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In recent years, the emergence of distributed machine learning has enabled deep
learning models to ensure data security and privacy while training efficiently. Anomaly
detection for network traffic in distributed machine learning scenarios is of great
significance for network security. Although deep neural networks have made
remarkable achievements in anomaly detection for network traffic, they mainly focus
on closed sets, that is, assuming that all anomalies are known. However, in a real
network environment, unknown abnormalities are fatal risks faced by the system
because they have no labels and occur before the known anomalies. In this study,
we design and implement XFinder, a dynamic unknown traffic anomaly detection
framework in distributed machine learning. XFinder adopts an online mode to detect
unknown anomalies in real-time. XFinder detects unknown anomalies by the unknowns
detector, transfers the unknown anomalies to the prior knowledge base by the network
updater, and adopts the online mode to report new anomalies in real-time. The
experimental results show that the average accuracy of the unknown anomaly
detection of our model is increased by 27% and the average F1-Score is improved
by 20%. Compared with the offline mode, XFinder’s detection time is reduced by an
average of approximately 33% on three datasets, and can better meet the network
requirement.

Keywords: unknown anomaly detection, distributed machine learning, prior knowledge, incremental learning, buffer

1 INTRODUCTION

With the rapid development of big data, data privacy and security have attracted more and more
public attention. With the increase of data size and model complexity, it becomes more and more
difficult for a single server to accomplish a machine learning task. To address the problem,
distributed machine learning is developed. Distributed machine learning (Galakatos et al., 2018)
uses multi-node machine learning algorithms and systems, which are designed to improve
performance, accuracy, and scale to larger input data sizes. Figure 1 is a typical distributed
machine learning architecture. In this scheme, the whole dataset is divided into several subsets
and stored distributedly on nodes. Each node also keeps a copy of the model and trains it based
on the locally available part of the data. The central server aggregates the parameters from each
node to go to the next iteration and eventually converge to a solution. Network traffic is the
carrier of information transmission and interaction in cyberspace, anomaly detection for
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FIGURE 1 | Distributed machine learning architecture. In this scheme, the whole dataset is divided into subsets and stored distributedly on nodes. Each node has
the complete model but only works with part of training data. The central server aggregates the parameter from each node’s information of each local model and
transfers the global parameters to the local model to guide the model training. Then, if the performance of the new global model is still not satisfactory enough, a new

round of training can be started.
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FIGURE 2| Closed space vs. Open space. In closed space detection, all
categories are known (squares in the picture), while in an open space
detection not only known categories but also unknown categories (triangles in
the picture) are included.

network traffic in a distributed machine learning scenarios is of
great significance for network security.

Many methods have been used to detect abnormal network
traffic, such as the information entropy measurement method
(Yang, 2019), deep learning methods (Chouhan and Khan, 2019;
Vinayakumar et al., 2019), and transfer learning (Niu et al., 2019).
These methods have achieved satisfactory results in recognition
accuracy. However, almost all of them are proposed for closed set
scenarios, where all categories are known in advance. The
detection of unknown anomalies is an open-set scenario, as
shown in Figure 2. Compared with known anomalies,
unknown anomalies are the most threatening risks to the
system because they have no labeled samples and occur before
the known anomalies. Therefore, it is necessary to detect
unknown network anomalies in an open space.

In recent years, the detection methods of unknown anomaly
traffic mainly include methods based on open-set recognition,
transfer learning, and incremental learning. Sabeel et al. (2019)

examined the performance of two famous machine learning
models, deep neural networks (DNNs) and long short-term
memory (LSTM), for detecting unknown DDoS/DoS attacks.
The open deep network (P-ODN) (Shu et al., 2020) introduced
prototype learning (Yang et al., 2018) into open-set recognition
to derive more discriminative features. It has been proven that
more characteristic features that have a more significant margin
among categories will further improve the performance of
unknown detection. Zhao et al. (2017) presented a transfer
learning-enabled network attack detection framework to
enhance the detection of new network attacks in a target
domain. Moreover, many incremental learning methods are
used to handle new instances of known categories (Tveit and
Hetland, 2003; Yeh and Darrell, 2008). However, model
retraining requires considerable time, which cannot meet the
needs of the network for detecting unknown anomalies in
real time.

To meet the needs of a proactive strategy in the network
environment, detecting unknown anomalies in the online mode is
a good solution. However, unknown anomaly detection in
distributed machine learning scenario may face the following
challenges:

e Unknown anomalies have no labeled samples, which are
different from known anomalies, so how to distinguish
unknown and known anomalies is the first difficulty for
detecting unknown anomalies in distributed machine
learning scenario.

e Unknown anomalies may contain many different types, so
how to differentiate the unknown anomaly types is the
second challenge for detecting unknown anomalies in
distributed machine learning scenario.
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e Model training takes time and usually cannot meet the
needs of the online mode, so how to adapt to online mode
detection is the third challenge for detecting unknown
anomalies in distributed machine learning scenario.

To solve the above challenges, this study proposes an
unknown anomaly detection framework in distributed
machine learning scenario, called XFinder. Our main
contributions are as follows:

e For the first time, we design XFinder, which is implemented
in distributed machine learning scenario. XFinder detects
multi-class unknown anomalies through three components:
the unknowns detector, the buffer, and the network updater.

e To the best of our knowledge, this is the first time that the
buffer technique (Arge, 2003) has been used in incremental
training to improve the detection performance of the model.
The buffer is designed to store the unknown anomaly
information detected to help the model adapt to the
online mode and differentiate anomaly types.

o The unknowns detector leverages the limited labeled data as
prior knowledge to help separate the known and unknown
anomalies. The network updater helps distinguish the types
of unknown anomalies by converting the unknown into
the known.

e Experiments on three public datasets are conducted to
evaluate the performance of the model. With the buffer,
the average accuracy of the unknown anomaly detection of
XFinder is increased by 27%, and the average Fl-score is
increased by 20%. Compared with the offline mode,
XFinder’s detection time is reduced by an average of
approximately 33% on the three datasets.

The rest of the article is organized as follows. We introduce
the design and analysis of the XFinder framework in Section
2. We present the evaluation results in Section 3, discuss
related study in Section 4, and conclude our study in
Section 5.

2 XFINDER DESIGN

In this section, we describe the XFinder framework for unknown
network anomaly detection in distributed machine learning
scenario. The framework is composed of three parts, which
are elaborated on in the following subsections.

2.1 Problem Statement

Assuming that given a st of N + K data X-=
Xty XnoXNets > Xnak) with X; € RP, in which U=
{Xl,Xz, e ,XN} is unlabeled data and V = {XN+1,XN+2, cee aXN+K}
with K « N is a very small set of labeled anomalies that
provide some prior knowledge of anomalies. Our goal is to
update the initial model I and classify different unlabeled
data U in distributed machine learning.

XFinder: Detecting Unknown Anomalies

2.2 The XFinder Model in Distributed

Machine Learning

We designed a novel unknown network anomaly detection model
called XFinder, as shown in Figure 3. The XFinder is the local
model, which sends the parameters of each detection result to the
server, and the server integrates all the results, and then returns
the global parameters for the model update.

For the XFinder, first, an initial classification model is obtained
through the initial training phase. As shown in Figure 4, we take
the CNN and LSTM to learn the known’s input and apply a
softmax classifier to train the initial classification model. The
initial model is used later in the incremental training phase. In the
incremental training phase, we take the incremental training set
(containing both the known set and the unknown set) and the
outputs of the initial training phase as an input and then detect
the unknowns.

Our incremental training phase consists of three major
components:

e Unknowns Detector: The unknowns detector determines
whether the current input data sample is from a known class
or an unknown class. The detected new class is
automatically labeled and added to the network updater
and buffer.

e Buffer: To avoid the situation in which the detected
unknown anomalies are learned again in the next
training due to the untimely update of the network, we
set up a buffer structure to store the detected unknown
features and labels. When the input sample is detected as an
unknown class, it needs to be compared with the samples in
the buffer again. In addition, the weight information of these
new classes is stored in the buffer to help update the
network.

e Network Updater: The network updater adds these new
categories found in the unknowns detector to update the
network. By updating the network, the unknown class is
transformed into a known class.

2.3 Unknowns Detector Module

In the initial training phase, we apply the cross-entropy loss to
train the classification ability of the neural networks, which we
denote as lossc:

s
lossc = —

[l log (so ftmax (£)], 1)

Dl =

1

where S is the batch size of neural networks, f; is the feature of the
ith sample in the batch, and J; is the ground truth.

Since prototype learning is effective in increasing interclass
variation (Yang et al., 2018), we introduce prototype learning into
open set recognition tasks, and further use prototypes to detect
unknowns. Specifically, an N x N prototype matrix is initialized
with zeros, where N is the number of known classes. Each row of
the prototype matrix, shown in different colors in Figure 5,
represents the prototype (or center) of each known class.
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FIGURE 3 | The XFinder model in distributed machine learning. XFinder detecting unknown anomalies based on incremental learning. The unknown detector
detects whether the input sample is known or unknown based on the initial training model, and the detected unknown sample is automatically labeled and added to the
buffer to help update the network. The updated model is used for the next incremental training.
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FIGURE 5 | Unknown’s detector module.
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Therefore, we modify the prototype loss first proposed by
Yang et al. (2018) and apply it to our framework to train known
prototypes. The prototype loss consists of a L2 loss (loss,) and a
distance-based classification loss (loss;). Then the two losses are
combined with a weighted argument w:

loss, = w * Loss, + Lossg. 2)

The S prototypes are selected based on the label of features,
where S is the batch size of the initial network. The L2 loss (loss,)
is applied to the chosen prototypes and the features, guiding the
prototypes to learn the characters of the features:

loss, =

1 S
_gz f P1 > (3)

where f; is the feature of the ith data sample in the batch, and p; is
the corresponding prototype.

Since the prototypes and features are trained jointly, it is
unstable to simply use L2 loss to make prototypes similar to the
features. The prototypes would be easily misled by some outliers
of the training data samples. Therefore, we refer to Shu et al.
(2020) to add the distance-based classification loss to improve the
classification capacity of the prototypes and increase the penalty
of misclassified samples.

By calculating the Euclidean distance between each feature
and each class prototype, a distance distribution matrix D is
obtained as:

D=t (4)
DAl e

wherei=1,...,Sandj=1, ..., N. We take the reciprocal of
distances between features and prototypes so that the features
close to the prototype can obtain a larger probability value. We
apply the ¢ = 0.001 to avoid dividing by zero. Therefore,
classification can be implemented by assigning labels
according to the largest value in each row of D. Then, the
cross-entropy loss is applied on D:

S
loss; = —é ;[li *log (so ftmax (D[i,:]))], (5)

where the S is the batch size (the same as the row number of D), I;
is the ground truth, and D[j, :] denotes the ith row of D.

As shown in Figure 5, when detecting unknown, the distance
distribution matrix between features and prototypes is calculated
first. Then, thresholds are calculated based on the mean distance
distribution and then applied to the test samples to detect unknowns.

.
=5 XM (6)
Wi =p* 1 7)

where M;; is the maximal confidence value of the ith correctly
classified sample of class j. C; is the number of correctly classified
sample sets C of class i. p is the empirical parameter. When all the
confidence values of the sample are less than y;, we consider the
sample as unknown.

XFinder: Detecting Unknown Anomalies

Different from previous studies (Bendale and Boult, 2016;
Shu et al., 2018; Shu et al., 2020), which regard all unknown
classes as one class, we further seek potentially different
categories by clustering unknown samples to help detect the
unknown in the next incremental training. Assuming that the
unknown set in the Tth training is Ur, we use k-Means to
partition the Uy into k clusters {C;,C,, . .., Cy}. The k-Means
algorithm has the advantages of simple principle, easy
implementation, fast convergence, and strong
interpretability. For each cluster, samples are automatically
labeled and then added to the buffer to help the next unknowns
detection.

2.4 Buffer Module

To avoid the detected unknown information not being effectively
utilized, which is caused by the untimely update of the network,
we set buffer B to store the unknown information that has been
detected at the current time.

Assuming that m new categories are found on the Tth
detection and g new categories are found on the T + 1th
detection, the update of buffer B is as follows:

[(i fu’l >’WT]’ (8)
Bry =Bru I:(Eq: Sl >:WT + 1:|> 9

where f,, is the feature of uth classes in unknown samples, [, is the
label of uth classes, and W and Wr + 1 represent weight vectors
at Tth and T + 1th times, respectively.

When the input sample is detected as unknown, it needs to be
compared with the sample in the buffer again to determine
whether the unknown has ever appeared. If the sample feature
is found to be a known class in the buffer, the class to which the
sample belongs is output. Otherwise, the sample is considered to
be a new unknown.

2.5 Network Updater Module

After detecting the unknowns, the unknown sample is labeled.
Then, these samples are used to update the network model. It is
time-consuming and a waste of computing resources to retrain
the entire system with the known data and new samples. It is also
easy to overfit because the new classes are far short of training
samples. In Shu et al. (2020), an update method for transferring
knowledge from the training model was proposed, which helps to
speed up the training phase and requires very few manual
annotations.

In each iteration of the incremental training phase, the
distance distribution between prototypes and the new sample
features is calculated first. Then, the weight distribution is
obtained by applying mean normalization. Different from Shu
et al. (2020), in which all unknown classes are treated as one new
class with every incremental training, our method can find
different classes due to the buffer setting. Therefore, our
weight update considers whether the detection sample is
known or unknown.
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FIGURE 6 | Network updater module.
As shown in Figure 6, the weight distribution is [, &, . . . , TABLE 1 | The details of three datasets.
.. her .. re known’ igh
a{v’ OfN“f > O], Where [a, a, > o] a e. OV\_] s.we.g t Datasets Features Class Amount
distribution, [axy1, - - - » @nym] are unknowns weight distribution,
and Y2 a, = 1. Assuming that A is the set of detected samples, ~ KDD CUP 99 41 Normal 60,592
the new weight w,,,, is initialized as: DoS 2,29,853
Probing 4,166
1 «N ) RoL 16,189
ﬁznzl‘x" * w,, if A are all knowns U2R 298
= 1
Wr1 1 <N 1 < ’ 10} nsweng 15 43 Normal 56,000
ﬁznzl‘x" Wy + Mznzlam*wwm else Generic 40,000
Exploits 33,393
where w, and w,, are the weight columns of the nth class and mth DoS 18,184
. . . Reconnaissance 12,264
class, respectively. N is the number of current classes, M is the Analysis 10.491
number of unknown classes, and unknown weight information Backdoor 2000
for M classes has been saved in the bulffer. Shellcode 1746
Based on the above, the initial network is updated, and the Worms 1,133
updated network is used to detect unknowns in the next incremental Fuzzers 130
training. With the update of the network, unknown anomalies are ~ CICIDS 2017 78 Normal 4,40,031
transformed into known anomalies, and the types of anomalies in DO: Slowhttptest 5,499
the buffer increases constantly. Finally, the XFinder realizes the DoS Hulk 231,078
DoS slowloris 5,796

detection of multiple types of unknown anomalies.

3 EXPERIMENTS AND EVALUATION

In this section, we first introduce the experimental setup,
including an experimental environment, datasets, parameters
setting and metrics, and then carry out experimental
evaluation from three aspects of initial training, single
machine vs. distribution machine learning mechanism,
unknown anomaly detection, and running time.

3.1 Experiments Setup

3.1.1 Experimental Environments

All the experiments were executed with the following
specifications: GPU: Gfx 2.10 GHz, processor: AMD Ryzen
5 3550H, and RAM: 16 GB. Operating System: Windows
10 64bit. Model implementation: Dask, Tensorflow 2.0.0,
Keras 2.3.1, and scikit-learn 0.21.3.

3.1.2 DataSets Introduction

To verify the effectiveness of XFinder, we conducted experiments
on three public datasets, including KDD CUP 99, UNSW-NB 15,
and CICIDS 2017. The details of three datasets as shown in
Table 1. The data were preprocessed and numeralized before the
experimental evaluation. In our experiments, we divide the
datasets into known’s and unknown’s to simulate the open
world scenarios.

e KDD CUP 99 Dataset’

The KDD CUP 99 dataset is a well-known benchmark in the
research of network anomaly detection. The types of abnormal

'http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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data in the KDD CUP 99 dataset are divided into four categories:
DoS, R2L, U2R, and probing attack (Tavallaee et al., 2009). In this
study, we use normal data and DoS anomaly data as known
samples to train the initial model, and the remaining 3 anomalies
as test samples to evaluate the unknown detection capability of
the model.

e UNSW-NB 15 Dataset’

The UNSW-NB 15 dataset is a comprehensive dataset that do
inclusively reflect network traffic and modern low footprint
attacks (Moustafa and Slay, 2015). It has nine categories of
attacks, namely, Generic, Fuzzers, Analysis, Backdoors, DoS,
Exploits, Reconnaissance, Shellcode, and Worms. We use
normal data and Generic anomaly data as known samples to
train the initial model, and the remaining 8 anomalies as test
samples to evaluate the unknown detection capability of the
model.

e CICIDS 2017 Dataset’

The CICIDS 2017 dataset contains normal traffic and the latest
common attacks, which similar to real-world data (Sharafaldin
et al.,, 2018). In the experiment, we use normal data and one type
of anomaly as known data for initial training, and randomly select
three kinds of abnormal traffic from the dataset as unknown
attacks, namely, Dos_Hulk, Slowhttptest, Slowloris.

3.1.3 Parameters Setting

In the initial training phase, known data samples are provided for
the CNN-LSTM to train a classifier with the knowns. We use
Adam (Kingma and Ba, 2015) as an optimizer to perform
gradient descents and adopt early stopping to avoid
overfitting. The sub-sampling size is set to 256 and epoch set
to 30, which can get the convergence result in the experimental
evaluation. Once the initial training phase is completed, the
system will use the trained model to get activation values for
detecting unknown category sample process. We test XFinder on
a set of known and unknown samples which none of them appear
in the training phase. To avoid overfitting, we set the experiment
execution 10 times and take the average to get the result.

3.1.4 Metrics
We evaluate the performance of XFinder based on the following
metrics:

o Accuarcy: defined as the percentage of correctly classified
records over the total number of records.

TP+TN

A = , 11
CUarey = Tp+ FP+ TN + FN (an

*https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ ADFA-
NB15-Datasets/
*https://www.unb.ca/cic/datasets/ids-2017.html

XFinder: Detecting Unknown Anomalies

where TP is the true positives, FP is the false positives, TN is the
true negatives, and FN is the false negatives.

e FI-Score: defined as the harmonic mean of precision and
recall and represents a balance between them.
Precision x Recall

F1-S =2X— 12
core Precision + Recall (12)

where
y TP
Precision = ——
TP + FP
TP
Recall = ———, 13
O TTPYEN (13)

where Precision is defined as the ratio of the number of true
positives (TP) records divided by the sum of true positives (TP)
and false positives (FP) classified records, and Recall is defined as
the ratio of number of true positives records divided by the sum of
true positives and false negatives (FN) classified records.

3.2 Initial Training Evaluation

In the initial training phase, the initial training set is all known samples.
We use 10% of the initial training set as the validation set to test the
performance of the initial model. Figures 7-9 show the accuracy and
loss performance of the initial model on KDD CUP 99, UNSW-NB 15,
and CICIDS 2017 datasets during the initial training phase.

As can be seen from Figures 7-9, the verification set accuracy of
the initial model on the three data sets is above 0.90 and can even
reach 0.98 on the KDD CUP 99 dataset. After training 20 epoch, the
accuracy of the verification set on the CICIDS 2017 dataset exceeds
the accuracy of the training set, which shows that our model has
good learning ability. It also lays a good foundation for the detection
of unknown anomalies in subsequent incremental training.

3.3 Scalability in Distribution Machine

Learning Scenario
To verify the feasibility of anomaly detection for network traffic
under distribution machine learning mechanism, we evaluate the
performance of k worker models in federated learning to detect
unknown anomalies on the UNSW-NB 15 dataset, where k = 1
represents model detection performance in the single machine.
Figure 10 shows the detection performance with different worker
models. We can see that the detection results of using multiple worker
models are better than the detection performance in a single
mechanism (k = 1). When k = 3, the detection results showed the
best performance, with accuracy of 0.9163, fl-score of 0.8355, and
average running time of multi-class anomaly detection of 7.4386 s.
Therefore, the network anomaly detection under federated learning
mechanism is effective, and we use k = 3 for subsequent experiments.

3.4 Unknowns Anomaly Detection

Evaluation

We evaluate the effectiveness of the XFinder model in terms of the
Online Mode vs. Offline Mode, Multiple Types of Unknowns
Detection, and Buffer Effectiveness.
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FIGURE 8 | Loss and accuracy performance of the initial model on UNSW-NB 15 datasets.
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FIGURE 10 | Scalability of XFinder in distriouted machine learning.
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3.4.1 Online Mode vs. Offline Mode

We compare the performance of unknown anomaly detection
between the online mode and the offline mode. The online mode
is implemented by our proposed approach, XFinder. The offline
mode divides the data into an 80% training set and a 20% test set,
the training set is used to train the model, and the test set is used
to evaluate the performance of the model.

Figure 11 shows the accuracy and the fl-score of
unknown anomaly detection in the online mode and the
offline mode. We can see that both accuracy and fl-score
performance are better in the online mode than in the offline
mode, the average accuracy of the unknown anomaly
detection of the model is increased by 27%, and the
average Fl-score is increased by 20%. This is our model
XFinder that leverages the prior knowledge to separate the

known and unknown; the online mode realizes self-learning,
which can transfer the unknown anomaly to the
knowledge base.

3.4.2 Multiple Types of Unknowns Detection
To test XFinder’s ability to distinguish different unknown types of
anomalies, we evaluate the model’s ability to identify anomalies at
different increments based on five types of unknown anomalies,
including Exploits, Reconnaissance, Dos, Fuzzers, and Dos_Hulk.
Figure 12 shows the average detection accuracy and the f1-score
of different unknown anomaly classes with different increments,
respectively. The detection accuracy and the fl-score increase with
the increase in the number of increments in general. This is because,
with sufficient incremental training samples, the model can
effectively learn the features of unknown anomalies for the next
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TABLE 2 | Buffer effectiveness.

Unknown Anomaly

Dos_Hulk
Exploits
Reconnaissance
Dos

Fuzzers

Average

Accuracy F1-score
No Buffer Buffer No Buffer Buffer
0.3817 0.7267 0.5849 0.6434
0.4755 0.7865 0.3222 0.6290
0.3811 0.7914 0.2759 0.5706
0.5536 0.8361 0.5428 0.7251
0.6183 0.6650 0.4277 0.6253
0.4820 0.7612 0.4307 0.6387

unknown anomaly detection. XFinder merges the unknown
anomaly to the knowledge base, which helps distinguish different
unknown anomaly types, and it also proves the feasibility of using
incremental learning to detect unknown anomalies.

3.4.3 Buffer Effectiveness
Since the training model requires time and is usually not suited
for the online mode, we design a buffer to store the information of

unknown anomalies detected in the current state for adapting to
the online mode and distinguishing anomaly types.

Table 2 shows the comparison of detection performance for five
unknown anomalies with or without buffer. Figure 13 shows the
comparative performance of Exploits unknown anomaly with or
without buffer. We can see that the use of buffer can prevent the
model from overfitting in the later stages of the iteration. The average
accuracy of the unknown anomaly detection of the model is
increased by 27%, and the average Fl-score is increased by 20%.
This is because the buffer avoids the situation that unknown
anomalies cannot be effectively detected due to the failure of the
model to be updated in time.

Therefore, the design of buffer realizes the rapid and accurate
detection of unknown anomalies based on the online mode.

3.5 Runtime Evaluation

Table 3 show the time required for the XFinder model to detect
various types of unknown anomalies in the KDD CUP 99,
UNSW-NB 15, and CICIDS 2017 datasets in online and
offline modes, respectively. We can see that the time in the
online mode is significantly less than offline mode, and the
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FIGURE 13 | The Accuracy and F1—Score performance of multi-class unknown anomalies in different increments.
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TABLE 3 | Runtime evaluation.

XFinder: Detecting Unknown Anomalies

Datasets Unknown anomaly Runtime (s) Total time (s) Offline time (s)
UNSW-NB 15 Exploits 10.5096 68.2657 114.7896
Reconnaissance 6.9923
Dos 6.7311
Analysis 10.5662
Backdoor 9.8389
Shellcode 10.2905
Worms 5.324
Fuzzers 8.0131
KDD CUP 99 Probing 6.6398 23.0672 45.8108
Ra2L 7.9814
U2R 8.446
CICIDS 2017 DoS_Slowhttptest 92.3941 319.8999 357.6348
Dos_Hulk 139.6058
Dos_Slowloris 87.9

online mode nearly halved the time compared to the
offline mode.

This is because the offline mode needs to train the model first
and then use the trained model to detect, while the online mode is
training and testing simultaneously. Thus, XFinder realizes the
near real-time update during the detection and meets the needs of
the network.

4 RELATED WORK

In this study, distributed machine learning, the open-world
approaches, and transfer learning for unknown anomaly
detection in federated learning are discussed.

4.1 Distributed Machine Learning

Distributed machine learning (Galakatos et al., 2018) uses multi-
node machine learning algorithms and systems, which are
designed to improve performance, accuracy, and scale to
larger input data sizes. With the development of big data, a
single computer can no longer store and process machine
learning tasks with large-scale data. In order to solve the
above problems, distributed machine learning with data
parallelism (Peteiro-Barral and Guijarro-Berdinas, 2013) came
into being. Nguyen et al. (2019) proposed an autonomous self-
learning distributed system for detecting damaged Internet of
Things devices. The system combines anomaly detection with
federated learning and applies it to the anomaly detection field of
the Internet of Things, which proved the excellent effect of
distributed machine learning in anomaly detection. Sparks
et al. (2013) designed an application programming interface to
address the challenges of building machine learning algorithms in
a distributed setting based on data-centric computing. Lin et al.
(2020) proposed an ensemble distillation method for model
fusion, which trained the central classifier through the
unlabeled data on the outputs of the models from the clients.
The use of blockchain technology (Gamage et al., 2020) has been
proved to be effective to ensure the integrity of data transactions
among entities. Haro-Olmo et al. (2021) seized the advantage of

this circumstance to design a robust mechanism based on smart
contracts and blockchain technology that allow the reliable
processing of data. However, these anomaly detection methods
lack the capability to detect, differentiate, and integrate unknown
anomalies.

4.2 Open-World Approaches

Open-world learning aims to recognize the classes the learner has
seen/learned previously and detect new classes that the learner
has never seen before. The approaches for open-world
classification can be roughly divided into two branches:
traditional methods [e.g, SVM (Scheirer et al, 2014; Jain
et al,, 2014; Fei et al, 2016), sparse representation (Zhang and
Patel, 2016), and nearest neighbor (Junior et al., 2017)] and deep
learning-based methods (Bendale and Boult, 2016; Ge et al., 2017;
Shu et al., 2017).

In traditional methods, Scheirer et al. (2014) and Jain et al.
(2014) both proposed leveraging extreme value models on the
SVM decision scores to extend the SVM-based classification
in an open-set setting. Fei et al. (2016) proposed a center-
based similarity (CBS) learning strategy and build one-vs-rest
CBS classifiers using SVM. Fei et al. (2016) then extended
their study by adding the ability of incrementally or
cumulatively learning new classes. Junior et al. (2017)
proposed a nearest neighbor-based classification approach
based on the similarity scores, which is calculated by using
the ratio of distances between the nearest neighbors. This
approach identified any test sample with low similarity as
unknown.

Considering that deep learning has achieved state-of-the-art
performance in a wide range of visual understanding tasks, many
deep learning-based open-world approaches have been studied.
Zhang et al. (2020) investigated how to apply the extreme value
theory (EVT) to unknown network anomaly detection systems
and proposed a network intrusion detection method based on
open set recognition. Bendale and Boult (2016) proposed the
OpenMax function to replace the softmax function in CNNs. In
this approach, the softmax probability distribution was
redistributed to obtain the class probability of unknown

Frontiers in Computer Science | www.frontiersin.org

October 2021 | Volume 3 | Article 710384


https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Du et al.

samples. Ge et al. (2017) introduced the G-OpenMax algorithm,
which combined OpenMax with data augmentation using GANGs.
Instead of using softmax as the final output layer, Shu et al. (2017)
proposed the deep open classifier (DOC) model to build a multi-
class classifier with a one-vs-rest final layer that contained a
sigmoid function for each seen class to reduce the open space risk.
Recently (Shu et al., 2020), proposed a prototype-based open deep
network (P-ODN) for open-set recognition, which proved the
importance of more discriminable centers (or prototypes) for
open-set recognition tasks.

However, these open-world approaches are not online modes
and cannot meet the requirements of the network for the fast
detection of anomalies.

4.3 Transfer Learning for Unknown Anomaly

Detection

The purpose of transfer learning (Pan and Yang, 2009) is to use
the knowledge with sufficient labeled data in the source domain
to help build more accurate models in a related but different
domain, which has only a few or no labeled data. Transfer
learning approaches can be mainly categorized into three
classes: instance-based (Gou et al.,, 2009), model-based (Gao
et al., 2008), and feature-based (Zhao et al., 2019).

The study by Gou et al. (2009) applied an instance-based transfer
learning approach to network intrusion detection. However, they
required a large amount of labeled data from the target domain. Gao
etal. (2008) proposed a model-based transfer learning approach and
applied it to the KDD CUP 99 network dataset. Both of these
instances and model-based transfer learning approaches rely on the
assumption of homogeneous features to a great extent. Zhao et al.
(2019) first applied a feature-based transfer learning method to
improve the robustness of network anomaly detection. Wu et al.
(2019) proposed a ConvNet model for network intrusion detection
using transfer learning. Zhao et al. (2017) proposed a transfer
learning-enabled network attack detection framework, which can
enhance the detection of new network attacks in the target domain.

Although the transfer learning approach has achieved good
performance in network anomaly detection, it cannot
differentiate different anomaly types.
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