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The performance of automated facial expression coding is improving steadily. Advances

in deep learning techniques have been key to this success. While the advantage of

modern deep learning techniques is clear, the contribution of critical design choices

remains largely unknown, especially for facial action unit occurrence and intensity across

pose. Using the The Facial Expression Recognition and Analysis 2017 (FERA 2017)

database, which provides a common protocol to evaluate robustness to pose variation,

we systematically evaluated design choices in pre-training, feature alignment, model size

selection, and optimizer details. Informed by the findings, we developed an architecture

that exceeds state-of-the-art on FERA 2017. The architecture achieved a 3.5% increase

in F1 score for occurrence detection and a 5.8% increase in Intraclass Correlation (ICC) for

intensity estimation. To evaluate the generalizability of the architecture to unseen poses

and new dataset domains, we performed experiments across pose in FERA 2017 and

across domains in Denver Intensity of Spontaneous Facial Action (DISFA) and the UNBC

Pain Archive.

Keywords: action unit, facial expression coding, design choice in deep learning, AU intensity estimation, AU

occurrence detection, cross-pose evaluation, cross-domain evaluation

1. INTRODUCTION

Emotion recognition technologies play an important role in human computer interaction systems.
Face-to-face interactions between social robots and people are but one example (McColl et al.,
2016; Cavallo et al., 2018). To recognize human emotion, facial action units (AUs) (Ekman et al.,
2002) have been widely used, which correspond to discrete muscle contractions. Individually, or in
combination, they can represent nearly all possible facial expressions.

In the last-half decade, automated facial affect recognition (AFAR) systems have made major
advances in detection of the occurrence and intensity of facial actions. Previous studies focused
on relatively controlled laboratory settings. More recent studies emphasize on less-constrained and
in-the-wild scenarios (Cohn and De la Torre, 2015; Li and Deng, 2018; Zhi et al., 2019). Because
frontal face views occur commonly in less constrained settings, robustness to pose variation is
essential. The Facial Expression Recognition and Analysis 2017 (FERA 2017) challenge provided
the first common protocol to evaluate robustness to pose variation (Valstar et al., 2017). In FERA
2017, deep learning (DL)-based approaches achieved the best performance in sub-challenges (Tang
et al., 2017) for occurrence detection (Zhou et al., 2017) and intensity estimation.
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While the advantages of DL approaches are clear, little is
known about critical design choices in crafting them. Most
studies used ad-hoc or default parameters provided by the DL
frameworks; however, they neglected to investigate the effect of
different parameter settings on facial AU detection. Also, little
is known about the relative contribution of different design
choices in pre-training, feature alignment, model size, and
optimizer details.

We are especially interested in design choices based on two
scenarios. One is robustness to pose variation. Until recently,
most systems were concerned with relatively frontal face views.
With increased attention to less-constrained and in-the-wild
contexts, it is critical for systems to be robust to pose variation
in real-world settings where it is common. The other scenario is
transfer to new dataset domains other than those in which they
have been trained and tested. To meet the need for systems that
are robust to new contexts, systemsmust performwell both in the
domains fromwhich they come and in the domains to which they
may be applied. The evaluation of domain transfer in AU systems
is relatively new (Cohn et al., 2019; Ertugrul et al., 2020).

To address questions in design choices, we systematically
explored combinations of different components and their
parameters in a DL pipeline. We investigated pre-training
practices, image alignment for pre-processing, training set size,
optimizer, and learning rate (LR). By utilizing the insights, we
achieved state-of-the-art performance in both the occurrence
detection and the intensity estimation sub-challenges of FERA
2017 (Valstar et al., 2017) and state-of-the art in cross-domain
generalizability to the Denver Intensity of Spontaneous Facial
Action (DISFA) dataset (Mavadati et al., 2013). We also are
the first to report cross-domain generalizability to UNBC Pain
Archive (Lucey et al., 2011). To reveal which facial regions our
architecture responds to in detecting specific AUs at specific
poses, we visualized occlusion sensitivity maps.

The study of Niinuma et al. (2019) was an earlier version of the
current study. In the present study, we evaluated an additional
DL architecture (ResNet50), performed cross-domain evaluation
with an additional dataset (UNBC Pain), evaluated cross-pose
generalizability, and visualized occlusion sensitivity maps.

2. RELATED WORK

Numerous approaches have been proposed for AU
analysis (Cohn and De la Torre, 2015; Corneanu et al.,
2016; Martinez et al., 2017; Li and Deng, 2018; Zhi et al.,
2019). Most of these approaches had relatively frontal face
orientation. Where moderate to large non-frontal pose has
been considered (Kumano et al., 2009; Taheri et al., 2011; Jeni
et al., 2012; Rudovic et al., 2013; Tősér et al., 2016), the lack of a
common protocol has undermined comparisons.

The FERA 2017 challenge (Valstar et al., 2017) was the
first to provide a common protocol to compare approaches for
detection of AU occurrence and AU intensity robust to pose
variation. FERA 2017 provided synthesized face images from
BP4D (Zhang et al., 2014) with nine head poses, as shown in
Figure 1. To generate the synthesized images, 3D models were

rotated by −40, −20, and 0◦ pitch and −40, 0, and 40◦ yaw
from frontal pose. The training set was based on the BP4D
database (Zhang et al., 2014), which included digital videos of 41
participants. The development and test sets were derived from
BP4D+ (Zhang et al., 2016) and included digital videos of 20
and 30 participants, respectively. FERA 2017 presented two sub-
challenges: occurrence detection and intensity estimation, with
10 AUs labeled for the former and 7 AUs labeled for the latter.

For FERA 2017, the participants proposed a wide range of
methods (Amirian et al., 2017; Batista et al., 2017; He et al.,
2017; Li et al., 2017; Tang et al., 2017; Valstar et al., 2017; Zhou
et al., 2017). Table 1 compares them with each other and with
two more recent studies from Ertugrul et al. (2018) and Li et al.
(2018). F1 score and Intraclass Correlation (ICC) were used to
evaluate, performance for occurrence detection and intensity
estimation, respectively.

Several comparisons are noteworthy. While detailed
face alignment using facial landmarks was used for shallow
approaches, simple face alignment using face position or
resized images more often sufficed for DL approaches. As for
architecture, DL performed better than shallow approaches, and
DL approaches with pre-trained models performed better than
ones without pre-trained models. For both sub-challenges, the
methods showing the best performance (Tang et al., 2017) for
occurrence detection and for intensity estimation (Zhou et al.,
2017) used DL with a pre-trained model. As for training set
size, each method used different numbers of training images.
Adaptive Moment Estimation (Adam) and Stochastic Gradient
Descent (SGD) were popular choices for optimizer, and their LR
varied between 10−3 and 10−4.

According to the comparison of the existing methods, the
effectiveness of DL approaches, especially the ones using pre-
trained models, is indicated for this task, but every approach
used a different fixed configuration, and the key parameters
are unknown. The aim of this study is to investigate the key
parameters for both AU occurrence detection and intensity
estimation for this task and discover the optimal configuration.

3. METHODS

The main goal of this study is to investigate the effect of
the different components and parameters and to provide best
practices that researchers can use for training DL methods for
automatic facial expression analysis. Figure 1 shows an outline
of our experimental design. We systematically varied parameters
and design choices in this pipeline (key elements are denoted in
blue color in Figure 1).

3.1. FACS
The Facial Action Coding System (FACS) (Ekman et al., 2002)
is an anatomically-based system annotating nearly all possible
facial movements. FACS examines the shape and appearance
changes produced by the muscles and soft tissues of the face.
Each muscle movement constitutes an AU. We investigated both
AU occurrence detection and AU intensity estimation. In the
FERA 2017 dataset, 10 AUs (AU1, AU4, AU6, AU7, AU10, AU12,
AU14, AU15, AU17, and AU23) were evaluated for occurrence
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FIGURE 1 | An overview of the experimental design. Blue color denotes design choices and parameters for systematic evaluation.

TABLE 1 | An overview of the design choices from studies reporting performance on the FERA 2017 sub-challenges.

Design choice Performance

Normalization Architecture Pre-training Training set

size per

model

Optimizer Learning rate Occurrence

performance

(F1 score)

Intensity

performance

(ICC)

Valstar et al. (2017)
Facial

landmarks
Shallow n/a n/r n/a n/a 0.452 0.217

Li et al. (2017)
Facial

landmarks
Hybrid VGG-Facea 26,582 n/a n/a 0.498 n/a

Batista et al. (2017)
Face

position
Deep Noneb 1,321,472 Adam 10−3 0.506 0.399

He et al. (2017) Resizingc Hybrid None 146,847 n/r n/r 0.507 n/a

Tang et al. (2017)
Face

positiond
Deep VGG-Face

440,541

+α
e

SGD 10−3 0.574 n/a

Ertugrul et al. (2018)
Face

position
Deep None 1,321,623 Adam 10−3 0.525 n/a

Li et al. (2018)
Facial

landmarks
Deep

ImageNet-

VGG-VD19

260,000

+α
f

SGD 10−4 n/ag n/a

Amirian et al. (2017)
Facial

landmarks
Shallow n/a n/r n/a n/a n/a 0.295

Zhou et al. (2017) Resizing Deep
ImageNet-

VGG-VD16
54,000 SGD 10−4 n/a 0.446

For occurrence detection, F1 scores are reported. For intensity detection, Intraclass Correlation coefficients (ICC) are reported. N/A denotes not applicable; N/R denotes not reported.

Best scores are denoted in bold.
aA VGG pre-trained model was used to extract features but was not used for classification.
bA VGG pre-trained model was used to detect faces but was not used for classification.
cFace detection was used for train and validation partition but was not for test partition.
dFace position was not directly used, but facial images were cropped by using morphology operations including binary segmentation, connected components labeling and region

boundaries extraction.
eAfter down sampling to 440,541 images, Tang et al. increased the number of samples to balance positive and negative samples.
fLi et al. increased the number of samples to balance positive and negative samples.
g In their paper Li et al. reported F1 scores only on validation partition.

detection, and 7 AUs (AU1, AU4, AU6, AU10, AU12, AU14, and
AU17) were evaluated for intensity estimation. AU1, AU4, AU6,
and AU7 are upper face AUs, and represent inner brow raiser,
brow lowerer, cheek raiser, and lid tightener, respectively. AU10,
AU12, AU14, AU15, AU17, and AU23 are lower face AUs, and
represent upper lip raiser, lip corner puller, dimpler, lip corner
depressor, chin raiser, and lip tightener, respectively (Cohn and
De la Torre, 2015).

3.2. Architecture
Since the objective of this study is to investigate components
that were commonly used by existing methods, we

examined Visual Geometry Group (VGG) architectures.
Table 1 shows VGG pre-trained models that were
widely used as architectures. To examine the impact
of alternative DL architectures, we also conducted the
experiments using the ResNet50 pre-trained model in
section 4.11.

For VGG architectures, we selected two pre-trained
models: VGG-ImageNet and VGG-Face. While VGG-
ImageNet is a model that was trained on ImageNet for

image classification (Simonyan and Zisserman, 2015), VGG-
Face is a model that was trained on the face dataset for face
recognition (Parkhi et al., 2015).
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3.3. Baseline Configuration
In each experiment, we explored the effect of optimizer choice
and parametric variation of key parameters. The experimental
setup has five parameters (normalization, architecture, train set
size, optimizer, and LR) and two tasks (occurrence detection
and intensity estimation) in total. To vary all parameters would
have resulted in 320 possible permutations. In consideration of
computational cost and limits on how much could be visualized,
we varied two parameters at a time and chose the top 50
permutations that we believed would be of most interest to
developers of AFAR systems.

The baseline configuration used Procrustes analysis for face
alignment and the VGG16 network trained on ImageNet. For
optimizers, we compared Adam and SGD, with default learning
rates of 5 × 10−5 and 5 × 10−3, respectively. We fine-tuned the
network from the third convolutional layer using 5,000 images
for each pose and AU. The dropout rate was 0.5 throughout
the experiments.

4. EXPERIMENTS

4.1. Normalization
We evaluated two methods for image normalization. In the
first method, we applied Procrustes analysis (Gower, 1975) to
the face shapes defined by the landmarks to estimate similarity
normalized shapes. In the second method, we resized the images
to the receptive field of the deep network.

Similarity normalization between source and template shapes
using eye locations is a popular choice in the literature. One
shortcoming of this approach is that the alignment error
increases for landmarks farther away from the eye region. This
artifact is more prominent under moderate-to-large head pose
variations. To alleviate this problem, we used all 68 landmarks
provided by the dlib face tracker (King, 2009) to calculate a
Procrustes transformation between the predicted shape and a
frontal looking template. We chose the size of the template to
cover a bounding box of 224 × 224 pixels, which corresponds
to the receptive field of the VGG network.

As for the second option, we resized each input image from
the dataset to 224 × 224 pixel size to match the receptive field of
the VGG network.

Figure 2A shows the F1 scores and ICC averages for all nine
poses for each AU. The left figures show results for Adam
optimizer, and the right figures show results for SGD optimizer.
The results indicate that the performance with Procrustes
analysis is slightly better than the one with resizing, but the
difference is small, only 1%. One possible explanation for this
is that the network has enough capacity to learn all the nine
different poses present in the training set. Another study indicates
that a form of normalization is often helpful when classifiers
are evaluated on poses different from the ones it was trained on
(Ertugrul et al., 2018).

4.2. Pre-trained Architecture
Training deep models from scratch is time-consuming, and the
amount of training data at hand may impede good performance.
One popular solution is to select amodel that was trained on large

scale benchmark datasets (source domain) and fine-tune it on
the data of our interest (target domain). Although this practice
is effective, it is relatively neglected how the type of data in the
source domain influence the performance of fine-tuning in the
target domain.

To explore this question, we selected two models that were
trained on very different domains: VGG-16 trained on ImageNet
(Simonyan and Zisserman, 2015) and VGG-Face (Parkhi et al.,
2015). We replaced the final layers of each networks with a
2-length one-hot representation for AU occurrence detection
and with a 6-length one-hot representation for the intensity
estimation task. In both cases, we trained separate models for
each AU, resulting in 10 and 7 models for AU occurrence
detection and AU intensity estimation, respectively. We fine-
tuned the models for 10 epochs, validated their performance
on the validation partition, and then reported their results
on the subject-independent test partition. We used a PyTorch
implementation for all of the models.

Figure 2B shows that models pre-trained on ImageNet show
better performance than the VGG-Face ones. VGG-Face was
trained on face images for identification, while ImageNet
includes many non-face images for image classification. One
possible explanation is that VGG-Face learned to actively ignore
facial expression in order to recognize the face. In this case, a
generic image representation is more suitable for the task.

4.3. Training Set Size
Recently, multi-label stratified sampling was found advantageous
over naive sampling strategies for AU detection (Chu et al., 2019).
In this experiment, we employed this strategy and investigated
the effect of different training set sizes on the performance. We
down-sampled the majority class and up-sampled the minority
class to build a stratified training set. We used this procedure
for each pose and each AU. For example, in the case of AU
occurrence detection, a 5, 000 training set size indicate that 5, 000
frames where the AU is present and 5, 000 frames where the AU
is not present were randomly selected for each pose and for each
AU, resulting in 90, 000 images in total (=5, 000 images× 2 classes
× 9 poses).

We repeated the same stratifying procedure with the six
ordinal classes of the intensity sub-challenge. In this case, a 5, 000
training set size means that 5, 000 images were randomly selected
from the six classes (not present, and A to E levels) for each pose
and for each AU, resulting in 270, 000 images in total (=5, 000
images× 6 classes× 9 poses).

Figure 2C shows results as the function of different training
set size. The training set size have minor influence on
the performance: scores peaked at 5, 000 images after that
performance plateaued.

4.4. Optimizer and LR
In this experiment, we investigated the impact of different
optimizers and LRs on the performance. We varied the LRs, but
other optimizer parameters were set to the default values used in
PyTorch: betas= (0.9, 0.999) without weight decay for Adam and
nomomentum, no dampening, no weight decay, and noNesterov
acceleration for SGD.
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FIGURE 2 | Results on The Facial Expression Recognition and Analysis 2017 (FERA 2017). Test partition with (A) two normalization methods, (B) two pre-trained

architecture, (C) different number of train set size, and (D) learning rates and choice of optimizers.
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TABLE 2 | F1 scores for occurrence detection results on FERA 2017 Test partition.

Valstar et al. (2017) Li et al. (2017) Batista et al. (2017) He et al. (2017) Ertugrul et al.

(2018)

Tang et al. (2017) Our model

AU01 0.147 0.215 0.219 0.198 0.196 0.263 0.329

AU04 0.044 0.044 0.056 0.043 0.067 0.118 0.187

AU06 0.630 0.755 0.785 0.747 0.766 0.776 0.814

AU07 0.755 0.805 0.816 0.784 0.791 0.808 0.878

AU10 0.758 0.810 0.838 0.816 0.840 0.865 0.865

AU12 0.687 0.753 0.780 0.809 0.819 0.843 0.837

AU14 0.668 0.750 0.747 0.691 0.764 0.757 0.758

AU15 0.220 0.208 0.145 0.208 0.247 0.362 0.376

AU17 0.274 0.286 0.388 0.398 0.349 0.424 0.467

AU23 0.342 0.356 0.286 0.374 0.413 0.519 0.578

Mean 0.452 0.498 0.506 0.507 0.525 0.574 0.609

The best results are shown in bold.

TABLE 3 | ICC for intensity estimation on FERA 2017 Test partition.

Valstar et al. (2017) Amirian et al. (2017) Batista et al. (2017) Zhou et al. (2017) Our model

AU01 0.035 0.169 0.228 0.307 0.400

AU04 −0.004 0.021 0.057 0.147 0.280

AU06 0.461 0.509 0.702 0.671 0.778

AU10 0.451 0.590 0.710 0.735 0.746

AU12 0.518 0.615 0.732 0.793 0.803

AU14 0.037 −0.027 0.104 0.147 0.143

AU17 0.020 0.190 0.260 0.319 0.380

Mean 0.217 0.295 0.399 0.446 0.504

The best results are shown in bold.

Figure 2D shows that the optimal LR depends on the choice
of optimizer. For Adam, LR = 5 × 10−5 gave the best results,
and for SGD, LR = 0.01 reached the best performance for both
occurrence detection and intensity estimation. In addition, we
can see that the performance differences between Adam and
SGD are negligible if one uses the optimal learning rates for
each optimizer.

It is worth noting that Zhou et al. (2017) used SGD
with LR=10−4 for the AU intensity estimation task. The
results indicate that using Adam optimizer or SGD optimizer
with larger LR could have improved their performance. Tang
et al. (2017) used SGD with LR = 10−3, but they also
applied momentum. Additional experiments revealed that, when
momentum is used for SGD, smaller learning rate is preferable for
optimal performance. More specifically, when we used the same
parameters as Tang et al. (2017) reported for SGD (momentum
= 0.9, weight decay = 0.02), F1 score peaked at 0.596 using LR
= 10−4. Their LR was close to optimal, though SGD without
momentum further improves F1 score to 0.609 with LR= 0.01.

We note that, when the LR was set to a large
value, some models did not converge and predicted
the majority class for all samples. Under this rare
condition, ICC converges to zeros, but this should not
be interpreted as chance performance. As variation in
predicted intensity values reduces, the ICC metric loses
predictive power.

4.5. Comparison With Existing Methods
We compare ourmethodwith the state-of-the-art on both the AU
occurrence detection (Table 2) and the AU intensity estimation
(Table 3) sub-challenges from FERA 2017. The final parameters
of the models are nearly identical for the two tasks: we used face
alignment with Procrustes analysis as a pre-processing step, and
we fine-tuned ImageNet pre-trained VGG16 model on stratified
sets consisting of 5,000 samples per each class, pose, and AU. For
AUoccurrence detection, SGDwith LR= 0.01 gave the best result
(F1 = 0.609), while for AU intensity estimation, Adam with LR
= 5 × 10−5 reached the best performance (ICC = 0.504). These
scores outperform other state-of-the-art methods.

We noted a few key differences that contributed to this
achievement. The main difference with Tang et al. (2017) is that
they used VGG-Face pre-trained model while we used ImageNet
pre-trained model. Zhou et al. (2017) used SGD with small LR
while the combination of our optimizer and learning rate is
optimal. While Li et al. (2018) evaluated their method for AU
occurrence detection using the FERA 2017 dataset, they reported
performance only on the validation partition. Their best F1 score
(0.522) is 9% lower than ours (0.611) on the validation partition.

4.6. Effect of Head Pose on Performance
To understand the effect of head pose on classifier performance,
we complied the performance scores into a tabular form, as
shown in Tables 4, 5.
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TABLE 4 | F1 scores and Accuracy of our model for occurrence detection under nine facial poses on FERA 2017 Test partition.

Pose 1 2 3 4 5 6 7 8 9 Mean

F1 score

AU01 0.358 0.292 0.272 0.353 0.346 0.366 0.312 0.314 0.345 0.329

AU04 0.247 0.208 0.129 0.254 0.226 0.217 0.131 0.135 0.133 0.187

AU06 0.808 0.803 0.788 0.828 0.830 0.811 0.829 0.821 0.811 0.814

AU07 0.887 0.886 0.864 0.877 0.883 0.885 0.871 0.875 0.878 0.878

AU10 0.859 0.867 0.864 0.868 0.872 0.868 0.872 0.870 0.841 0.865

AU12 0.821 0.830 0.850 0.830 0.843 0.850 0.833 0.847 0.828 0.837

AU14 0.756 0.737 0.742 0.758 0.776 0.771 0.787 0.759 0.735 0.758

AU15 0.422 0.419 0.369 0.408 0.379 0.357 0.357 0.340 0.336 0.376

AU17 0.453 0.485 0.493 0.461 0.492 0.486 0.482 0.430 0.416 0.466

AU23 0.568 0.588 0.577 0.611 0.597 0.588 0.557 0.568 0.545 0.578

Mean 0.618 0.612 0.595 0.625 0.624 0.620 0.603 0.596 0.587 0.609

Accuracy

AU01 0.855 0.835 0.862 0.834 0.850 0.871 0.811 0.831 0.844 0.844

AU04 0.961 0.949 0.900 0.944 0.926 0.919 0.944 0.937 0.907 0.932

AU06 0.828 0.828 0.807 0.847 0.847 0.838 0.838 0.819 0.805 0.829

AU07 0.850 0.848 0.813 0.837 0.841 0.844 0.828 0.832 0.836 0.837

AU10 0.830 0.836 0.834 0.834 0.838 0.835 0.833 0.829 0.798 0.830

AU12 0.793 0.807 0.834 0.808 0.821 0.832 0.817 0.831 0.802 0.816

AU14 0.708 0.690 0.686 0.709 0.722 0.718 0.733 0.694 0.676 0.704

AU15 0.814 0.802 0.785 0.795 0.780 0.792 0.782 0.753 0.711 0.779

AU17 0.744 0.790 0.787 0.764 0.789 0.794 0.778 0.754 0.739 0.771

AU23 0.769 0.782 0.764 0.803 0.782 0.775 0.786 0.790 0.757 0.779

Mean 0.815 0.817 0.807 0.818 0.820 0.822 0.815 0.807 0.788 0.812

TABLE 5 | ICC of our model for intensity estimation under nine facial poses on FERA 2017 Test partition.

Pose 1 2 3 4 5 6 7 8 9 Mean

AU01 0.441 0.449 0.400 0.403 0.436 0.433 0.353 0.354 0.333 0.400

AU04 0.305 0.278 0.250 0.294 0.333 0.281 0.317 0.244 0.216 0.280

AU06 0.779 0.786 0.787 0.787 0.788 0.786 0.762 0.776 0.754 0.778

AU10 0.763 0.750 0.738 0.759 0.763 0.768 0.734 0.722 0.720 0.746

AU12 0.799 0.812 0.815 0.809 0.813 0.812 0.795 0.797 0.777 0.803

AU14 0.144 0.161 0.162 0.137 0.143 0.153 0.124 0.141 0.126 0.143

AU17 0.393 0.396 0.403 0.394 0.388 0.382 0.383 0.359 0.319 0.380

Mean 0.518 0.519 0.508 0.512 0.523 0.516 0.495 0.485 0.464 0.504

For each pose and AU, the tables show F1 score and Accuracy
for occurrence detection and ICC for intensity estimation. In
the experiments, we used the same CNN models reported in
section 4.5.We can see the effect of rotations inTables 4, 5. As for
the pitch rotations, the performance with 0◦ pitch poses (Pose 4,
5, and 6) show better results than the others. As for yaw rotations,
the performance scores are comparable for all poses.

4.7. Cross-Domain Evaluation
Differences in illumination, cameras, orientation of the face,
quality, and diversity of the training data influence predictive
performance between domains. To evaluate the generalizability
of the method to unseen conditions, we reported performance

on the DISFA (Mavadati et al., 2013) and UNBC McMaster
Pain (Lucey et al., 2011) datasets.

These datasets were annotated with AU intensity labels. To
create binary AU occurrences, we thresholded the 6-points
intensity values at A-level (A-level or higher means the AU is
present). We evaluated both occurrence detection and intensity
estimation performance of our system. In these experiments, no
fine tuning was performed on the target domain.

Figure 3A shows the F1 scores with two normalization
methods, Procrustes analysis and resizing. Figure 3B shows the
F1 scores with two pre-trained architectures, VGG-ImageNet and
VGG-Face. In these experiments, we used the same configuration
with Adam optimizer in sections 4.1 and 4.2, respectively. We
used the built-in face detector in dlib (King, 2009) to detect
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FIGURE 3 | F1 scores for occurrence detection on the Denver intensity of spontaneous facial action (DISFA) and UNBC Pain with (A) two normalization methods and

(B) two pre-trained architectures.

the face before applying Procrustes analysis. As for resizing, we
extend the boxes of detected face positions by 30% to include
whole faces and then crop and resize the boxes to 224 × 224 size
images. For DISFA, we found that Procrustes analysis with VGG-
ImageNet have better performance. For UNBC Pain Archive, the
findings are in same direction but small.

Tables 6, 7 show the results from our model on both tasks.
In these experiments, we used two types of models: (1)
All poses: the previously trained CNN models reported in
section 4.5, and (2) Pose 6 only: models trained on images
only with Pose 6, which is equivalent to BP4D. Table 6 includes
the comparison with cross-domain methods for occurrence
detection on DISFA. Both Baltrušaitis et al. (2015) and Ghosh
et al. (2015) used BP4D to train their model and thresholded
AU intensity values at A-level to create binary events. Our
models were also trained using BP4D because the train set
for FERA 2017 is synthesized from BP4D. Pose 6 in FERA
2017 is the same as the pose shown in BP4D. To train the
models for Pose 6 only, the same number of images as All
poses are used. More specifically, 45,000 frames were randomly
selected per class per AU, resulting in 90,000 images in total
for each AU. As we discussed in section 4.3, we down-
sampled the majority class and up-sampled the minority class.
We also report Accuracy and 2AFC scores that Ghosh et al.
(2015) used.

When All poses model and Pose 6 only model were compared,
both models showed that almost the same performance for
Accuracy, F1 score, and AUC though All poses shows slightly
better results than Pose 6 only for 2AFC. The results look
reasonable because most images in DISFA is frontal or near
frontal. In comparison with Ghosh et al. (2015), our models
outperform their method in both metrics. Baltrušaitis et al.
(2015) report cross-domain scores only for two AUs (AU12
and AU17). Our models show better performance except for
AU12 on Pose 6 only. These results show the robustness
of our model for cross-domain situation. To the best our
knowledge, there are no other methods that perform cross-
domain evaluation on these datasets. Table 7 depicts the results
of our methods.

It is worth mentioning that some differences on UNBC Pain
may cause the low F1 scores. The base rates on UNBC Pain is
small (DISFA: 13.3%, and UNBC Pain: 7.2%) and the image size
of UNBC Pain (320 × 240 or 352 × 240) is also smaller than the
other two datasets (FERA2017: 1,024 × 1,024, and DISFA: 1,024
× 768). In addition, in UNBC Pain, facial expressions are mostly
associated with pain, and the correlation among AUs differs from
that of FERA2017 and DISFA. Tables 6, 7 also show AUC.

4.8. Cross-Pose Evaluation
We also performed cross-pose experiments to evaluate the
generalization of our method to unseen poses. We report
the results of two types of experiments: (1) We trained the
architecture using eight of the nine poses of training set and
tested it with the remaining pose of test set (Figure 4), (2) We
trained the architecture using one pose of training set and tested it
with nine poses of test set (Figure 5). The baseline configuration
with Adam optimizer is used for cross-pose experiments.

Figure 4 shows that the differences between the models
trained with eight poses and those trained with nine poses. The
horizontal axis represents the pose that was excluded from train
set and used as test set. The value is zero if the performance
between two models are the same, and the value is >0 if the
performance with eight poses is better than the one obtained with
nine poses. By training the models with all of the nine poses, the
best performance since the model learns information about all
poses is expected. With eight-pose experiments, we can see that,
even if the test pose is excluded from the training set, our model
performs similarly to the one in which the test pose is included
in the training set. The results indicate that our model performs
reasonably well on the unseen poses.

As for Figure 4, we provide a more detailed analysis. Accuracy
for AU4 is higher for poses 1 and 2. No difference, however,
is found for AU4 intensity. Given that the occlusion sensitivity
maps for AU4 appear similar across poses, the difference for
poses 1 and 2 in occurrence may be due to noise. AU15, on
the other hand, showed the decreased accuracy for poses 7, 8,
and 9. This effect would be expected. AU 15 results in localized,
small movement, and appearance change below the lip corners.
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TABLE 6 | Comparison of cross-domain performance to DISFA dataset for occurrence detection.

Accuracy 2AFC

Our (all poses) Our (pose 6 only) Ghosh et al. (2015) Our (all poses) Our (pose 6 only) Ghosh et al. (2015)

AU01 0.932 0.922 0.838 0.714 0.720 0.660

AU04 0.806 0.874 0.833 0.723 0.759 0.740

AU06 0.860 0.811 0.703 0.758 0.744 0.870

AU12 0.859 0.812 0.624 0.859 0.823 0.873

AU15 0.823 0.943 0.752 0.671 0.618 0.617

AU17 0.738 0.657 0.689 0.742 0.720 0.585

Mean 0.836 0.836 0.740 0.745 0.730 0.724

F1 AUC

Our (all poses) Our (pose 6 only) Baltrušaitis et al. (2015) Our (all poses) Our (pose 6 only)

AU01 0.475 0.456 – 0.787 0.819

AU04 0.531 0.629 – 0.809 0.886

AU06 0.567 0.506 – 0.867 0.837

AU12 0.742 0.679 0.700 0.934 0.902

AU15 0.253 0.345 – 0.761 0.795

AU17 0.361 0.316 0.260 0.823 0.784

Mean 0.488 0.488 – 0.830 0.837

The best results are shown in bold.

TABLE 7 | Cross-domain performance to DISFA dataset for intensity estimation and UNBC Pain dataset for occurrence detection and intensity estimation.

DISFA UNBC pain

Intensity Estimation Occurrence Detection Intensity Estimation

ICC F1 AUC ICC

AU01 0.533 AU01 – – AU01 –

AU04 0.560 AU04 0.195 0.863 AU04 0.152

AU06 0.451 AU06 0.249 0.720 AU06 0.262

AU07 – AU07 0.188 0.784 AU07 –

AU10 – AU10 0.028 0.743 AU10 0.018

AU12 0.747 AU12 0.405 0.785 AU12 0.388

AU17 0.319 AU17 – – AU17 –

Mean 0.522 Mean 0.213 0.779 Mean 0.205

When the face is viewed from above (poses 7, 8, and 9), the target
region is occluded. As for AU23, there was decreased accuracy for
pose 9. Lip-corner tightening may be more difficult to perceive
when viewed from above, but that was not found for two of the
three extreme poses. Thus, variation for this AU occurrence is
difficult to interpret. Unfortunately, AU intensity is not available
for comparison.

Figure 5 shows the results of the second experiment. Each
cell of a 3 × 3 matrix shows the performance of each pose.
Performance at a cell of the grid corresponds to the pose at the
same cell given in Figure 1 The blue rectangle is a pose that was
used to train a model. For example, for a model trained with
Pose 1, F1 score is 0.604 when we test it with Pose 1 of the test
set and 0.446 when we test it with Pose 9 of the test set. The
figure shows that maximum results are obtained with within-
pose. Smaller decreases are observed in the performance when

the models are tested with the poses in the neighboring cells.
The performance is largely decreased when we test a model with
largely different poses.

4.9. Occlusion Sensitivity Maps
To discover key features for the classifier, we generated occlusion
sensitivity maps (Zeiler and Fergus, 2014) for each pose and each
AU. We used an occlusion patch of a 45 × 45 size with Gaussian
random noise. We slid the patch over the original image of 224×
224 size with a stride 15. For each AU each pose, we selected 100
images that contained the specific AU and 100 images that did not
contain it. We tested the 200 images for each AU and each pose
and obtained accuracy values. Figure 6 shows the maps, where
the darker red colors represent lower accuracy values. Significant
regions are the ones colored with red because their occlusion
causes the largest decrease in the accuracy.
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FIGURE 4 | Performance difference between models trained with eight poses and with nine poses. Horizontal axis shows each pose.

FIGURE 5 | F1 scores and Intraclass Correlation coefficients (ICC) for models using one pose of training set and with nine poses of test set. Only mean values are

reported.

As can be seen in Figure 6, for most of the AUs, the significant
regions are localized at the regions where each AU is observed
(e.g., around eyes, eyebrows, and forehead for AU1 and AU4, and
around the mouth and chin for AU15 and AU17). The results
indicate that the models learn of where to look at on the input to
detect the specific AU correctly. Note that significant regions in
Figure 6 are off to the left side even for frontal faces. This seems
to be reasonable because the pitch and yaw rotations of images
in FERA2017 datasets is in one direction, as shown in Figure 1.
If any occlusion does not cause large decrease in accuracy, the
map does not include dark red colors. For example, we see weak
activation on the heatmap for the AU12 frontal face. The map
indicates that, even if a large part of mouth is occluded, ourmodel
can detect AU12 by using the other part of the face.

4.10. Saliency Maps
We generated saliency maps using basic
backpropagation (Simonyan et al., 2014) to compare the
learned features. For each AU each pose, we selected 100
images that contained the specific AU and 100 images that did

not contain it. We then obtained a mean image of saliency
maps from the 200 images. Figure 7 shows the results of this
experiment. Brighter areas are more important for the classifier
to detect the related AUs.

The important regions are expected to be localized at
the regions where each action unit is observed. Like the
occlusion sensitivity map, the saliency map aims to find
important regions to detect, but there are differences in their

methodology and in the way they define what is important.

The occlusion sensitivity map follows a perturbation-based

(forward propagation) approach. Perturbed (occluded) inputs
are forwarded through the network, and its effect on the output

prediction is investigated. Contrary to the occlusion sensitivity

map, saliency map is a gradient-based (back propagation)

approach. The idea behind saliency map is to compute the

gradient of the output category with respect to the input image
pixels. This shows the amount of change in the output when a

pixel value is slightly changed. Figure 7 shows that the important

regions are well-localized for both VGG-ImageNet and VGG-
Face. However, in comparison with VGG-ImageNet, the regions
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FIGURE 6 | Occlusion sensitivity maps for each pose each AU. Models trained with our baseline configuration are used.

of VGG-Face are wider and include more areas that are not
related to each AU. The results indicate that the important
regions are better localized for the VGG-ImageNet compared
to VGG-Face. This is consistent with the experimental results
that show that VGG-ImageNet pre-trained models outperform
VGG-Face pre-trained models. Note that the important regions
are off to the left side, like occlusion sensitivity maps, as we
discussed in section 4.9.

4.11. ResNet
To examine the impact of different DL architectures, we
conducted the experiments using ResNet50 pre-trained on
ImageNet. In this experiment, we fine-tuned the network
from the first layer. For the other parameters, our baseline
configuration was used. Figure 8 shows the results of the
experiment. ResNet50 (0.516) shows better performance
than VGG16 (0.504) for intensity estimation, while VGG16
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FIGURE 7 | Saliency maps extracted using basic backpropagation.

FIGURE 8 | Effect of learning rates and choice of optimizers for ResNet50 on the FERA2017 Test partition.

(0.609) shows better performance than ResNet50 (0.591) for
occurrence detection.

5. CONCLUSIONS

By evaluating combinations of different components and their
parameters, we addressed how design choices in DL systems

influence performance in facial AU coding and several findings
standout. The source domain in which pre-training was
performed influenced the performance of fine-tuning in the
target domain. Generic pre-training proved better than a face-
specific one. Face-specific pre-training indicates the training
to learn identity but ignore the facial expression. Another
important factor contributing to performance is the choice
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of different learning rates for different optimizers. For Adam
optimizer, small LR was optimal. For SGD optimizer, large
LR was optimal for expression coding. Best parameters of
the optimizers were similar for both AU occurrence detection
and AU intensity estimation, while varying the training set
size and the type of image normalization had little effect
on performance.

We also evaluated cross-pose and cross-domain
generalizability of the proposed method and presented
occlusion sensitivity maps and saliency maps to
reveal key features for each facial AU. Our models
outperformed other state-of-the-art approaches in
the cross-domain experiments. Cross-pose evaluation
showed that our models performed well for
unseen poses.
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