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There is a growing body of evidence that numerical uncertainty expressions can be used
by non-experts to improve decision quality. Moreover, there is some evidence that similar
advantages extend to graphic expressions of uncertainty. However, visualizing uncertainty
introduces challenges as well. Here, we discuss key misunderstandings that may arise
from uncertainty visualizations, in particular the evidence that users sometimes fail to
realize that the graphic depicts uncertainty. Instead they have a tendency to interpret the
image as representing some deterministic quantity. We refer to this as the deterministic
construal error. Although there is now growing evidence for the deterministic construal
error, few studies are designed to detect it directly because they inform participants upfront
that the visualization expresses uncertainty. In a natural setting such cues would be
absent, perhaps making the deterministic assumption more likely. Here we discuss the
psychological roots of this key but underappreciated misunderstanding as well as possible
solutions. This is a critical question because it is now clear that members of the public
understand that predictions involve uncertainty and have greater trust when uncertainty is
included. Moreover, they can understand and use uncertainty predictions to tailor
decisions to their own risk tolerance, as long as they are carefully expressed, taking
into account the cognitive processes involved.
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INTRODUCTION

Many of the important decisions that we face involve outcomes that are uncertain, such as how to
protect oneself from the possibility of severe weather or infectious disease. In many cases the
uncertainty is quantifiable and could potentially inform decisions. Here, by “uncertainty” we mean
likelihood estimates of future events, such as those produced by modeling techniques employed in
weather forecasting (e.g., Gneiting and Raftery, 2005), although the true likelihood is not known, as it
is with the flip of a coin. Whether and how to provide uncertainty information (e.g., 40% chance of
freezing temperatures) to members of the public continues to be debated among experts. Although
uncertainty estimates more truthfully represent experts’ understanding of most situations, the fear is
that uncertainty expressions will be misunderstood by non-experts, making things worse rather than
better. Visualizations are sometimes considered a solution (e.g., Kinkeldey et al., 2014; Tak et al.,
2014; Taylor et al., 2015; Cheong et al., 2016; Mulder et al., 2019; Padilla et al., 2019; Padilla et al.,
2020). As we all know “A picture is worth a thousand words”—or is it? The question we address here
is whether uncertainty visualizations are more or less comprehensible to non-expert end-users than
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are other forms of uncertainty communication, in particular
when it comes to misunderstandings. Perhaps the most serious
misunderstanding and the focus here, is failing to realize that the
graphic depicts uncertainty, i.e., mistaking it as representing some
deterministic quantity.

Although at present little uncertainty information reaches
members of the public, communication of uncertainty has
been studied by social and behavioral scientists as well as by
cartographers and visualization researchers for decades (van der
Bles et al., 2019). Initially it was thought that verbal phrases such
as “likely” or “unlikely” would better communicate uncertainty to
non-experts than numerical expressions (e.g., 40% chance),
which might be difficult to understand especially for those
with less education. However, numerous studies demonstrated
early on that verbal phrases are not precise (see Reagan et al., 1989
for a review). People can have very different interpretations when
translating them back into numbers. For instance, the word
“likely” has been assigned a probability of anywhere between
0.5 and 0.99 (Wallsten et al., 1986). The word “possible” has a bi-
model distribution. One meaning at about 0.05 and another at
0.55 (Mosteller and Youltz, 1990). Thus, although verbal
expressions probably communicate the fact of uncertainty and
are currently in use in many domains, they do not adequately
communicate the degree of uncertainty. This led some to wonder
if perhaps numerical expressions might be better (Windschitl and
Wells, 1996; Nadav-Greenberg and Joslyn, 2009).

Indeed, it is clear that most people understand probabilities on
a practical, if not on a theoretical level. In one early experiment
(Patt, 2001), Zimbabwean farmers made crop choices and spun a
wheel with proportions representing varying probabilities of a
wet and a dry year. These rural farmers, with little to no formal
math education, were able to make increasingly better decisions
from an economic standpoint. There is evidence of similar
intuitions among Americans who do not expect weather
forecasts to verify exactly, even when single value deterministic
forecasts are provided (Morss et al., 2008; Joslyn and Savelli,
2010). This suggests that people are aware of the inherent
uncertainty in such predictions.

Moreover, there is a growing body of evidence that numerical
expressions of uncertainty can be used by non-experts to improve
decision quality. Evidence from our own lab has shown in
numerous experimental studies that numeric expressions of
uncertainty better convey likelihood than do verbal
expressions (Nadav-Greenberg and Joslyn, 2009), as well as
inspire greater trust and lead to better decisions from an
economic standpoint than do single value forecasts (Joslyn
and LeClerc, 2012). In addition, numeric uncertainty
expressions appear to counteract the negative effects for
forecast error (Joslyn and LeClerc, 2012) and false alarms
(LeClerc and Joslyn, 2015). Somewhat surprisingly, and
contradicting what people might think, the advantages
conferred by numeric uncertainty estimates, including better
decisions and greater trust, hold regardless of education level
(Grounds et al., 2017; Grounds and Joslyn, 2018). In other words,
the same advantages for numeric uncertainty expressions are
observed among those with a high school education or less as
among those who are college educated.

What about visualizations? Do the same advantages extend to
graphic expressions of uncertainty? It is obvious that many
experts think so, as there are hundreds of them currently in
use (Greis, 2017). In addition, there is an abundance of advice
about how uncertainty should be represented visually (Gershon,
1998; Tufte 2006; Kinkeldey et al., 2014; Hullman et al., 2015).
Tak et al. (2015) have suggested that these strategies can be
classified under three broad categories. One is using graphical
techniques such as blur, fading, sketchiness, dotted or broken
lines, transparency, size, texture, and color saturation. The second
is to overlay uncertainty information (sometimes in the formats
listed in the first category) and the third is to use animations (see
also Evans, 1997). However, for many of these suggestions, while
they make intuitive sense, the evidence that they actually convey
the meaning intended or how they compare with non-visualized
forms of uncertainty expression is limited.

That is not to say that there is no research on uncertainty
visualization. Indeed, there is a growing body of research
addressing a variety of questions about uncertainty
visualization (see Hullman et al., 2019 for a recent review). It
is important, however, to understand what questions are
addressed and how they are tested when evaluating this
research (Hullman, 2016; van der Bles et al., 2019). Much of
the early work was based on preference judgments (Kinkeldey
et al., 2015; Hullman et al., 2019) in which participants were
shown a group of visualizations and asked to indicate the formats
they preferred. For instance, there is evidence that people prefer
color-coded probability (limited spectral) to black and white
trajectory forecasts for hurricanes (Radford et al., 2013).
Although preference judgments are informative, they do not
reveal whether users understand the format they prefer or how
that format affects their decisions. Moreover, it has long been
known that preference judgments are often governed by
familiarity (Zajonc, 1968; Bornstein, 1989; Parrott et al., 2005;
Taylor et al., 2015) known as the “mere exposure” effect. Thus,
newer formats may be rejected simply because they are less
familiar, when in fact they would be more useful in the long
run. Even when participants are asked specifically whether they
think they would understand a graphic, the judgment does not
always line up with objectively measured understanding. For
example, in a study comparing perceived comprehension of
graphics illustrating forecast uncertainty (“Which figure did
you find the easiest to understand?”) to objective measures
(e.g., “How many models project a decrease in summer
temperature?”), the two measures were largely uncorrelated
(Lorenz et al., 2015). In other words, true understanding was
unrelated to participants’ assessment of their understanding,
although perceived comprehension was closely related to
preference.

Many recent studies (reviewed below) have begun to ask
participants questions that more directly test their
understanding, comparing visualizations to one another. When
evaluating these studies, however, it is important to consider the
control groups that are included (Savelli and Joslyn, 2013;
Hullman, 2016; Hullman et al., 2019). For instance, unless a
non-visualized control is included, it is not possible to determine
whether visualizations do a better or worse job in communicating
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uncertainty than do non-visualized expressions (e.g., numerical
information presented in text format). It is also informative to
include a control group that receives forecasts that do not
include uncertainty information. That is because people
already have many valid intuitions about uncertainty in
some domains, such as weather (Morss et al., 2008; Joslyn
and Savelli, 2010). We found, for instance, that given single
value deterministic forecasts, not only do participants expect
uncertainty, they correctly expect it to increase with lead time
(Joslyn and Savelli, 2010). Therefore, unless a “no
uncertainty” control is included, it is not possible to
determine whether people learn anything new from the
uncertainty expression (or whether they would have
anticipated the same level of uncertainty with a
deterministic expression). Finally, it is important to
consider what questions participants are asked in order to
determine whether the questions are capable of revealing
misunderstandings. Some questions can be “leading” in the
sense that they reveal information about what kind of answer
is required, precluding misunderstandings that would occur
in natural, extra-experimental settings.

In Sections two through five below, we provide a brief
overview of how visualizations have been evaluated (for a
more thorough review see Hullman et al., 2019). Interpretation
Biases Arising From Uncertainty Visualizations and Deterministic
Construal Error summarize some of the main interpretation
biases that have been detected, focusing on misinterpreting
uncertainty as some other quantity, known as the
deterministic construal error (DCE). Psychological Explanation
provides a psychological explanation for this effect while Ask the
Right Question outlines methodologies for revealing DCEs.
Solutions provides some suggestions for reducing the error and
Discussion summarizes our contribution.

COMPARISON BETWEEN
VISUALIZATIONS

Much of the research on user understanding compares different
uncertainty visualizations to one another. For instance, there is
evidence that uncertainty animations, showing a set of possible
outcomes over rapidly alternating frames, better help users to
extract trend information than do static visualizations such as
error bars (Kale et al., 2019). Animations may also facilitate
comparison between variables when uncertainty is involved
(Hullman et al., 2015).

There is also research comparing features of color-coding
in which participants ranked and rated map overlays
differing in saturation, brightness, transparency, and hue,
intended to indicate the chance that a thunderstorm would
occur (Bisantz et al., 2009). Participants responses were
highly correlated with the values intended by researchers
for all of these features except hue, suggesting that hue
variations may indicate different likelihoods than what was
intended.

In addition, there is evidence for substantial variability in how
people rank order hue intended to convey risk. Although the

notion of risk is slightly different than that of “uncertainty,” it
is related. Within the communication literature at least, risk
generally means some combination of the likelihood and the
severity of the event (Kaplan and Garrick, 1991; Eiser et al.,
2012). Indeed, many risk scales employ color-coding based
on variation in hue. However, with the exception of red, often
found to convey the greatest risk (Borade et al., 2008; Hellier
et al., 2010), there is little consensus on the rank order of
other colors (Chapanis, 1994; Wogalter et al., 1995; Rashid
and Wogalter, 1997). For instance, in a study of the long
retired American Homeland Security Advisory System that
used hue to indicate terrorist threat, more than half of the
participants (57.8%) ranked the colors from most to least
threatening in an order that conflicted with what was
intended (Mayhorn et al., 2004). This suggests that hue
may convey different levels of risk to different individuals
as well as different levels of risk than what was intended.
Again, these are risk displays (rather than uncertainty per se)
which intentionally confound the constructs of severity
and likelihood. However, the prevalence of such
visualizations may influence people’s interpretation of
color-coded uncertainty, an issue that we address in
Deterministic Construal Error below.

The approach of comparing visualizations to one another
has also uncovered inferences about information not explicitly
depicted in the visualization. In a study that compared several
visualizations of an uncertainty interval, a range of values
within which the observation is expected, participants
judgements of “probability of exceedance” revealed that
most inferred a roughly normal distribution within the
interval with all visualizations tested (Tak et al., 2015).
However, the estimates of participants with low numeracy
suggested a flatter distribution.

Our own early work, investigating uncertainty
visualizations among professional forecasters, had a similar
design (Nadav-Greenberg et al., 2008). We found that some
visualizations such as boxplots, were better for reading
precise values, while others, such as color-coded (spectral)
charts, were better for judging relative uncertainty or
appreciating the big picture. Thus, the value of a particular
visualization format may depend on the task for which it
is used.

This kind of research is useful, particularly in situations in
which visualizations are the only option such a cartography (See
Kinkeldey et al., 2014 for a more complete review), in that it
reveals the relative characteristics of various forms of
uncertainty visualization. However, it does not reveal
whether visualizations communicate uncertainty more or less
well than do non-visualized formats such as numerical
expressions. This is important when non-visualization is an
option, because sometimes visualizations come with costs in
terms of potential misunderstandings (see Interpretation Biases
Arising From Uncertainty Visualizations and Deterministic
Construal Error, below). Therefore, a control condition with
the same information in numeric text format (omitting the
visualization) is useful to determine whether there are benefits
to visualizations over other formats.
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COMPARISON BETWEEN
VISUALIZATIONS AND
NUMERICAL FORMATS
There is some research that makes this important comparison as
well. For instance, one study using a shipping decision task
(Mulder et al., 2019), tested three different visualizations
representing the uncertainty in ice thickness, spaghetti plots
(multiple lines each representing one possible outcome), fan
plots (quartiles and extremes plotted around a median), and
box plots. These were compared to a numerical representation of
the same information (“30% chance of ice >1 m thick”). In this
case, there were no consistent differences in decisions or best
guess estimates (single value ice thickness estimate) between any
of the expressions tested. In other words, all three visualizations
and the non-visualized numeric control yielded similar decisions
and estimates. However, spaghetti plots gave rise to the
impression of greater uncertainty, suggesting a bias with that
format.

Another example is an experiment comparing visualizations of
the likelihood of wildfire in a particular geographic area to a text
format (e.g., 80–100% burn likelihood zone). Although there were
few differences in participants’ decisions about whether or not to
evacuate when allowed the time to consider, spectral-color hue
visualizations (warmer colors indicating higher likelihood)
allowed participants to make better decisions under time
pressure (Cheong et al., 2016).

It is important to realize however that even when comparisons
between visualizations and numerical expressions are included, it
is often unclear whether participants understood the situation
any better or made better decisions than they would have if
uncertainty were omitted altogether. This is also an important
comparison to make because people often have numerous, fairly
accurate, pre-experimental intuitions about uncertainty in some
domains (Joslyn and Savelli, 2010; Savelli and Joslyn, 2012). The
only way to know whether uncertainty visualizations provide
additional information is to compare them to a control condition
with a deterministic prediction.

COMPARISON BETWEEN
VISUALIZATIONS AND
DETERMINISTIC FORMATS
Indeed, there are also many experiments comparing uncertainty
visualizations to a deterministic control. For instance, there is
evidence that some uncertainty visualizations (dot plots,
probability density functions, confidence intervals) allow
people to better aggregate across varying estimates of the same
value (Greis et al., 2018). Participants using uncertainty
visualizations weighted discrepant sensors by their reliability
whereas those using point estimates tended to take a simple
average. Somewhat surprisingly, more complex visualizations,
dot plots and probability density functions, resulted in better
weighting than did confidence intervals.

Other studies comparing uncertainty visualizations to
deterministic formats have revealed that color-coded

uncertainty visualizations improve likelihood understanding
compared to the conventional tornado warning polygon. In
one study, participants using either spectral or monochromatic
color-coded visualizations better understood the distribution of
tornado likelihood across the area, than did participants using the
conventional warning polygon (Ash et al., 2014). Another study
comparing spectral and monochromatic formats to the
conventional polygon, demonstrated that perceived likelihood
was more accurate with both color-coded formats than with the
conventional polygon (Miran et al., 2019). Thus, it is clear that
there are several advantages for uncertainty visualizations when
compared to a deterministic control.

However, the benefit of similar visualizations to decisions may
have some limitations. In one example (Miran et al., 2019)
protective decisions based on color-coded probabilistic tornado
warnings were compared to those based on a deterministic
warning polygon. The main advantages for the color-coded
probabilistic warnings were in areas with greater than a 60%
chance of a tornado. In that range, probabilistic visualizations
increased concern, fear, and protective action as compared to the
deterministic polygon. However, at lower probabilities (0–40%),
mean ratings for concern, fear, and protective action were similar
in the two formats.

Similarly, another study also using tornado warning graphics
(Klockow-McClain et al., 2020), showed increased protective
decisions for uncertainty visualizations above 50% chance of a
tornado, but little difference from the deterministic control below
50%. This is clearly important information that was only
discovered because the deterministic control condition was
included in the experimental design. Based on these results,
the advantage to user decisions for uncertainty visualizations
may be confined to higher probabilities when compared to other
warning information (such as the conventional polygon).

In addition, sometimes such comparisons reveal important
misunderstandings. A study comparing a visualization of a single
hurricane path (deterministic control) to variations of the cone of
uncertainty and an ensemble of paths (Ruginski et al., 2016),
demonstrated that people mistakenly infer that the hurricane
damage is predicted to increase over time when viewing the
uncertainty visualizations but not when the single deterministic
path was shown. It is important to note that these visualizations
were not intended to convey information about relative damage,
an issue that we will return to in Deterministic Construal Error
below. Thus, it is clear that critical information about both
advantages and disadvantages can be revealed by comparing
uncertainty visualizations to representations of the same
information without uncertainty.

COMPARISON BETWEEN
VISUALIZATIONS, NUMERICAL, AND
DETERMINISTIC FORMATS
Finally, there are also studies that include both controls, a non-
visualized uncertainty expression and a single value or
“deterministic” control. One example incorporated a decision
task based on bus arrival times (Fernandes et al., 2018). Five
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graphs, using different visualization techniques to show the
likelihood of arrival plotted over time (e.g., probability density
function) were compared to a graph showing a single arrival time
and a text format indicating the probability of exceeding a
particular time (“Arriving in 9 min. Very good chance [∼85%]
of arriving 7 min from now or later”). Participants with
uncertainty information made better decisions about when to
be at the bus stop than did those with the single value control.
Cumulative distribution function plots and frequency based
“dotplots,” in which more dots plotted over a particular time
indicates greater likelihood, allowed for better performance
overall. However, the probabilistic text format, which, as the
authors noted, included somewhat less information, was
comparable at some probability levels.

We have tested visualizations of a similar uncertainty
expression, a predictive interval for daytime high and
nighttime low temperature (Savelli and Joslyn, 2013). The
visualization was a simplified box plot, essentially a bracket
(see Figure 1A), to inform users of the temperatures between
which the observed temperature was expected with 80%
probability. There were a number of important advantages for
predictive intervals compared to a control condition in which
only the deterministic temperature was provided. By asking
participants to indicate the highest and lowest values that
would not surprise them, we discovered that predictive
intervals, based on realistic values, led to a narrower range of
expectations than the deterministic forecast alone. In other
words, participants expected greater uncertainty when
uncertainty information was not provided. Predictive intervals
also helped participants to make better decisions (issue a freeze

warning) by indicating whether the decision-relevant value was
within or outside of the 80% predictive interval. This was rather
surprising given the complex ideas upon which the predictive
interval was based. Indeed, other research suggested that most
participants were not able to provide an accurate explanation of
the interval in response to open-ended questions (Joslyn et al.,
2009). This is in line with research showing a number of
interpretation problems with error bar visualizations in general
(Correll and Gleicher 2014). Nonetheless, in this (Savelli and
Joslyn, 2013) and other experiments in our lab (Joslyn et al., 2013;
Grounds et al., 2017), participants demonstrated substantial
practical understanding in that the predictive interval
successfully informed their decisions. Interestingly, there were
no differences in terms of decision quality between a bracket
visualization and the text/numeric version (see Figure 1B) of this
information, although there were significant misunderstandings
with the bracket (See Deterministic Construal Error below).

While we do not provide a comprehensive review here, the
evidence suggests that there are definite advantages for uncertainty
information, including uncertainty visualizations, over deterministic
forecasts. However, there may be situations, especially when
protective action is required at lower probabilities, where the
advantage is less clear (e.g., Miran et al., 2019). Also less clear,
are the advantages of visualizations over numeric/text
representations. Sometimes visualizations are better (e.g., Cheong
et al., 2016), and sometimes there are no differences (e.g., Miran
et al., 2019). Indeed, advantages for visualizations are more often
seen in specific situations. For instance, there is some evidence that
icon arrays are more effective in communicating risk information
based on disease prevalence especially among those with low

FIGURE 1 | Predictive intervals, each accompanied by a key (shown in a) describing “41°F” as the “best forecast”. Note: Font and figure sizes are slightly smaller
than they were in the original experiments to conform to journal requirements.
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numeracy (Garcia-Retamero and Galesic, 2010; Garcia-Retamero
and Hoffrage, 2013). Indeed, these tend to be more complex
problems than what we have discussed so far, involving
understanding the combination of test accuracy and disease
prevalence, risk reduction with specific treatments and Bayesian
reasoning. Such visualizations are likely effective because they
promote a mental representation that is compatible with the
normative response (Evans et al., 2000). Indeed, there is evidence
that adding information to a text-only representation of conditional
reasoning problems can elicit performance comparable to that of
icon arrays (Ottley et al., 2016).

INTERPRETATION BIASES ARISING FROM
UNCERTAINTY VISUALIZATIONS

It is also important to note that there are systematic biases in
interpretation that arise from some visualizations. For example,
in the experiment reviewed above (Mulder et al., 2019), spaghetti
plots gave rise to the impression of greater uncertainty than other
visualizations despite the fact that all were intended to display the
same amount of uncertainty. Similar biases were reported by Tak
et al. (2014) for a gradient visualization.

In addition, people tend to make assumptions about the values
not depicted in visualizations, such as those within predictive
ranges. As noted above, sometimes users assume a normal
distribution (Tak et al., 2014; Tak et al., 2015), although this
information is not explicit in the visualization. Whether or not a
normal distribution is accurate depends on the statistic being
reported. However, other evidence suggests that people tend to
assume a relatively flat distribution within the range (Rinne and
Mazzocco, 2013; Grounds et al., 2017) which is usually not the
case. A similar assumption is made about the area within tornado
polygons. Unless otherwise specified, people tend to think that
the likelihood of a tornado is relatively uniform within the
polygon boundary (Ash et al., 2014). This is definitely not the
case, due to the typical movement of tornados. The likelihood
tends to be less near the southwestern boundaries of the polygon
and increase in the northeastern corner (Ash et al., 2014).

DETERMINISTIC CONSTRUAL ERROR

Thus, it is clear that users of visualizations sometimes interpret
them in ways that were not intended. Sometimes
misinterpretations are outright errors, contradicting the
intended message (e.g., Miran et al., 2019). However,
sometimes users infer additional information that was not
intentionally specified in the visualization (e.g., Tak et al.,
2014; Tak et al., 2015). Perhaps the most serious error in
interpretation however is one that most studies are not
designed to detect. Sometimes people do not realize that
uncertainty is what is being expressed by the visualization.
Instead they interpret the image as representing some
deterministic quantity, such as the amount of precipitation or
the windspeed. This is known as deterministic construal error
(Savelli and Joslyn, 2013; Padilla et al., 2020) and is most likely to

occur in extra-experimental settings in which users have not
already been alerted to the fact that the visualization depicts
uncertainty.

A classic example is the cone of uncertainty showing the
possible path of a hurricane. Evidence suggests that it is widely
misunderstood as the extent of the storm with the central line
indicating the main path of the hurricane (Broade et al., 2008;
Boone et al., 2018; Bostrom et al., 2018). Indeed, participants tend
to indicate that the hurricane will be larger and produce more
damage when using the classic cone compared to the same
information represented as ensemble or spaghetti plots,
showing multiple possible paths (Ruginski et al., 2016; Liu
et al., 2017; Padilla et al., 2017). It may be that the border,
showing the diameter of the cone which increases with time as the
uncertainty increases, suggests to users that the storm is growing
over time. In other words, instead of uncertainty in the hurricane
path, users interpreted the graphic as indicating a deterministic
prediction for a single hurricane path with additional information
about storm size that was increasing over time. This error has
even been detected among emergency managers (Jennings, 2010).
In addition, although spaghetti plots, without the border,
attenuate this misinterpretation, it persists to some extent in
spaghetti plots as well: Participants tend to think that the damage
will be greater if their location is intersected by one of the
randomly placed lines of the spaghetti plot (Padilla et al., 2019).

We first noticed the DCE when testing the bracket
visualization of the upper and lower bound of the 80%
predictive interval mentioned above (see Figure 1A; Savelli
and Joslyn, 2013). Although the visualization was
accompanied by a prominent key containing a simple,
straightforward definition of each number, 36% of participants
misinterpreted the upper bound as the daytime high temperature
and the lower bound as the nighttime low. In other words, they
thought that the bracket was depicting a deterministic forecast for
diurnal fluctuation. We discovered this when we asked
participants to indicate the “most likely” value, actually shown
at the middle of the bracket (see Figure 1A). Instead of providing
an approximation of that number, some participants answered
with the value at the upper bound when we requested daytime
high and the lower bound when we requested nighttime low
temperature. In retrospect, this was not surprising, diurnal
fluctuation is often included on weather websites. In other
words, participants were expecting to see it. However, it was a
gross misinterpretation of the single-value forecast, much higher
(or lower) than what was intended, and it negatively affected the
decisions participants made (e.g., to issue a heat or freeze
warning) based on the forecast.

Initially we thought that we had simply done an inadequate
job of visualizing uncertainty. So we ran a subsequent study in
which we incorporated features recommended by visualization
experts to convey uncertainty, such as broken instead of solid
lines (Figure 1C) for the bracket (Tufte, 2006) and a bar with
blurry, transparent ends (Figure 1D) where the upper and lower
bounds were located (MacEachren, 1992). These were also
accompanied by the same explicit key. However, again the
errors were made at approximately the same rate. In other
words, these classic uncertainty features did not help at all.
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We tried a number of other adjustments including turning the
bracket around so that the single-value forecast was on the left
(presumably read first) and the less likely upper and lower bounds
on the right (Figure 1E). In another version we put the key inside
of the forecast, thinking it could not be ignored in that format
(Figure 1F). But still the errors were made at approximately the
same rate.

Then we decided we needed to point out the actual location of
diurnal fluctuation in the forecast by including a line connecting
the daytime high and nighttime low temperatures (see
Figure 1G). Perhaps when viewers realized that diurnal
fluctuation was represented by the line, they would not
attribute the same meaning to the bracket. In other words,
this graphic may serve to block DCEs. Participants still made
the error.

We even tested a version in which the single-value forecast was
accompanied by a plus/minus sign and a number indicating the
amount of error to expect. Although not really a “visualization,”
we were sure it would lead to fewer misinterpretations, because
the only temperature value shown was the “correct” answer, the
single-value temperature. Obtaining the upper- and lower-bound
values required adding or subtracting the error amount. However,
participants made DCEs with this format as well. This was
particularly discouraging because it was clear that participants
were willing to go to considerable effort to interpret the forecast as
deterministic.

At that point, it was clear that we were dealing with a much
deeper problem than expectations derived from other websites. In
one final effort, we removed the visualization altogether and
presented the information in a text format (See Figure 1B). With
this format, the misinterpretation all but disappeared. Nearly
everyone (94%) was able to correctly identify the numbers
intended as the daytime high and nighttime low temperatures.
This suggested that the previous errors were at least partially due
to the fact that a visualization was used, rather than the particular
type of visualization. Perhaps visualizing the information made
the forecast seem more concrete and as a result, more certain.
Perhaps after initially seeing the visualization, participants
assumed they knew what the image meant and ignored the
key altogether, regardless of where it was placed.

Indeed, there is growing evidence for DCEs with other forms
of likelihood statistics and other uncertainty visualizations. For
instance, color-coded uncertainty, whether spectral or
monochromatic, may encourage DCEs, in part because color is
often used to indicate variation in deterministic quantities, again
setting up expectations based on past experience. This may be
partly due to the intentional confounding of likelihood and
severity in a long history of color-coded risk scales (see
Comparison Between Visualizations above). What is
particularly striking about color-coded uncertainty
visualizations is that there is considerable evidence that experts
are susceptible to DCEs with this format. For example, one study
investigated professional weather forecasters understanding of a
chart color-coded in shades of red and blue, indicating probability
of accumulated rainfall greater than 0.01 inch. A full third of
forecasters interpreted the increased color intensity (red in this
case) as greater accumulation rather than greater likelihood

(Wilson et al., 2019). Another example is a study of color-
coded climate outlook graphics for temperature (Gerst et al.,
2020), intended for use by the U.S. National Oceanic and
Atmospheric Administration (NOAA). In these visualizations,
hue indicated whether the value would be above normal (e.g.,
orange), near normal (gray) or below normal (e.g., blue).
Uncertainty was indicated by variation in saturation. Expert
users from emergency management, agriculture, water
resource management, and energy sectors were first asked to
explain the meaning of graphics, the relationship to normal
temperatures (increase, decrease, near normal) and the
probability. Almost half of them thought that a gray sector,
intended to indicate the probability of near normal
temperatures, meant simply “normal temperatures”
(completely overlooking the notion of probability). Similar
results were reported for color-coded probability of
precipitation outlooks in an earlier study (Pagano et al., 2001).
Greater saturation was intended to represent greater probability
of wetter (or dryer) than normal conditions. Instead most
emergency managers and water management experts
interpreted greater saturation as indicating extremely high
precipitation. It is interesting to note that these last two
visualizations overlaid uncertainty onto other quantities
(Category 2 as described by Tak et al., 2014, mentioned
above). Thus, this strategy may be particularly conducive to
DCEs. Indeed, this is an area where more research is necessary.

In sum, there is growing evidence for DCEs with visualized
uncertainty, even among experts. Here we have shown examples
of predictive intervals, possible hurricane paths as well as color-
coded precipitation likelihood and climate temperature outlooks.
However, people are capable of making the same error when no
visualization is involved. People often think that probability of
precipitation is a deterministic forecast for precipitation with
additional information about the percentage area or time
precipitation will be observed (Murphy et al., 1980; Joslyn
et al., 2009). Similar results were reported in a recent study.
When shown a probability of precipitation forecast, the majority
of German respondents selected either “It will rain tomorrow in
30 percent of the area for which this forecast is issued” or “It will
rain tomorrow for 30 percent of the time” (Fleischhut et al., 2020).

PSYCHOLOGICAL EXPLANATION

Thus, it is clear that the DCE is fairly attractive to users. Although
the examples provided here reside in the domains of weather and
climate, we do not think that it is specific to these domains.
Instead, we suspect that the DCE is the result of a more general
propensity toward reasoning efficiency or heuristic reasoning
(Tversky and Kahneman, 1975) that could be observed in any
domain. Human reasoners have a tendency to take mental
shortcuts that reduce the amount of information they must
process at any given time, referred to as “cognitive load.” It
has long been known that people tend to opt for a simpler
interpretation if one is available, to reduce cognitive load
(Kahneman, 2003). In this case, the deterministic
interpretation, implying a single outcome, replaces the more
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complex but accurate interpretation in which one must consider
multiple possible outcomes and their associated likelihoods. As
such, the DCE may be a form of attribute substitution
(Kahneman and Frederick, 2002), the tendency to substitute
an easy for a hard interpretation. The deterministic
interpretation is easier because it requires considering only
one outcome at the choice point instead of many.

This is not to say that it is necessarily a conscious decision in
which one considers both interpretations and deliberately selects
one. Rather, the DCE likely occurs on an unconscious level,
before one is even aware that there is an alternative interpretation.
Indeed, cognitive and behavioral scientists who ascribe to the dual
processes or dual systems accounts of human reasoning
(Carruthers, 2009; see; Keren and Schul, 2009; Keren, 2013)
attribute preconscious assumptions such as this to “System 1”
(Kahneman and Frederick, 2002; Kahneman, 2011). System 1
includes reasoning that is fast, automatic, largely unconscious,
and based on heuristics. The other, System 2, includes reasoning
that is conscious, slow, deliberate and effortful. Although System 2
supports logical step-by-step reasoning, there are definite
limitations to the amount of information that can be managed
(Baddeley, 2012). Therefore, when people encounter complex
information, System 1 simplifications, reducing cognitive load,
are almost inevitable and take place rapidly prior to awareness
(See Padilla et al., 2019, for a broader application of dual process
theories to decisions and visualizations). In the case of DCEs
people may be inclined to assume (System 1) that the message is
deterministic. In a sense this is practical because most decision
making is eventually binary in that one must choose between
taking action or not. Thus, at some point one must act upon the
outcome one judges to be more likely. In other words, because of
the increase in cognitive load that accompanies uncertainty and
the practical necessity of making a binary choice, perhaps the
deterministic interpretation is “preferred” by the human
information processing system. As such, the deterministic
construal error may be related to a general psychological
“desire for certainty” (Slovic et al., 1979).

Nonetheless there are clearly situations in which DCEs are
more likely to occur. In particular those in which the same
information is often presented as deterministic (i.e., diurnal
fluctuations) or the same conventions have been used to
express variation in deterministic quantities, such as color-
coding in context of weather. In other words, DCEs are more
likely to occur when prior experience leads to the expectation that
expressions quantify deterministic information. This may be
particularly likely with visualizations, which also tend to be
highly salient. Usually a small text key is the only thing that
specifies the quantity. Users may or may not be willing to read it,
especially if they are convinced that they already know what the
visualization means.

ASK THE RIGHT QUESTION

It is important to understand however, that in order to detect
DCEs participants must be asked the right question. Although
experts have been warning against this possible error for some

time (Kootval, 2008), few studies have reported it directly, mainly
because in most studies participants are told that the visualization
contains uncertainty before any questions are asked of them. We
discovered the DCE by accident when asking about the
deterministic quantity depicted in the visualization that also
contained uncertainty. A more direct approach would be to
begin by asking participants an open-ended question about
what the visualization means, as was done by Gerst et al.
(2020) above. This is important to do prior to providing
participants additional information that may reveal the fact
that uncertainty is the subject. This also means that most such
comparisons will have to be done between groups. In other words,
the same participant should not be asked to respond to more than
one format. That is because, once the participant has been alerted
to the fact that uncertainty is an issue by more specific questions
or well-designed graphics, this knowledge may well influence
responses to subsequent visualizations, known as “carryover
effects.” The point is that many of the studies reviewed above
did not detect this fundamental interpretation error, largely
because they were not designed to do so. Participants were
simply asked questions about uncertainty directly, revealing in
the question itself that the visualization contained uncertainty. In
a natural setting, the cues included in such leading questions
would not be available to users and they may be more likely to
make the deterministic assumption.

SOLUTIONS

The bottom line is that people may have a strong propensity to
commit DCEs that is built into their cognitive architecture. In the
vast majority of cases this is probably a fair assumption and a
useful strategy. However, when applied to uncertainty
visualizations, the consequences can be serious. The DCE
prevents people from benefitting from likelihood information,
which as we saw from the work reviewed above can increase trust
and improve decision quality. Moreover, DCEs can give users a
gross misunderstanding of the single value forecast as was the
case with the predictive interval when participants mistook the
upper bound for the daytime high and the lower bound for the
nighttime low (Savelli and Joslyn, 2013). This is clearly a serious
problem for uncertainty communication.

What do we do about it? The first step of course, is to
understand it. More research is required that is capable of
detecting this error to ascertain the conditions under which
people are most prone to make it. Evidence to date suggests
that some formats, such as color-coded visualizations, the cone of
uncertainty, and brackets, may encourage DCEs. This may be due
in part to the facts that visualizations are salient and it is not clear
that they indicate uncertainty until the key or caption is read, that
visualizations may serve to concretize the quantity, and that prior
experience may lead users to assume the deterministic meaning
initially. At that point, some users may be convinced that they
understand what is being depicted and fail to make an effort to
fully grasp any additional explanations that are provided. This
might be particularly problematic in situations in which both
kinds of information are included in the same graphic. That is,
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when uncertainty information is overlaid on visualizations of
some other quantity such as above normal temperatures. In those
cases, it may be particularly challenging even for experts to
decode the true meaning of specific aspects of the
visualization, even when they take the time to read the key. At
the very least, it may help to separate uncertainty and other
quantities in graphics, although again, more of the right kind of
research is needed to fully understand this issue.

When these issues are better understood, we can begin to think
about solutions. Indeed, there have already been some interesting
suggestions for overcoming the DCE in the context of
visualizations, such as avoiding the use of colors already
associated with warnings (yellow, orange, red and violet) and
not emphasizing particular points on a graph, such as medians, as
they “may inappropriately withdraw attention from the
uncertainty” (Fundel et al., 2019). Another potential solution,
in some cases, is hypothetical outcome plots in which animation
shows different possible outcomes in rapid sequence (see
Comparison Between Visualizations above). In this format, the
uncertainty becomes “implicit,” rather than a property of
something else like color, size, or saturation that usually maps
onto deterministic data (Hullman et al., 2015; Kale et al., 2019).
Ensembles, such as those discussed in Comparison Between
Visualizations and Deterministic Formats in context of
hurricane paths, provide a similar but static solution. In fact,
the evidence reviewed above (Ruginski et al., 2016) suggests that
ensembles, showing a subset of possible hurricane paths reduce
DCEs as compared to the conventional cone of uncertainty.
Another suggestion for depicting uncertainty with error bars,
is to employ gradation with lighter colors indicating lower
likelihood, at the ends (Wilke, 2019). However, as of this
writing, few of these suggestions have been tested using a
procedure capable of detecting DCEs in a situation known to
produce them, showing a reduction when they are employed. We
do know based on our own work that in situations where DCEs
are likely, such as when users have expectations based on prior
experience (e.g., diurnal fluctuation), many of the known
conventions for visualizing uncertainty failed to eliminate the
DCE (Savelli and Joslyn, 2013).

Indeed, because of the need to reduce cognitive load and the
fact that most predictions available to members of the public have
historically been deterministic, people may automatically assume
that they are receiving a deterministic message, unless that
interpretation is somehow blocked. As a matter of fact, there
is some evidence that blocking DCEs is possible when the specific
psychological mechanism that leads to them is understood. DCEs
were reduced when probability of precipitation included the
probability of “no rain” (70% chance of rain and 30% chance
of no rain) specifying both possible outcomes and blocking the
percent area/time interpretation (Joslyn et al., 2009). However,
the attempt at blocking DCEs in response to the predictive
interval bracket (Savelli and Joslyn, 2013), by adding
connecting lines to point out the actual diurnal fluctuation
(Figure 1G), was not effective. The only thing that eliminated
the DCE in that case, was removing the visualization altogether
and providing the same information in a text format. On the
other hand, information instructing participants that the width of

the cone of uncertainty “tells you nothing about the size or
intensity of the storm” reduced this impression among
participants compared to a control condition in which it was
not presented (Boone et al., 2018). Thus, instructions that focus
on bocking psychological mechanisms known to produce DCEs,
may be an important strategy to test in future research.

There is also some evidence that the DCE can be overcome
with experience. We found in our own work with the predictive
interval bracket visualization that participants were less likely to
commit a DCE on subsequent trials after the first trial
(Experiment 1; Joslyn et al., 2013). This suggests that
participants came to understand the probabilistic meaning of
the forecast after using it. It is important to note however, that
explicit instructions did not help in this case. In the second study,
the experimenter read the key information aloud, explaining the
probabilistic meaning of the upper and lower bound on the
bracket, to ensure that all participants were exposed to this
information at the beginning of the experiment. This did not
reduce DCEs. In other words, we did not see an equal reduction in
errors with read-aloud instructions on trial 1, in Experiment 2 as
was seen in Experiment 1 on the second trial. Perhaps
participants must deliberately interact with the forecast, using
it to answer specific questions, to reach this level of
understanding. Again, more research is needed to fully
understand these processes.

However, in many cases it may be that uncertainty
visualizations should be avoided altogether as some have
suggested (Savelli and Joslyn, 2013; Fernandes et al., 2018)
because they may encourage DCEs and because people are
likely to encounter them in novel situations, such as on an
internet website, where little or no support is available. As we
saw in our own study (Savelli and Joslyn, 2013), omitting the
visualization and providing a simple text based numerical
representation of the 80% predictive interval instead
(Figure 1B) eliminated the error. Moreover, the text format
was equally advantageous in terms of forecast understanding,
trust in the forecast and decision quality as were the
visualizations. In other words, omitting the visualization
reduced DCEs with no costs. Moreover, participants were able
to understand and use the text predictive interval forecast with
absolutely no special training.

DISCUSSION

To reiterate, it is clear that this is an important issue that needs
more research specifically designed to address it. The scientific
community has long assumed that visualizations facilitate
understanding, especially for statistically complex information.
However, this assumption has only recently been put to the test
with regard to visualized uncertainty and may well be ill advised
in some cases. Therefore, we need to better understand whether
there are situations in which uncertainty visualizations have
advantages over other communication strategies (when they
are an option), such as text and or numeric formats. In order
to do that, experimental designs must be employed that make the
right comparisons, between visualizations and non-visualized
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representations of the same information as well as comparisons to
deterministic controls. Indeed, there may be some contexts in
which visualizations are particularly helpful, such as with icon
arrays used to communicate risk information based on disease
prevalence and test accuracy among those with low numeracy
(Garcia-Retamero and Galesic, 2010; Garcia-Retamero and
Hoffrage, 2013). In addition, there are some situations in
which visualizations may be the only option, such as when the
judgment requires appreciating variation across geographic
locations (Nadav-Greenberg et al., 2008). When those
situations are identified, efforts can be focused on detecting
and, if necessary, reducing interpretation errors. To do that
however, researchers must ask questions that are capable of
detecting fundamental interpretation errors such as the
deterministic construal error. Participant should be asked what
they think the graphic means prior to being told that it represents
uncertainty.

We wish to stress that we firmly believe that more
uncertainty information should be made available to
members of the public. People have individual concerns and
risk tolerances that are not well served by one-size fits-all
warnings, single-value estimates, or verbally described risk
categories. Furthermore, people have well-founded intuitions
about the uncertainties in such situations that may prevent them
from trusting deterministic predictions or advice that does not
make the uncertainty explicit. At the same time, these intuitions
may prepare users to understand uncertainty expressions that
are carefully presented in a manner that takes into account how
people process and understand uncertainty information in
specific contexts. We do not claim that most users
understand uncertainty on a theoretical level, but rather that

they understand uncertainty expressions on a practical level. It
is becoming increasingly clear that members of the public can
use carefully presented uncertainty information to make better
decisions and decisions that are tailored to their own risk
tolerance. Our view is that, not only do people need explicit
uncertainty information to make better, more individualized
decisions, but also, they can understand it, at least in a practical
sense. Many important choices made by non-expert end users,
such as those involving financial planning, health issues, and
weather-related decisions, could benefit from the consideration
of reliable uncertainty estimates. Thus, learning how people
interpret uncertainty information and how visualizations
impact user decisions is crucial. To quote a prominent risk
scientist, “One should no more release untested
communications than untested pharmaceuticals” (Fischhoff,
2008).
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