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The task of real-time alignment between a music performance and the corresponding
score (sheet music), also known as score following, poses a challenging multi-modal
machine learning problem. Training a system that can solve this task robustly with live
audio and real sheet music (i.e., scans or score images) requires precise ground truth
alignments between audio and note-coordinate positions in the score sheet images.
However, these kinds of annotations are difficult and costly to obtain, which is why
research in this area mainly utilizes synthetic audio and sheet images to train and evaluate
score following systems. In this work, we propose a method that does not solely rely on
note alignments but is additionally capable of leveraging data with annotations of lower
granularity, such as bar or score system alignments. This allows us to use a large collection
of real-world piano performance recordings coarsely aligned to scanned score sheet
images and, as a consequence, improve over current state-of-the-art approaches.

Keywords: multi-modal deep learning, conditional object detection, score following, audio-to-score alignment,
music information retrieval

1 INTRODUCTION

Score following or real-time audio-to-score alignment aims at synchronizing musical performances
(audio) to the corresponding scores (the printed sheet music from which the musicians are
presumably playing) in an on-line fashion. In other words, the task is for a machine to listen to
a musical recording or performance and be able to follow along in the sheet music of the respective
piece, with a certain robustness to peculiarities of the particular live performance - such as
unpredictable tempo and tempo changes, mistakes by the performing musicians, etc. Score
following systems can be used for a variety of applications including automatic page turning for
musicians (Arzt et al., 2008), displaying synchronized information in concert halls (Arzt et al., 2015),
and automatic accompaniment for solo musicians (Cont, 2010; Raphael, 2010; Cancino-Chacón
et al., 2017a). Existing approaches usually rely on symbolic computer-readable score representations
such as MIDI or MusicXML (Orio et al., 2003; Dixon, 2005; Cont, 2006; Nakamura et al., 2015; Arzt,
2016). However, these kinds of representations are often not readily available and have to be either
created by hand or automatically extracted from the printed scores using optical music recognition
(OMR) (Calvo-Zaragoza et al., 2019). While the former is time-consuming and tedious (think of
typesetting an entire Beethoven sonata or Mahler symphony), automatic extraction via OMR may
require substantial manual corrections as well, depending on the complexity and quality of the score.

Recent advances in deep learning promise to overcome this problem by permitting us to perform
score following directly on score sheet images (printouts, scans), which does not require any pre-
processing or manually created score representations. More specifically, in previous work we have
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shown how neural networks can be trained to simultaneously
listen to an incoming musical performance (audio) and read
along in the score (image) (Henkel et al., 2019, Henkel et al., 2020;
Henkel andWidmer, 2021), thus opening up a challenging multi-
modal machine learning problem.

In this article we build upon, and extend, our current state-of-
the-art approach that frames sheet-image-based score following
as a multi-modal conditional bounding box regression task
(Henkel and Widmer, 2021). The task here is for a neural
network to predict, at any time, the most likely position in the
sheet image, in the form of a bounding box around the notes that
match the incoming audio signal. In addition to the intrinsic
difficulty of this task, with different ways in which the same
musical passage can be typeset and played, we also face a severe
data problem: training such a network requires large amounts of
fine-grained annotations between note positions on the sheet
image and in the audio. Obtaining such information at this level
of precision via manual annotation is factually impossible, at least
in the acoustic domain. That is why current research uses
synthetic data for this purpose, where score and audio are
automatically rendered, in the visual and in the audio domain,
from an underlying machine-readable version of the score (e.g., in
the form of MusicXML files), so that the precise positions and
time points of notes on the sheet and in the audio, respectively,
are precisely known. As there is only a limited supply of data with
such precise annotations, we propose a new model that learns to
make predictions at several levels of granularity simultaneously,
jointly predicting note-, bar- and system-level alignments in the
sheet image. That makes it possible to leverage additional data
with less fine-grained annotations (i.e., only marked at the level of
bars or staff systems), which are easier to come by. This
formulation allows us to use real-world data: a collection of
scanned sheet images and real piano music recordings that
were annotated in a semi-automated way, with relatively little
effort. Using this data, we conduct large-scale experiments to
investigate the generalization capabilities of our proposed system
in the audio as well as in the sheet-image domain.

2 RELATED WORK

Approaches to score following are mainly categorized into
methods that require symbolic computer-readable score
representations (e. g., Dynamic Time Warping (DTW) or
Hidden Markov Models) and those that directly work with
images of scores by applying deep learning techniques. In this
article, we specifically target sheet-image-based approaches; in
other words, input to the system will be the score of a piece, in the
form of printed or scanned pages, i.e., images; and a live audio
stream representing the music currently being played. In the
following, we focus on this latter, harder problem, and give a brief
overview of current approaches and their drawbacks.

The first method in this area was presented by Dorfer et al.
(2016), who proposed to treat the task as a one-dimensional
localization problem. The authors train a multi-modal
convolutional neural network (CNN) to match short audio
and sheet image excerpts. To that end, the sheet image excerpt

is discretised into k bins and the most likely bin that matches the
audio excerpt has to be predicted. In follow-up work, score
following is formulated as a reinforcement learning (RL)
problem (Dorfer et al., 2018b; Henkel et al., 2019), reaching
high performance on synthetic polyphonic piano music. Here, RL
agents are trained to follow along live performances by adapting
their reading speed, i. e., how fast they want to move forward or
backward in an unrolled representation of the sheet image. The
authors further conduct first experiments using real-world piano
recordings, showing that RL agents are able to generalize to some
extent to different recording conditions.

Both approaches rely on a cumbersome preprocessing step in
the form of score unrolling. During that process, one has to first
detect all systems on a sheet image (see Figure 1 for an
explanation of the basic musical score concepts), cut them out
from the full page and stitch them together into a long sequence.
This sequence is then fed to the score following system step by
step, i. e., as short audio and sheet image excerpts (see Figure 2).
However, unrolling the score and working with audio/image
excerpts poses two problems. First, it again introduces a
dependency on an external system to detect staves on the
page, e. g., an OMR system, which we initially wanted to get
rid of. Second, and even more severe, the currently selected sheet
image excerpt has to (at least partially) correspond to the
incoming audio excerpt. If this is not the case anymore,
e. g., due to tracking errors, the system is not able to produce
proper predictions and gets lost.

To overcome the need for unrolled score representations,
Henkel et al. (2020) treat score following as a referring image
segmentation task. In computer vision, the goal of referring image
segmentation is to segment an object in a given image based on
some language expression (Hu et al., 2016). For example, consider
an image with two persons, where one wears a red shirt and the
other wears a blue one. Given the referring expression “the person
with the red shirt”, the system has to identify, i. e., segment, the
person with the red shirt in the image. For music score following
in this setup the referring expression would be the audio signal
heard so far, up until the current point in time, and the task is
then to mark the region around the note location in the complete
score sheet image that corresponds to the just heard sounds. This
segmentation is performed using a conditional U-Net
architecture that applies Feature-wise Linear Modulation
(FiLM) (Perez et al., 2018) layers to combine the audio and
sheet image.

FIGURE 1 | Example of a single system with two staves and 4 bars (or
measures). Note that this is also an illustration of ambiguities in sheet images.
Bars 2 and 4 share the same musical content and without a large enough
temporal context, a score follower will not be able to distinguish between
them. However, if it is able to remember that it has already encountered the
first sequence of notes in bar 2 then it can correctly predict the current position
to be in the last bar.

Frontiers in Computer Science | www.frontiersin.org November 2021 | Volume 3 | Article 7183402

Henkel and Widmer Music Following in Sheet Images

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


While the former approaches directly process the raw input
using neural networks, another line of research makes use of
intermediate representations. Shan and Tsai. (2020) propose to
first transcribe the audio signal into discrete note events,
represented in MIDI format or so-called “piano roll” format.
Subsequently, the piano roll and the score sheet image are
transformed to a common representation called bootleg score
(Tanprasert et al., 2019). Given this common space, the authors
then apply a variant of Dynamic Time Warping specifically
designed to handle jumps and repeats in the music. Since this
approach requires the full audio to be available up front (off-line
alignment), it is not directly applicable to our on-line setup;
however, using a potentially more robust intermediate
representation such as a bootleg score might be beneficial for
generalization.

3 MULTI-MODAL BOUNDING BOX
PREDICTION FOR SCORE FOLLOWING

In (Henkel and Widmer, 2021), we present a new approach,
framing score following as a multi-modal bounding box
regression task and proposing a conditional neural network
architecture based on the family of YOLO object detectors
(Redmon et al., 2016; Redmon and Farhadi, 2017). This is
inspired by object detection, where the goal is to predict
bounding boxes around all known objects in an image.
However, we need to consider a conditional setup: the task is
not to predict all bounding boxes for all objects, but only a
particular one that matches an input query. In our case, this query
is an audio signal and the target to predict is a bounding box
around the notes or chords in the sheet image that correspond to
the notes that have just started in the audio (cf. Figure 3). This is
implemented as a bounding box regression task, where the system
has to predict x, y center coordinates as well as the width and
height of the bounding box.

In the following, we describe the Conditional YOLO network
architecture that we designed for this purpose, and that will also
be the basis for the new, multi-granularity (or joint alignment)
prediction model that we will describe in Section 4. In the

subsequent Section 5, a series of systematic experiments will
then be presented that demonstrate both how this Conditional
YOLO approach improved over the previous state of the art
described above, and how extending it to a multi-granularity
prediction model can lead to substantial additional improvement.

3.1 Conditional YOLO
Table 1 and Figure 4 depict our Conditional YOLO network
architecture and its building blocks. The architecture consists of
several downscaling and upscaling blocks in combination with
Feature-wise linear modulation (FiLM) layers (Perez et al., 2018).
As input the network is presented with a 1 × 416 × 416 sheet image,
which is first processed by a so-called Focus or SpaceToDepth
(Ridnik et al., 2020) layer. This layer splits the input from 1 ×
416 × 416 to 4 × 208 × 208 and subsequently applies a 16 × 3 × 3
convolution, layer normalization (Ba et al., 2016) and ELU activation
(Clevert et al., 2016), with the purpose of reducing the input size and
improving the overall computation speed.

The following Downscale blocks reduce the input size by two
at each layer, which results in feature maps of different
resolutions (104 × 104, 52 × 52, 26 × 26, 13 × 13; see
Table 1). Each block has an optional FiLM layer, which
combines the visual features from the sheet image and the
external query in the form of the encoded audio signal. The
FiLM layer is defined as

fFiLM(x) � s(z) · x + t(z), (1)

where x are the input feature maps from a previous convolutional
layer, z is a conditioning vector representing the query, and s(·)
and t(·) are learned linear functions to scale and translate x. As
depicted in Figure 4B, the FiLM layer can be bypassed, which we
do for the first two blocks. The idea behind this is to learn a more
general representation in the lower layers of the network, while
specializing in later ones.

In the Upscale blocks, the lower resolution feature map of a
previous layer is up-sampled by a factor of two, concatenated to a
feature map of the same size from an earlier layer and eventually
passed to the Detection layer after the last block. The resolution
after the last up-sampling operation is 52 × 52, which will form
the final output grid.

FIGURE 2 | Sheet-image based score following using unrolled score representations. First, the systems on a sheet image page must be detected, cut out and
stitched together to a long (unrolled) sequence. The score following system then observes a small excerpt of the full score sequence as well as the audio (usually the last
2 seconds). Based on this input, the score follower has to predict the most likely position in the sheet excerpt matching the target audio frame.
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For each spatial position in this grid, the Detection layer predicts
15 output values, 5 for each of three “anchor boxes”. These anchor
boxes are alternative pre-defined box templates that reflect our prior
assumptions about reasonable bounding box widths and heights, to
be customized by the specific parameters predicted by the network
(see next paragraph and Figure 5). Remember that in our case a
bounding box encloses notes or chords in the sheet image, where the
height corresponds to the height of the system the notes are in and
thewidth is arbitrarily chosen to be 30 pixels. The three anchor boxes
we are using are (11, 26), (11, 34), (11, 45), with the two values

denoting the anchor width and height, respectively. The width of 11
is defined for the down-scaled image (adapted from 30 pixels in full
resolution) and the height values are determined using k-means
clustering on the training set bounding boxes as explained in
(Redmon and Farhadi, 2017). (The above applies to note-level
bounding boxes as used in our previous work. The extension of
the method to bar- and measure-level predictions will be described
in Section 4 below.)

The 5 ouputs for each anchor are define as follows. The first
two correspond to the offsets px, py for the center coordinates of
the bounding boxes. Together with the spatial grid position, these
will be used to compute the final coordinates in the original image
(cf. Figure 5). The next two outputs are width and height values
pw, ph to scale the anchor aw, ah and the last output is an
“objectness” or confidence score po predicting the Intersection
over Union (IoU) between the predicted and ground truth
bounding box. The idea behind this score is that it should
reflect how well the predicted box fits the ground truth, and
during inference this allows us to filter the most likely positions in
the sheet image matching the given query.

For the computation of px, py, pw, ph we deviate from (Redmon
and Farhadi, 2017), and calculate them as

px � 2σ tx( ) − 0.5
py � 2σ ty( ) − 0.5
pw � 2σ tw( )( )2
ph � 2σ th( )( )2
po � σ to( ),

(2)

TABLE 1 | The conditional YOLO architecture consists of four Downscale and two
Upscale blocks as depicted in Figure 4. Upscale blocks concatenate the
input from a previous layer given in parentheses, e. g., layer 6 takes the output of
layer 4 as additional input. FiLM indicates that the conditional layer is active within a
block. The Detection layer has 15 outputs for each spatial position in the 52 ×
52 output grid (5 values for each of the three anchors which are used to
compute the final bounding boxes (see Eq. 2).

Conditional YOLO

Layer Module Channels Output Size

1 Focus 16 208 × 208
2 Downscale 32 104 × 104
3 Downscale 64 52 × 52
4 Downscale–FiLM 128 26 × 26
5 Downscale–FiLM 128 13 × 13
6 Upscale(4)–FiLM 128 26 × 26
7 Upscale(3)–FiLM 128 52 × 52
8 Detection 15 52 × 52

FIGURE 3 | Data Annotation with three different granularities: system-, bar-, and note-level. For each frame in the audio, the model has to predict the most likely
system, bar and note position in the sheet image matching the audio up until the current point in time. The colored bars in the spectrogram mark the onset times in the
audio corresponding to the (note-level) ground truth bounding boxes in the sheet image.
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where tx, ty, tw, th, to are the raw network output values, and σ is the
sigmoid function. Scaling the sigmoid output for the computation of
px, py eliminates grid sensitivity (Bochkovskiy et al., 2020), otherwise
tx and ty would need to take on extremely high or low values for the
final bounding box coordinates to fall on the grid cell borders. In
contrast to the unrestricted anchor scalers in (Redmon and Farhadi,
2017) we use a bounded formulation, which showed to improve
training stability in practice.1

3.2 Query Encoding
The initial query to our system is a raw audio signal, with a sample
rate of 22.05 kHz. This signal is then processed using a Short-time
Fourier-transform (STFT) with a Hann window of size 2048 and a
hop size of 1102, resulting in approximately 20 frames per second.
We further transform each frame with a logarithmic filterbank
processing frequencies between 60 Hz and 6 kHz, which results
in as spectrogram output with 78 log-frequency bins.

To encode the spectrogram, we use the CNN encoder depicted
in Table 2, which takes the 40 latest audio frames and projects
them to a 32 dimensional vector x. As shown in (Henkel et al.,
2020), only encoding 40 frames of audio (roughly 2 s) is not
enough to form reliable predictions. The main reason for this are
the ambiguities within the sheet image when an audio excerpt

could correspond to multiple positions in the sheet image (cf.
Figure 1). To incorporate a longer temporal audio context, we use
an LSTM layer (Hochreiter and Schmidhuber, 1997) with 64
hidden units on top of the encoded audio vector. The hidden state
of the LSTM is updated every 40 frames, and the final
conditioning vector z used in the FiLM layer is defined as

z � f([h; x]), (3)

where f is a fully connected layer of size 128 with layer normalization
and ELU activation, h refers to the hidden state vector of the LSTM,
and [h; x] indicates a vector concatenation between the hidden state
h and the latest 40 audio frames encoded into x.

4 A NEW APPROACH: JOINT ALIGNMENT
PREDICTION AT SEVERAL GRANULARITY
LEVELS
As already discussed in the introduction, one issue with our
Conditional YOLO model described above - and indeed with any
approach to multi-modal score following that aims at aligning
audio to sheet images - is the dependency on precise note-level
alignments, i. e., for each timestep in the audio we need to know
the exact note position in the image. Since this is very time
consuming to annotate, only a limited amount of such training
data is available (whichwewill explain inmore detail in Section 5.2).

FIGURE 4 | Conditional YOLO architecture (A) and its building blocks (B, C). The Downscale block (B) applies a 3 × 3 convolution with a stride of 2, halving the
spatial dimension of the input feature maps. The FiLM layer is optional and bypassed in the first two Downscale blocks, i. e., the output of the convolutional layer after
normalization is directly fed to the subsequent activation function. In the Upscale block, nearest neighbour up-sampling is applied by a factor of 2 and the feature maps
from a given previous layer are concatenated channel-wise. The residual connection in both blocks serves as a bottleneck, reducing the number of parameters as
the 3 × 3 convolution is performed with only half the number of output channels, e. g., 64 × 1 × 1, 64 × 3 × 3 and 128 × 1 × 1.

1We follow https://github.com/ultralytics/yolov5 for these computations.
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To overcome this problem, we propose amodel that does not rely on
note-level alignments only, but further leverages data with system
and bar annotations which are easier and less time consuming to
obtain. As shown in Figure 3, the goal of our proposedmodel is now
to jointly predict bounding boxes for the specific note(s), bar and
system corresponding to the current timestep. During training we
assume bar- and system-level alignments to be always available,
whereas the note-level alignments are optional.

We implement the joint alignment prediction by using
three of the aforementioned Detection layers, each of which
is responsible for outputting the prediction at a specific
alignment level (see Figure 6). Each detection layer requires
a pre-defined set of anchors. While we keep the same anchors
as before for the first layer to predict note position bounding
boxes, we use (61, 32), (77, 40), (148, 34) for bar and (249, 33),
(267, 33), (267, 40) for system bounding boxes. These are
again determined using k-means clustering on the training set
bounding boxes, reflecting our prior assumption regarding
bounding box sizes.

The training objective for the conditional YOLO models
consists of two parts, a mean-squared-error loss to learn the
bounding box predictions and a logistic regression loss to predict
the “objectness” score of the boxes. Remember that this score
reflects the intersection over union (IoU) between a predicted

bounding box and the ground truth, i. e., a prediction that has a
perfect overlap with the ground truth should yield a score of 1.0
(Redmon and Farhadi, 2017).

The loss for the bounding boxes of a specific Detection layer l
is defined as

loss(l)box � λ(l)box

1
|BC| ∑

i∈BC
pxi − p̂xi
( )2 + pyi − p̂yi

( )2 + pwi − p̂wi
( )2[

+ phi − p̂hi
( )2], (4)

where λ(l)box is a scalar to weight the loss, p* and p̂* are ground truth
and predictions for bounding box parameters (see Eq. 2) and BC
is the set of all possible bounding box candidates for grid cells
where an object is present. This means that grid cells without a
note, bar or system are not considered by the loss function.

Similarly, the loss for the objectness score is given as

loss(l)obj � −λ(l)obj

1
|C| ∑c∈C

IoUc logpoc + 1 − IoUc( )log 1 − poc( )( ), (5)

with λ(l)obj being a scalar to weight the loss term, po the predicted
objectness score, C the set of all possible bounding boxes for all
grid cells, and IoU the intersection over union between predicted
and ground truth box in a given cell. In case there is no object
present in a cell (and thus no ground truth box available), the IoU
is assumed to be 0.

The final loss term is then computed by summing over all
detection layers l ∈ L

loss � ∑
l∈L

loss(l)box + loss(l)obj( ). (6)

In our experiments, we have a either a single detection layer to
only predict note-level alignments, or three when note-, bar-, and
system-level alignments are predicted. To balance the loss terms,
λ(l)box is set to 0.1 for all layers, and λ

(l)
obj is set to 10 for the first layer,

and 1 for the remaining ones. This should encourage the network
to focus more on correctly predicting the note positions in the
sheet image.2

TABLE 2 | CNN spectrogram encoder. Conv(f, p, s)-k denotes a convolutional
layer with k f × f kernels, padding of p and stride s. We use layer normalization
(LN) (Ba et al., 2016), the ELU activation function (Clevert et al., 2016) and max
pooling (MP) with a pool size of 2 × 2. For input normalization we use a batch
normalization (Ioffe and Szegedy, 2015) layer, to learn mean and standard
deviation parameters for each frequency band similar to (Grill and Schlüter,
2017). Note that there are no affine transformation parameters c and β in this
normalization layer.

Audio (Spectrogram) 78 × 40

Batch-Normalization
2 x (Conv(3, 1, 1)-24 - LN - ELU) - MP(2)
2 x (Conv(3, 1, 1)-48 - LN - ELU) - MP(2)
2 x (Conv(3, 1, 1)-96 - LN - ELU) - MP(2)
2 x (Conv(3, 1, 1)-96 - LN - ELU) - MP(2)
Conv(1, 0, 1)-96 - LN - ELU
Dense(32) - LN - ELU

FIGURE 5 | Anchor-based bounding box prediction. The network predicts relative box coordinates (px, py) for each grid cell (offset from the top left corner by cx, cy)
as well as width and height values (pw, ph) to scale the anchor (aw, ah) (visualized as a dashed rectangle). The resulting bounding box is depicted in red. For the
computation of px, py, pw, ph see Eq. 2. Figure inspired by (Redmon and Farhadi, 2017).

2For samples without ground truth note alignments, the objectness loss at the
corresponding detection layer is not considered.
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5 EXPERIMENT SETUP

In the following section, we introduce our experimental setup as
well as the data used to explore the generalization capabilities of
several sheet-image-based score following approaches. In
particular, we consider three methods from the literature as
explained in Section 2 as well as our approaches introduced
in Sections 3 and 4.

5.1 Models
The first baseline is the aforementioned one-dimensional
localization model as introduced in (Dorfer et al., 2016),
which is referred to as MM-Loc. In contrast to the other
approaches, this method is not completely on-line capable,
but looks ahead roughly 0.7 s into the future. Our second
baseline is the best reinforcement learning agent from
(Henkel et al., 2019), which we refer to as RL. Both of these
methods rely on unrolled score representations. We prepare
those upfront using ground truth annotations from the scores,
to evaluate the baselines under optimal conditions. As a further
baseline we use the Conditional UNet for full page tracking that
was introduced in (Henkel et al., 2020). We refer to this
approach as CUNet.

Next, we use a plain Conditional YOLO that only predicts
note-level alignments and one that additionally predicts system-
and bar-level alignments as described in Sections 3 and 4. We call
these CYOLO and CYOLO-SB, respectively. Given that CYOLO-
SB is able to also handle data without note-level alignments, we
further investigate whether additional training data with only
system and bar alignments can be used to improve the
generalization performance of such a model. In the following,
we refer to this as CYOLO-SB + A.3

5.2 Dedicated Datasets
In the experiments, we are interested in two specific questions:
how effective are current score following methods for sheet
images in generalizing to real-world audio conditions, and
how well do they handle scanned real sheet images? To
answer these questions, we consider different types of datasets
that allow us to treat them separately as well as in combination.

The main data source for sheet-image based score following
research is the Multi-modal Sheet Music Dataset (MSMD) (Dorfer
et al., 2018a). This polyphonic piano music dataset offers alignments
between note head coordinate positions in the score sheet image and
a MIDI score representation. The scores are typeset with Lilypond4

and for training purposes the MIDI representation is rendered to
audio using Fluidsynth.5 Since the dataset is inherently synthetic
with homogeneous and clean score images and without any
performance variations in the audio, it does not allow one to
precisely assess generalization to real-world conditions (i. e., audio
recordings and scanned or photographed score pages) and is mainly
used for training the score following systems. Additionally, the test
split of this dataset will serve as a baseline to test the score following
systems under optimal conditions.

To address our first question - generalization to real audio
recordings of (potentially expressive) performances –, we use a
collection of actual piano recordings aligned to a subset of the
MSMD test split (Henkel et al., 2019). Since this dataset still consists
of clean typeset score images it allows us to investigate generalization
in the audio domain without the influence of different sheet
image variations. The dataset will be called MSMD–Rec hereafter.

For the second question – generalization to real sheet images –,
we gather a collection of scanned scores aligned to musical
performances from two major data sources, the Magaloff
Corpus (Flossmann et al., 2010) and the Zeilinger Dataset
(Cancino-Chacón et al., 2017). The Magaloff Corpus contains
almost all solo piano pieces by Frédéric Chopin, played by Nikita
Magaloff. The pieces were performed in 1989 at the Vienna
Konzerthaus on a Bösendorfer SE290 computer-controlled concert

FIGURE 6 | Joint alignment prediction at several granularity levels. Each Detection layer is responsible for a specific alignment type - either notes, bars or systems,
and takes the same input from the last Upscale block as shown in Figure 4. Note that while we only visualize the prediction for an excerpt of a score, the actual prediction
is based on a full page.

3Please note that all CYOLO models are real-time capable. On average (estimated
over 100,000 trials), our system takes approx. 6.03 ms to process a new incoming
audio frame (corresponding to roughly 50 ms of audio). This is independent of the
length of a piece and primarily determined by the duration of a forward path
through the neural network (Tested on a system with a consumer GPU (NVIDIA
GEFORCE GTX 1080), 32 GB RAM and an Intel i7-7700 CPU).

4http://lilypond.org/
5https://www.fluidsynth.org
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grand piano, providing us with MIDI data that precisely capture the
details of Magaloff’s playing. Unfortunately, corresponding audio
recordings are not available, which required a re-rendering of the
performance MIDI on a Yamaha AvantGrand N2 hybrid piano as
explained in (Arzt, 2016). The Zeilinger Dataset contains 9 complete
Beethoven piano sonatas performed by Austrian pianist Clemens
Zeilinger and is split into 29 performances, each corresponding to one
sonata movement. The recordings were made in 2013 at the Anton
Bruckner University of Music in Linz on a Bösendorfer CEUS 290
and give us precisely aligned MIDI and also audio recordings. For
these two data sources we have note, bar, and system-level alignments
between the scanned score sheet image, a MIDI representation of the
score and an audio recording of the performance (which is re-
rendered in case of the Chopin pieces).

With this data, we can now address the second question from two
perspectives. First, we investigate the performance on scanned sheet
images byminimizing the effect of varying audio conditions asmuch
as possible. To that end we take the MIDI score representation of a
score page and render it to a synthetic performance analogous to the
MSMD training setup. That permits us to assess the alignment
performance on a scanned image under a synthetic audio condition.
(This condition and the corresponding data will be called
RealScores–Synth). Second, we consider the same scanned scores,
but instead of the synthetically rendered performance we now use
the aligned piano recordings. This is the most realistic score
following setting and should give insights into the overall
generalization of current state-of-the-art approaches in the image
and audio domains (we refer to this as RealScores–Rec).

Finally, we also have access to a collection of various other
pieces which only contain bar- and system-level alignments,
e. g., different Mozart and Beethoven Sonatas, Rachmaninoff’s
Prelude Op. 23 No. 5 in G minor, as well as miscellaneous pieces
by Debussy, Schubert and Schumann. For all these pieces we
again have the scanned sheet image aligned to a corresponding
score MIDI representation, and for a subset we have one or
multiple aligned performance recordings (audio). This additional
set of data will be called Add–Synth and Add–Rec, respectively
(as we will use both the real audio recordings and audios
re-synthesized from the MIDIs), and will be used as additional
training data for the aforementioned CYOLO-SB + A model.

In Table 3 we provide a summary of the datasets and give an
overview on how they are split for training, validation and testing.
The validation set will be used during training to select the best
performing model for the final evaluation on the test sets. We use
only material from the purely synthetic MSMD dataset for that
purpose, so that our further experiments then give a realistic
estimate of the generalization capabilities of our models.

5.3 Training Details
We train the CYOLO models using the Adam optimizer with
corrected weight decay regularization (Loshchilov and Hutter,
2019), a batch size of 128, a learning rate of 5e−4 that is decreased
to 5e−6 over the course of 50 epochs using cosine annealing
(Loshchilov and Hutter, 2017), and a weight decay coefficient of
1e−3. Following (He et al., 2019), we apply weight decay only to the
weight parameters of convolutional, recurrent and linear layers, but
not to normalization layers and bias parameters. Weights are
initialized orthogonally (Saxe et al., 2013) and the bias parameters
are set to zero except for the forget gate of the LSTM layer which we
set to 1 (Gers et al., 2000). In order to avoid exploding gradients, we
clip the gradients of the parameters in the recurrent layer of the audio
encoder with a maximum norm of 0.1. Model selection for the final
evaluation on the test sets is based on the validation loss during
training. The baseline models are trained as described in the original
references (Dorfer et al., 2016; Henkel et al., 2019, Henkel et al., 2020).

The initial resolution of the used sheet image pages is 1181 ×
835, which will be padded to a squared shape and downscaled to
416 × 416 before being presented to the neural network. Visually,
this still offers a high enough resolution for humans to distinguish
relevant details in the image. For data augmentation the images
are randomly shifted along the x and y axis. Additionally, the
audio is augmented by changing the tempo with a random factor
between 0.5 and 2, and by applying the Impulse Response (IR)
augmentation introduced in (Henkel and Widmer, 2021). The
latter allows us to model different microphone and room
conditions, by convolving the audio recording with a random
IR on-the-fly during training. Previous work showed that this
results in a more robust audio encoder and significantly improves
the tracking accuracy. This augmentation is applied in the same
way to all CYOLO models, so that any difference in performance

TABLE 3 | Overview of datasets used for training, validation and testing.

Dataset Num. of Pages Dur. [h] Sheet Image Audio Note Alignments
Train

MSMD 945 12.09 synthetic synthetic ✓
Add–Synth 796 12.75 scanned synthetic 7

Add–Rec 811 14.69 scanned recording 7

Validation

MSMD 28 0.31 synthetic synthetic ✓

Test

MSMD 125 1.33 synthetic synthetic ✓
MSMD–Rec 25 0.31 synthetic recording ✓
RealScores–Synth 977 10.69 scanned synthetic ✓
RealScores–Rec 977 10.70 scanned recording ✓
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between these will be solely due to whether or not they consider
multi-level alignment. That the baseline CYOLO beats the
previous models even without this kind of augmentation was
already shown in (Henkel and Widmer, 2021).

5.4 Evaluation Metrics
For evaluation we follow (Dixon, 2005; Arzt, 2016) and measure
the temporal tracking error of the score following models. Since
the predictions of sheet-image-based trackers are positions in an
image, we first have to transform them from the spatial domain to
the time domain. This is done by using the ground truth
alignments between sheet image positions and note onsets,
and interpolating from the predicted positions back to the
time domain. Subsequently, we compute the absolute time
difference between the ground truth and prediction for each
note onset. Using this difference, we report the cumulative
percentage of notes that are tracked below a certain error
threshold, for five threshold values ranging from 0.05 to 5 s.

However, this measure can only be used to evaluate note-level
tracking errors. Since we additionally want to evaluate the predicted
system and bar alignments of our new approach, we furthermeasure
the accuracy based on the intersection over union (IoU) between
ground truth and predicted system and bar bounding boxes for each
note onset. This is done by using a threshold of 0.8, i. e., a system
or bar is considered to be correctly identified if the IoU between
the predicted and ground truth bounding box is higher than 0.8.

6 RESULTS AND DISCUSSION

In the following we first compare the score following models on
the aforementioned datasets to investigate their generalization
capabilities. Afterwards, we take a closer look at our best
performing model to see under which conditions it still struggles.

6.1 Model Comparison
Table 4 summarizes the results for four different audio and
sheet image setups. In the first section (I) we consider the
completely synthetic MSMD test split. We observe that the
full-page trackers outperform those relying on unrolled scores
(MM-Loc and RL) across all error thresholds. Furthermore,
CYOLO and its variants all perform similarly and exceed the

TABLE 4 |Comparison of our proposedmethods to several approaches on the test sets as described inSection 5. We report the ratio of tracked onsets below certain error
thresholds from 0.05 to 5 s. The best result for each threshold is marked bold. Bar and system accuracies are only available for CYOLO-SB and CYOLO-SB + A.6

Err. [sec] ≤ 0.05 ≤0.10 ≤0.50 ≤ 1.00 ≤ 5.00 Bar Accuracy System Accuracy

I MSMD (Synthetic Sheet Images–Synthetic Audio)

MM-Loc 0.707 0.747 0.839 0.855 0.917 - -
RL 0.411 0.435 0.776 0.856 0.971 - -
CUNet 0.726 0.750 0.855 0.885 0.937 - -
CYOLO 0.830 0.842 0.885 0.909 0.984 - -
CYOLO-SB 0.820 0.837 0.893 0.912 0.983 0.890 0.963
CYOLO-SB + A 0.846 0.861 0.908 0.927 0.984 0.892 0.956

II MSMD–Rec (Synthetic Sheet Images–Audio Recordings)

MM-Loc 0.364 0.406 0.585 0.611 0.735 - -
RL 0.185 0.200 0.476 0.603 0.901 - -
CUNet 0.113 0.125 0.224 0.266 0.443 - -
CYOLO 0.563 0.581 0.712 0.749 0.919 - -
CYOLO-SB 0.610 0.630 0.799 0.832 0.960 0.829 0.917
CYOLO-SB + A 0.682 0.706 0.865 0.891 0.981 0.865 0.941

III RealScores–Synth (Scanned Sheet Images–Synthetic Audio)

MM-Loc 0.487 0.550 0.670 0.708 0.838 - -
RL 0.174 0.204 0.499 0.604 0.875 - -
CUNet 0.551 0.586 0.700 0.749 0.875 - -
CYOLO 0.623 0.652 0.737 0.793 0.956 - -
CYOLO-SB 0.595 0.633 0.737 0.788 0.944 0.744 0.881
CYOLO-SB + A 0.689 0.725 0.824 0.871 0.980 0.812 0.919

IV RealScores–Rec (Scanned Sheet Images–Audio Recordings)

MM-Loc 0.227 0.281 0.398 0.450 0.654 - -
RL 0.094 0.120 0.318 0.430 0.791 - -
CUNet 0.216 0.255 0.381 0.446 0.656 - -
CYOLO 0.384 0.431 0.560 0.630 0.894 - -
CYOLO-SB 0.369 0.423 0.574 0.642 0.892 0.573 0.771
CYOLO-SB + A 0.456 0.516 0.670 0.737 0.929 0.658 0.821

6Note that we report a significantly higher performance for MM-Loc compared to
previous work. This is due to a bug in the evaluation function that we have fixed for
this method
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performance of CUNet. This indicates that predicting system
and bar alignments does not hurt the overall performance
compared to the plain model, and possibly even improves it
since more data can be used.

In the second section (II) the performance on the subset of the
MSMD test split with real piano recordings is reported. This
addresses the question of generalization in the audio domain,
without considering different sheet image conditions. Again, we
observe that our full-page tracking CYOLO models outperform
all other approaches. Interestingly, compared to before, CYOLO-
SB outperforms the plain model in this setting. We furthermore
see that CYOLO-SB + A improves the results across all error
thresholds which is likely due to the additional training data
containing several different piano recordings that cannot be used
by the other approaches. Moreover, both methods predict the
correct bar and system in more than 80% and 90%, respectively.

In the third section (III) we investigate the generalization in the
image domain by considering scanned sheet images and synthetic
audio, rendered from the scoreMIDI.While the excerpt-based score
following models are lagging behind again, we see that CUNet
significantly improved compared to the previous scenario. This
indicates that it is better at handling variations in the image than
in the audio domain. We further see that CYOLO variants achieve
the most precise results, with CYOLO-SB + A performing best.
However, we also notice a degradation in terms of the bar and system
accuracies compared to synthetic scores.

Finally, in the last section (IV) we report the overall generalization
capability of our system by considering both scanned sheet images
and piano recordings. As expected, this turns out to be the hardest

setting for the score following systems, andwe observe a deterioration
across all approaches and errormetrics. Overall, we see a similar trend
compared to the previous setup, where full-page trackers exceed over
the excerpt-based ones, and again CYOLO-SB + A performs best.
While the additional data leveraged by CYOLO-SB + A could
improve the generalization capabilities, there is still a significant
gap to the strictly synthetic setting. As we are currently still limited in
the amount of data we can use compared to other research areas with
an abundance of annotated data (e. g., image classification), we think
that collecting a larger (and publicly available) dataset will be key to
further improve in this area.

6.2 Error Analysis
In the following, we take a closer look at the average performance
of the evaluated methods over all pieces within each dataset.
Furthermore, we highlight some examples for which our best
performing CYOLO-SB + A model is still struggling.

Figure 7 visualizes the average error distribution across the
test datasets. Similar to Table 4, we observe that overall the
proposed CYOLOmodel achieves the lowest alignment error and
seems to be more stable accross different pieces. While in some
cases the extension with bar and system predictions (CYOLO-SB)
is slightly worse than the plain model, CYOLO-SB + A improves
upon all other methods. Due to the additional training data, this
method achieves the lowest error and the least spread.

For the CYOLO-SB + A model we find two particular score
pages with a significant error (greater than 3 s) in the test split of
the synthetic MSMD dataset. The first one is an extremely slow
piece (Catacombae, from Modest Mussorgsky’s Pictures at an

FIGURE 7 | Error distributions of compared methods across all test datasets. Outliers are not directly shown (in order not to skew the plots), but given as the
number of pages with an error greater than 1.5 × the interquartile range for each method (if there are any).

Frontiers in Computer Science | www.frontiersin.org November 2021 | Volume 3 | Article 71834010

Henkel and Widmer Music Following in Sheet Images

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Exhibition) consisting almost entirely of dotted half notes, which
results in a visually very different score compared to the training
pieces and an audio signal with extremely sparse note onsets. For
the second piece (Chopin’s Prélude Op. 28, No. 9), we observe
two potential pitfalls. On the one hand, the piece contains a few
trills, a type of musical ornament where two adjacent notes are
played repeatedly in alternation, apparently confusing our
system. On the other hand, the piece also has a very repetitive
structure, where certain parts only differ by one or two semitones.
Given the down-scaled sheet image, it is possibly very hard for the
neural network to detect these differences in the image. In future
work it will be worth investigating whether a higher input
resolution for the sheet image could alleviate such a problem.

For the datasets containing scanned sheet images we observe a
larger number of outlier pages. While the average tracking error is
in general higher, we again see problems with slower pieces, and
pieces containing trills as well as arpeggios, i. e., chords for which
each note is played consecutively (cf. Figure 8). It seems that our
system struggles to match notes in the performance that are not
explicitly marked as separate onsets in the score.

7 CONCLUSION

In this work we have investigated the generalization capabilities of
different sheet-image-based score following approaches. Furthermore,
we propose a newmethod that jointly predicts note-, system-, and bar-
level alignments, allowing us to leverage additional data where the
annotations are only partially available.

While our approach improved over current state-of-the-art
methods, it still lacks a certain level of reliability and robustness,
especially in a real-world setup with scanned images and audio
recordings. In order to overcome this, we see two important steps
to take for future work. First and foremost, we still require more
annotated data to train these kinds of score following models. As our
new approach allows to use data without fine-grained note-level
annotations, it can be easier to collect larger datasets. In particular,
it will be important to gather a variety of different sheet images
(scanned and possibly also photographed) as well as different audio
recordings.

Second, since our current neural network architecture is
deliberately kept simple and small compared to state-of-the-art

object detection and image classification models (Tan and Le,
2019; Tan et al., 2020; Dosovitskiy et al., 2021), we think there is
certainly room for improvement in that direction. The initial
bounding box regression problem formulation as well as the
newly proposed approach to jointly predict alignments is rather
general and not limited to the family of YOLO object detectors. In
future work, we want to take a closer look at models such as the
Detection Transformer (DETR) (Carion et al., 2020), which gets
rid of prior assumptions about bounding box shapes,
i. e., anchors, and also offers an alternative conditioning
mechanism compared to the FiLM layer we are using. Our
new approach could allows us to effectively train such a
transformer-based architecture, as these kind of models usually
require huge amounts of data.
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FIGURE 8 | Example of a trill (left) and an arpeggio (right), as they look in the score and an audio recording, respectively.
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