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Analysis and Classification of Word
Co-Occurrence Networks From
Alzheimer’s Patients and Controls

Tristan Millington * and Saturnino Luz

Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom

In this paper we construct word co-occurrence networks from transcript data of controls
and patients with potential Alzheimer’s disease using the ADReSS challenge dataset of
spontaneous speech. We examine measures of the structure of these networks for
significant differences, finding that networks from Alzheimer’s patients have a lower
heterogeneity and centralization, but a higher edge density. We then use these
measures, a network embedding method and some measures from the word
frequency distribution to classify the transcripts into control or Alzheimer’s, and to
estimate the cognitive test score of a participant based on the transcript. We find it is
possible to distinguish between the AD and control networks on structure alone, achieving
66.7% accuracy on the test set, and to predict cognitive scores with a root mean squared
error of 5.675. Using the network measures is more successful than using the network
embedding method. However, if the networks are shuffled we find relatively few of the
measures are different, indicating that word frequency drives many of the network
properties. This observation is borne out by the classification experiments, where word
frequency measures perform similarly to the network measures.

Keywords: machine learning, natural language processing, Alzheimer’s disease, network analysis, network
embedding, graph measures

1 INTRODUCTION

As populations continue to age, the development of automated methods to help reduce the amount
of in person care required is becoming an important research topic. Dementia is a particular issue,
where the cognitive function of a person declines as they age, with symptoms including memory loss,
motor problems, deterioration of visuospatial function, language impairment and emotional distress.
These issues tend to reduce the ability of a person to care for themselves, placing an added burden on
their carers and/or relatives. Early diagnosis of dementia is desirable as it is amenable to treatment,
and this can help the patient live a longer, more independent life. Dementia shows various linguistic
effects, with patients tending to produce sentences with less information, less syntactic complexity
(Pakhomov et al., 2011), fewer unique words and more meaningless sentences (Fraser et al., 2016).
These effects can be used for non-invasive diagnosis and analysis of dementia, and so in this paper we
look at using text classification methods to this end.

The common approach in text classification is to use a bag of words model. This assumes that
word order does not matter, and either counts the number of occurrences of each word in a
document, or uses some information based measures such as term-frequency inverse document
frequency (TF-IDF). Various authors have taken this approach, and demonstrated good results on
classifying participants as AD or controls (Orimaye et al., 2017; Wankerl et al., 2017). However, word
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order does in fact matter, and we can try to capture this using
graph based methods. The approach used here is to construct a
graph where the words in the document are nodes, and if two
words co-occur within a certain window (a set of words occurring
around a given word) an edge is drawn between them.
Furthermore, these co-occurrence networks are an
approximation of syntactic networks, as most syntactic
relationships occur between words that are close together
(Cancho and Solé, 2001). Various syntactic measures have
been previously used to distinguish between AD patients and
controls (Pakhomov et al., 2011; Fraser et al., 2016), and we
hypothesize that these co-occurrence networks can capture these
syntactic relations without the use of a syntactic parser.

Therefore, in this paper we investigate the properties of word
co-occurrence networks using a variety of co-occurrence
windows from transcripts of controls and patients diagnosed
with potential Alzheimer’s disease (AD) on a picture description
task. We analyze these networks for potential differences between
the controls and AD patients using various network measures,
and then look at classifying the networks using a set of network
measures, a graph embedding method and a baseline method
using word frequency statistics. Each transcript is also annotated
with the mini-mental state examination (MMSE) result. This is a
test of cognitive function, and can be used to help diagnose
dementia. The test scores ranges from 0-30, and a score below 24
is usually taken to indicate cognitive impairment. We are also
interested in predicting the value of the MMSE score from a
transcript by using this co-occurrence network model and the
graph measures/network embedding method. To the best of our
knowledge, such an approach has not been taken before. We use
the terms graph and network interchangeably in this paper, and
we emphasize these networks we refer to are different to neural
networks.

2 RELATED WORK

The structure of word co-occurrence networks has been studied
by many authors, along with which parameters can be used for
classification. For instance Liu and Cong (2013) study the use of
various network measures for distinguishing between the same
text written in a set of different languages. Focusing mostly on
Slavic languages (although they do also use English) they use
hierarchical clustering to show which languages are more similar.
By trying many different combinations of the network measures,
they discover that it is possible to show the Slavic languages are
more similar to each other than they are to English or Chinese,
and inside the Slavic group the languages that are generally
regarded as more similar (e.g. Belorussian and Russian) are
more closely clustered than less similar languages (e.g. Russian
and Slovakian). Other authors have applied similar methods for
author attribution (Antiqueira et al., 2007; Mehri et al., 2012;
Akimushkin et al., 2017), distinguishing between automatically
generated and human written text (Amancio et al, 2008;
Amancio, 2015) and for keyphrase extraction (Mihalcea and
Tarau, 2004; Bougouin et al, 2013; Florescu and Caragea,
2017). A detailed review of the literature so far on the
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construction and applications of word co-occurrence networks
is provided by Cong and Liu (2014).

Graphs can also be used to augment n-gram classification.
For instance, we can gain the centrality of a term from a graph,
which can then be used as input into a text classification
algorithm (Hassan et al., 2007), and this has been shown to
improve classification accuracy compared to just using
n-grams. Alternatively we can use the structure of the
graph as input into the classification algorithm. This has
the advantage of ensuring that new documents can have
unknown words, which is advantageous if the system must
be deployed for a period of time, as it is unlikely that every
word that could ever be encountered is present in the training
set. Rousseau et al. (2015) use the subgraph mining method
gSpan (Yan and Han, 2002) to mine frequent subgraphs from
a set of graphs extracted from text documents. The presence of
these subgraphs is then used as input into the classification
method. The disadvantage of this method is that it is
computationally expensive to mine for all possible
subgraphs of non-trivial size.

A similar approach to the one we take in this paper is proposed
by Santos et al. (2017). In their paper the authors apply a word co-
occurrence network model to the DementiaBank and a
Portuguese dataset. However, unlike us they enrich their
model using word embeddings to produce weighted edges
between words that do not co-occur. They calculate node level
statistics for each graph and use this as input into a classification
procedure. With their enriched networks they achieve an increase
in classification accuracy, achieving 62% on the DementiaBank
dataset.

There have been many more approaches taken to identify
Alzheimer’s using machine learning techniques and linguistic
features. One of the first examples in the literature is the analysis
of the books of an author who was diagnosed with Alzheimer’s by
Garrard et al. (2005). A combination of lexical, syntactic and
vocabulary based features is used to compare the books. This is
further extended by Pakhomov et al. (2011). Using the Stanford
parser, the authors take three measures of syntactic complexity,
Yngve depth, Frazier depth and the length between grammatical
dependencies. There is a clear decline over time in the syntactic
complexity of the authors writing, particularly with the books at
the end of her career.

Many authors have used the DementiaBank corpus for their
studies. For instance, Fraser et al. (2016) apply machine learning
methods to the DementiaBank corpus, using both transcripts and
speech data. Firstly they used logistic regression to evaluate the
contribute of each feature to successful classification of a
participant as having Alzheimer’s or being a control. Ranking
the features using Pearson correlation, they firstly investigate how
including more features affects the classification accuracy. The
maximum classification accuracy is achieved when the 35 most
correlated features are used (at 81.92%), and beyond this it tends
to remain roughly constant until 50 features are reached
(dropping slightly to 78.72%, after which the classification
accuracy decreases significantly. Of relevance to this paper,
they find that AD patients produce more pronouns, fewer
nouns, have a smaller vocabulary and repeat themselves more.
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Interestingly though, measures such as the depth of the parse tree
do not seem significantly correlated with an AD diagnosis.

Orimaye et al. (2017) further explore which features can be used to
distinguish between AD and controls from transcripts. A combination
of n-grams, lexical and syntactic features to this end. Since this is a
large feature set, they perform some univariate screening using t-tests
to remove variables which have little ability to distinguish between
classes. Of particular interest to us, they find that the number of
repetitions, reduced sentences, predicates and mean length of
utterances are different between the classes, but that many other
syntactic measures, such as the dependency distance, are not. They
then select the top 1,000 features for input into the SVM classifier.
Comparing the syntactic and lexical features only, to the n-gram only,
to the combination of the two, they find that the combination
performs the best, with an AUC of 0.93, compared to 0.80 for the
lexical-syntactic features and 0.91 for the n-gram features.

Authors have also disregarded syntactic features and used only
n-grams for classification. For instance, Garrard et al. (2014) use
n-grams to distinguish between AD patients and controls on a
picture description task. They find that the transcripts from the
controls contain more content words (e.g. picnic, blanket) while
the AD patients tend to produce more generic terms (e.g.
something, thing). They use only a small subset of the total
word set to classify, as there are a large number of possible
n-grams. This indicates that a small number of features can be
used to distinguish between AD patients and controls.

Larger n-grams can also be used. Orimaye et al. (2018) use a
deep neural network and large n-grams (n>3) to classify the
participants into control or AD. Since the occurrence matrix of
these n-grams will be very sparse, they firstly reduce the
dimensionality using SVD (selecting 19 features in the end),
before inputting this smaller matrix into the neural network.
Experimenting with a variety of n-gram sizes, they find using 4 g
achieves the lowest error (11.1%) on the test set in their deep
neural networks. It is also possible to use the distribution of
n-grams to differentiate between AD and controls. Wankerl et al.
(2017) create probability distributions of the trigrams in
transcripts from the cookie detection task from
DementiaBank. The perplexity of a new sample is used to
classify it as AD or control.

While transcripts are convenient to analyze, transcription can be
challenging, either noisy if done automatically or slow and expensive if
done by humans. Using purely audio is attractive if we wish to apply
these methods on non curated datasets. Haider et al. (2019) study the
same corpus, but instead focus their efforts on purely acoustic features.
Here they use a fusion of acoustic feature sets (namely emobase,
ComParE, eGeMaps and MRCG) on the DementiaBank dataset,
achieving a maximum accuracy of 78.8%. A challenge with many
of these approaches is that they are dependent on language and
context. To solve these issues, Luz et al. (2018) instead propose to
extract vocalization graphs from patient dialogue. Using features from
these vocalization graphs, they achieve a classification accuracy of
86.5%, though on a different dataset.

Aside from speech data, other approaches have included the
use of smart home data (Alberdi et al., 2018). This particular
example involves using activity recognition to establish routines,
and then these routines can be compared between healthy
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participants and those with AD. If the reader is curious for
more details, comprehensive reviews on the topic of
Alzheimer’s detection are provided by de la Fuente Garcia
et al. (2020) and Slegers et al. (2018).

3 SOFTWARE AND DATA

Our dataset is made up of transcripts from the DementiaBank
corpus. The DementiaBank corpus is a set of recordings of cognitive
tests, which forms part of the larger TalkBank project (MacWhinney,
2019). The subset of DementiaBank used in this study encompasses
recordings and their corresponding transcriptions, where patients
with Alzheimer’s and controls describe a picture known as the
“Cookie Theft” scene, taken from the Boston Diagnostic Aphasia
Examination (Becker et al. (1994)). This dataset is known as the Pitt
corpus. Participants were required to:

¢ be above 44 years of age,

e have at least 7 years of education,

e have no history of nervous system disorders,

e not be taking neuroleptic medication,

¢ have an MMSE score of above 10.

e be able to give informed consent, and

e have a caregiver or relative to act as an informant if they had
dementia.

To avoid possible biases due to age and gender which might
have affected some of the above mentioned machine learning
studies (de la Fuente Garcia et al., 2020), we use the ADReSS
challenge dataset (Luz et al, 2020). The age and gender
distributions of participants in DementiaBank’s Pitt Corpus
tend to reflect the fact that age and gender are major risk
factors in AD. Therefore, AD participants will tend to be older
and more likely to be female than control participants. The
ADReSS dataset removes this source of bias as it consists of a
subset of the Pitt corpus, sampled so as to be balanced with
respect to gender and age. This dataset is divided into two halves,
a training set and a test set. The training set contains 108
transcripts, evenly split between the AD and controls. The test
set contains 48 transcripts, again evenly balanced between AD
and controls. We perform our analysis on the training set, and
keep the test set as an unseen dataset for evaluating the classifiers.
The source code for the experiments described in this paper is
available at our Gitlab repository." Instructions on how to acquire
the dataset are available at the ADReSS website.”

The networks are built using word co-occurrence windows of
2, 3 and 5, and are weighted and undirected. The weight on an
edge is the number of times the two words occur together within a
window in the same sentence. We remove any characters that are
not in the Latin alphabet (i.e. numbers and punctuation are
removed), but do not perform any stop word removal or

'https://git.ecdf.ed.ac.uk/tmilling/analysis-and-classification-of-word-co-
occurrence-networks
*https://edin.ac/375QRNI
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lemmatization. We do not remove stop words as we hope that the
networks capture differences in their usage between the AD
patients and controls. Pauses and other “non word” utterances
are retained.

We make use of Python, NumPy and SciPy (Oliphant, 2006) for
general scripting, pandas (McKinney, 2010) for handing the data,
matplotlib (Hunter, 2007) for plotting, Networkx (Hagberg et al,
2008) for the network analysis, Cytoscape (Shannon et al., 2003) for
the graph visualization, powerlaw (Alstott et al, 2014) for fitting
power laws to the degree distributions, scikit-learn (Pedregosa et al.,
2011) for implementation of the classifiers, NLTK (Loper and Bird,
2002) for some of the natural language processing, PyLangAcq (Lee
et al, 2016) for parsing the transcriptions and Karate Club
(Rozemberczki et al., 2020) for the graph embeddings.

4 NETWORK ANALYSIS
4.1 Method

To start with, we show example networks from the control and
AD patients in Figure 1. Next we look at the values of various
network measures for the co-occurrence networks constructed
from the patients and controls. We only use the training set for
this analysis. We focus on similar measures to previous work (Liu
and Cong (2013)), in this case choosing.

e Number of nodes (N)
e Number of edges (E)
e Edge density (ED)

e Fraction of self links (SL)

e Average Clustering Coefficient ((CC))

e Diameter (D)

¢ Heterogeneity (how similar the nodes are to each other)-this
is defined as (Estrada, 2010).

ijer(k 12 k] 1/2)

H=
N-2vN-1

where k; is the degree of node i, T is the edge set.

e Degree Network Centralization (NC) (how much the
network is centered around a small number of highly
central nodes) as defined by Freeman (1979).

M

NC =
N2-2N+2

where k; is the degree of node i, ky,,y is the maximum node degree
in the graph.

e Average Shortest Path Length ((AV))

e Exponent when fitting the degree distribution to a power
law (a)

® Xmin When fitting the degree distribution to a power law (xpn)

e Assortativity (A) (Pearson correlation between the rows of
the adjacency matrix)
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TABLE 1 | Means for the network measures for each dataset. Bold font indicates
the mean difference is significant between the AD and controls for that co-
occurrence window at p < 0.05 level. The parameter o refers to the size of the co-
occurrence window.

Measure o=2 o=3 o=5
Control AD Control AD Control AD

<N> 64.185 53.204 64.185 53.204 64.185 53.204
<E> 151.648 124,130 206.222 168.519 281.500 226.759
ED 0.039 0.049 0.053 0.065 0.071 0.084
SL 0.005 0.009 0.016 0.023 0.040 0.039
<CC> 0.612 0.601 0.710 0.707 0.792 0.793
D 6.574 6.259 5.037 4.926 4.037 4167
H 0.135 0.107 0.123 0.100 0.112 0.093
NC 0.348 0.284 0.438 0.364 0.522 0.433
(AV) 2.724 2.691 2.353 2.305 2.138 2.075
a 5.069 5.477 4.740 4.827 4171 4.349
Xmin 4.870 4.815 6.389 5.648 7.630 7.056
A -0.159 -0.095 -0.141 -0.075 -0.131 -0.044
Knno 11.614 15.575 13.981 16.409 13.834 18.456

¢ Exponent when fitting a power law to the average neighbor
degree distribution (k;,«)

These networks are not connected, and measures that rely on
path lengths require modification to be used. In our case the
measures that need modifying are the average shortest length
path and the diameter. For the average shortest length path, we
take the average of all the shortest paths lengths that do exist in
the network, discarding those that have infinite length. For the
diameter, we take the diameter of the largest component in
the graph.

4.2 Results

We show the means of these for each group for a variety of co-
occurrence windows (o) in Table 1, where bold font indicates the
mean difference is significant according to a Mann-Whitley test at
P <0.05 for that co-occurrence window. Perhaps unsurprisingly, the
measures are affected by the size of the co-occurrence window.
Increasing the window size increases the number of edges, and by
proxy the edge density. As the network becomes more connected, this
increases the average clustering coefficient, network centralization and
Xmin While decreasing the diameter, heterogeneity, average path length
and a. We find that there are six measures with significantly different
means for all co-occurrence windows, number of nodes (note this is
the same for all window sizes), number of edges, edge density,
heterogeneity, network centralization and assortativity. There are
three other measures that are significant for one window, fraction
of self links and x,, for 0 = 3 and k,,,« for o = 2.

Next we look to explain why these measures might be
different. Alzheimer’s patients tend to use fewer unique words
than controls (Fraser et al., 2016; Orimaye et al., 2018), and tend
to repeat words and phrases more frequently than healthy
controls. Since unique words correspond to nodes in the
graphs, this would explain why controls have a higher number
of nodes that those from AD patients, and why the edge density is
higher for the AD patients (more edges between a smaller number
of nodes). The number of self links should capture word
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repetitions, and it is higher in the AD networks, but it is
notable that it is only significant with a co-occurrence window
of 3. For the larger windows there will be more self links overall
and proportionally fewer that are due to repetitions, so this could
explain why it is not significant for a window of 5.

The AD networks have a lower heterogeneity and a lower
network centralization. A lower heterogeneity shows that the
degree of the nodes is more equal, while a lower network
centralization indicates the network is less orientated around a
small number of highly centralized nodes. Furthermore the AD
networks are less disassortative than the control networks. A
disassortative network is where high degree nodes are connected
to low degree nodes, while in an assortative network high degree
nodes are connected to other high degree nodes. In general word
co-occurrence networks tend to be disassortative (Masucci and
Rodgers, 2006; Krishna et al, 2011). We would expect the
networks from the AD patients to be smaller, more densely
connected and to have a more uniform degree distribution
than those from controls, and this seems to be reflected in the
graph measures. This would also affect the assortativity of the
network-nodes would be less likely to be connected to other
nodes of higher degrees, which might indicate greater use of
circumlocution in AD networks where disassortativity is reduced.

The average clustering coefficient, diameter and average path
length were not significantly different between the AD and controls.
We found this surprising as we expected that the average path length
and diameter would be shorter for the AD networks as AD patients
tend to produce shorter sentences with shorter dependency
distances, and the average clustering coefficient larger due to the
smaller network size and larger edge density. In fact this is even more
surprising as the control networks are larger than the AD
networks-so we would expect the diameter and average shortest
length path of the control networks to be larger. However, there are
disagreements in the literature on whether dependency distance is
actually shorter linguistic AD patients’ linguistic output (Pakhomov
etal, 2011; Fraser et al., 2016; Orimaye et al., 2017), and average path
length is not an exact measure of dependency distance. Furthermore,
the transcripts of spontaneous speech used in our experiments are
quite short, which might have an effect when comparing these results
to results from written text, in the context of which the initial claim
was made. It should be noted, however, that recent evidence seems to
suggest that dependency lengths in spoken language do not differ
significantly to those in written language (Kramer, 2021). Other
syntax differences discovered were more node level than global (for
instance the number of times the participant utters a pronoun and
then an auxiliary verb phase) which cannot be picked up by our
measures. The other measures which were not significantly different
were Xmin and a. These describe the degree distribution of the
networks. The lack of significant difference in these measures for the
majority of the co-occurrence windows indicates that the networks
have a similar degree distribution.

Each transcript is also annotated with an MMSE score, and we
look at how this is correlated with the network measures using
Spearman correlation. A larger MMSE score indicates the
participant is less likely to be in the AD group, so we would
expect that graph measures which are larger in the controls to be
positively correlated with the MMSE score, and those which are
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TABLE 2 | Spearman Correlation between network measures and MMSE score.
Significant correlations are marked with bold font.

Measure 0=2 0=3 o=5
(N) 0.187 0.187 0.187
(E> 0.153 0.154 0.158
ED -0.239 -0.228 -0.203
SL -0.228 -0.143 0.049
(CC» 0.185 0.129 0.066
D 0.048 -0.018 -0.155
H 0.336 0.265 0.211
NC 0.307 0.303 0.319
<AV > -0.121 -0.108 -0.085
a -0.058 -0.075 0.058
Xmin 0.046 0.249 0.117
A -0.381 -0.421 -0.355
Knnat -0.187 -0.101 -0.117

smaller in the controls to be negatively correlation with the
MMSE score. The results are shown in Table 2, with
significant correlations marked using bold font.

There are five measures with significant correlations with the
MMSE score, edge density, heterogeneity, network centralization
and assortativity. Edge density and assortativity show a negative
relationship with the MMSE score, while heterogeneity and
network centralization show a positive relationship. Controls
have higher MMSE scores than those with AD, so these
results mostly reflect the control/AD differences seen above.
There are two measures which have a significant difference in
means, but do not have significant correlations, the number of
nodes and number of edges. This is quite surprising, as these have
been shown to be very good predictors of AD. There is a large
amount of variance in the MMSE for both classes, so this could be
the reason why the mean difference is significant while the
correlation is not.

4.3 Comparison to Shuffled Networks

To understand how successful these networks are in capturing the
dynamics of word usage we must compare them to a null model.
In this section we create null models by shuffling the order of the
words for each transcript and constructing networks from these
shuffled transcripts. Previous work comparing shuffled networks
to their originals has shown that many of the properties of word
networks occur to due the frequency of word use rather than due
to word order (Caldeira et al., 2006; Krishna et al., 2011).

We create the shuffled networks by randomizing the order of
the words in the document. The end of the sentence marker
(usually a full-stop) is treated as a word, so sentence structure is
not maintained, but the shuffled documents still have sentences.
This is done 50 times for each network and then the mean value
for each measure is calculated. These are compared to the
originals. This allows us to see which structures of the
network are due to the frequency of word occurrence and
which are due to the specific word order. We show the results
of this in Table 3. Again we use a Mann-Whitley test at p < 0.05 to
test for means that are significantly different.

Some of the measures are obviously more influenced by the
number of words than their order - for instance the number of
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nodes, number of edges and edge density, and we can see these are
not significantly different between the real and shuffled networks
for any value. Only the average clustering coefficient, the number
of self links and X, are significantly different between the real
and shuffled for all the networks. Assortativity is also different for
all the control networks, but only for the co-occurrence window
of two for the AD networks.

TABLE 3 | Comparison of the network measures for the shuffled networks and the
real ones. Significant differences are marked with bold font.

o=2
Measure Control AD
Real Shuffled Real Shuffled
<N> 64.185 64.006 53.204 53.259
<E> 151.648 156.699 124.130 136.437
ED 0.039 0.041 0.049 0.052
SL 0.005 0.035 0.009 0.041
<CC> 0.612 0.583 0.601 0.571
D 6.574 6.316 6.259 6.052
H 0.135 0.134 0.107 0.121
NC 0.348 0.359 0.284 0.306
<AV > 2.724 2.855 2.691 2.699
a 5.069 4.983 5.477 5.629
Xrnin 4.870 5.429 4.815 5.253
A -0.159 -0.108 -0.095 -0.088
Knna 11.614 11.090 15.575 13.362
0=3
Measure Control AD
Real Shuffled Real Shuffled
(N) 64.185 63.983 53.204 53.220
<E> 206.222 212.448 168.519 183.404
ED 0.053 0.055 0.065 0.069
SL 0.016 0.045 0.023 0.051
{CC) 0.710 0.679 0.707 0.669
D 5.037 5.029 4.926 4.852
H 0.123 0.124 0.100 0.113
NC 0.438 0.436 0.364 0.373
(AV) 2.353 2.505 2.305 2.349
a 4.740 4.616 4.827 5.276
Xmin 6.389 71411 5.648 6.822
A -0.141 -0.110 -0.075 -0.082
Kona 13.981 12.655 16.409 16.283
o=5
Measure Control AD
Real Shuffled Real Shuffled
<N > 64.185 64.005 53.204 53.206
<E> 281.500 297.417 226.759 252.929
ED 0.071 0.076 0.084 0.093
SL 0.040 0.056 0.039 0.065
{CC) 0.792 0.759 0.793 0.752
D 4.037 4.083 4167 4.067
H 0.112 0.112 0.093 0.104
NC 0.522 0.522 0.433 0.445
<AV > 2.138 2.257 2.075 2.132
a 4171 4.403 4.349 5.113
Xenin 7.630 8.929 7.056 8.975
A -0.131 -0.105 -0.044 -0.064
Knno 13.834 14.539 18.456 19.742
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For the average clustering coefficient, this significant
difference is explained by the fact that words co-occur more
than would be expected due to random chance. Shuffling destroys
this structure, and therefore reduces the clustering coefficient in
all of the networks. The difference in self links should also be
caused by a similar situation-this measure is clearly influenced by
word order, and so should change when this is destroyed.
Shuffling also changes the degree structure of the networks,
causing changes in the value calculated for Xpmin.

In the previous section we found that there are six network
measures that differ between the AD and controls for all co-
occurrence windows: number of edges, number of nodes, edge
density, heterogeneity, network centralization and assortativity.
However out of all of these only assortativity differs between the
shuffled and original networks. From a purely network based
perspective, it would seem reasonable that assortativity would
change between the shuffled and original networks-again we are
destroying the co-occurrence structure. Previous work (Krishna
etal, 2011) has also confirmed this. However what is surprising is
that the difference is significant for controls for all co-occurrence
windows, but only for o = 2 for AD patients. This indicates the
AD networks look more random than those from controls.

Previous work has shown that AD patients tend to use more
generic terms on picture description tasks than healthy controls,
and that the healthy controls use more low frequency content
bearing words (Garrard et al,, 2014). These two factors help to
explain why both heterogeneity and network centralization differ
between the AD and controls, but not between the shuffled
networks—AD patients will tend to use a smaller set of words,
but use each of these words more frequently compared to healthy
controls. This indicates that word frequency has the largest
impact on the structure of the networks, and we would
therefore conclude that word frequency statistics alone would
still provide a good feature set to distinguish between the two
classes of networks.

5 TRANSCRIPT CLASSIFICATION
5.1 Method

We are interested in methods for automatic classification of
networks into control or AD. This can be done in a variety of
ways, with previous work on work co-occurrence networks often
using the network measures above as input into a classifier.
However there has been a great deal of work in the area of
graph classification in the past few years, with many methods
being proposed. Generally these methods fall into one of two
broad categories: embedding or kernel methods. An embedding
method reduces a graph to a vector, while a kernel method learns
some kind of similarity measure between graphs and calculates
the Gram matrix from this (Kriege et al., 2020). In addition to
using the network measures mentioned in the previous section,
we also use the spectral features (SF) embedding method created
by de Lara and Pineau (2018). This method is based on analyzing
the spectrum of the graph’s Laplacian in order to extract a feature
vector for the classification algorithm. Firstly we calculate the
normalized graph Laplacian

Alzheimer’s Classification Through Co-Occurrence Networks

L=1-D"AD"?, (1)

where D is the degree matrix, A is the adjacency matrix of the
graph and I is the identity matrix. The input into the classifier is
then the k smallest eigenvalues of the Laplacian in ascending
order

X = (Aphss . ). @)

The authors claim that this is similar to classifying a melody by
its lowest fundamental frequencies. A deeper explanation of the
method is undertaken by Pineau (2019). A larger vector will
capture more of the dynamics of the graph, but will also be more
prone to overfitting. Since we are not aware of an objective
method of selecting k, we experiment with the size of the
vector, running for 5, 10, 15, 20 and 50.

A particular emphasis here is that we are not using the word
labels in this classification task, but purely the structure of the
networks. As mentioned in the previous section, many of the
network measures that differ between the AD and controls do not
vary between the shuffled and original networks, indicating that
many of the differences are due to word frequency usage alone.
With this in mind, we use a unigram based method to provide a
baseline comparison as to how much word frequency alone can
be used to differentiate between the two classes. Here we take the
number of different words used and total number of words in the
transcript, and then the mean, standard deviation, skew and
kurtosis of the distribution of unigrams in the transcript. When
creating the distributions of unigrams we only consider the
unigrams in the specific transcript. This ensures that we do
not leak information across transcripts, and to provide a fairer
comparison to the graph measures, as one of the advantages of
these graph approaches is that we do not need to consider which
words occur in other transcripts.

We use logistic regression (LR), a linear kernel (LSVM), a
radial basis function (RBF) kernel (RSVM), and a random forest
(RF) to classify the networks. The input variables are standardized
to have a mean of 0 and a standard deviation of 1. C for the SVMs
is set to 1, and the logistic regression is L, regularized, with a
regularization parameter of 0.5. y for the RBF kernel is set to 1/p.

5.2 Results

Firstly we evaluate our approach using leave one out cross-
validation (LOOCV) on the training set, and the results are
shown in Figure 2. From this we can see that it is possible to
distinguish between the co-occurrence networks. We have the
highest success at the smallest co-occurrence window of o = 2
using a linear SVM, with a classification accuracy of 71.3% using
the graph measures. Using the graph measures has a higher
overall success rate than using the embedding method for every
size of co-occurrence window. However the unigram method
actually outperforms the network based methods, achieving a
maximum accuracy of 73.1% using a linear SVM.

There is not one particular classification algorithm that
consistently outperforms the other, with the logistic regression,
random forest and linear SVM all having the highest classification
accuracy for different co-occurrence window sizes. The co-
occurrence window size obviously does not affect the unigram

Frontiers in Computer Science | www.frontiersin.org

April 2021 | Volume 3 | Article 649508


https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Millington and Luz

Alzheimer’s Classification Through Co-Occurrence Networks

0o=5
SF k=50 (m]
SF k=20
SF k=15 (@] (]
SF k=10
SF k=5
Graph measures

oe

$0 0@
o +
oe+

0=3
SF k=50 e O
SF k=20 ®
SF k=15
SF k=10
SF k=5 + e O ©
Graph measures

oe
oo+

0=2
SF k=50 (Ol |
SF k=20 ]
SF k=15
SF k=10
SF k=5
Graph measures

(eXe]

+m

Unigram

+ © LR
® RF
O LSVM
+ RSVM

o+

0.50 0.55

20=2).

FIGURE 2 | Classification accuracy of the unigram, graph measures and SF feature extraction methods on the training set using leave one out cross validation,
grouped by co-occurrence window size (0 € {2,3,5}). The best result of 71.3% is achieved using a linear SVM on the graph measures with a co-occurrence window of

T T T
0.60 0.65 0.70

Accuracy

methods. To further evaluate this we use a Wilcoxon signed-rank
test to look if the differences in classification accuracy are
significant. Again we take p<0.05 as a significant difference.
To start with we compare the unigram and graph measure feature
sets. The only significant difference between them is for the
LSVM classifier at o=5 (which is the best performing
unigram combination against the worst performing graph
measures combination), indicating their performance is
broadly similar.

Next we compare how the choice of k affects the results for SF.
There are some significant differences with the RSVM for k = 5
with a co-occurrence window of three performing significantly
worse than the same classifier for the rest of the values of k, and
the different between the RSVM for k = 50,0 = 5 performing
significantly better than k = 20, 0 = 5. The rest are not significant,
indicating that in general, the choice of k is not particularly
important. Comparing the results between the different co-
occurrence windows, we find no significant differences for the
graph measures. This implies that the choice of co-occurrence
window is not particularly important. This again confirms that
word frequency seems more important than word co-occurrence.

Looking at the same comparison for SF, there are three
classifier/feature sets with a significant difference, logistic
regression with k=10 between o0=2 and o=3, logistic
regression with k =15 between 0=3 and 0=5 and RSVM
with k =15 between 0=3 and o =5. Again with the small
number of significant differences, we would conclude than the
co-occurrence window choice does not particularly affect the SF
method.

TABLE 4 | Classification accuracy of the best performing embedding/classifier
combination from the training set on the test set. We choose the three best
performing graph measure approaches, the two best SF approaches and the best
unigram approach for comparison. There is a decrease in performance in general
compared to the training set, but the best performing approach (graph
measures with a RSVM classifier) achieves a classification accuracy of 66.7%.

Method o Accuracy
GM + RF 3 0.583
GM + LSVM 2 0.625
GM + RSVM 2 0.667
SFk=5+RF 5 0.583
SF k=10 + RSVM 5 0.542
Unigram + RF 0.646

As previously mentioned, the ADReSS dataset contains a pre-
tagged test set. Next we look at our success in distinguishing
between the AD and control transcripts in the test set. We choose
the three best performing classifier/co-occurrence window
combinations on the training set for the graph measures, and
the two best performing SF methods, in the manner of the
ADReSS challenge. The results are shown in Table 4 and
confusion matrices in Figure 3. For the combinations that
perform the best on the training set, the maximum accuracy
achieved is 66.7% using a RSVM classifier with graph measures
with graphs that have a co-occurrence window of 2. Bar this
outlier though, the accuracy in general has dropped when
compared to the results of the leave one out cross-validation
on the training set. However, as the test set consists of a very small
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FIGURE 3 | Confusion matrices for the test set.

sample, it is likely that the reported LOOCV accuracy gives a
more realistic assessment of the methods we compared.

Ignoring performance on the training set and purely taking the
classifier/feature combination that has the highest performance,
we can achieve an accuracy of 75% using a random forest with a
co-occurrence window of 2. However since this method did not
perform so well on the training set, it is difficult to claim that this
is an accurate and reportable classification accuracy.

6 MMSE PREDICTION

In this section we focus on using the co-occurrence networks to
predict the MMSE score for a participant. As with the
classification in Section 5, we use the network measures, the
SF graph embedding method and the unigram method as
features. We choose a set of regression methods analogous to
the classification methods chosen above, in this case Linear
Regression, Random Forest Regression, and Support Vector

Alzheimer’s Classification Through Co-Occurrence Networks

Regression with two kernels, a linear kernel and RBF kernel.
The input into the regression methods is again standardized so
each feature has a mean of 0 and a standard deviation of 1. The
predictions are evaluated using root mean squared error (RMSE).
C for the SVMs is set to 1, and the linear regression is L,
regularized, with a regularization parameter of 0.5. y for the
RBF kernel is set to 1/p.

As before, we firstly evaluate the method using LOOCYV on the
training set. The results are shown in Figure 4. Using a linear
regression method with the graph measures appears to obtain the
best result (i.e. lowest RMSE), with a RMSE of 4.799 for a co-
occurrence window of 2. Again the graph measures seem to give
the best results. Following LOOCV, we predict the MMSE of the
test set transcripts. As before we take the five embedding/
regression combinations that perform the best on the training
set and evaluate their performance on the test set. The results are
shown in Table 5. Again we do see a decrease in the success of the
methods compared to the leave one out evaluation on the training
set, with an increase in the RMSE. This time the unigram
measures actually give the lowest RMSE, at 5.468, by using
linear regression. The best performing graph method uses the
graph measures and a random forest regressor with a co-
occurrence window of 3, achieving an RMSE of 5.675.

As RMSE values can be difficult to interpret in isolation, we also
use the predicted MMSE value to assign the participant as AD or
control (a value above 23 indicates a control). The results of this are
shown in Table 6. This approach achieves a maximum accuracy of
75% for the graph measures, 64.6% for the unigram methods, and
58.3% for the SF methods. To give a reference, if we use the actual
MMSE values for AD prediction, we get an accuracy of 87.5%.

7 DISCUSSION AND CONCLUSION

In this paper we have constructed word co-occurrence networks
using transcript data from both controls and Alzheimer’s patients
on a picture description task. With these networks we have
analyzed some measures of their structure, and used some
embedding methods to enable classification of the networks
and to predict the MMSE score from the transcript.

Using a Mann-Whitney test we find that there are six measures that
have significantly different means between the networks, number of
nodes, number of edges, edge density, heterogeneity, network
centralization and assortativity. Some of this difference can be
explained by previous work in the literature, for instance that AD
patients tend to produce fewer unique words and repeat themselves
more. Most of these measures also show significant correlation with the
MMSE score of the participant. However, many of the measures that
differ between the AD and control networks do not differ between the
shuffled and original networks. This is unfortunately one of the
challenges of using global measures on co-occurrence networks,
that in fact many of their properties come from word frequency
rather than co-occurrence.

We then looked at classifying the graphs into control or AD
using the set of graph measures, and the graph embedding method,
SE. Since many of the graph properties come from word frequency
and not co-occurrence, we create a baseline feature set using the
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first four moments of the unigram distribution, plus the total
number of unigrams and the number of unique unigrams. We
evaluate our success in this firstly by using leave one out cross
validation on the training set, and then by using the held back test
set from the ADReSS challenge.

In general we find it is possible to classify the networks into
control or AD, and that the highest accuracy on the training set is
achieved using graph measures and a Linear SVM at 71.3%. For the
test set, the highest accuracy achieved is 66.7%, using a RSVM
classifier with a co-occurrence window of 2. Using the graph
measures gives a higher accuracy than using the SF method, but
out of the four classifiers we use, three (Logistic Regression,
Random Forest and Linear SVM) have the highest performance
at one particular point, making it difficult to recommend the use of
one in particular. The same applies to the choice of co-occurrence
window. We also find that using the unigram gives fairly
comparable results to the graph measures, further indicating
that global measures on these word co-occurrence networks
mostly reflect word frequency rather than word co-occurrence.

In a similar manner to the graph classification, we also look at
predicting the MMSE score from the transcripts. We use the same
evaluation methods, leave one out cross validation on the training set,
and using the held back test set. On the training set we achieve a
minimum RMSE of 4799 using linear regression and the graph
measures with a co-occurrence window of 2, and on the test set we
achieve a minimum RMSE of 5.675 using linear regression and the graph
measures with a co-occurrence window of 3. Here the unigram methods
perform notably better, achieving an RMSE of 5468 using linear
regression. Again the SF method performed poorly compared to the
other methods, achieving a maximum accuracy of 6.535 on the test set.

In our work, we have found that using simple unigram
measures outperforms using more complex graph based
measures which should take co-occurrence into account.
However, looking at the features that previous work has

TABLE 5 | MMSE of the best performing embedding/regression combination from
the training set on the test set. We choose the three best performing graph
measure approaches, the two best SF approaches and the best unigram method.

Method o RMSE
GM + LR 2 6.154
GM + LSVM 2 6.159
GM + RF 2 5.675
SF k=10 + RF 3 6.535
SF k=10 + RSVM 5 6.535
Unigram + LR 5.468

TABLE 6 | Accuracy of the best performing regression classifier/embedding
methods if we use the predicted MMSE score to predict a transcript as AD or
control.

Method o RMSE
GM + LR 2 0.667
GM + LSVM 2 0.667
GM + RF 2 0.750
SF k=10 + RF 3 0.5642
SF k=10 + RSVM 5 0.521
Unigram + LR 0.583

found to be useful in distinguishing between AD and
control patients, it could be that the measures we have
chosen cannot capture these differences with a great deal
with success. Combined with previous work showing that
global network measures on word co-occurrence networks
struggle to capture word order, we would suggest that future
work either relies node level measures, or devises novel global
measures that can capture word order. We also note that our
network-based approach performed comparably to the
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ADReSS baseline, with scores of 5.68 vs 5.20 RMSE for
regression, and 66.7% vs 75.0% for classification (Luz et al,,
2020). However, none of the participants employed a network
based approach.
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