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Bayesian probabilistic modeling is supported by powerful computational tools like

probabilistic programming and efficient Markov Chain Monte Carlo (MCMC) sampling.

However, the results of Bayesian inference are challenging for users to interpret in

tasks like decision-making under uncertainty or model refinement. Decision-makers

need simultaneous insight into both the model’s structure and its predictions, including

uncertainty in inferred parameters. This enables better assessment of the risk overall

possible outcomes compatible with observations and thus more informed decisions.

To support this, we see a need for visualization tools that make probabilistic programs

interpretable to reveal the interdependencies in probabilistic models and their inherent

uncertainty. We propose the automatic transformation of Bayesian probabilistic models,

expressed in a probabilistic programming language, into an interactive graphical

representation of the model’s structure at varying levels of granularity, with seamless

integration of uncertainty visualization. This interactive graphical representation supports

the exploration of the prior and posterior distribution of MCMC samples. The

interpretability of Bayesian probabilistic programming models is enhanced through the

interactive graphical representations, which provide human users with more informative,

transparent, and explainable probabilistic models. We present a concrete implementation

that translates probabilistic programs to interactive graphical representations and show

illustrative examples for a variety of Bayesian probabilistic models.

Keywords: Bayesian probabilistic modeling, Bayesian inference, probabilistic programming, Markov Chain Monte

Carlo (MCMC), uncertainty visualization, interactive visualization, interpretability

1. INTRODUCTION

Bayesian probabilistic modeling has many advantages; it accounts for and represents uncertainty
systematically; it allows precise incorporation of prior expert knowledge; and the intrinsic structure
of models is well-defined in terms of relations among random variables: the mathematical and
statistical dependencies are explicitly stated. Extremely flexible Bayesian probabilistic models
can be implemented via Probabilistic Programming Languages (PPLs), which provide automatic
inference via practical and efficient Markov Chain Monte Carlo (MCMC) sampling. However,
tasks like decision-making under uncertainty or refinement of models require tools that could
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enable profound comprehension of model’s structure and
intuitive interpretation of Bayesian inference results.

A very simple probabilistic model with few parameters could
allow a human decision-maker to contemplate the entire model
at once and comprehend how parameters interact with each
other and the predictions of the model. This becomes more
challenging as the model becomes more complex, perhaps
with hierarchical structure, multivariate distributions, complex
inter-dependencies and increasingly abstract latent states. Mere
understanding of model’s parameters and their dependencies
does not guarantee effective decision-making. Rational decisions
should be based upon assessment of the risk of all possible
states compatible with data; this is the key advantage of a
Bayesian formulation. This requires authentic representation of
the parameter uncertainty. We propose that it is essential to
communicate the (conditional) uncertainty of the parameters
alongside their dependency structure.

Communication of uncertainty has challenges. Bayesian
reasoning is closely tied to reasoning about conditional
probabilities. People with a weaker background in statistics can
have difficulty reasoning about conditional probabilities (Tversky
and Kahneman, 1974; Koller and Friedman, 2009). Some
common difficulties are distinguishing conditional and joint
probabilities, and the recognition that conditional probability
involves a restriction in the sample space (Díaz and Inmaculada,
2007). But even in the cases that the decision-maker is fully aware
of these issues in theory, it is practically difficult to reason about
the conditional probabilities of a complex model.

Bayesian probabilistic modeling incorporates prior knowledge
by defining probability distributions over a model’s parameters
based on knowledge before seeing data. These prior beliefs are
transformed into posterior beliefs in the light of the observed
data. We may also transform from a model’s latent parameters
space to observation space; if we do this before observing data we
form the prior predictive distribution. After observing the data
we form the posterior predictive distribution, which we may, for
example, sample from to generate synthetic observations.

Bayesian statistics was largely confined to academic research
since Thomas Bayes set the foundations in 1763 (Bayes and Price,
1763) until the late twentieth century, largely due to technical
difficulties in inference and the specialized statistical knowledge
required (Lambert, 2018). This started changing in the early
1990s with the appearance of practical Markov Chain Monte
Carlo (MCMC) techniques (Spiegelhalter and Rice, 2009) and
the emergence, some years later, of Probabilistic Programming
Languages (PPLs). PPLs are used to concisely express a vast range
of probabilistic models and offer efficient, well-tested algorithms
for inference. PPLs hide technical details of inference from
modelers, offering an integrated environment that automates
inference once a model is specified.

There are visualization tools that seek to communicate
inference results to users in a compact and relevant way, like
ArviZ (Kumar et al., 2019), a unified library that provides
tools for diagnostics and visualizations of Bayesian inference in
Python. However, a complex Bayesian model could result in a
high-dimensional posterior that would require unwieldy tables
to present summary statistics or a multitude of visualizations

that are difficult to grapple with. The more complex a
Bayesian probabilistic model becomes, the more error-prone
the specification process of a Bayesian probabilistic model
becomes. We see a need for a tool that would automatically
synthesize user interfaces to PPL inference results, creating
a compact interactive graphical representation that would
convey structural and inference-related information at varying
granularity. This tool would replace large tables of statistics
with interactive graphical representations which integrate the
structural relation of parameters along with their inferred
distributions. It would convey uncertainty accurately and support
interactive sensitivity analysis.

This tool could support:

1. Decision-makers seeking to interpret inference results or
make predictions;

2. Experts seeking to effectively express their prior beliefs and the
implications of their beliefs on inference;

3. Data-scientists and statisticians seeking to refine and validate
an inference process (debugging a PPL program such that it
runs efficiently and correctly);

Therefore, in this work we propose a novel representation
of Bayesian probabilistic models, the interactive probabilistic

models explorer. The objectives are:

1. Automatic transformation of a PPL model into a graphical
representation of the model’s structure,

2. Seamless integration of uncertainty visualization into the
graphical representation of the model,

3. Granularity in the presented visual information according to
user’s choices and needs,

4. Interactive exploration of inference MCMC sample space,
5. Inclusion of both prior and posterior beliefs, predictions and

predictive checks.

The interactive probabilistic models explorer aims at increasing
the informativeness of Bayesian probabilistic programming
models by integrating uncertainty. It also enhances transparency
of the model’s structure by providing an at-a-glance
representation of a PPL models’ structure integrated with
uncertainty representation. The transparency of the inference
results is increased by the explorability introduced by the
interactive elements.

The posterior (or prior) of a Bayesian probabilistic model is
thought of as a high-dimensional entity. Users can interactively
view different perspectives of this entity with low latency.
These views could be thought of as projections of the posterior
distribution. Through their explorations of the posterior, users
can develop an intuitive understanding of the “fragility” of
the model’s uncertainty—in other words performing interactive
sensitivity analysis—without having to explicitly reason about
abstract conditional probabilities (Steegen et al., 2016). The
interactive probabilistic models explorer offers an explorable
explanation of the PPL model.

Finally, the proposed representation could enhance trust
in the model by facilitating prior and posterior predictive
checks that provide evidence for the model’s consistency with
the prior knowledge and the actual data generating processes.
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The interactive probabilistic models explorer could increase
the interpretability of PPLs by providing more direct, visceral
intuition about Bayesian reasoning, supplementing the abstract
mathematical symbolic representation. As Bayesian probabilistic
models increase penetration in science, research and industry,
the demand for more interpretable Bayesian probabilistic
models rises. This work aspires to provide a user interface to
these models.

In section 2, we elaborate on the visual and functional
objectives of the interactive probabilistic models explorer and
present the main aspects of the design and implementation of a
tool that we developed for the transformation of a PPL model
into an interactive probabilistic models explorer. In section 3,
we demonstrate illustrative examples of use. Finally, in section
4, we analyse the contributions of the proposed representation of
probabilistic models and summarize our conclusions.

2. METHOD

2.1. Overview
Before we dive into the technical details of the design and
development of the interactive probabilistic models explorer
(IPME) tool, we elaborate the visual and functional objectives of
the proposed representation. We then present the main aspects
of the design and technical implementation of the IPME tool
including some of the challenges that we had to face, and we
discuss the limitations of the implementation.

2.2. Objectives of Interactive Probabilistic
Models Explorer
The first objective of the interactive probabilistic models explorer
is the transformation of a PPL model—some lines of code of a
probabilistic programming language, potentially alongside some
observed data—into a graphical representation of the model. We
would like to be able to transform PPL models independently
of the PPL and independently of the structure of the specific
model implemented. By the term “graphical representation” we
mean a coherent graph-like representation of the probabilistic
model that would reveal the internal structure of dependencies
among the model’s parameters. By representing parameters as
nodes and dependencies as directed edges, probabilistic models
can be represented by directed acyclic graphs (DAGs) (Koller and
Friedman, 2009) that visually capture the model’s essence.

The second objective is the integration of the parameters’
uncertainty into the graphical representation of the model. The
prior and posterior distributions of a Bayesian probabilistic
model are multi-dimensional joint distributions. The marginal
distributions of the prior and posterior joint distributions of
the model are slices, which reveal the uncertainty of a subset
of (usually one of) the model’s parameters. PPLs typically
apply MCMC sampling to approximate prior and posterior
distributions, and the marginal distribution that corresponds to
each parameter of a model can easily be estimated from these
samples. Figure 1A presents the posterior MCMC samples of
a two-parameter model and Figure 1B shows the estimated 3D
posterior distribution along with the 2Dmarginal distributions of

the parameters (in dark blue). We could integrate the uncertainty
of the model’s parameters into the graphical representation of
the model by including an uncertainty visualization (e.g., kernel
density estimate, error bar, Box plot, CDF plot, dot quantile
plot) of the parameter’s estimated distribution into the node of
the parameter.

The third objective of the interactive probabilistic models
explorer is to provide adjustable granularity. Some users may
wish to have a simplified summary view; while others may be
involved in tasks like validating sampling and require detailed
interactive visualizations. It would therefore make sense if the
nodes of the model’s graphical representation were collapsible in
some way, and the user could interactively select the information
that would be revealed to them.

The fourth objective is the interactive exploration of the
model’s uncertainty and ultimately, of the MCMC sample space.
The exploration of the joint distribution would be important for
providing answers to questions like the following ones:

1. What does the uncertainty of a parameter look like in a subset of
the prior or posterior sample space based on the inference results
of the model?

Answers to questions like this one could be crucial for
decision-makers who would like to have estimates of a
parameter’s uncertainty under some specific conditions, which
could, for example, represent a worst case scenario. This
leads to some form of querying the results of an MCMC
process; for example, a conjunctive restriction like 1.6 <

µ <2.0 AND 1.0 < σ <1.4 for the mean and standard
deviation of the averageminimum temperature of the example
in Figure 1. The sample space of the prior or posterior
distribution can be restricted by setting bounds to the range
of values of the individual parameters. Each restriction on the
value range of a parameter defines a slice on the distribution.
All the MCMC samples that belong to the subset of the
restricted sample space define the uncertainty of the model
within this subset of the sample space. In a conjunctive query,
if we restrict the value range of more than one parameters,
then the resulted subset of the sample space of the prior
or posterior joint distribution is defined by the intersection
of all the restricted value ranges of the parameters. For
example, Figure 1A presents the MCMC samples that lie
in the intersection of two value ranges restrictions in cyan
and Figure 1B presents the re-estimated posterior distribution
within the restricted sample space.

Such queries could be specified and reported visually if
the user could interactively set value ranges and get the
updated uncertainty visualizations for the entire model’s joint
distribution within the defined subset of the sample space.
Such a query could be fed back to the sampler, so that a
background sampling process could draw additional MCMC
samples within the restricted sample space.

2. How sensitive is the uncertainty of a parameter to changes in
the uncertainties of the rest of the parameters?

By restricting the value range of one or more parameters
we can see the influence on the remaining parameters, because
we only include the MCMC samples of the prior or posterior
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FIGURE 1 | A two-parameter Bayesian model modeling the average minimum temperature in Scotland for the month November. The data provides the average

minimum temperature in Scotland in month November for the years 1884–2020 and PyMC3 was used for the inference (see Supplementary Material for details).

We explore the inference by setting two value range restrictions; µ ∈ [1.6, 2.0] and σ ∈ [1.0, 1.4]. (A) Posterior MCMC samples of the model’s parameters. The

samples that lie within the intersection of the value range restrictions are colored in cyan. (B) The estimated posterior distributions and marginal distributions based on

the entire posterior MCMC sample set (dark blue) and the restricted sample set (cyan). (C) A DAG representation of the two-parameter Bayesian model as a

Kruschke-style diagram (Kruschke, 2015). The posterior marginal distribution of µ (in cyan) in the subset of the posterior space became slightly tighter and shifted

toward lower values of µ, which lead us to less uncertainty about expecting lower average temperature in Scotland for November given this particular conditioning.

joint distribution that satisfy the constraints. We can therefore
explore the sensitivity of parameters by observing how
range restrictions on one parameter influence the uncertainty
visualization of others. We could, for example, identify the
parameters that are strongly coupled or, conversely, are wholly
independent. This could be critical for decision-makers, who
in the process of assessing the risk, would like to know how
fragile the estimation of crucial parameters is.

The fifth objective is the inclusion of both prior and posterior
parameter distributions, predictions and predictive checks. The
Bayesian probabilistic models can provide estimations of the
model’s uncertainty both before and after seeing the observed
data. In the first case, the estimations of the model for

the uncertainty of the model and the predictions are based

on the prior distributions. Exploring priors helps validate
the realism of the prior beliefs once encoded in the PPL.

Exploring posteriors reveals the results of the inference process
following observations. Therefore we should include two visual
representations in each node of the representation, one for

the prior and one for the posterior distribution of the
associated parameter.

The interactive probabilistic models explorer should also

include prior and posterior predictions. A Bayesian model
can simulate drawing samples in the space of observations,

which is sometimes the ultimate task (e.g., in prediction),
is sometimes essential for validation and calibration (e.g., in
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prior predictive checks) and is sometimes the most relevant
way to explain consequences to users. The prediction of an
observed variable’s value by Bayesian probabilistic models is
a distribution over possible (prior or posterior) observations
(potentially approximated with samples, as in MCMC) and
not just a single point estimate (see Supplementary Material

for details about MCMC predictive sampling). This means
that there is uncertainty about the predictions, which depends
on the uncertainty of the rest of model’s parameters. Nodes
that represent observed variables should include an uncertainty
visualization to present the predictions’ uncertainty. This should
be explored in conjunction with the distribution of the model’s
parameters; for example, any restriction on the prior or posterior
sample space should propagate to the predictive distribution and
vice versa.

2.3. Technical Implementation
In this section we will discuss the implementation of the tool
we created for automatic transformation of a PPL model into
interactive graphical representations. We will split our discussion
into two parts. The first part will present the challenges of
encoding any PPL model and associated inference results into
a coherent structure. The second part will focus on the design
and implementation of the interactive probabilistic models
explorer itself.

2.3.1. PPL Model Encoding
One of the technical challenges that we had to overcome
had to do with the ways that we could transform any PPL
model into a graphical representation. We discriminate two
types of information that the IPME tool will need; model-
related information and inference-related information, and so we
assume the input consists of:

• some transformation of the PPL source (i.e., the lines of code)
that defines the model;

• the traces, the set of samples resulting from inference with an
MCMC sampler; the output from “running” the model.

We restrict ourselves to MCMC approaches to inference in
this paper, and so we always deal with collections of definite,
(hopefully) independent samples representing possible model
configurations. The traces can include samples from the prior,
posterior, prior predictive and posterior predictive. We designed
a pipeline to encode a PPL model and its inference results into
a structure which is used as an input to the IPME tool. We
defined steps that a modeler should take to export a PPL model
and its inference results to the IPME tool. Figure 2 presents a
diagrammatic representation of these steps. In this section, we
will explain what these types of information should include and
how their encoding is realized.

2.3.1.1. Model-related information
Model-related information is necessary for the construction
of the graphical representation (DAG) of the model. The
construction of a DAG requires, at minimum, the names of the
nodes and their associations that define the edges. Therefore,
the input of the IPME tool should include the model’s variables

names and a list of the parent nodes of each variable. We would
also expect to be able to extract annotations for each parameter,
including the distribution type (Gaussian, Poisson, binomial,
Dirichlet etc.), data type (floating point, integer), tensor shape
(uni-variate, N-d vector, MxN matrix, etc) and inferential type
(observed, latent, deterministic).

A probabilistic model consists of either observed or
unobserved variables. The observed variables are defined
through a likelihood function and in a tree-like structure like a
DAG, the lowest level of nodes consists of observed variables.
The graph is “rooted” at the top with non-stochastic nodes
with known, fixed values (e.g., constants used in specifying
prior distributions). Unobserved variables could either be free
parameters defined by prior distributions or they could be
deterministic variables, transformations of other parameters;
and it is also occasionally useful to define deterministic
transformations of observed values. Thus, we define the
inferential type of a probabilistic model’s variable as one in the
set {“observed”, “free”, “deterministic”}.

From our objectives, the interactive probabilistic models
explorer should provide a collapsible view of the DAG. In the
explorer, each node should provide some minimum information
about the corresponding parameter. This could include the name
of the parameter and the type of the parameter’s distribution;
this is sufficient to arrive at a graph similar to those of
Kruschke (2015). The last model-related information needed
is the dimensions and coordinates of the probabilistic model’s
variables; i.e., the tensor shape and its semantic structure.
Parameters’ dimensions usually correspond to dimensions of
the observed data and they can be used to model groups
of parameters. Interpreting tensor shapes in probabilistic
programming is subtle (Ma, 2019) and may require additional
annotation. The explorer depicts the uncertainty using 2D
visualizations and allows the user to define the coordinates of
the variables’ dimensions.

We created a prototype structure that encodes the model-
related information. The fields of this structure are defined by
the model-related information that should be communicated as
input to the IPME tool (see details about the JSON structure in
the Supplementary Material). PPLs usually provide an API for
allowing users to access this model-related information, though
the provision and API to access this varies significantly. The
modeler could access this information and produce the structure
of the model’s graph. For example, we have specifically developed
a Python package called arviz_json1 that provides an API for the
transformation of PyMC3 (Salvatier et al., 2016) model objects
into these structures.

2.3.1.2. Inference-related information and data
PPLs store inference results in different ways, which are
usually backend-specific. For example, PyMC3 stores the MCMC
samples in PyMC3 MultiTrace2 objects, whereas PyStan stores
inference results in PyStan StanFit objects. Thus, there is a

1https://github.com/johnhw/arviz_json
2https://docs.pymc.io/api/inference.html?highlight=multitrace#pymc3.backends.

base.MultiTrace
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FIGURE 2 | Flowchart showing the steps that a modeler should take to export the PPL-specified probabilistic model and the inference data into a standardized

output, which will then be used as an input to the IPME module. The proposed pipeline adds three new steps to the typical model specification and inference running

routine; the export of the PPL model graph into a JSON structure; the export of the inference data into an ArviZ InferenceData object, where we attach the structured

description of the graph from the previous step; and finally, the export of all these into a collection of .npy arrays and metadata in a zipped file. We provide a concrete

implementation of this pipeline through the arviz_json module, which was created for providing a standardized output for the PyMC3 models and inference data.

need for a standardized backend-agnostic way of organizing
and storing the inference-related information and results before
forwarding it to the IPME tool. First of all, the MCMC
samples that estimate the prior and posterior distributions of
the unobserved variables of the model and the MCMC prior
and posterior predictive samples for the observed variables of
the model should be included to the tool’s input. These samples
should be stored in standardized structures and linked to the PPL
model’s variable names.

One solution to this problem is provided by the ArviZ library
(Kumar et al., 2019), which provides an API for transforming the
inference data of different inference back-ends and programming
languages (PyMC3, PyStan, CmdStanPy, Pyro, NumPyro, emcee,
and TensorFlow Probability objects) into ArviZ InferenceData3

data structures. The ArviZ InferenceData is a standardized
data structure for inference results (MCMC samples) that is
dependent on xarray’s4 multi-dimensional array structures that
introduce “labels in the form of dimensions, coordinates and
attributes on top of raw NumPy-like multidimensional arrays.”
InferenceData objects group various data sets that could be
produced by a Bayesian analysis (prior or posterior samples,
prior or posterior predictive samples, sample statistics etc.).
ArviZ provides an API for exporting the InferenceData data
structures in netcdf 5 files. Although our implementation of the
interactive probabilistic models explorer was based on Python,
we wanted to provide a generic solution that could work with
any browser-based front end; we used the arviz_json package for
exporting ArviZ InferenceData objects into a zip file containing

3https://arviz-devs.github.io/arviz/schema/schema.html
4https://xarray.pydata.org/en/stable/why-xarray.html
5https://www.unidata.ucar.edu/software/netcdf/

JSON metadata with the model DAG and a collection of npy6

format arrays from the InferenceData object. There is also JSON
metadata that link the model’s variables to the data arrays
and provide information about the type of the samples (prior,
posterior), the dimensions and the coordinates (see details in the
Supplementary Material).

2.3.2. Design and Implementation of the Explorer
We created a Python tool that takes as an input the output of
the arviz_json module and creates the interactive graphical
representation of the model. For the visualization we
used Bokeh7, a Python interactive visualization library
for modern web browsers, and Panel8, a Python library
for interactive web apps and dashboards. The IPME tool
provides a web-browser-based visualization of the interactive
probabilistic models explorer and thanks to Bokeh that
affords high-performance interactivity over large data sets,
it provides a low-latency interactivity with the MCMC
sample set.

The interactive probabilistic models explorer presents the
model’s DAG in a tree-like structure. We simplify the tree
into rows of nodes ordered vertically from hyper-priors
down to observed values. This format is a vertically ordered
representation which orders nodes such that constant values
(which are not shown) would be placed at the very top of
the graphical representation and the lowest nodes in the graph
are observed parameters. Parameter nodes are organized such
that child nodes appear on rows lower than their parent prior

6https://numpy.org/devdocs/reference/generated/numpy.lib.format.html
7https://docs.bokeh.org/en/latest/
8https://panel.holoviz.org/index.html
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distributions. In most hierarchical models, which have well-
separated hyper-priors, this leads to a neat separation of the
graph into rows and an obvious reading of the graph from top to
bottom. There are, of course, graphs which are hard to arrange
well in this format. Each node is a cell in a Panel GridSpec9

object. Each node of the graph has a toggle button, some text and
a kernel density estimation (KDE) distribution plot. The toggle
button is labeled by the variable’s name, the tilde (∼) symbol
and the variable’s distribution type, if the variable is observed or
a free parameter, or the term “deterministic,” if the variable is
deterministic. The text below the toggle button states the parent
nodes and the dimensions of the parameter. The KDE curve can
be hidden with the toggle button.

We present the uncertainty of parameters using a kernel
density estimate10 (KDE), computed based on the corresponding
MCMC samples, using Silverman bandwidth estimation. The
KDE curve of the non-observed variables is estimated based on
theMCMC samples of the (prior) posterior marginal distribution
of the variable, while the KDE curve of the observed variables
is estimated based on the (prior) posterior predictive MCMC
samples. A rug plot is presented below the KDE curve to display
the corresponding MCMC samples as ticks and give a better
perception of the conditioning process on the sample space. We
present two views of the DAG, one showing distribution in the
nodes for the prior and one for the posterior space, in separate
tabs so that users can both compare quickly.

The interactive probabilistic models explorer provides an
interface for predictive model checking with predictive p-values.
One way of checking the validity of a Bayesian model is by
testing statistics of the observed data against the predictions of
the model. The aspects of the observed data that are usually
investigated could be defined as statistical metrics over the data.
For example, the extreme observed values could be interpreted
as the min and max value of the observations. Other common
aspects of the data that could be checked are the mean and
sd values.

A common metric for checking how well these statistics of the
observed data are represented by the predictions of the model is
the p-value; the probability Pr(metricj(yj) > metricj(obs)), where
metric ∈ {“min”, “max”, “mean”, “sd”}, j ∈ {0, 1, ..,N} and N is
the size of the indexing dimension of the observed variable, yj
indicates the predictive samples of the model for the j coordinate
of the indexing dimension, and obs the actual observed data
(Sinharay and Stern, 2003). The prior and posterior histograms of
these four statistical metrics over the posterior predictive samples
are presented in two extra separate tabs. The actual observed
value of each test statistics is indicated by a vertical black line
on the corresponding histogram. The (Bayesian) p-values are also
noted on the x-axis labels.

The IPME tool uses the dimensions and coordinates
information to automatically create a widget box on the left-
side of the graphical representation. Each indexing dimension
of the model is converted into a drop-down menu or a slider
presenting to the users the semantically meaningful coordinates

9https://panel.holoviz.org/user_guide/Components.html
10https://en.wikipedia.org/wiki/Kernel_density_estimation

of the indexing dimensions and allow them to change their
values and get a different view of the data. The user can perform
interactive sub-setting of any parameter by drawing a variable-
width selection box to define a value range for the specific
parameter. The part of the KDE curve that is enclosed into the
selection box is highlighted and a second KDE curve that is
computed based on the restricted MCMC sample set is drawn
in a different color. The rug plot is updated accordingly. The
color palette of the “arviz-darkgrid” style was used because it
was designed to be color-blind friendly and it would add a tone
of familiarity for the users of the ArviZ library. The user can
update their initial selection by drawing a new selection box or
can draw additional selection boxes on other distributions to add
constraints to the query.

Every time the user draws a selection box, both the prior and
the posterior spaces are restricted to include only samples that lay
within the selected subset. The user can restrict the value range of
any parameter at any coordinate of any indexing dimension and
the restriction to the sample space will be reflected in both the
prior and posterior, as well as to the prior and posterior predictive
histograms. This kind of interaction allows the user compare the
changes in the uncertainty in the restricted space between the
prior and posterior beliefs about the model parameters. The user
can also remove the restriction of a parameter by clicking on the
“x” button that accompanies the updated KDE. Finally, the user
can reset all the uncertainty visualizations by globally removing
all the restrictions by pressing a “Global Reset’’ button.

2.4. Limitations of the Implementation
In this section, we will discuss the limitations of the IPME
tool implementation. First of all, feeding back re-specified
prior distributions and rerunning the inference is something
that would be useful, but requires additional engineering to
implement the feedback path to the sampler. For this reason,
there might be cases where restrictions on the sample space
exhaust the available samples and result in very small or empty
sample sets. The IPME tool currently does not handle these cases
well. We currently only support a single restriction in value range
per parameter.

There are two issues connected to the presentation of the
tree-like structure of the graph and the KDEs that we came
across during the implementation of the tool. First, because a tree
level with many nodes is not uncommon, we have to limit the
number of nodes in each row to avoid horizontal scrolling. If a
tree level has more than some maximum number of nodes, we
break the row into two or more rows. Because this presentation
spoils the tree-like feeling of the structure, we left-aligned the
rows that correspond to the same level of the tree to give the
feeling of the continuation for these rows. This is analogous to
typesetting text: nodes are words, which are broken at the end
of lines for visual presentation, and separated into paragraphs
which are semantically distinct levels, offset with vertical spacing
and indentation.

The second presentation issue had to do with the scaling of
the KDEs. We did not apply any normalization to the KDEs
so that we present the prior and posterior distributions as valid
probability distributions, namely the area under the KDE graph
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FIGURE 3 | Graphical representations of the eight schools model, (A) Bayesian network, (B) DoodleBUGs graph, (C) PyMC3 graph using the Graphviz interface, (D)

Kruschke-style diagram. These representations do not include estimations of the parameters’ posterior uncertainty based on the simulation of real-data (i.e., MCMC

samples).

sums to 1. If we apply normalization, this would obscure changes
in the uncertainty in the subsets of the MCMC sample set.
However, this lack of normalization could lead to significant
differences in the maximum a posteriori (MAP) estimation11 of
the initial and updated KDE in cases of restricting the sample
space to highly dense subsets. In these cases the overlap of the
KDEs retaining their scales will present a very tiny initial KDE in
comparison to the updated one and the user might need to use
the “zoom wheel” tool to inspect the initial KDE.

3. RESULTS

3.1. Presentation of the Probabilistic
Programming Model’s Graph
In this section, we discuss how other PPL-linked available tools
display the graph structure of probabilistic models and compare

11https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation

this with the IPME tool. Figure 3B presents the probabilistic
graphical model of the centered hierarchical model of the eight
schools problem (see Supplementary Material) created with
DoodleBUGS12. Figure 3C presents the probabilistic graphical
model of the same model using the PyMC3 Graphviz interface13.
Although both ways present the structure of the probabilistic
model as a graph providing an at-a-glance representation of
the model’s parameters and dependencies derived from the PPL
specification of the model, they both lack the presentation of
the parameters’ uncertainty. Figure 3D presents (a manually
created) Kruschke-style diagram of the same model, which is
more informed since it presents the prototypes of the prior
distributions of the model’s parameters. But still, this latter
representation of the probabilistic model does not give us any
indication of the actual distributions of latent parameters.

12https://www.mrc-bsu.cam.ac.uk/wp-content/uploads/manual14.pdf
13https://docs.pymc.io/api/model_graph.html
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FIGURE 4 | The interactive probabilistic models explorer of the centered hierarchical model of the eight schools problem. PyMC3 was used for the model’s

specification and inference. (A) The prior graphical representation. (B) The posterior graphical representation. (C) The collapsed graphical representation. The

interactive probabilistic models explorer integrates the simulated inference data and provides variable granularity in the amount of the presented information.

Using the framework presented in Figure 2, we created
the interactive probabilistic models explorer of the centered
hierarchical model of the eight schools problem. Figures 4A,B
presents the interactive probabilistic models explorer for the
prior and posterior space, respectively, as an expanded DAG
and Figure 4C presents its collapsed form. The interactive
probabilistic models explorer seamlessly integrates the actual
uncertainty estimations into the graph’s nodes and provides
variable granularity by allowing users to collapse certain
elements. The widget box on the left-hand side contains one
widget per indexing dimension and allows selecting different
views of the inference data. Finally, the top tab switches between
prior and posterior.

3.2. Presentation of the Inference Results
In this section we compare the way that inference results are
presented using typical presentation practices with the way the
IPME achieves this, and discuss how the IPME was designed to
provide amore compact and flexible presentation of the inference
data. The most common practice in the reporting of inference
results in Bayesian analysis is tables that present summary
statistics of the posterior distributions. As model parameters or

coordinates of indexing dimensions increase, these tables become
unwieldy. For example, Silva et al. (2015) use a rather massive
table of summary statistics when analyzing data of wildfires in
Portugal between 1990 and 1994. The limited capacity of human
cognition could be a hurdle for users like decision-makers to
grasp the uncertainty presented in tables of this sort and assess
the risk appropriately. The numerical data presented are usually
statistics like mean, standard deviation or confidence intervals,
which could mislead or overwhelm unfamiliar users.

A static representation of the inference data in summary
tables cannot communicate sensitivity of the parameters, which
would allow decision-makers to assess the impact of parameter
inter-dependencies and associated risks. Communicating the
prior would imply communicating a second table of similar
complexity, which is often omitted in reports of Bayesian
probabilistic models. For example, Table 1 presents the summary
statistics of the posterior of the centered hierarchical model
for the eight schools problem. We used the ArviZ API
(arviz.summary) to produce this table.

Another way of communicating inference results is by
generating an uncertainty visualization for each model’s
parameter independently. This solution is not very common,
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TABLE 1 | Posterior statistics in a tabular format for the centered hierarchical

model of the eight schools problem.

mean std hpd_5% hpd_50% hpd_95%

mu 4.479 3.392 −1.090 4.562 10.012

theta[0] 6.524 5.849 −1.590 5.937 16.632

theta[1] 5.128 5.001 −2.892 5.104 13.255

theta[2] 3.991 5.589 −5.179 4.226 12.165

theta[3] 4.923 5.094 −3.503 4.914 13.160

theta[4] 3.519 4.934 −5.189 3.895 10.993

theta[5] 4.142 4.973 −4.137 4.311 11.903

theta[6] 6.697 5.294 −0.998 6.197 16.067

theta[7] 5.026 5.667 −3.804 4.877 13.716

tau 4.127 3.144 0.937 3.281 10.151

This is a rather simple model and the table only consists of ten rows. This number

could rise immensely if the model had more parameters or the parameters had more

(multi-valued) indexing dimensions.

although it is more informative than the tables of summary
statistics. The reason is that it leads to a high number of
visualizations in the case of many-parameter models, which are
difficult to communicate in a concise way. For example, Figure 5
presents the posterior densities for the parameters of the centered
hierarchical model of the eight schools problem. Although, this
is a rather simple model, we can see that it can produce ten
different uncertainty visualizations. This number could rise
even more if the parameters of the model had more indexing
dimensions or the indexing dimensions had more coordinates.

The IPME tool presents a summary presentation of the
model’s parameters in two similar tree-like structures (prior,
posterior) that are as big as the number of the models parameters.
The number of the indexing dimensions or coordinates does not
affect the size of the graphical representations, in comparison
with the summary statistics tables or uncertainty visualizations
approach where each extra coordinate results in an extra row in
the table or an extra visualization. The presentation of inference
results with the IPME tool becomes more compact and concise.
Users have more flexibility in the exploration of inference results
with IPME; they can define the coordinates of the indexing
dimensions, expand the nodes of interest and collapse the rest,
compare priors to posteriors.

3.3. Use Case Scenarios
In this section, we present use case scenarios, where IPME is
used to deal with a realistic modeling problem. The IPME tool
could assist modelers in model checking and validation. The
IPME provides two possibilities for checking the model. The
first arises through the prior interactive graphical representation,
where users could explore and observe the prior beliefs that
were set during the model definition process and the prior
predictive distributions along the various coordinates of the
indexing dimensions. The consistency of the model’s priors with
the prior knowledge and experience could be investigated in this
way. The second arises from the prior and posterior predictive
model checking with predictive p-values. Users could observe

how well aspects of the observed data are represented in the
predictions of the model.

The IPME tool could also help users acquire a more intuitive
comprehension of various aspects of the model and the inference
results. This could be achieved through the interactivity. The
IPME offers two types of interactivity; the interaction with
the indexing dimensions that allows the exploration of the
data from different viewpoints, and the interactive conditioning
on the sample space that allows the exploration of the prior
and posterior sample spaces. The first type of interactivity
could reveal similarities or differences between groups of data.
The second type of interactivity could reveal associations
between parameters, changes in the parameters and predictions
uncertainty under certain circumstances (conditions), or the
effects of priors on posteriors. The following use case scenarios
illustrate the ways that IPME could deal with realistic
modeling problems.

3.3.1. Drivers Reaction Times
A common task in the working routine of a logistics company
is the allocation of routes to drivers. A logistics company
wants to optimize the allocation process by minimizing the
risk of accidents when allocating long routes to drivers that
are susceptible to tiredness under sleep-deprivation conditions.
The data scientist of the company retrieved from the company’s
database the reaction times of the drivers in 10 consecutive days
of driving under sleep-deprivation conditions, and fitted a pooled
and a hierarchical linear regression model to predict the reaction
times of the drivers on each day of driving (see more details in
Supplementary Material). The bigger the slope of the regression
line is, the more tired (bigger reaction times) the drivers get after
consecutive days of driving.

3.3.1.1. Model check
The data scientist first used the IPME to check the models. The
models were both predicting a priori negative slopes (Figure 6)
meaning that drivers could have faster reaction times as days were
passing by. That was not very realistic, but could happen with
a small probability. The models were also predicting negative
reaction times meaning that drivers could react before even
they see a stimulation. Very big reaction times, close to tens
of seconds, were also predicted as were moving closer to the
10th day. It seems that the priors might need to be updated.
The data scientist was wondering which model of the two is the
most appropriate one to trust, and thus, observed the posterior
predictive test statistics of both models. Figures 7A,B present
the four histograms for the pooled and hierarchical model,
respectively. If none of the p-values of the test statistics is too
high or low, the model is considered to generate “replicate
data” similar to actual observed one based on the criteria of the
provided test statistics. For example, the pooled model gives a
very low posterior p-value for the “min” test statistics, which
is improved in the hierarchical model. The hierarchical model
improves the p-values of the “min,” “max,” and “std” test statistics
of the observations in the predictions.
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FIGURE 5 | The posterior densities of the centered hierarchical model of the eight schools problem presented in the style introduced by Kruschke (2015). Although,

this is a rather simple model, we can see that it can produce ten different uncertainty visualizations. This number could rise even more if the parameters of the model

had more (multi-valued) indexing dimensions.

3.3.1.2. Interactivity
Using the interactive drop-down menus, the data scientist
observed the posterior predictive distribution of each driver
on the same day of driving and realized that the pooled
model did not present significant differences in the uncertainty
of the predicted reaction times among drivers in contrast to
the hierarchical one, which actually did (Figure 8). The data
scientist kept the hierarchical model and passed it over to the
logistics manager.

The logistics manager had to choose between two available
drivers, driver 310 and 335, who would take over an urgent
shipping of a cargo that had to be delivered in 6 days, although

it would normally require 9. Using the drivers drop-down
menu, the logistics manager observes the uncertainty of the
predicted reaction times for both drivers on the 6th day of
driving (Figure 9); driver 310 has a wider distribution (more
uncertainty), but centered to lower reaction times, whereas driver
335 has a tighter distribution (less uncertainty), but centered to
higher reaction times.

The logistics manager would like to see how the uncertainty
of the predicted reaction times would look like in the worst
case of the model’s predictions; the bigger values of slope. He
sets a condition on the hyper-prior of the mean value of the
slopes to restrict the posterior sampling space to higher values of
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FIGURE 6 | The interactive probabilistic models explorer of the reaction times models. PyMC3 was used for the models’ specification and inference. (A) The prior

graphical representation of the pooled model. (B) The prior graphical representation of the hierarchical model. The models predict negative slopes, and negative or

very big (tens of seconds) values of reaction times a priori, which indicate that the priors might need to be updated.

slopes. The distribution of driver 310 becomes wider with a slight
shift to lower reaction times, whereas the distribution of driver
335 becomes again wider with a slight shift to higher reaction
times. It seems that driver 310 is more robust to the worst case
conditioning, although initially he was having more uncertainty
over his predictions in comparison to driver 335.

3.3.2. Stochastic Volatility
There are periods of time when assets’ returns are highly variable,
which implies greater uncertainty about the actual values of
the returns of the assets the next day. The day returns of

assets is defined as the difference in asset’s price at the end of
the day in comparison to the start of the day over the initial
asset price at the start of the day, Rt = (Pt − Pt−1)/Pt−1.
The models that are used to predict the assets’ returns use a
latent volatility variable, volatility. The following probabilistic
statements relate the returns variable to the volatility parameter
based on the specification of such a model (see more details in
Supplementary Material):

ν ∼ Exp(λ = 0.1) (1)
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FIGURE 7 | The posterior predictive test statistics of (A) the pooled reaction times model, (B) the hierarchical reaction times model. The hierarchical model improves

representation of the “min” “max”, and “std” test statistics of the observations in the predictions.

FIGURE 8 | The interactive probabilistic models explorer of the reaction times models, where we set the driver to 308 and 309 and observe the posterior predictive

distribution of the reaction times on the same day of driving for the pooled and hierarchical model. The posterior predictive distribution of the reaction times (A) for

driver 308 in the pooled model, (B) for driver 308 in the hierarchical mode, (C) for driver 309 in the pooled mode, and (D) for diver 309 in the hierarchical model. The

pooled model does not reveal significant differences among drivers.
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FIGURE 9 | The interactive probabilistic models explorer of the reaction times hierarchical model. We compare drivers 310 and 335 and observe the posterior

predictive distribution of the reaction times on day 6 (indexed by 5) setting a condition mub > 12.1. (A) The initial (in blue) and re-estimated (in orange) posterior

predictive distribution of the reaction times for driver 310 on day 6. (B) The initial (in blue) and re-estimated (in orange) posterior predictive distribution of the reaction

times for driver 335 on day 6. Driver 310 seems more robust to a possible worst case of high slopes predictions.

volatility ∼ GaussianRandomWalk(σ = step_size) (2)

returns ∼ StudentT(ν = ν, λ = exp(−2 ∗ volatility)) (3)

3.3.2.1. Model check
Looking at the prior predictive distribution of the returns variable
in Figure 10, we realize that the model produces extremely large

values of prior predictive returns, which are not reasonable,
especially if we think that “the total value of all goods and services
the world produces is $109”14. We might need to change our

14https://docs.pymc.io/notebooks/stochastic_volatility.html
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FIGURE 10 | The interactive probabilistic models explorer of the stochastic volatility model. PyMC3 was used for the models’ specification and inference. (A) The prior

graphical representation. (B) The posterior graphical representation. (C) The updated posterior graphical representation after restricting the volatility to values greater

than −4.5. (D) The updated posterior graphical representation after restricting the volatility to values smaller than −5.1. The greater the value of the volatility, the more

uncertain the model becomes about the predicted values of the returns.
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prior distributions because they seem to fail to capture the prior
knowledge well.

3.3.2.2. Interactivity
It is difficult to explain how volatility affects the predictive
distribution of returns based solely on the model specification.
To reason about this, users would need to be familiar with
the λ parameter of the StudentT distribution and with the
exponential transformation. The IPME could help into this as
Figures 10C,D illustrate. When we restrict the volatility to values
higher than−4.5 (Figure 10C), the predictive distribution of the
returns variable becomes wider and therefore, themodel becomes
more uncertain about the values of the returns. On the other
hand, when we restrict the volatility to values lower than −5.1
(Figure 10D), the predictive distribution of the returns variable
becomes tighter and the model becomes less uncertain about the
values of the returns.

In this example we could also use interaction to observe the
effect of priors informativeness into the posteriors. The model
uses a quite wide exponential distribution (with λ = 0.1) as a
prior for the degrees of freedom parameter (ν) of the StudentT
distribution.We could set a condition on the prior distribution of
(ν) to make it tighter and see how the posteriors will change. We
restrict ν ∈ [21.0, 30.0] in Figure 11A. The posterior distribution
of volatility and the posterior predictive distribution of returns on
day “02/05/2008” become tighter in Figure 11B. It is obvious that
the more informative a prior is, the less uncertainty the model
gives to its predictions.

3.3.3. Coal Mining Disasters
The coal mining disasters model (see more details in
Supplementary Material) models the recorded coal mining
disasters in the UK from 1851 to 1962 (Figure 12). During
this period changes in the safety regulations are thought to
have influenced the frequency of disasters. Thus, the model
tries to predict a switch-point, when the disasters seemed to
start declining. According to the probabilistic model presented
in Figure 12B, the posterior probability mass function of the
switchpoint variable indicates that the switch most probably took
place at some point around the year 1890.

3.3.3.1. Interactivity
We could select the year 1890 from the year drop-down menu so
that we can observe the uncertainty of the posterior predictions
about the number of disasters in this year. Most of the probability
mass is concentrated around the values of 1 or 2 disasters. What
would happen to the uncertainty of the model about the number
of disasters in year 1890 if the switch happened between 1893
and 1897?

Figure 13A presents how the uncertainty about the disaster
number changes a priori based on the this condition on the
switchpoint variable. The prior predictive probability mass
function of the disasters variable becomesmore dispersed, but the
model does not seem to believe that the number of the disasters in
year 1890 could be increased given the change in the regulations
happens after 1890. Figure 13B shows the posterior predictive
probability mass function of disasters becomes more dispersed

and the probability mass gets slightly shifted toward 4. Themodel
becomes more uncertain about the number of disasters and the
mean increases slightly. This is reasonable, because if regulations
changed after 1890, the number of disasters in year 1890 is
expected to be increased.

4. DISCUSSION

4.1. Related Work
4.1.1. Probabilistic Graphical Models
One common representation of probabilistic models is Bayesian
networks (Koller and Friedman, 2009). Bayesian networks model
conditional dependencies among random variables, represented
as nodes with conditional dependencies represented as edges in
a directed acyclic graph (DAG). For example, the edge (µ, θ)
that connects nodes µ and θ and is directed from µ to θ

in Figure 3A expresses the conditional probability P(θ |µ) in
the centered hierarchical model of the eight schools problem.
Bayesian networks satisfy the local Markov property, which states
that a node is conditionally independent of its non-descendants
given its parents. For example, the conditional probability of
node y given its parent node θ is conditionally independent of
nodes µ and τ :

P(y|θ ,µ, τ ) = P(y|θ). (4)

A posterior distribution can be expressed as a product of
conditional probabilities based on the chain rule of probability:

P(y, θ ,µ, τ ) = P(y|θ ,µ, τ ) · P(θ |µ, τ ) · P(µ|τ ) · P(τ )

= P(y|θ) · P(θ |µ, τ ) · P(µ) · P(τ ) (5)

From equation 5 we can see how Bayesian networks provide a
factorized representation of joint probability distributions, where
each edge expresses one factor in the joint probability.

PPLs do not usually provide tools or interfaces for
automatic transformation of a probabilistic programming
model into a DAG. Two PPLs that provide some form of
graphical model interchange are BUGS (via DoodleBUGS)
and PyMC3. DoodleBUGS is a software component of
WinBUGs (Spiegelhalter et al., 2003) that provides a Doodle
editor for creating probabilistic graphical models as DAGs
and automatically transcribing DAGs into BUGs language
(Lunn et al., 2009). However it cannot do the opposite,
namely transform a model written in BUGS into a DAG.
Figure 3B presents the graphical probabilistic model of
the eight schools’ hierarchical model that was created with
DoodleBUGs. PyMC3 (Salvatier et al., 2016) provides the
pymc3.model_graph.model_to_graphviz(model

=None) method that converts a PyMC3 model into a graphviz
Digraph using the Graphviz graph visualization software (Ellson
et al., 2004). Figure 3C presents the graphical model of the
PyMC3 eight schools’ model.

Kruschke (2015) introduced a more informative DAG that
shows iconic “prototypes” of the distributions on each node
of the diagram. Kruschke (2012) argues that this type of
diagram (in comparison to the ones created with DoodleBUGS)
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FIGURE 11 | The interactive probabilistic models explorer of the stochastic volatility model where we set the condition ν ∈ [21.0, 30.0]. (A) The prior graphical

representation. (B) The posterior graphical representation. The posterior distribution of volatility and the posterior predictive distribution of returns become tighter.

More informative priors make model be more certain about its predictions.

has “a much more direct correspondence to lines of code in
JAGS/BUGS: (Usually) each arrow in this diagram corresponds
to a line of code in the JAGS/BUGS model specification.”
Kruschke (2012) explains that this type of diagram indicates
which parameters participate in the same distribution, which is
not visible in DoodleBUGs graphs. There is no automatic tool
for the creation of this Kruschke-style diagram, but Kruschke
(2013) presents two drawing tools that were created specifically
for the creation of this type of diagram; a set of distribution and
connector templates in LibreOffice Draw and R; and LaTeX/TikZ
scripts. Figure 3D presents the Kruschke-style diagram of the
eight schools hierarchical model created with the LibreOffice
Draw template.

4.1.1.1. Visualization for Bayesian reasoning
Although a diagrammatic representation of a probabilistic model
could provide a “comprehensive overview of the relations
between parameters and their meanings with respect to each
other and to the data” and sketching out a diagram like the ones
presented in the previous subsection could facilitate the process
of the model specification (Kruschke, 2018), Bayesian reasoning
needs more than this. For example, Gabry et al. (2019) highlight
the importance of visualization in all the stages of a Bayesian
workflow that comprise of an iterative process of model building,
inference, model checking and evaluation, and model expansion.

Kumar et al. (2019) created ArviZ, a unified Python tool for
exploratory analysis, processing and visualization of the inference

results of probabilistic programming models. ArviZ integrates
seamlessly with various established probabilistic programming
languages, which makes it a very powerful tool in the field
of Bayesian data analysis. While it has sophisticated tools for
visualizing trace statistics and model diagnostics, it does not
analyse themodel graph, nor does it offer interactive visualization
tools. A corresponding tool in R is bayesplot15 (Gabry and
Mahr, 2020), which provides a variety of plotting functions
and MCMC diagnostics for users working with a variety of
R packages for Bayesian modeling, such as RStan or packages
powered by RStan, such as rstanarm or brms packages. Another
visualization tool of Bayesian analysis in R is tidybayes16 (Kay,
2020). Tidybayes extracts, manipulates, and visualizes prior and
posterior samples from Bayesian models of a range of PPLs
and Bayesian analysis packages (“JAGS,” “Stan,” “rstanarm,”
“brms,” “MCMCglmm,” “coda,”) in a tidy data format. Common
visualization primitives (ggplot geometries) are exploited for the
visualization of priors and posteriors like quantile dot-plots, eye
plots, point/interval summaries, and fit curves with multiple,
arbitrary uncertainty bands.

Shinystan17 (Stan Development Team, 2017) is a web-based
interactive Bayesian exploratory tool in R, which is PPL-agnostic
and offers “customizable visual and numerical summaries of

15https://cloud.r-project.org/web/packages/bayesplot/bayesplot.pdf
16https://cloud.r-project.org/web/packages/tidybayes/tidybayes.pdf
17https://cran.r-project.org/web/packages/shinystan/shinystan.pdf
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FIGURE 12 | The interactive probabilistic models explorer of the coal mining disasters model. PyMC3 was used for the models’ specification and inference. (A) The

prior graphical representation. (B) The posterior graphical representation.

model parameters and convergence diagnostics for MCMC
simulations.” This tool, although it exploits interactivity to
customize the visual presentation of the data, it does not offer the
possibility of exploring prior and posterior sample space through
interactive conditioning or any analysis of the model’s graph.
Table 2 provides a comparative summary presentation of all these
tools including the IPME, based on a set of visualization and
analysis criteria in Bayesian analysis.

Some studies in the existing literature have showed that
visual representations of probabilistic data in Bayesian contexts
could facilitate Bayesian reasoning. For example, Sedlmeier

and Gigerenzer (2001) compared two approaches of teaching
Bayesian inference; representation training and rule training.
In the first type of training, people learned how to construct
frequency representations by means of frequency grids and trees,
whereas in the second type of training, people were taught how
to insert probabilities into Bayes’ formula. The results of the
conducted studies showed that representation training had a
higher immediate learning effect and greater temporal stability.

Micallef et al. (2012) showed that visualizations like Euler
diagrams, frequency grids or combinations of both along
with some explanatory text and no numerical information
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FIGURE 13 | The interactive probabilistic models explorer of the coal mining disasters model. PyMC3 was used for the models’ specification and inference. The

updated (A) prior graphical representation, and (B) posterior graphical representation after restricting the switchpoint to values within the interval 1893−1897. The

posterior predictive probability mass function of the number of disasters in year 1890 shifts toward 4. This is reasonable as we assumed with our conditioning that the

regulations changed at a later time.

significantly reduced the errors in the estimation of probabilities
by crowd-source workers, but they stressed the need for more
studies in evaluating visualizations in Bayesian workflows
under real-life decision-making conditions that may address

people of various backgrounds. They also indicated the
potential value of interactive visualizations for Bayesian
workflows. Therefore, we will review the interactive techniques
used in the existing literature for the communication of
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TABLE 2 | Comparative summary presentation of existing Bayesian analysis visualization tools including the IPME.

ArviZ bayesplot tidybayes shinystan IPME

Visual summaries of parameters Yes Yes Yes Yes Yes

Numerical summaries of parameters Yes No Yes Yes No

PPL/MCMC-algorithm independent input No Yes No No Yes

MCMC diagnostics Yes Yes No Yes No

Predictive test statistics Yes Yes No Yes Yes

Semantic definition of indexing dimensions and coordinates Yes No Yes No Yes

Interactive customization of visual/numerical summaries No No No Yes Yes

Interactive exploration of MCMC sample space No No No No Yes

Graphical analysis of model No No No No Yes

IPME offers unique features that we do not encounter in any other of the existing tools; the interactive exploration of MCMC sample space and the graphical analysis of the model.

various difficult and counter-intuitive concepts including
Bayesian inference.

4.1.2. Interactive Techniques
Exploiting interaction for communicating complex ideas,
methods, and results in science, research, or education is
well-established in the research literature. In this section,
we cover interactive visualization techniques and effects on
comprehension. In particular, there is an extensive literature on
interactive projection of high dimensional data. These occur in
Bayesian models with many parameters in the joint distribution.
For example, Faith (2007) presented a novel general-purpose
method that allowed users to interactively explore the space
of possible views of the high-dimensional data through simple
mouse actions. Sankaran and Holmes (2018) introduced
methods for interactive visualization of hierarchically structured
collections of time series and demonstrated a practical analysis
workflow of the impact of bacteria on human health to better
allocating units in commuter bike-sharing systems based on
these methods.

Other studies focused on the importance of interaction for
comprehension and engagement. For example, Tsai et al. (2011)
created an interactive visualization to help people with limited-
to-no knowledge in Bayesian reasoning in solving conditional
probability problems without prior training. They suggested
that people using the interactive models exhibited higher
accuracy in Bayesian reasoning compared to previous methods.
Hullman et al. (2018) suggested a novel interactive, graphical
uncertainty prediction technique for communicating uncertainty
in experimental results by letting users to graphically predict the
possible effects from experiment replications prior to seeing the
true sampling distribution. The study showed that users were able
to make better predictions about replications of new experiments
through this technique.

Kim et al. (2017) found that graphical elicitation of users’
prior expectations about trends in data and presentation of the
gap between users’ predictions and the visualized data improved
users’ short term recall of the data. This was followed by Kim et al.
(2018), who showed that viewing others’ expectations improves
a user’s ability to remember data when others’ expectations
were reasonably consistent. When users’ expectations were

contradicted, viewing others’ beliefs could prompt users to think
more critically about the data. The results of these studies led to a
new authoring tool for interactively eliciting people’s prior beliefs
[Midwest Uncertainty (MU) Collective, 2019].

A novel interactive reporting method for scientific and
research results brings interaction in the center of attention for
statistical reporting. Dragicevic et al. (2019) presented a new
approach to statistical reporting where readers of research papers
can explore alternative analysis options by interacting with the
paper. The “explorable multiverse analysis reports” allow authors
to report the outcomes of many different statistical analyses and
readers to dynamically change some elements of the analysis
and get new “versions” of the paper based on the new produced
results. This relies on two key concepts that relate to the proposed
interactive probabilistic models explorer.

The first idea is “multiverse analysis” in statistical reporting
(Steegen et al., 2016), where all processed data sets that
are generated from raw data based on different choices of
processing are analyzed to produce a multiverse of statistical
results. This multiverse reveals the fragility of the results across
various processing options. The second point of inspiration for
Dragicevic et al. (2019) was the idea of “explorable explanations”
(Victor, 2011a), which aims at encouraging active reading
through active engagement of the readers with a new form
of interactive narratives (e.g., reactive documents, explorable
examples, contextual information) that could allow readers
dynamically change some elements and get a new “version” of
the narrative.

Victor has also expounded how interaction, simulation and
visualization could be used for simplifying abstract ideas to
provide an intuitive understanding. For example, he suggests the
creation of a high-level mathematical tool that could become
“as ubiquitous as the pocket calculator,” which would transcribe
mathematical problems into software simulations of simple
physical models instead of abstract equations and symbols
(Victor, 2009). He argues that this kind of software could
introduce a new form of practical mathematics that could
“provide a broader context, allowing a deeper understanding
of the problem; easily handle problems which are difficult
or impossible to solve analytically; and be used to actively
create, not just passively understand.” An illustrative example
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was the scrubbing calculator (Victor, 2011b) that interactively
explores parameter spaces of algebraic problems by scrubbing
over numbers until the desired result is reached.

Finally, Victor (2011c) highlights the importance of a “ladder
of abstraction.” By moving between levels of abstraction starting
from the lower one that indicates a concrete working system
and stepping down to the higher one that indicates abstract
equations or aggregate statistics, the system designers’ intuition
and their design develop “side-by-side.” Victor (2011c) argues
that interaction in this iterative process of exploring a system
design is an essential element to move around the “ladder
of abstraction.”

4.2. Contributions
The interactive probabilistic models explorer of Bayesian
probabilistic programming models that is suggested in
this work was heavily influenced by these ideas, concepts,
visualizations and tools. In this section we will provide an
overview of the contributions of this novel representation of
probabilistic models in the field of Bayesian modeling, reasoning,
and visualization. We will also discuss how the interactive
probabilistic models explorer could enhance the interpretability
of Bayesian probabilistic programming models in terms of
informativeness, transparency, and explainability of the model to
humans, and finally, the potential of more trust into the model.

The IPME is an extension of the Kruschke-style diagram
(Kruschke, 2015), where MCMC samples from the prior
and posterior distributions are integrated into a visualization
of parameter distributions. This seamlessly integrates the
inference results with the structural representation in a single
compact representation with varying levels of abstraction
to provide modelers and decision-makers with a powerful
visualization tool. This increases the informativeness of a Bayesian
probabilistic model.

We provide a generic framework to transform PPLs into
an interactive probabilistic models explorer. A probabilistic
programming model, expressed as PPL source, can be too
abstract for a user to understand or too difficult to allow model
validity checks during the model specification process. The
proposed interactive graphical representation provides a broader
overview of a model’s structure. Modelers can at a glance observe
the structure of themodel and the specifications of its parameters.
Variable granularity makes the IPME adaptable to users’ needs,
skills and experience. The IPME increases transparency of the
model’s structure by balancing levels of visual abstraction to avoid
potential overwhelming of the users.

The most important feature of the interactive probabilistic
models explorer is interaction. This includes sub-setting,
indexing/plate dimension selection and prior/posterior
comparisons. Users can restrict the prior or posterior space
by selecting ranges for individual parameters, can slice inference
across indexing dimensions and they can quickly compare prior
and posterior beliefs. Users can interactively create projections
on the 2D plane of a high-dimensional entity that consists of
the model’s parameters, their indexing dimensions, and the
prior and posterior MCMC samples. Users can explore this
multiverse of different views of the model’s inference results
(Steegen et al., 2016). In this way, the proposed interactive

graphical representation increases the transparency of the
model’s inference results and observed data.

The interactive graphical representation could be seen
as a Bayesian “scrubbing calculator” (Victor, 2011b). Users
can iteratively update the restrictions of the sample space
based on one or more parameters/indexing dimensions until
they reach certain levels of uncertainty for a parameter
or prediction of interest. This explorability allows the
investigation of the sensitivity of the distribution about any
parameter or the predictions of the model as the “multiverse
analysis” in statistical reporting suggests (Steegen et al., 2016).
Although Bayesian reasoning requires reasoning about joint
distributions and conditional probabilities, which are usually
prone to misconceptions and biases (Tversky and Kahneman,
1974; Koehler, 1996), the IPME avoids the abstraction of
distributions and numerical probabilities by allowing “explorable
explanations” (Victor, 2011a). Users develop an intuitive
understanding of the mechanics of the Bayesian inference
through active engagement. The proposed interactive graphical
representation increases the explainability of the model to
the users.

The IPME tool integrates visualizations to present prior and
posterior predictive checks as part of a Bayesian workflow. Prior
predictive checks could provide evidence of the consistency of
the model with the domain expertise and posterior predictive
checks could provide evidence of the degree that the model is
rich enough to capture the essentials of the true data generating
process according to Betancourt (2018). This is very important
in cases where trust in models inference is questionable and
modelers or decision-makers need evidence that the assumptions
made led to a model that works as expected. The interactive
probabilistic models explorer could enhance the trust of the users
in the model’s inference results.

Our last contribution is the development of a Python package
that automates the creation of interactive probabilistic models
explorers from PPLs. This is a unified tool that could become
a valuable tool for users of any PPL. We offer this tool to
the research community with the hope of fulfilling an existing
gap in the field of Bayesian probabilistic programming models
and with the hope of raising valuable feedback and possibly
contribution for improving its design and features, and extending
its functionalities.

The interactive probabilistic models explorer aims at shedding
light to the abstraction of the PPL code and the conditional
probabilities of Bayesian inference by actively engaging users
in exploring the inference results and developing an intuition
about the inherent possibility space of the model’s parameters
and predictions. The interactive probabilistic models explorer
allows users to move around the “ladder of abstraction” (Victor,
2011c) starting from an abstract representation of PPL code and
climbing up to a multiverse of concrete fully-expandable views of
inference results in the pursuit of a profounder understanding of
the model and the inference.

4.3. Future Work
The IPME tool could be further extended and elaborated with
new functionalities to improve aspects like the navigation of the
DAG or users’ flexibility in customization of visual presentation
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of inference results and predictive test statistics. For example,
interaction could be used to highlight parent nodes when
user is interacting with a specific node or user sub-setting of
coordinates of interest for indexing dimensions of big sizes
could be enabled to narrow down the options in drop-down
menus of indexing dimensions and make navigation of data
easier. More visual primitives (Box plots, CDF plots, quantile
dot plots etc.) or more predictive test statistics could be included
in a list of pre-implemented features for users to select from
and enable customization according to users preferences and
scenario requirements. Another future extension of this tool
could incorporate recommendations of sets of “interesting”
parameters based on the scenario to provide, for example, some
sort of guidance through decision-making tasks.

The most important future extension of this work that we
could see is a closed-loop system, where the user interaction will
play a leading role in closing the loops between the user interface
and the rest of the components in a typical inference system;
the observed data, the model, and the inference. A closed-loop
system where the loop is closed between the user interface and
the inference allows for retrieval of more inference data possibly
in subsets of the sampling space, update of the priors, or even
disbelief of the presented data. A closed loop between the user
interface and the data would allow new data in the model and
updated inference results according to the new observations,
whereas between the user interface and the model would allow
update and refinement of the model. We see a great potential of
users’ interactivity in closed-loop systems and believe that this is
the future in probabilistic programming.

4.4. Conclusions
We have presented a generic pipeline for transforming a
probabilistic programming model and associated sample-based
MCMC inference results into a standardized format that can
then be automatically translated into an interactive probabilistic
models explorer, a novel representation of Bayesian probabilistic
models that fuses structural and distributional display. We
developed an initial tool that renders these interactive
graphical representations from standard PPL definitions.
This representation aims at a threefold representation effort; the
representation of a collapsible tree-like structure of the model’s
variables and parameters to reveal internal levels of statistical
or mathematical dependencies among them; the representation
of each inferred parameter as a node that presents graphically
the marginal prior or posterior distribution of the inferred
parameter’s MCMC samples; the representation of the observed
variables through prior or posterior predictive distributions
of the model’s predictive samples. Appropriate uncertainty
visualization techniques are used to graphically represent the
marginal distributions.

The added value of this representation lies in the interaction.
We support slicing on indexing dimensions or forming
conjunctive restrictions on parameters by interacting with
distribution visualizations. Each user interaction with the
explorer triggers the reestimation and visualization of the model’s
uncertainty based on the users’ preferences. This closed-loop
exchange of responses between the user and the explorer

allows the user to gain a more intuitive comprehension of
Bayesian model.

The interactive probabilistic models explorer provides at-a-
glance communication of a probabilistic program’s structure
and uncertainty of latent parameters, and allows interactive
exploration of the multi-dimensional prior or posterior MCMC
sample space. The representation was designed with the
principles of enhancing informativeness, transparency and
explainability and ultimately, the potential of increasing trust
in models. Probabilistic programming languages have made
sophisticated statistical methods available to the mainstream,
but the user interface lags behind. We see enormous potential
in interactive exploration models that support the elicitation,
validation and presentation of Bayesian probabilistic models.
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