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Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a
gradual decline of cognitive function. Early identification of AD is essential for managing the
ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data
can serve as a window into cognitive functioning and can be used to screen for early signs
of AD. This paper describes methods for learning models using speech samples from the
DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We
consider two machine learning tasks: 1) binary classification to distinguish patients from
healthy controls, and 2) regression to estimate each subject’s Mini-Mental State
Examination (MMSE) score. To develop models that can use acoustic and/or language
features, we explore a variety of dimension reduction techniques, training algorithms, and
fusion strategies. Our best performing classification model, using language features with
dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on
a held-out test set. On the regression task, a linear regression model trained on a reduced
set of language features achieves a root mean square error (RMSE) of 5.62 on the test set.
These results demonstrate the promise of using machine learning for detecting cognitive
decline from speech in AD patients.
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1 INTRODUCTION

Alzheimer’s Dementia (AD) has recently become one of the leading causes of death in people over
70 years (Alzheimer’s Association (2019)). With life expectancy increasing, the prevalence of AD
among older adults is also rising. Currently, the number of cases among people over the age of 60 is
doubling every 4–5 years, and currently, one in every three individuals over the age of 80 is likely to
develop AD (Ritchie and Lovestone (2002)). AD is a progressive neurodegenerative disorder that is
characterized by the loss of subcortical neurons and synapses that begins in areas such as the
hippocampus and the entorhinal cortex (Braak and Braak (1991); Terry et al., (1991)). Over time,
more associative areas begin to show amyloid deposition and neurofibrillary tangles in addition to
neuronal and synaptic loss. As it spreads, patients develop additional cognitive and functional deficits
in domains such as attention, executive function, memory and language (Nestor et al., (2004)).
Current theories maintain that clinical symptoms are preceded by subtle cognitive deficits that
worsen over time. Early recognition of these deficits could prove valuable for treating pre-stage AD,
allowing for a better quality of life for the patient and their caregivers.
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Currently, clinical diagnostic methods for determining who
has AD include cognitive assessments (e.g., Mini-Mental State
Examination [MMSE]), self-report questionnaires and
neuroimaging (e.g., Positron Emission Tomography [PET])
(Weller and Budson (2018)). While these methods have proven
useful, they suffer from several shortcomings. Cognitive
assessments can be tedious and suffer from low test-retest
reliability based on practice effects; self-report questionnaires
also lack reliability and validity; and neuroimaging is an
expensive, invasive, and time-consuming procedure.

By contrast, speech analysis is a simple, non-invasive and
inexpensive approach. There are several reasons why it may be
useful for detecting AD. Early identification, especially in the
prodromal stages, can significantly reduce the progression of
various cognitive deficits (Dubois et al., (2009)). There is evidence
that therapeutic interventions are most efficacious before
neuronal degeneration occurs in the brain (Nestor et al.,
(2004)). Thus, an emphasis on early detection is imperative
for the prognosis of AD. As such, episodic memory,
visuospatial ability, and confusion are some of the first signs
of cognitive decline in AD patients (Arnáiz and Almkvist (2003);
Jacobs et al., (1995)). These deficits can be observed through
verbal communication in a structured task, motivating the recent
use of speech data for diagnostic screening of AD in elder patients
(Chien et al., (2019)). In our study, we used machine learning
(ML) approaches to distinguish between AD and control patients,
using acoustic and linguistic features from spontaneous speech
produced by a subject describing a picture.

The current literature on detecting AD from spontaneous
speech samples can be divided into twomain categories. One class
of systems analyzes linguistic features (lexicon, syntactic and
semantic information), while the other deals with acoustic-
dependent features. In the acoustic domain, AD patients
exhibit longer and more frequent hesitations, lower speech
and articulation rates, and longer pauses compared to control
participants in spontaneous speech tasks (Hoffmann et al.,
(2010); Szatloczki et al., (2015)). Some have attempted to
apply ML approaches to learn models that use acoustic
features to distinguish AD from control participants. Tóth
et al., (2018) learned a model for distinguishing early stage
AD patients from control patients using spontaneous speech
from a recall task. Their classification model found significant
differences in speech tempo, articulation rate, silent pause, and
length of utterance. Mirzaei et al., (2017) tried to improve on
previous models by examining temporal features (jitter, shimmer,
harmonics-to-noize ratio, Mel frequency cepstral coefficients
[MFCCs]).

Conversational transcripts contain rich information about
the speaker, such as the wealth of their vocabulary, the
complexity of their syntactic structures, and the information
and meanings they communicate. Previous research has shown
that language changes in patients who suffer from AD (Wankerl
et al., (2017); Kempler (1995))–e.g., these patients often have
difficulty naming objects within specific categories, replacing
forgotten words with pronouns and repeating certain words or

phrases (Kirshner (2012); Adlam et al., (2006); Nicholas et al.,
(1985)). This has motivated numerous research projects on
conversation samples in AD and control patients. Fraser
et al., (2016) examined picture description transcripts from
demented vs. control individuals. Subsequently, they also
analyzed acoustic features in addition to natural language,
and achieved an accuracy of 81%. They found that semantic
information was one of the best features (syntactic fluency,
MFCCs and phonation rate) for separating AD from control
participants.

Our paper is motivated by the Alzheimer’s Dementia
Recognition through Spontaneous Speech (ADReSS) challenge,
hosted by the INTERSPEECH 2020 conference (Luz et al., (2020)).
The data set provided in this challenge is a carefully curated subset
of the larger DementiaBank corpus (Becker et al., (1994)). Among
the various challenge submissions, the top-performing models
analyzed both linguistic and acoustic features, and many of
these top submissions used deep learning methods (including
some pre-trained models) to generate their results. For example,
Koo et al., (2020) used an ensemble approach with bi-modal
convolutional recurrent neural networks (cRNN), applied to a
variety of feature sets from pre-trained acoustic and linguistic
algorithms in addition to some hand-crafted features. They
achieved an accuracy of 81.25% on their classifier evaluation
and an RMSE score of 3.75. Another study by Balagopalan
et al., (2020) achieved an accuracy of 83.33% and an RMSE of
4.56 by adding a binary classification layer to a pre-trained
language algorithm developed by Google: Bidirectional Encoder
Representations from Transformers–BERT. The Sarawgi et al.,
(2020) submission applied RNNs and multi-layered perceptrons
(MLP) to various types of acoustic and linguistic features in an
ensemble approach. They also used transfer learning from the
classification models to the MMSE scores by modifying the last
layer structure, achieving an RMSE of 4.6 and an accuracy of
83.33%. Lastly, Searle et al., (2020) used linguistic features only,
with pre-trained Transformer based models, and achieved their
best performance using features computed from the full transcripts
(including both participant and interviewer speech). They obtained
a classification accuracy of 81% and an RMSE of 4.58. The
commonality among these top submissions was the use of
deep-learning methods, along with pre-trained acoustic and/or
language models.

Our study hopes to improve further by applying simple,
computationally inexpensive ML techniques to natural
language and acoustic information. In particular, we train
models that use both acoustic and language features to
distinguish AD from healthy age-matched elders and predict
their MMSE scores. Our system feeds the acoustic features into
one pipeline, and the linguistic ones in another. Each pipeline
preprocesses the features, then uses internal cross-validation to
tune the hyperparameters and select the relevant subset of
features. We use ensemble methods to combine the various
learned models, to produce models that can 1) label a speech
sample as either AD or non-AD, and 2) predict the associated
MMSE scores.
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2 METHOD

For this study, we were given a training set of 54 AD patients and
an age- and gender-matched set of 54 healthy controls (this is a
subset of the larger DementiaBank data set; see Becker et al.,
(1994)). This subset of DementiaBank contained spontaneous
speech samples of participants asked to describe the Cookie Theft
picture from the Boston Diagnostic Aphasia Exam (Goodglass
et al., (2001)). For each participant, we obtained 1) the original
recorded speech sample, 2) the normalized speech segments
extracted from the full audio sample after voice activity
detection, audio normalization and noise removal, as well as
3) the speech transcript files annotated using CHAT (Codes for
Human Analysis of Transcripts) transcription format
(MacWhinney (2017)). Additionally, some descriptive features
were given about these individuals, including age, gender, binary
class label (AD/non-AD; the target for the classification task), and
their MMSE score (which we try to predict in the regression task).
The MMSE has a maximum score of 30, and lower MMSE scores
are generally associated with progressively more severe dementia.
The challenge organizers withheld a test set containing data from
24 AD and 24 control participants for final evaluation. For further
details of this data set, we refer the reader to Luz et al., (2020).

We considered a set of possible base learners, each over a
subset of the features–the (1), (2), and (3) mentioned above. We
used internal 5-fold cross validation to identify which of these
base learners was best. Due to the size of our data, we chose to use
a 5-fold CV procedure. 10-fold CV or Leave-one-out CV
procedure would result in small partitions, leading to possible
overfitting (low bias, higher variance). To ensure consistent and
reliable comparison between our models, we defined and used a
common set of folds that were balanced in terms of class labels (or
MMSE scores) as well as gender. For each model, we evaluated
performance metrics (average accuracy for classification, and
average RMSE for regression) based on these test folds, as well
as on the final hold-out test set.

2.1 Language and Fluency Features
The organizers provided transcripts that were annotated using the
CHAT coding system (MacWhinney (2017)). First we extracted
only the participant’s speech from these transcripts (removing the
interviewer’s content). Then, using the CLAN (Computerized
Language Analysis) program for processing transcripts in the
CHAT format, we computed the following set of global syntactic
and semantic features for each transcript: type-token ratio
(TTR)–the number of unique words divided by total number of
words; mean length of utterance (MLU), where an utterance is a
speech fragment beginning and endingwith a clear pause; number of
verbs per utterance; percentage of occurrence of various parts of
speech (nouns, verbs, conjunctions, etc.); number of retracings (self-
corrections or changes); and number of repetitions. We also
computed a number of fluency features, including percent of
broken words, part-word and whole-word repetitions, sound
prolongations, abandoned word choices, word and phrase
repetitions, filled pauses, and non-filled pauses. In total, we
computed 62 such informative summary features for each
transcript.

2.2 N-Gram Features
We processed the raw (unannotated) transcripts to compute bag-
of-words and bigram features. First, we standardized the transcripts
by converting them into a list of word tokens. Next, we used the
WordNet lemmatizer (Miller (1998)) to find and replace each word
with the corresponding lemma; for example, words like “stands”,
“standing” and “stood”were all replaced by the common root word
“stand”. Finally, we removed stopwords from each transcript,
where stopwords are highly common (and presumably
uninformative) words that may add noise to the data (such as
“I”, “am”, “was”, etc.), using a predefined stopwords list from the
Python natural language toolkit (NLTK) package.

Next, we used the standardized transcripts to compute bag-of-
words vectors (using words seen in the training set only)–that is, a
vector of 514 integers for each transcript, where the kth value is
the number of times the kth word occurred–and normalized these
vectors with the Term Frequency-Inverse Document Frequency
(TF-IDF) function, which is a normalization procedure that
reflects how important a word is to a document in a
corpus–effectively penalizing words that occur frequently in
most of the documents in the corpus. For example, in our
case the word “boy” might occur frequently in all transcripts,
so it may not be very informative. Finally, we also computed
bigram vectors in a manner similar to bag-of-words–where each
bigram is a pair of words that appeared adjacent to one another.
We found a set of 2,810 bigrams.

2.3 Acoustic Features
Using the speaker timing information provided in the transcripts,
we extracted the participants’ utterances (removing the
interviewer’s voice) from the audio recordings, for a total of
1,501 participant utterances from the training set, and 592 from
the test set. We then normalized the audio volume across all
speech segments. We computed four different sets of features
from each audio segment using OpenSMILE v2.1 (Eyben et al.,
(2010)). Note that our overall learner will consider various base-
learners, each running on one of these feature sets.

(FeatureSet#1) The AVEC 2013 (Valstar et al., (2013)) feature
set includes 2,268 acoustic features including 76 low level descriptor
(LLD) features and their statistical, regression and local minima/
maxima related functionals. The LLD features include energy,
spectral and voicing related features; delta coefficients of the
energy/spectral features, delta coefficients of the voicing related
LLDs and voiced/unvoiced duration based features.

(FeatureSet#2) The ComParE 2013 (Schuller et al., (2013))
feature set includes energy, spectral, MFCC, and voicing related
features, logarithmic harmonic-to-noize ratio (HNR), voice quality
features, Viterbi smoothing for F0, spectral harmonicity and
psychoacoustic spectral sharpness. Statistical functionals are also
computed, leading to a total of 6,373 features.

(FeatureSet#3) Our third feature set consists of the following
three feature sets. The emo_large (Eyben et al., (2010)) feature set
consists of cepstral, spectral, energy and voicing related features,
their first and second order delta coefficients as LLDs; and their
39 statistical functionals. The functionals are computed over
20 ms frames in spoken utterances. This produced 6,552
acoustic features across the utterances. The Jitter-shimmer
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feature set is a subset of INTERSPEECH 2010 Paralinguistic
Challenge (Schuller et al., (2010)) feature set, consisting of three
pitch related LLDs and their delta coefficients. We also computed
19 statistical functionals of the LLDs on the voiced sections of the
utterances, resulting in 114 features. Finally, we extracted seven
speech and articulation rate features by automatically detecting
syllable nuclei (De Jong and Wempe (2009)), and used a script
from the software program Praat to detect peaks in intensities
(dB) followed by sharp dips. We also calculated other features,
such as words per minute, number of syllables, phonation time,
articulation rate, speech duration and number of pauses for each
speech sample (Chakraborty et al., (2020)).

(FeatureSet#4) We computed the MFCC 1–16 features and
their delta coefficients from 26 Mel-bands, which uses the fast
Fourier transform (FFT) power spectrum. The frequency range of
the Mel-spectrum is set from 0 to 8 kHz. Inclusion of statistical
functionals resulted in 592 features. This feature set is a subset of
AVEC 2013 feature set (Valstar et al., (2013)).

We also added age and gender of the participants to each set of
features.

2.4 Language-Based Models
Given our two sets of linguistic features above (Sections 2.1 and
2.2), we explored various dimension reduction techniques and base
learning algorithms to find the best performing pipeline. The
dimension reduction techniques include Principal Component
Analysis (PCA), Latent Semantic Analysis (LSA), and univariate
feature selection using ANOVA F-values. The base learning
algorithms explored for the classification task are logistic
regression (LR), random forest (RF), support vector machine
(SVM), and extreme gradient boosting (XGB). For the regression
task, the regression versions of the same algorithms are trained
(except logistic regression is replaced by linear regression). Internal
5-fold cross-validation was used to tune the hyperparameters for
eachmodel based on accuracy. The hyperparameters explored were:

Dimension reduction: For classification models, dimension
reduction with PCA using {10, 20, 30, 50} components, and LSA
using {100, 200, 500} components; for regression models,
dimension reduction with PCA using {20, 30, 50} components,
and LSA using {200, 500, 800} components.

Models: SVM (regularization parameter C: {0.1, 1, 10, 100,
1,000}, kernel: {linear, RBF, polynomial}); LR (regularization
parameter C: 20 values spaced evenly on a log scale in the
range [10− 4, 104], loss function: {L1, L2}); RF (number of
trees: {100, 300, 500, 700}, maximum features at each split: {5,
15, 25, 35, 45, 55}, minimum samples at leaf node: {1, 2, 3, 4}); and
XGB (maximum depth: {5, 6, 7, 8}, learning rate: {0.02, 0.05, 0.07,
0.1}, number of trees: {50, 100, 200, 500, 1,000}). The same
hyperparameters were explored for the regression models as
well (with the exception of replacing LR with linear regression).

Our internal cross-validation found the best-performing
language-based classification model, which consisted of the
following steps:

Step1: 5-component PCA transformation of the dense
language and fluency features described in Section 2.1 (after
standardizing using z-scores);

Step2: 50-component LSA transformation of the sparse
unigram and bigram features described in Section 2.2 (after
standardizing using TF-IDF transform); and
Step3: L1-regularized logistic regression.

The best language-based regression model involved the
following:

Step1: 30-component PCA transformation of the dense
language and fluency features described in Section 2.1 (after
standardizing using z-scores);
Step2: 100-component LSA transformation of the sparse
unigram and bigram features described in Section 2.2 (after
standardizing using TF-IDF transform); and
Step3: Random Forest Regressor, using 100 trees, minimum of
four instances at each leaf node, and 25 features considered for
each split.

2.5 Acoustic Models
All acoustic features were real values and were therefore
standardized using z-scores. We used PCA to reduce the
dimensionality of the features sets. For FeatureSet#1 and
FeatureSet#2, we used PCA, and kept the minimum number of
features capable of retaining 95% of the variance. In case of
FeatureSet#3 and FeatureSet#4, the number of principals were
determined through internal 5-fold cross-validation. Therefore, the
dimension of FeatureSet#1 is reduced from 2,268 to 700,
FeatureSet#2 from 6,373 to 1,100, FeatureSet#3 from 6,552 to
1,000 and FeatureSet#4 from 592 to 50. Next, we selected the best
50 principal components from FeatureSet#1, and the best 70 from
FeatureSet#3 applying univariate feature selection method based
on ANOVA F-value between the label and each feature. For
FeatureSet#2, we calculated feature importance weights using a
decision-tree regression model, and selected only the features with
importance weight higher than the mean.

After this pre-processing stage, our system fed these audio
features to various machine-learning algorithms, that each identify
patterns of features that can distinguish dementia patients from
healthy controls (the classification task), and can compute a subject’s
MMSE score (the regression task). We explored several learning
algorithms, including Adaboost, XGB, RF, gradient boosting (GBT),
decision trees (DT), hidden Markov model (HMM) and neural
network (NN). Internal 5-fold cross-validation was performed to
tune the hyperparameters of the classifiers and regressors. The
predictions were made in two steps. In the first step, the
classifiers and regressors were trained and tested with acoustic
features, age and gender to predict whether the speech segment
was uttered by a health control or an AD patient and to predict that
subject’s MMSE score. Next, weighted majority vote classification
was performed to assign each subject a label of health control or AD,
based on the majority labels of the segment level classification. The
predicted MMSE scores on all the segments of one subject were
averaged to calculate the final MMSE score of that subject. The best
performing classifiers on acoustic data are the following:

(1) Neural network with one hidden layer, trained on
FeatureSet#1.
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(2) AdaBoost Classifier with 50 estimator and logistic regression
as base estimator, trained on FeatureSet#4.

(3) Adaboost with 100 estimators and DT as the base estimator
trained on FeatureSet#3.

The three regressors with the lowest RMSE were:

(1) Gradient boosting regressor, trained on FeatureSet#4.
(2) Decision tree with number of leaves 20, trained on

FeatureSet#2.
(3) Adaboost regressor trained on FeatureSet#3 with 100

estimators.

2.6 Ensemble Methods
After obtaining our best-performing acoustic and language-based
models, we computed a weighted majority-vote ensemble meta-
algorithm for classification. We chose the three best-performing
acoustic models along with the best-performing language model,
and computed a final prediction by taking a linear weighted
combination of the individual model predictions. The weights
assigned to each model were proportional to that model’s mean
cross-validation accuracy, such that the best performing model is
given the highest weight in the final prediction. For regression, we
also computed an unweighted averaging of our best language and
acoustic model predictions for MMSE scores.

3 RESULTS

3.1 Classification
Table 1 presents the results for the classification task. The model
that obtained the highest average cross-validation accuracy
(81% ± 1.17%) is a weighted-majority-vote ensemble of the
best language-based model and three of the best acoustic-based
models. The second highest accuracy (80% ± 0.00%) was

obtained by the language-based logistic regression. However, a
McNemar test reveals that these two models do not exhibit a
statistically significant difference in performance (McNemar test
statistic � 4.0, p > 0.05). This is also evident by the performance
of these two models on the final held-out set, where the language-
based logistic regression gives the highest accuracy (85%) and the
weighted-majority-vote ensemble gives a slightly lower accuracy
(83%). Using McNemar’s test to compare these two models on
the held-out test set, we obtain a test statistic of 3.0, with p > 0.05,
indicating that the performance difference between these models
is not statistically significant.

Note that our ensemble model, which uses only acoustic
features, performs significantly better than the “baseline model”
(provided by the organizers), which also uses acoustic features only.

3.2 MMSE Prediction
Table 2 shows the RMSE of various regression models; columns 2
and 3 show the average RMSE and R2 scores over the five cross-
validation folds, and columns 4 and 5, on the hold-out test set
(provided by the organizers of the challenge). These results show
that the language-based model obtains the best RMSE of 6.43 on
the cross-validation set and 5.62 on the hold-out set. The
combined language-acoustic model did not perform as well as
the standalone language-based model, with an average RMSE of
6.83 on the cross-validation set and 6.12 on the hold-out set.

Further, the Wilcoxon test between the RMSEs of the two
best models (best acoustic + best language-based combination
vs. best stand-alone language-based), returns a test statistic of
66.0 with p < 0.05 on the hold-out set, and a test statistic of
1,375.0 with p < 0.05 on the cross-validation set. This means we
cannot reject the claim that these two models are significantly
different in performance.

We also report the coefficient of determination (R2) for all our
models: the best R2 was 0.17 on the validation folds and 0.14 on the
held-out test set. These low numbers are expected, given the
relatively small size of this INTERSPEECH challenge data set and

TABLE 1 |Results of our best performing classification models distinguishing AD from non-AD subjects. The “Baseline (Acoustic)”model is described in Luz et al. (2020). The
right-most column shows accuracy on the held-out test set of 48 subjects (24 AD and 24 non-AD). The rest of the table lists model performance using 5-fold cross-
validation on the training set of 108 subjects (54 AD and 54 non-AD).

Classifiers Class Precision Recall F1 score Accuracy Accuracy (hold-out
set)

AD 1.0 0.60 0.75
Logistic regression (NLP) HC 0.71 1.00 0.83 80% ± 0.00% 85%

OVR 0.86 0.80 0.79
AD 0.68 0.84 0.75

SVM (NLP) HC 0.79 0.60 0.68 72% ± 1.85% 73%
OVR 0.73 0.72 0.72
AD 0.74 0.96 0.83

Majority vote (NLP + Acoustic) HC 0.94 0.66 0.78 81% ± 1.17% 83%
OVR 0.84 0.81 0.81
AD 0.71 0.78 0.74

Majority vote (Acoustic) HC 0.76 0.68 0.72 73% ± 1.36% 65%
OVR 0.73 0.73 0.73
AD 0.57 0.52 0.54

Baseline (Acoustic) HC 0.56 0.61 0.58 57% 63%
OVR 0.57 0.57 0.56

AD, Alzheimer’s dementia; HC, Healthy control; OVR, Overall rating.
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the complexity of the condition. Interpreting this statistic in an
absolute sense is problematic, especially as we did not find any other
study using the same data set that reported this metric. We note that
models based on language features achieved the bestR2 values, which
further supports our claim that language features are very important
for this task.

4 DISCUSSION

We investigated a variety of ML models, using language and/or
acoustic features, to identify models that performed well at using
speech information to distinguish AD from healthy subjects, and
to estimate the severity of AD. Our results, of over 85% accuracy
for classification and approximately 5.6 RMSE for regression,
demonstrate the promise of using ML for detecting cognitive
decline from speech. In our investigation, we explored multiple
different combinations of features and ML algorithms; in the
future, it would be interesting to delve deeper into the behavior of
our best models, to determine the contribution of individual (or
groups of) features to the model’s ability to distinguish AD
patients from healthy controls. Further, although we have
currently used the full set of standard stopwords for removing
noise in our language models, it may be worthwhile to see
whether using a reduced set of stopwords (for example,
preserving pronouns) might be more advantageous.

Our current best-performing models outperform recent results
reported in the literature and provide evidence that, for discriminating
between subjects with AD vs. healthy controls, features based on
language (semantics, fluency and n-grams) are very useful. Compared
to other top ranked results, our methods do not involve complex,
computationally expensive algorithms. Instead, we used an ensemble
approach with simple models to produce competitive results.
Furthermore, a weighted majority vote of acoustic and language
based models demonstrates competitive performance, implying that
a combination of acoustic and language features also holds potential.
Finally, comparing only acoustic models, we find that accuracy
improves significantly compared to the baseline model (Luz et al.,
(2020)) for both the classification and regression tasks.

Our competitive performance, obtained using simple feature
engineering along with classical machine learning algorithms,
indicates that putting together an efficient machine learning
pipeline from basic building blocks can achieve nearly state-of-
the-art results for the learning tasks explored in this study. This result
suggests that, for detecting AD from speech, it may be useful to
explore traditional feature engineering and machine learning tools,

especially in a limited data setting, as this will additionally provide for
better interpretability and reproducibility compared to more
complex deep learning based methods.
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TABLE 2 | Results of our best performing regression models predicting a subject’s MMSE score (ranging from 0 to 30, with lower values indicating more severe dementia).
The ‘Baseline (Acoustic)’model is described in Luz et al. (2020). As in Table 1, the columns on the right show RMSE and R2 on the held-out test set of 48 subjects (24 AD
and 24 non-AD). The middle columns list RMSE and R2 using 5-fold cross-validation on the training set of 108 subjects (54 AD and 54 non-AD).

Regressors RMSE R2 RMSE (hold-out set) R2

Random forest (NLP) 6.43 ± 0.18 0.17 5.62 0.14
Gradient boosting (acoustic) 6.89 ± 0.17 0.06 6.67 −0.21
Random forest (NLP) + gradient boosting (acoustic) 6.66 ± 0.18 0.13 6.01 0.02
Majority vote (all models) 6.85 ± 0.16 0.10 6.12 −0.02
Baseline (acoustic) 7.30 − 6.14 −
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