of how BNs
can be applied to risk modeling in different domains, such as
systems reliability, law, finance, etc. The recent study by Sýkora
et al. (2018) shows how BNs can be used for risk assessment
in energy. Straub (2005) use BNs to study the risks associated
with natural hazards and the study by Bonafede and Giudici
(2007) investigates enterprise rick via BNs. As these studies show,
they are particularly suited to modeling risk and can be very
effective for the probable of modeling threats associated with
data breaches.

Preliminary studies have already demonstrated the usefulness
of BNs in cybersecurity (Ramakrishnan, 2016; Wang et al., 2020).
The study by Wang et al. (2020) shows that BNs can more
accurately classify cybersecurity risk, especially compared to
previously known Monte Carlo models. Furthermore, BNs also
prove to be more flexible. Ramakrishnan (2016) shows how BNs
can be used to model and visual the causal models underlying
cyberrisks. Unlike other ML approaches, BNs are not back-boxes.
Their main advantages are the ease of explaining their findings
and the ability to perform a systematic sensitivity analysis. In
the context of threats in cybersecurity, another key advantage
of BNs, is that they can be used to build a causal model of the
factors that contribute to threats. This can be achieved through
expert elicitation (Kuusisto et al., 2015) (i.e., through knowledge
derived from experienced professionals in the field) or built from
data sources or a combination of both. In particular, BNs can be
applied to problems in security to predict threats and potential
data breaches and also to diagnose how these threats came about.

5. DISCUSSION AND FUTURE RESEARCH

DIRECTIONS

Threat Intelligence provides accurate insights into the
implications of the threat landscape, allowing organizations
to build reliable defense strategies to reduce cyber risks. Every

organization is different and threat intelligence frameworks
are custom-tailored to the business process itself and the
organization’s risks, as there is no “one-size-fits-all” in cyber.

We do not have yet the required threat intelligence that
can be generalized across different architectures or businesses
without complex development and customization. Hence, most
of the existing tools still focus on using ML to detect/predict
specific security threat scenarios with well-defined inputs (i.e.,
data streams and logs) and well-defined outputs (security
indicators) that can then be integrated into other security
metrics and tools, or manually investigated by security
analysts in the threat intelligence teams. Utilizing AI/ML to
support implementing intelligence-driven security solutions has
a number of requirements, as follows:

• A good ML solution should be aligned to both business
objectives and security standards, to enable a better
understanding of the data patterns that affect important
business events and the ability to use this information to
provide relevant insights. This helps businesses to understand
where and how the solution will be used in the entire
cybersecurity process.

• ML models are hypothesis-driven, in other words, given a
dataset; can we build a model to find certain scenarios? Thus,
it is very important to have a clear articulation of the threat
landscape to be addressed using ML. It is also important
to understand and design ML models to focus on specific
scenarios. This makes it easier to solve the explainability
problem that greatly impacts. Thismakes it easier to drill down
into the business threat landscape details and fine-tune theML
models for new threat scenarios.

• ML models will be as good as the quality and quantity of
the training datasets. A poor quality training data for your
machine learning model will not give accurate results. It is
important that datasets are not biased and covers enough
variations of the threat landscape to be addressed by the
ML models. The success of ML models is highly reliant on
the quality of the used training dataset. A training dataset
that accounts for all variations of the variables in real world
results in developing more accurate models. While a huge
datasets is important, the right kind of data is more important
as the system learns from this data. Having a sophisticated
model is not going to help if poor data is used to train these
systems. Training a system on a poor dataset will eventually
end up learning wrong lessons and generating wrong results.
Data cleansing, or data wrangling, is necessary because if the
dataset has flaws or if it contains inaccurate data, it may
not be processed by machine learning systems optimally.
Furthermore, relying on the training dataset requires assuring
that the training dataset is not poisoned by malicious inputs
which might lead to a malfunctioning ML model.

• Machine learning continuous learning plan to address
environment changes and concept drifting that usually lead to
performance degradation of the ML model. There is a need to
implement a continuously learning platform for theMLmodel
so we can keep deploying new ML models on regular basis to
cope with new threat scenarios in the dataset. It is important
to adopt the human-in-the-loop model that allows experts to

Frontiers in Computer Science | www.frontiersin.org 8 August 2020 | Volume 2 | Article 36

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Ibrahim et al. Leveraging Threat Intelligence

assess ML models accuracy and provide feedback to the model
to improve response. This feedback is very crucial to know
when the ML model starts to degrade or report false alarms,
and to use the feedback to enrich the training data to retrain
the ML model on more recent datasets.

• To effectively apply deep learning in cybersecurity, Root
Cause Analysis (RCA) should be implemented. RCA allows
a better understating of the digital infrastructure and threat
landscape inter-dependencies. Root cause analysis is a method
of problem-solving used to identify problem antecedent and
underlying causes to maintaining reliable operations. While
the symptom and immediate cause might be easy and quick
to solve, failing to detect and treat the root cause will likely
lead to the problem recurring. In today’s interrelated, complex
threat landscape, root cause analysis requires different types of
data from a number of monitoring tools including business,
threat and risk data. Root cause analysis in the context
of threat intelligence should be fully automated to identify
dependencies between system events to help you find the root
cause of problems and fix them faster.

• Implementing threat intelligence require continuous
monitoring and improvement as the environment changes
and as new threats emerge over-time. One of the biggest
challenges in cybersecurity is monitoring staggering volume
of extremely granular and diversified data produced in
real-time, while making sense of it to turn raw data into
intelligence. An organization’s security architecture and
security program require continuous monitoring to ensure
operations are within an acceptable level of risk, despite
any changes that occur. Every organization is different and
therefore threat intelligence should be custom-tailored to the
business process itself and the organization’s risks, as there is
no “one-size-fits-all” in cybersecurity.

• Despite the fact that machine learning proposes promising
solutions for many cybersecurity problems. However, machine
learning itself introduces a new set of vulnerabilities, when
used in real-world, which makes it susceptible to adversarial
activity. Real-world training and testing data is dynamic and
change over time due to uncontrollable operational factors.
In an adversarial real-world environment, the problem of
concept drift is exacerbated and a static ML model might
fail in a dynamic environment. The inability to account for
a dynamic and adversarial nature creates a new class of ML
risks. Data scientists need to be aware of ML limitations in
real-world environments and the unique requirements of the
cybersecurity industry.

In the cybersecurity industry, developing a reference model to
implement intelligence-driven architectures that can utilize ML
to support security analytics and threat intelligence has become
an urgent need. Google technical debt of AI systems indicates
that in real-world ML applications, the ML model itself is the
smallest component of the architecture (Sculley et al., 2015)
and the biggest challenge is in the data preparation stages. An
intelligence-driven architecture that can utilize ML should have
three key components:

• DataOps: includes any data related activities such as collection,
aggregation, correlation, validation, cleansing and wrangling.

DataOps is process-oriented methodology to improve the
quality and reduce the cycle time of data analytics and make
it possible to meet the data analytics needs in data-driven
architectures (Atwal, 2020). DataOps governs the end-to-end
life cycle of data, including: first, data pipeline orchestration
to build a directed data workflow that contains all data
access, integration, modeling and visualization steps in the
data analytic production process. Second, automated testing
to monitor the production quality of all artifacts in the
data analytics process. Automated testing should operate at
every step of the data pipeline to eliminate data errors and
adversaries that might corrupt analytics. Third, deployment
automation to allow continuous code and configuration
moving from development environments into production,
including tracking, updating, synchronization, integration and
maintenance of the code, files and other artifacts that drive
the data-analytics pipeline. Fourth, data model deployment to
make reproducible development environments and reusable
analytics components, standardize widely used functionalities
and facilitate data migration across different environments.

• AIOps: the application of AI for IT operations, by combining
AI and ML to provide full visibility into a system state and
performance. AIOps aims to first, capture large data sets of
any type, from different sources and in varying velocity and
volume, while maintaining data fidelity for comprehensive
analysis; and second, to apply automated analysis to predict the
threat landscape by leveraging ML, including model selection,
model training and tuning, respectively.

• DevOps: is about how the DevOps engineers put these
AIOps and DataOps together to embrace the scale and
speed needed for data-driven architectures and deliver the
cutting-edge data-driven solutions. DevOps improves systems
agility and flexibility of AIOps platforms by automating
the path from development to production, predicting the
effect of deployment on production and automatically
responding to changes in how the production environment
is performing.

6. SUMMARY

Utilizing artificial intelligence and machine learning to apply
threat and data intelligence strengthens an enterprise’s security
by empowering stakeholders with evidential information on
what and how cyber threats are relevant to their business.
Adopting AI/ML to predict and stop data breaches requires
a holistic, organization-wide threat intelligence strategy that
is fully-integrated in the organizational security management
framework. This makes it possible to find the needle in the
haystack before it pricks you.

The key for businesses in dealing with threats is to find
elusive patterns and information that will yield the relevant
intelligence. Hence threat intelligence, nowadays, is an essential
part of businesses and enterprises and requires combining,
processing, aggregating, and analyzing historical threat data. Via
threat intelligence, it is possible to identify vulnerabilities, threat
actors, existing and potential attack vectors, and models thereby
improving the cyber security of businesses.
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Intelligence-driven architectures enable greater visibility
of cyber threats and hence minimize the threat landscape.
While implementing intelligence-driven architectures have long-
standing challenges that require methodological and theoretical
handling, they indicate a clear trend in future cyber defense
technologies. Implementing building blocks of practical AI and
ML together within security solutions, facilitates automation and
orchestration to build autonomic security solutions that can keep

up with the scale, speed, complexity and adaptability of today’s
cybersecurity threats.
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