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Life in modern societies is fast-paced and full of stress-inducing demands. The
development of stress monitoring methods is a growing area of research due to the
personal and economic advantages that timely detection provides. Studies have shown
that speech-based features can be utilised to robustly predict several physiological
markers of stress, including emotional state, continuous heart rate, and the stress
hormone, cortisol. In this contribution, we extend previous works by the authors,
utilising three German language corpora including more than 100 subjects undergoing
a Trier Social Stress Test protocol. We present cross-corpus and transfer learning results
which explore the efficacy of the speech signal to predict three physiological markers of
stress—sequentially measured saliva-based cortisol, continuous heart rate as beats per
minute (BPM), and continuous respiration. For this, we extract several features from audio
as well as video and apply various machine learning architectures, including a temporal
context-based Long Short-Term Memory Recurrent Neural Network (LSTM-RNN). For the
task of predicting cortisol levels from speech, deep learning improves on results obtained
by conventional support vector regression—yielding a Spearman correlation coefficient (ρ)
of 0.770 and 0.698 for cortisol measurements taken 10 and 20min after the stress period
for the two corpora applicable—showing that audio features alone are sufficient for
predicting cortisol, with audiovisual fusion to an extent improving such results. We also
obtain a Root Mean Square Error (RMSE) of 38 and 22BPM for continuous heart rate
prediction on the two corpora where this information is available, and a normalised RMSE
(NRMSE) of 0.120 for respiration prediction (−10: 10). Both of these continuous
physiological signals show to be highly effective markers of stress (based on cortisol
grouping analysis), both when available as ground truth and when predicted using speech.
This contribution opens up new avenues for future exploration of these signals as proxies
for stress in naturalistic settings.
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1 INTRODUCTION

Understanding how stress manifests in the human body has
several meaningful use-cases, from improving safety during
driving (Bianco et al., 2019) to early intervention of
neurodegeneration (Zafar, 2020). Stress levels are globally on
the rise, primarily due to the increased pressure from work and
personal lifestyles (Sharma et al., 2021). Many individuals find
themselves constantly dealing with several concurrent tasks, a feat
known to put well-being off-balance, particularly during work
(Pagán-Castaño et al., 2020). With this in mind, methods that can
reduce levels of stress whilst still enabling the desired level of
efficiency are highly desirable in workplace environments as they
can be used to proactively prevent burnout, which is known to
proceed consistent stress (Fendel et al., 2020). During a stress
inducing situation, the adrenal glands begin to produce various
hormones, of which cortisol (a stress hormone) is the most
prominent (Leistner and Menke, 2020). The production of
cortisol responds to the activation of the hypothalamic-
pituitary-adrenal (HPA) axis, which begins to secrete the
corticotropin-releasing hormone that causes the additional
release of the adrenocorticotrophic hormone (ACTH) from
the pituitary. The release of such hormones is known to alter
other physiological responses, including heart rate (Gönülateş
et al., 2017), which in turn affects face colouring (Niu et al., 2018)
and speech, particularly during psychosocial stress (Brugnera
et al., 2018). With this in mind, the speech signal can (non-
intrusively) computationally monitor several states of wellbeing
(Cummins et al., 2018). It has shown promise in recent studies to
indicate physiological signals which are known to be markers of
stress, e. g., correlation with saliva-based cortisol samples (Baird
et al., 2019), states of emotional arousal (Stappen et al., 2021a),
and co-occurring conditions including anxiety (Baird et al.,
2020).

In this study, we extend previous works by the authors (Baird
et al., 2019), by more deeply exploring the utility of speech for
monitoring stress. We use three German corpora, the FAU, ULM-
and REG-TSST which were all gathered with the renowned Trier
Social Stress Test (TSST) protocol (Kirschbaum et al., 1993), and
contain more than 100 subjects in total. In previous studies
utilising the FAU-TSST dataset (Baird et al., 2019), speech
derived features were found to strongly correlate with raw
cortisol taken 10 and 20 min after the spoken task in the
TSST, which supported the use of speech as a marker of
stress, mainly as cortisol is known to peak between 10 and
20 min after a stress stimulus (Goodman et al., 2017). With
this in mind, we aim to more closely explore the connection
between spoken features and sequential cortisol samples
extracted from saliva. To do this, we will perform a
fundamental acoustic analysis of grouped signals and then, via
a deep learning recognition paradigm, explore each corpus
applying transfer learning to validate the efficacy of speech-
based cortisol recognition on unseen data. Furthermore, as the
ULM- and REG-TSST corpora both contain continuous heart rate as
beats per minute (BPM), and ULM-TSST additionally includes
respiration signals, we aim to recognise these signals and
explore their relationship with the saliva-based cortisol

samples to validate their use as markers of stress. There are
also two speech scenarios within a TSST, the job interview and
arithmetic task, separating these—we will also explore how the
speech duration and activation in general effects recognition rates
with a more fine-grained continuous analysis. Finally, we utilise
visual-based features (where available) for multimodal
recognition of relevant stress bio-markers and compare the
performance of this to audio.

To summarise, the following analysis includes several insights
and contributions. At the core, this work extends on previous
results by the authors Baird et al. (2019), and for the first time,
explores the task of sequentially sampled cortisol prediction from
multimodal data within a deep learning-based architecture,
validating the experimental paradigm via utility of a novel
dataset. Therefore the areas explored through the utilisation of
sequential cortisol as ground truth for stress are fourfold: 1) The
utility of speech plus multimodal features for recognition of other
physiological-derived signals is validated or not. 2) A
fundamental acoustic analysis of speech under stress is
conducted, utilising cortisol derived groupings as a ground
truth for stress. 3) Multi-domain experiments are conducted
to further validate previous works’ findings with newly
collected data.

This article is organised as follows; firstly, in Section 2, we
provide a brief overview of related studies in the area of stress
recognition. We then introduce the three corpora that have been
used within the experiments in cf. Section 3, as well as offering
detail of the TSST study procedure in general. This is followed by
an acoustic analysis of each corpus in Section 4. We then outline
the experimental set-up for the recognition tasks, in Section 5,
and present our experimental results in Section 6, with a mention
of study limitation in Section 7. Finally, we offer concluding
remarks and future outlook in Section 8.

2 RELATED WORK

Stress recognition has been an active research area within the
machine learning and affective computing communities for
several years, thus making an extensive summary of this area
of research beyond the scope of the current work. In this section,
we discuss various approaches which have motivated aspects of
our work and would suggest that the interested reader is directed
to Panicker and Gayathri (2019) or Grzadzielewska (2021), for a
survey on stress recognition in general, and to Garcia-Ceja et al.
(2018), for mental health state recognition using machine
learning.

As mentioned, speech as a marker of stress was explored in
Baird et al. (2019), and sequentially measured cortisol samples
were for the first time recognised in a traditional machine
learning paradigm utilising a support vector regressor (SVR)
with hand-crafted and image-based speech-derived features.
Findings from this study showed that elevated cortisol
levels—taken between 10 and 20 min after the TSST, i. e., the
time of speech under stress—correlate to a substantial level
(Spearman’s correlation coefficient (ρ) of at best 0.421) with
hand-crafted prosodic related feature sets performing best.
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Aside from the work presented in Baird et al. (2019), there
have been limited computational machine learning-based works
which have looked at sequentially samples saliva-based cortisol.
However, in Nath et al. (2021), the authors aim to provide a
system for monitoring stress in older subjects and in this case
instead of explicitly recognising the raw cortisol values, they
utilise the samples to produce a ground truth for stress or no
stress, in order to perform a binary classification on the subjects.
Instead of speech-derived features, the authors perform various
experiments based on the features extracted from wearable
sensors, e. g., blood volume pressure and electrodermal
activity. In this study, in particular, the authors find
substantial improvement through the use of an LSTM-based
deep learning architecture, obtaining an accuracy for the 2-
class problem above 90% F1 via the feature selection of
physiological based signals. Such results show promise for the
use of deep learning in the context of stress recognition.

There are several machine learning approaches that have
explored physiologically derived markers in general for stress
recognition (MacLaughlin et al., 2011; Dhama et al., 2019;
Šalkevicius et al., 2019). From feature-based machine learning
paradigms which classify various features extracted from wearable
sensors, i. e., sleep quality, and percentage of screen time (Sano and
Picard, 2013), or heart rate variability (HRV) (Dalmeida andMasala,
2021), and thermal-video recognition of the Initial Systolic Time
Interval (Kumar S. et al., 2021), applying the state-of-the-art
StressNet. StressNet consists of a Long Short-Term Memory
(LSTM)-based architecture to harness spatial-temporal aspects of
a continuous signal. Similarly, in a recent study, the DeepBreath
system has been presented (Cho et al., 2017), a CNN-based
architecture which was applied to small-scale datasets for stress
recognition, and obtains up to 84.59% accuracy for a binary stress
task and 56.52% for a 3-class problem. KumarA. et al. (2021) present
a hierarchical deep neural network that learns high-level feature
representations for each type of physiological signal.

The use-cases associated with these approaches vary, with works
in recent years being targeted at products including drivermonitoring
(Healey and Picard, 2005). However, a major limitation for such
stress research is that stress can be potentially harmful to individuals,
thus raising ethical concerns which make the collection of
spontaneous and natural stress occurrences difficult in practice.
With this in mind, the TSST is a standardised and common
paradigm (Schmidt et al., 2018), which some stress targeted
corpora have applied as it is known to induce moderate
psychosocial stress to subjects (Dickerson and Kemeny, 2004;
Plarre et al., 2011). Smaller-scale datasets following these
established protocols and have been collected and used for
machine learning-based stress recognition (Cuno et al., 2020). The
SWELL dataset (Koldijk et al., 2014) (25 subjects, 8 female), is one
where time-pressure and interruptions are integrated in the taskwhich
the subjects are asked to perform. In a similar way, cognitive load is
another method for inducing stress, and in the renowned SUSAS
(Hansen and Bou-Ghazale, 1997) corpora (aimed at robust speech
processing from stressed and emotional speech), 32 subjects are
perform various “tracking” tasks, which increase in their complexity.

Several studies based on these available datasets utilise classical
machine learning methods to explore the relationship of multimodal

features with stress. In Rodríguez-Arce et al. (2020), the authors apply a
Support Vector Machine (SVM), k-Nearest Neighbours (KNN),
Random Forest and Logistic Regression (LogR) classifiers to analyse
the accuracy of feature subsets based on various modalities, e. g., heart
rate, respiration, and galvanic skin response. The limited available data
makes deep learning approaches a challenge, however in the 2021
Multimodal Sentiment Analysis in Real-Life Media Challenge (MuSe)
(Stappen et al., 2021a), the ULM-TSST corpus was presented and
successfully utilised for emotion-based stress recognition during a
TSST. The baseline for the Multimodal Emotional Stress sub-
challenge (MUSE-STRESS) task (recognition of valence and arousal
during stress) applies an LSTM-RNN with a late multimodal fusion
of audio plus video-based features, obtaining a concordance correlation
coefficient (CCC) of 0.509 (for combined arousal and valence). Audio
features perform best for the uni-modal approaches in the MuSe
paradigm,with EGEMAPS (Eyben et al., 2016) features yielding aCCCof
0.472, compared to a CCC of 0.305 for video-based VGGFACE features.

From this literature overview, it is clear that there is missing
analysis in the literature, and need to explore more deeply the
utility of markers of stress e. g., cortisol, in a machine learning
paradigm. Computational understanding of cortisol is
particularly meaningful, as it is known that, sustained levels of
stress are substantial contributors to neurodegeneration (Zafar,
2020), with biological markers of this including fluctuations in
neurotransmitters, e. g., dopamine or serotonin, and levels of
stress hormones including cortisol, with Zafar (2020). More
specifically, in Saitis and Kalimeri (2018) the authors use
related bio-markers to automatically detect environments that
are stressful for visually impaired persons which might help to
improve accessibility within public spaces. This illustrates that
successful monitoring of stress via such markers has a benefit
beyond commercial applications.

Furthermore, as can be seen, current studies are largely based on
smaller-scale corpora (ca. 30 subjects), with the current contribution
attempting to go deeper by not only exploring across multiple
corpora but in general including a more substantial number of
speakers (+100) than is typically observed in the literature thus far.
As well as this, applying deep learning, particularly an LSTM-RNN,
appears to be a valid deep learning architecture for modelling states
of continuous stress, and motivates us to explore the use of this in
comparison to more robust models, e. g., the SVR. Finally, in Baird
et al. (2019) no other modalities were explored for recognising the
cortisol-derived markers of stress, neither in a uni- or multimodal
manner, and so this strongly motivates the current work to explore
how vision-based features perform in this setting.

3 CORPORA

For our experiments we utilise three corpora—the FAU-Trier
Social Stress Test (FAU-TSST), the Regensburg-Trier Social Stress
Test (REG-TSST), and the Ulm-Trier Social Stress Test (ULM-TSST)—
which all include subjects undergoing the renowned and highly
standardised Trier Social Stress Test (TSST) (Kirschbaum et al.,
1993). All subjects were speaking in the German language and
were recorded at Universities from southern German states
(Bavaria and Baden-Württemberg). After processing, the total
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amount of speakers is 134, including 50 males and 84 females.
The FAU-TSST corpus was first introduced in Baird et al. (2019),
and the ULM-TSST corpus in Stappen et al. (2021a). In Table 1, we
provide an overview of all data available across each corpus. As
can be seen, the only modality available in all corpora is audio. All
three corpora have speech data from the job interview (interview)
task (described in detail below), however the ULM-TSST corpus
does not include the arithmetic task.

3.1 The Trier Social Stress Test Procedure
Each testing site obtained ethical approval from their respective
university’s ethics committee to perform the TSST study. In all
cases, subjects were recruited from the university campus and the
community via print and multi-media advertising and received
monetary compensation. The study was carried out in accordance
with the declaration of Helsinki, and informed consent was obtained
from all subjects at study entry. For the REG-TSST eligible, subjects were
then invited to a first laboratory session to conduct a structured
clinical interview (Wittchen et al., 1997) for exclusion of acute or
chronic psychiatric diseases. Further exclusion criteria applied to all
corpora included; acute or chronic somatic diseases, psychotropic or
glucocorticoid medication intake, BMI above 30 kg/m2, drug abuse,
and previous experience with the TSST procedure.

For all corpora, the participants did not know the details of the
tasks and were given this information upon entering the TSST study
room. The prior experience that subjects may have had with these
styles of speaking tasks is unknown, although they were not informed
of the task details prior to entering the test site. For the interview task,
the participants were not restricted to a particular vacant position but
rather considered it to be the interview for their ‘dream roll’.
Furthermore, it is unknown how many participants had a prior
relationship with the panel, although there is likely some previous
acquaintance-level relationship given the university location.

In Figure 1 an timeline is given for the general TSST
experiment. There was slight variance at each test site;
however, we attempt to combine the description of procedure.
The TSSTs were scheduled between 12: 00 p.m. and 7: 00 p.m. to
account for the influence of circadian cortisol variations
(Rohleder and Nater, 2009). Instructions for the subjects
included instructions to refrain from exercising, smoking,
teeth brushing, eating, and drinking anything except water
before the arrival. Upon arrival, subjects received verbal and
written instructions, followed by a resting period. During this
time, for the FAU-TSST and REG-TSST a saliva sample (S0 30–45 min
before TSST) was collected as the participant’s cortisol baseline,
and for the REG-TSST corpus, a sugary drink (chilled herbal tea with

75 g of glucose) was given to elevate blood glucose levels (Zänkert
et al., 2020). One minute before the next stage, another saliva
sample is taken (S1 1 min). The subjects are then introduced to
the TSST procedure, and guided to a test room, and introduced to
observers wearing white lab coats. Subjects were then instructed
to take the role of a job applicant and give a 5-min speech to
present themselves as the best candidate for a vacant position.
This task is where continuous recording begins for the REG-TSST

and ULM-TSST
1. After this, in the FAU-TSST and REG-TSST corpora,

subjects were given a mental arithmetic task, for a further 5 min,
where they should serially subtract 17 from 2 043 as quickly as
possible. In the case of any error, they were requested to start
again. After completion of the TSST speaking tasks, six more
saliva based samples are taken from the subjects (S2-S7).

3.2 Target Signals
As seen inTable 1 overview, there are several signals available for each
of the three corpora. As a core task, we focus on the recognition of
sequential saliva-based cortisol measures S0 (45min) to S7 (+60min),
measured in nanomoles per litre (nmol/L). For the FAU-TSST and REG-

TSST corpora, saliva is collected at the same time-points, before and after
the TSST, and stored at −20°C before extraction. However, for each
corpus, the assay (i. e., biochemical analysis procedure) applied to
extract cortisol varied, where FAU-TSST utilise a chemiluminescence
immunoassay (CLIA), and REG-TSST a fluorescence-based
immunoassay (DELFIA) meaning that the derived cortisol value is
not completely comparable, for further detail on the difference in these
procedures the interested reader is directed toMiller et al. (2013).With
this in mind for the experiments in later sections the two corpora will
only be utilised in a multi-domain manner, and not with a typical
cross-corpus strategy, cf. Section 6.

Given this, we first want to analyse the variance in raw cortisol
between the two corpora, and sowe apply a repeatedmeasures’ analysis
of variance (RM-ANOVA) with raw cortisol (S0-S7) as within-subject
factor time and the between-subject factor corpora (FAU-TSSTvs REG-

TSST).Due to lack of sphericity (pointing to unequal variances ofwithin-
subject measures) we report the Greenhouse-Geisser adjusted p-value.
We find a significant main effect of the corpora [F (1, 67) � 4.02, p �
0.049, η2 � 0.03] indicating that on average FAU-TSST raw cortisol is
higher compared to REG-TSST raw cortisol. Further, we see a
significant time × corpora interaction [F (1.76, 120.08) � 4.52,
p � 0.016, η2 � 0.017] with a slightly earlier and higher rise in raw

TABLE 1 | An overview of each of the three corpora (FAU) (REG) and (ULM)-TSST used within this contribution. Including, number of subjects (#), distribution of gender (M)ale: (F)
emale, Age in years (mean/standard deviation), continuous signals available for each—(A)udio, (V)ideo, heart rate as beats per minute (B)PM, (R)espiration, (C)ortisol and
(E)motion (arousal and valence)—as well as, the speaker independent partitions, train, (dev)elopment and test, and the duration of audio data, after voice activity detection
(VAD) and for each TSST task, (Inter)view, and (Arith)methic.

# (M:F) Age μ/± Modes Duration (hh:mm) Partitions

A V B R C E VAD Inter. Arith. Train Dev Test ∑

FAU 43 (14:29) 24.26/4.97 @ @ ⃞ ⃞ @ ⃞ 7: 25 4: 20 2: 32 1: 48 15 15 13 43
REG 27 (13:14) 22.74/2.96 @ ⃞ @ ⃞ @ ⃞ 4: 28 2: 26 1: 24 1: 02 10 9 8 27
ULM 69 (20:49) 25.06/4.48 @ @ @ @ ⃞ @ 5: 47 2: 21 2: 21 – 41 14 14 69

1For physiological signals, the REG-TSST corpus utilised the Polar RS800CX and
V800 system, and the ULM-TSST corpus used the BIOPAC Systems, MP35.
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cortisol in FAU-TSSTcompared to REG-TSST. Also, testing the
homogeneity of variances of S0—S7 with the Levene’s Test
reveals that for S0-S2, we can assume homogenous variances
(p > 0.1) whereas for S3S7, we see inhomogeneous variances
(p < 0.05). Whereas variances are comparable for S0-S2, for S3-
S7 variances in the FAU-TSSTcorpora for raw cortisol are higher
compared to REG-TSST. This suggests a large difference between both
corpora regarding intra-individual cortisol trajectories in response
to the TSST. For an overview of the raw cortisol in each corpus, cf.
the left of Figure 2, as can be seen at points the variance in the
subject’s response becomes quite large, which is likely due to some
subjects physiologically responding less to this type of stress than
others, “non-responders”, ? As the cortisol of the two corpora is
derived with a different assay, and given these statistical differences,
the two corpora will be treated individually unless otherwise stated.

For the ULM-TSST and REG-TSST corpora, we additionally explore the
continuous physiological signals available cf. Figure 2 (middle). We
utilise heart rate as Beats per Minute (BPM) from the REG-TSST and
ULM-TSST corpora, and for the ULM-TSST corpus, we also utilise the
respiration signal provided cf. Figure 2 (right), which is based on chest
displacement at a range of -10 to +10 mV (mV), where negative
indicates an exhalation and positive an inhalation. Both of these
physiological signals are known to alter during stress stimuli (Bernardi
et al., 2000). Of note, from Figure 2 (centre) we see that the BPM
signal for REG-TSST contains values below 50BPM and above 180BPM
suggesting some noise in the signal, likely due to the equipment type2

The ULM-TSST corpus also includes continuous emotion ratings,
which were rated by three annotators for the dimensions of
arousal and valence, at a 2 Hz sampling rate. Arousal and
valence are derived from Russell’s circumplex for affect
(Russell, 1980), and allow for dimensional interpretation of the
strength (arousal) and positivity (valence) of an emotion. For
these signals, a “gold standard” is obtained by the fusion of
annotator ratings, utilising the RAAW method, implemented using
the MuSe-Toolbox (Stappen et al., 2021c). The mean Pearson
correlation inter-rater agreement for these fused signals are 0.186
(±0.230) for arousal, and 0.204 (±0.200) for valence.

3.3 Data Processing
For the FAU-TSST and ULM-TSST corpora, the audio data was
extracted from the video camera, placed approximately 3 m
from the subject. For the REG-TSST corpus, two channels of
audio were captured, and for the experiments, we utilise the
first channel, which was recorded using the AKG PW45 presenter
set with a close-talk microphone. All audio was converted to
16 kHz, 16 bit, mono, WAV format and applying peak
normalisation to 1 dB for each audio file, i. e., adjusting the
loudness based on the maximum amplitude of the signal,
before extracting features. We re-ran the processing procedure
for the FAU-TSST corpus that was first presented in Baird et al.
(2019) to include portions of non-speech, and match ULM-TSST

and REG-TSST. For the audio of all corpora, we applied voice activity
detection (VAD), utilising the LSTM-RNN approach described by
Hagerer et al. (2017). This method utilises spectral and MFCC-
based features to generate frame-level VAD decisions with a
granularity of 20 ms. The model was trained in a multitask setting

FIGURE 1 | An overview of the typical TSST paradigm, as applied in FAU-TSST and REG-TSST, where ULM-TSST excludes the arithmetic task.

FIGURE 2 | Mean of raw cortisol as (nmol/L) for both FAU-TSST and REG-TSST, highlighting the stress period in grey, with annotations of sequential saliva (S), and
sample time in minutes (left). Distribution of continuous heart rate as BPM for the REG-TSST and ULM-TSST corpora (middle). Distribution of the respiration-based signal as
millivolts (mV) based on chest displacement (right).

2REG-TSST: Polar RS800CX and V800 system, and ULM-TSST: BIOPAC
Systems, MP35.
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to jointly predict speech overlap, gender, and speech probability,
achieving an overall performance of 93% F1-score for speech
detection. From this procedure in, cf. Table 1, it can be seen that
the arithmetic task contains less speech, and in general, there
appears to be substantial silence within the audio data, likely
caused by the induced stress.

For all corpora, we create segments from the continuous
signal. For FAU-TSST and REG-TSST, this is based on speech start
(provided by the VAD), until the next utterance. To be
comparable to the MuSe challenge, we do not alter the
segmentation applied to ULM-TSST. As the text is also available
for this corpus, the segmentation is based on aligned transcription
(cf. Stappen et al. (2021a) for further detail). Each corpus is then
partitioned in a speaker-independent manner into training,
development, and test sets, cf. Table 1, where demographics
including age and gender are balanced as best possible.

4 ACOUSTIC ANALYSIS

To further analyse the manifestation of stress in the human voice
and explore each of the corpora utilised in our experiments more
deeply, we extract the low-level acoustic features over the entire
speech sample prior to segmentation for each speaker. We extract
the fundamental frequency (F0) and volume intensity (dB), as

these are aspects of speech known to vary during stress
(Protopapas and Lieberman, 1997; Giddens et al., 2013). For
the F0 extraction, we remove zero-values in other words, non-
voiced parts to not skew the result based on segments of silence in
the audio files; however, we consider the silence for intensity.

We first explore the acoustic behaviour in relation to the raw
cortisol samples (nmol/L) from the FAU-TSST, and REG-TSST

corpora, in groupings of 3-classes (lower 33rd, middle, and
higher 66th percentile) at each sample time-point. It can be
assumed that a higher feeling of stress leads to a higher
cortisol response although with some delay Goodman et al.
(2017). Given the variance in cortisol responses, as seen by the
reasonably large standard deviation at each time-point Figure 2,
these coarse groupings allow us to observe the behaviour of
subjects with higher cortisol response against those with lower
response to understand how if at all acoustic features relate to
high states of stress. As the cortisol targets for each corpus were
extracted with a different assay (cf. Section 3), we perform the
grouping individually for each based on the percentile
distribution. For FAU-TSST 33rd < 4.90 nmol/L, middle 4.90,—,
9.05 nmol/L, 66th > 9.05 nmol/L , and for REG-TSST 33rd < 4.18
nmol/L middle 4.18–6.79 nmol/L 66th > 6.79 nmol/L.

It is clear from plotting (cf. Figure 3) the classes that each
corpus behaves similarly at each sequential time step. In general,
speakers tend to have a more powerful intensity for the 66th

FIGURE 3 | Box plot representation of extracted intensity (dB) and pitch (F0) for each speaker. Percentile grouping based on raw cortisol as nmol/L, showing
measures taken at time-points S1, S3–S5, for FAU-TSST and REG-TSST corpora. (A) Intensity dB—FAU-TSST S1, S3—S5. (B) Intensity dB—REG-TSST S1, S3, S3—S5. 3.
(C) F0 Hz—FAU-TSST S1, S3, S3—S5. (D) F0 Hz—REG-TSST S1, S3, S3—S5.
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percentile cortisol groupings at S3-S4. In Figure 3, we see that at
S1, those speakers in the lower 33rd percentile show a larger range
in intensity, which reduces at S3 to S4. At S3 and S4, the mean
intensity in dB also increases, particularly for those with a higher
cortisol response; this intensity then decreases as the cortisol
begins to lower at S5. In general, we can see from this analysis that
those with higher levels of cortisol tend to have louder mean
speech volume, and broader range in volume than other cortisol
groupings, although this is in general less consistent for REG-TSST,
potentially due to the differing microphone or the smaller
population in the higher groupings of this
corpus\enleadertwodots.

Interestingly, for F0 (cf. Figure 3), we see similar behaviour
concerning the cortisol groupings, particularly for the REG-TSST. In
this case, the standard deviation of F0 appears to increase with
higher cortisol levels, and the same is true for FAU-TSST at S3-S4
although less prominent. As we split results by sex here (male and
female) we see that the effect is not consistent for sex groupings,
but it seems that at S3 both male and female groups do increase F0
variance as cortisol response becomes higher, a finding which is
consistent with related literature which states the F0 mean
increases as cortisol also increases Pisanski et al. (2016).

We also explore groupings of mean (μ) heart rate as beats per
minute (BPM), Low μ < 80 BPM Middle μ 80,—, 90 BPM High
μ > 90 BPM. These groupings were selected to balance the
subjects in each group based on the distribution of the signal
across both sets. This time, we plot the results for each of the
TSST tasks, separately and all together. As with cortisol, we do see
a relationship between the physiological BPM groupings and the
acoustic features, cf. Figure 4. For the intensity of the REG-TSST

corpus, there is a clear decline in volume as BPM increases for
both tasks. This trend is not as clear for ULM-TSST, but the range
does increase. When looking at F0 in the same grouping for BPM
cf. Figure 4, we see slightly more consistency, observing a slight
increase in the range for F0 as μ BPM increases. This finding is
supported by other literature, which has shown that there is a
relationship between heart rate and vocal quality (Kovalenko

et al., 2019), showing that BPM can be considered an indication of
stress as it pertains to cortisol. Furthermore, as with the cortisol
groupings we also split by sex for F0 analysis, and the mean F0 for
both sex does appear to increase with higher heart rate, although
this is less consistent for the ULM-TSST corpus and also males as
compared to females.

5 EXPERIMENTAL SETTINGS

We conduct four core experiments to explore further the benefits
of speech features in the context of recognising markers of stress.
As physiological markers are known to strongly affect the HPA
axis, which is a factor that alters during a stressful situation, we
recognise 1) sequential saliva-based samples of cortisol, utilising
the FAU-TSST and REG-TSST corpora, where samples taken post-
stress (S2+) with a strong correlation to the features would
indicate an effective approach, 2) continuous emotion, as
arousal and valence with ULM-TSST 3) continuous heartbeats
per minute (BPM) utilising REG-TSST and ULM-TSST, and 4)
continuous respiration, based on chest displacement, from
ULM-TSST. Within these paradigms, we perform several cross-
corpus (where possible) and transfer learning experiments
(results discussed in Section 6) for each of these targets,
exploring the efficacy of the machine learning approaches for
entirely unlabelled data.

5.1 Features
We apply a feature-based machine learning approach, and we
mainly focus on speech-driven audio features. However, we do
include vision features to observe the potential benefit of fusion,
and validate the advantage of speech features in this particular
context.

Acoustic: From previous studies, we found that hand-crafted
features appear to perform more robustly for the task of
sequential cortisol prediction (Baird et al., 2019). However, as
this was based on a single dataset, further validation was needed,

FIGURE 4 | Box plot representation of extracted intensity (dB), and pitch (F0) of each speaker. Grouped based on μ Heart Rate as BPM. Including, REG-TSST

interview task, REG-TSST arithmetic task, and ULM-TSST interview task. (A) Intensity dB—REG-TSST, Interview and Arithmetic, ULM-TSST Interview. (B) F0 Hz—REG-TSST,
Interview and Arithmetic, ULM-TSST Interview.
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and so for this study, we extract again both hand-crafted speech-
based features, namely the Computational Paralinguistics
challengE (COMPARE) feature set, and the extended Geneva
Minimalistic Acoustic Parameter Set (EGEMAPS), as well as the
deep learning spectrogram based approach utilising the
DEEPSPECTRUM toolkit from the FAU-TSST and REG-TSST. From
each audio instance, the COMPARE and EGEMAPS and
DEEPSPECTRUM features are extracted at a rate of 1 s, using an
overlapping window of 0.5 s. For the hand-crafted sets, we utilise
the OPENSMILE toolkit to extract the 6 373 dimensional COMPARE

feature set (Eyben et al., 2013), and 88 dimensional EGEMAPS

feature set (Eyben et al., 2016). These features have shown to be
effective for a number of similar wellbeing related tasks (Kim
et al., 2019; ? ; Schuller et al., 2020), including detection of early
stage dementia (Haider et al., 2019), and levels of anxiety (Baird
et al., 2020). For the DEEPSPECTRUM features, we extract a 2,560
dimensional feature set of deep data-representations using the
DEEPSPECTRUM toolkit (Amiriparian et al., 2017). DEEPSPECTRUM
has shown success for various audio- and speech-based tasks
(Mertes et al., 2020), and extracts features from the audio data
using pre-trained convolutional neural networks. For this study,
we extract features based on the viridis colour map, and the deep
features are extracted from the layer fc7 of AlexNet (Krizhevsky
et al., 2012). We also explore the use of VGGISH functions
Hershey et al. (2017) which are pre-trained on AudioSet
(Gemmeke et al., 2017). From this, we extract a 128-
dimensional VGGISH embedding vector from the underlying
log spectrograms.

Visual: For the video-based features, we utilise the well-
established VGGFACE set, and extract this from FAU-TSST and
ULM-TSST excluding REG-TSST as no video data was available. The
first step in this pipeline is to extract the faces as images, and to do
this at the same frame-rate as the audio features (2 Hz), utilising
the MTCNN (Zhang et al., 2016) which is pre-trained on the data
sets WIDER FACE (Yang et al., 2015) and CelebA (Liu et al.,
2015). We use the VGGFACE (version 1) (Parkhi et al., 2015),
which is based on the pre-trained deep CNN VGGISH 16, which
was introduced by the visual geometry group of Oxford
(Simonyan and Zisserman, 2014). Detaching the top-layer of a
pre-trained network results in a 512 feature vector output referred
to as VGGFACE.

5.2 Regressors
For all the recognition tasks, we are performing regression
experiments. To do this, we first validate the data itself by
performing a series of arguably more robust Support Vector
Regression (SVR) experiments for the cortisol targets only. This is
then followed by a series of deep learning models based on an
LSTM-RNN architecture to explore a more state-of-the-art
approach, which may better observe the time-dependent
nature of the observed signals.

SVR: For the initial experiments we use the epsilon-support
vector regression (SVR) and a linear kernel implementation from
the Scikit-Learn toolkit (Pedregosa et al., 2011). For training, the
data is split into speaker-independent sets: During the
development phase, we trained a series of SVR models,
optimising the complexity parameters (C ∈ 10–4–1), evaluating

their performance on the development set. We re-trained the
model with the concatenated train and development set and
evaluated the test set performance.

LSTM-RNN: We utilise a similar LSTM-RNN based
architecture to the one which was applied for the baseline of
the MuSe 2021 Challenge3 and similar tasks (Stappen et al.,
2021b,c). In the training processes, the features and labels of
every input are further segmented via a windowing approach
(Sun et al., 2020), which may offer the network more context. We
experimented with various window lengths, but as in the MuSe
Challenge, a window size of 300 steps (150 s) was found to be
optimal for all corpora. We tested n � (1, 2, 4)-layered uni and
bidirectional networks with h � (50, 100, 200) hidden states and a
learning rate of lr � (0.00005, 0.0001, 0.005, 0.001). Initial
experiments showed that the best results were obtained with a
4-layered network, consisting of two LSTM and two fully-
connected (FC) layers, with a hidden size of 50, and a learning
rate of 0.00005 (cf. Figure 5 for an overview). To reduce the
computational overhead, we utilised these values in all
experiments reported here.

Model evaluation: For some targets examined here, we
have continuous frame-level labels available. This allows us to
use the same formulation as in the MuSe Challenge, where we
obtain frame-level predictions using an LSTM-RNN
architecture and subsequently compare those to the frame-
level target. This is not true for the cortisol task, as only one
single target value is available per session. Moreover, each
session lasts approximately 10 min, and stress may only
manifest on short, intermittent segments throughout those
recordings. To overcome these challenges, we opted to
replicate the session-level labels on the frame and model
them accordingly. During training, we use standard many-
to-many training (Mousa and Schuller, 2016), where the
networks (SVR and LSTM) are trained to predict the target
on all frames. This formulation results in frame-level
predictions during evaluation as well. However, as
mentioned, we only have a single session-level target. Thus,
to evaluate the performance of our models, we first aggregate
(i. e., average) their predictions for each session before
comparing them to the reference cortisol values.

As primary evaluation metrics for all models, we report either
Spearman’s correlation coefficient (ρ), Root-Mean Square Error
(RMSE) or normalised RMSE (NRMSE). Reporting correlation as
ρ is used for the sequential cortisol target, as we are interested in
exploring trends in the data and how well the models can learn
targets that are derived from a more ordinal value. When
discussing specific results for ρ the p-value is also reported, to
discuss the additionally significance of the correlation. In this
case, as with any other p-values reported, significance can be
consider at values of p < 0.05. RMSE, in contrast, is better suited
to a more objective evaluation, which fits the case of time-
continuous signals such as heart rate, and given the less
intuitive range of the respiration signal, we report NRMSE in
this case.

3https://github.com/lstappen/MuSe2021
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6 RESULTS AND DISCUSSION

We provide a series of tables and plots to report various aspects of
the results obtained by our experiments. For clarity of
presentation, we will discuss the results obtained for each of
the targets separately.

6.1 Sequential Cortisol Prediction
Our main source of truth for the degree of stress during the TSST
setting is the saliva-based cortisol measurements obtained at
differing time points. This information is only available for the
FAU-TSST and REG-TSST datasets; therefore, we focus primarily on
those two in this section. As discussed in Section 3, the only
modality standard across those two datasets is audio, while for
FAU-TSST, we additionally have video. For this reason, we primarily
focus on the audio modality, which in Baird et al. (2019) was
shown to be a strong predictor of cortisol-based stress.

Furthermore, as noted in Section 3, cortisol values were
derived using different assays, thus making the two scales
incompatible. This makes it incorrect to evaluate any trained
models with a standard cross-corpus paradigm, whereby models
are trained on one dataset and evaluated on another. Instead, the
core focus of our experiments is to explore how well the
methodology can be replicated on different datasets.
Nevertheless, we additionally explore the direction of pooling
the data from the two studies and learning a joint model. Pooling
more data, which come from fundamentally different domains,
e. g., acoustically and the cortisol assay used, might still benefit the
training of neural networks, which typically require a lot of data
to learn from. We thus train models in both single- and multi-
domain settings, and always evaluate them on in-domain data
separately for each dataset.

As discussed in Section 3, the subjects performed two tasks
during the TSST; a speech interview and an arithmetic task. We
hypothesise that subjects behaved differently during each task,
and that stress manifested differently in the respective acoustic
features. This hypothesis was validated by in the initial
experiments of Baird et al. (2019), where models built on each
task separately perform better than models built with both tasks.
Thus, for these experiments we additionally differentiate between
the interview and the arithmetic tasks, building separate models
for each of them, and contrasting their performance to models
built after pooling both tasks.

We first run a series of experiments with a traditional SVR
algorithm and only acoustic features to explore if the REG-TSST

dataset performs similarly to FAU-TSST, and if the study from Baird
et al. (2019) can be replicated for FAU-TSST with a slightly adapted
methodology (e. g., altered speech segmentation) for data
processing. In Figure 6, we see that the FAU-TSST corpus
behaves as expected, with correlation strongest after S4
(interview: S3, FAU-TSST EGEMAPS 0.200, p < 0.05; S4, FAU-TSST

EGEMAPS 0.340 p < 0.05), slightly weaker for the arithmetic task
compared to the interview, which could be caused by the reduced
speech in the arithmetic task. For the REG-TSST corpus, the trend is
less obvious for all feature sets, particularly for the interview task
with COMPARE features where we see a strong decline from S1.
The EGEMAPS features appear to perform consistently for both
tasks of the REG-TSST, however, in this case the arithmetic task
appears to have stronger correlations than the interview, peaking
earlier at S3 than FAU-TSST for this task, which may indicate the
above-mentioned difference in intra-individual stress response
during the speech tasks of the two corpora. In general, from these
experiments, we not only initially affirm the findings of Baird
et al. (2019) that higher correlation is obtained post S2 (in general
either S3 or S4) by validating this on an additional corpus, but we
also affirm that hand-crafted features are more suited for this
task. However, for the novel REG-TSST data, the smaller EGEMAPS

set is performing more robustly, and more consistently overall.
Given this, we will continue to use EGEMAPS as the main acoustic
feature set for further experiments.

Results for the LSTM model are shown in Table 2. Again we
see that, in line with Baird et al. (2019), speech-based models can
predict cortisol levels samples taken at time points S2-S5 with a
medium to strong correlation and a mean peak around S4
(+20 min after the TSST). This is consistent across both
datasets and tasks. However, there are important and
interesting differences across different settings.

In general, we observe that with the LSTM network, we can
better predict cortisol from the arithmetic task of FAU-TSST, which
slightly contradicts our SVR results and shows that this task can
also yield good results if we consider the sequential nature of
different frames. This indicates that, for this dataset, subjects
either became more stressed during this part of the TSST or that
the manifestation of stress in the speech was more pronounced.
Based on our manual inspection of the dataset, the second
hypothesis seems more plausible, as subjects who struggled

FIGURE 5 | LSTM-RNN model architecture. The input sequence {Xi, i ∈ [1, T]} is first fed to two LSTM layers of hidden size 50. The intermediate representations
{hi′ , i ∈ [1,T]} produced by the second LSTM layer are then processed by two FC layers to produce the output sequence {Oi, i ∈ [1, T]}.
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during the interview tend to stay completely silent, whereas they
would continuously produce utterances (although at short bursts)
for the arithmetic task. Moreover, pooling data from both tasks
resulted in worse performance when training on individual datasets,
pointing towards a different expression of stress in each of them.

Overall, for both tasks, we observe higher correlations for times
S3-S4, with the interview task tending to peak a bit earlier than the
arithmetic one. Given the relative delay between the two tasks, this is
in line with our previous research (Baird et al., 2019) showing that
speech signals are more correlated with cortisol measurements taken
approximately 10min after initial stress. Interestingly, we also observe
a high correlation for cortisol measures taken at S1 (1min before the
TSST) for REG-TSST (particularly for the interview task). When
observing the mean score for REG-TSST we see that shows to be the
highest peak. On the one hand, it could be considered that this is
attributed to increased apprehension by the subjects, leading to more
stressed behaviour during the early stage of the TSST; however, as we
observed earlier there is lower variability across subjects for

measurements at S1 (cf. section 3) which may have made this
task easier to learn.

Finally, we observe that multi-domain models built by pooling
both datasets perform consistently better, while additionally
benefiting from the pooling of the interview and arithmetic
tasks in the case of REG-TSST. This illustrates that, even though
the cortisol measurements in the two datasets are based on
fundamentally different scales, the relationship between relative
cortisol values and acoustic features remains consistent, allowing
themodels to benefit from bigger andmore diverse data and obtain
better performance, as measured by Spearman’s correlation.

Even though our quantitative evaluation is performed on the
session level, it is interesting to investigate how stress manifests
through the audio modality at different time points using our
approach. Figure 7 shows frame-wise predictions vs a selection of
sequential cortisol values for two subjects, one from each corpus.
For subject F-1 from FAU-TSST (top), we see a higher deviation
from the cortisol ground truth, which settles more during

FIGURE 6 | SVR results for the FAU-TSST (above), and REG-TSST (below). Reporting Spearman’s correlation coefficient (ρ) for all scenarios (left), interview task
(middle), and arithmetic task (right), for each sequential saliva (S) sample. SVR experiments were conducted with three different acoustic feature sets: EGEMAPS,
DEEPSPECTRUM, and COMPARE.

TABLE 2 | Spearman’s correlation coefficient (ρ) for session-based cortisol at each saliva (S)ample, from S0 45 min to S7 +60 mins. Utilising EGEMAPS features for FAU-TSST

and REG-TSSTcorpora, for the (Inter)view and (Arith)metic tasks, as well as the mean (μ.) across all. Where emphasised results indicate a positive correlation above 0.2.

ρ — FAU-TSST

Train Task S0 S1 S2 S3 S4 S5 S6 S7

FAU Inter 0.104 0.016 0.203 0.000 0.286 -0.209 -0.352 -0.324
FAU Arith 0.302 0.060 0.236 0.385 0.396 -0.165 -0.242 -0.225
FAU Inter. and Arith 0.077 0.093 0.022 0.099 -0.176 -0.286 -0.555 -0.407
FAU and REG Inter 0.154 0.055 -0.159 0.159 0.044 -0.341 0.016 -0.456
FAU and REG Arith 0.335 0.214 0.368 0.374 0.698 0.286 -0.027 -0.214
FAU and REG Inter. and Arith 0.126 0.209 -0.077 0.104 0.088 -0.220 -0.632 -0.456
μ — 0.183 0.108 0.099 0.187 0.223 -0.156 -0.299 -0.347

— REG-TSST

REG Inter 0.297 0.827 0.527 0.261 0.236 -0.127 -0.527 -0.079
REG Arith 0.091 0.559 -0.164 0.091 0.455 0.333 0.552 0.406
REG Inter. and Arith 0.127 0.474 0.055 0.285 0.248 0.115 -0.273 -0.406
FAU and REG Inter -0.152 0.559 0.467 0.200 0.261 -0.018 -0.539 0.164
FAU and REG Arith -0.212 0.267 0.055 -0.042 0.370 0.212 0.188 0.091
FAU and REG Inter. and Arith 0.006 0.584 0.721 0.770 0.442 0.176 -0.139 -0.042
μ — 0.026 0.545 0.279 0.261 0.335 0.115 -0.123 0.022
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segments of speech, as S3-S4 may be considered the true cortisol
release at that time point. It is interesting that for subject R-1 for
the REG-TSST in Figure 7 (below) the prediction is more consistent.
For the S2 time point, recognition is more accurate earlier in the
speech session, i. e., the interview task. Counter to this, at S5 for
the FAU-TSST plot; we see that the system struggles to recognise
after the interview task, which would indicate that this sample of
cortisol is less an indication of the stress response, affirming that
the speech signal is a strong predictor for peaks in cortisol which
occur due to stress. These individual differences across subjects
suggest that speaker-adapted models, which have been shown to
improve results for other affective computing tasks
(Triantafyllopoulos et al., 2021), could improve the predictive
accuracy of stress prediction models as well. We also see, when
observing Figure 7, that the standard deviation is in general
smaller for the REG-TSST corpus, possibly indicating the benefit of
the close-talk recording method.

In addition, to compare the performance of audio, we
investigate the effectiveness of video-based models for stress
recognition on the FAU-TSST dataset, on which the video
modality is available. Using an identical experimental protocol,

and simply substituting EGEMAPS with VGGFACE features. Results
are shown in Figure 8, and as can be seen, the vision features are
much lower than those obtained with EGEMAPS features. This
indicates that in the FAU-TSST dataset, the auditory modality is
more appropriate for modelling stress, although there is still a
similar behaviour where we see a peak in correlation after the
point of stress (S2-S4). Moreover, we experiment with early and
late multimodal fusion, where we either fuse (concatenate) the
features and subsequently train a new model or fuse (average) the
predictions of the existing unimodal models. As our acoustic
experiments showed that task-specific models perform better, we
did not fuse data from both TSST tasks for these experiments. We
observe that multimodal fusion can lead to better performance in
some cases, most notably for the prediction of cortisol at S2,
suggesting that the interview task was more meaningful for these
features, however, generally EGEMAPS features remain strong as a
uni-modal approach.

Finally, we use the models built on FAU-TSST and REG-TSST to
predict the likely cortisol levels on the ULM-TSST corpus, for which
this information is not available. Although we do not have a
ground truth here, we aim to see if the performance is similar

FIGURE 7 |Normalised frame-wise cortisol predictions (continuous) vs ground truth (dashed) sampled at times S2-S5 using EGEMAPS features for subjects F-1 from
FAU-TSST and subject R-1 from REG-TSST. The shaded (green) area represents segments detected as having speech by the VAD. Predictions are smoothed with a moving
average filter with a window size of 30 for visibility. (A) F-1 S2, (B) F-1 S3, (C) F-1 S4, (D) F-1 S5, (E) R-1 S2, (F) R-1 S3, (G) R-1 S4, (H) R-1 S5.

FIGURE 8 | Spearman’s correlation coefficient for session-level cortisol prediction using VGGFACE features on the FAU-TSST dataset. We report unimodal visual-based
results as well as multimodal ones utilising early and late fusion with EGEMAPS features (A + V). We also replicate the EGEMAPS results from Table 2 for easier comparison.
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concerning peaking cortisol levels after the S2 time point. To
perform these experiments, we use the models built separately on
FAU-TSST and REG-TSST. These models were built on different scales,
stemming from the fact that different assays were used to extract
cortisol levels in the two datasets. We furthermore used the
models built on data from the interview task alone, as this is
the only task available for ULM-TSST. Figure 9 shows the mean
predicted cortisol levels from an entire ULM-TSST session; similar to
FAU-TSST and REG-TSST, we observe a peak in (predicted) cortisol
levels at times S3 and S4. The FAU-TSST model is returning higher
cortisol values; this is consistent with the dataset overview
presented in Section 3 which shows that cortisol levels are
higher for FAU-TSST.

In addition, box plots of grouped cortisol levels, and the other
biomarkers available to the ULM-TSST corpus show that higher
(predicted) cortisol levels correspond to slightly higher BPM and
arousal, and slightly lower (negative) valence. Moreover, we
observe some noticeable differences between the predictions
obtained by the two models. For example, the model built on
REG-TSSTdata shows its lowest cortisol predictions for very narrow
beats per minute (BPM), arousal and valence ranges, which is less
narrow for FAU-TSST at those targets, and for valence the lower
percentile shows a broader range for valence than all other
groupings. These differences further demonstrate that models
trained on different corpora, with differences in the acoustic
conditions and the way cortisol levels were measured, can result
in models that behave in different ways on out-of-domain data.
However, in general, behaviours appears to be consistent.

In summary, our results demonstrate that it is possible to
predict cortisol levels taken 10–20 min (common time frame for
the post-stress cortisol peak (Goodman et al., 2017)) after a
stressful event using speech as well as video features, with the
former performing better in this context. Stratifying the data
concerning the task that the subjects were performing
additionally reveals an interesting trend; we see a general

trend that we are able to better predict cortisol levels from the
arithmetic task of, FAU-TSST but from the interview task of REG-

TSST. This may point to underlying differences in the way subjects
experienced and expressed stress in the two data collection
procedures; there is overall much fewer speech data in the
REG-TSST arithmetic task, which may be another reason for this.

As mentioned, cortisol levels constitute our primary source of
truth for an individual’s stress level. However, these
measurements are not easily collected and readily available,
e. g., for the ULM-TSST corpus they are missing, and learning
from a single value from each session, is a challenge for any
machine learning architecture.With this inmind, in the following
sections, we further investigate continuous physiological markers
of stress which are more readily available and offer a more fine-
grained view of stress responses, particularly if combined with a
cortisol ground truth.

6.2 Emotional Dimensions
We begin our discussion of alternative markers for stress with the
emotional dimensions of arousal and valence (Russell, 1980).
These dimensions are known to be related to stress (Johnson and
Anderson, 1990). The ULM-TSST dataset is the only one of the three
datasets examined here, which contains annotations for arousal
and valence. These dimensions form the targets for the 2021 MUSE-

STRESS sub-challenge (Stappen et al., 2021a). As there are no
available annotations for FAU-TSST and REG-TSST, we proceed to
predict emotional values on the interview task for both, using
models built on the ULM-TSST dataset. As audio is our core focus
and is the only modality commonly shared across all three
datasets, we use the EGEMAPS -based models developed and
released as part of the challenge baseline4. Both emotion
models show strong performance on the ULM-TSST test set, with

FIGURE 9 | The mean (μ) predicted cortisol value for each time step on the ULM-TSSTdataset using models built on FAU-TSSTand REG-TSST (above). Below, is the BPM,
arousal and valence predictions grouped based on raw cortisol (nmol/L), obtained for time point S4 using models built on FAU-TSST (left-green) and REG-TSST (right-
orange). Low, mid, and high groupings defined separately for each dataset based on percentiles. (A) ULM-TSST μ cortsiol in nmol/L. (B) Cortisol groups for BPM,
arousal, and valence predictions of FAU-TSST (left-green) and REG-TSST.

4https://github.com/lstappen/MuSe2021
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the arousal model achieving a CCC of 0.4415, and the valence
model one of 0.5019. Moreover, as the ULM-TSST corpus only
contains the interview task, we only predict those dimensions at
the respective functions for FAU-TSST and REG-TSST.

In Figure 10, we show distribution plots of the arousal and
valence predictions for FAU-TSST and REG-TSST vs the cortisol
measures taken at different time-points. The cortisol values
have been grouped in the same way as Section 4, i. e., to their
low, medium, and high based on the 33 and 66% percentiles
derived from the raw cortisol values for the different datasets. As
previously, we do observe different trends across the two datasets.
FAU-TSST is generally showing positive values for arousal, whereas
REG-TSST is showing negative ones. Although these results are
based on model predictions and are thus not as reliable as human
annotations, they nevertheless shed light on potential differences
across the two datasets. Interestingly, subjects in REG-TSST appear
generally less aroused compared to those in FAU-TSST, which once
again points to underlying differences in how subjects reacted
during the TSST in the two settings. For the high percentile
grouping at S2 (+1 min after the TSST), we generally observe
higher arousal values for both datasets, whereas we observe that
lower arousal values are predicted for subjects in the lower
cortisol percentile for FAU-TSST, as measured at S3 (+10 min
after the TSST).

We additionally used a two-sample independent t-test to test
the differences in predicted arousal and valence values for all

groups and datasets. Of note, we did not conduct a normality test,
the t-test is know to be robust to deviations from normality larger
sample sizes Sawilowsky and Blair (1992). All differences were
found to be statistically significant at the p < 0.05, except arousal
in lower vs middle percentile-cortisol percentiles measured at
times S0 and S2 for FAU-TSST and S5 for REG-TSST, mid vs high
percentiles measured at S4 for REG-TSST, and low vs high
percentiles measured at S3 for FAU-TSST. For valence, the only
non-significant results were those between the lower vs middle
percentiles measured at S5 for both FAU-TSSTand REG-TSST, and the
middle vs high percentiles measured at S4 and S6 for FAU-TSSTand
REG-TSST, respectively. This shows that, even though we lack
ground truth values for FAU-TSST and REG-TSST, we could use a
model trained on a related but different dataset to predict them
and obtain strong predictors of stress.

6.3 Continuous Heart Rate
Stress is known to impact heart rate (HR) (Berntson and Cacioppo,
2004; Taelman et al., 2009) through its activation of the sympathetic
(Goldstein, 1987) and suppression of the parasympathetic branch of
the autonomic nervous system (Akselrod et al., 1981). HR can
therefore serve as a vital indicator of stress in modern affective
computing applications. As discussed in Section 3, however, only one
of the three datasets examined here, the REG-TSST dataset, has bothHR
and cortisol measurements, whereas the FAU-TSST dataset has only
cortisol measures and ULM-TSST only HR ones. Thus, the only dataset

FIGURE 10 |Boxplots of predicted arousal valence values for the FAU-TSST and REG-TSST. Grouped based on raw cortisol (nmol/L) measures taken at time points S2-S5
(left to right). (A) Arousal with cortisol groups at S2–S5 for FAU-TSST. (B) Arousal with cortisol groups at S2–S5 for REG-TSST. (C) Valence with cortisol groups at S2–S5
for FAU-TSST. (D) Valence with cortisol groups at S2–S5 for REG-TSST.
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where we can precisely evaluate the relationship of HR with stress is
REG-TSST.

Figure 11 shows the distribution of ground truth HR values
for the REG-TSST dataset vs low, mid, and high cortisol levels taken at
different time points. Two-sample independent t-tests show that all
results are significant at the p < 0.05 level, except the low vs high
percentiles at time S0 and the low vs middle percentiles at time S5.
Overall, we observe a rising trend for BPM values as the cortisol
levels increase; this is consistent with our expectations and prior
work (Berntson and Cacioppo, 2004; Taelman et al., 2009). This
trend is particularly pronounced for S5 (+20min after the TSST)
showing that higher cortisol values obtained during that time were
highly correlated with high BPMs during the TSST. In general, this
trend differs to what was observed for the acoustic signals (cf.
Section 4), indicating that different modalities may be better at
predicting cortisol levels measured at different times.

As the other dataset used in this study with cortisol measurements,
FAU-TSST, does not have available HR measures, we attempt to predict
BPMsusingmodels built on the other twodatasets. Specifically, we use
the speech modality of the REG-TSST and ULM-TSST datasets to build a
model, which we then use to predict BPMs on the FAU-TSST dataset.
This is motivated by audio being the only common modality across
the three corpora, and also that the effect of HR on the voice has long
been established by previous research (Orlikoff and Baken, 1989).
Several prior works have attempted to model HR from voice signals,
either as a classification (Schuller et al., 2013) or a regression task
(Smith et al., 2017; Jati et al., 2018). Jati et al. (2018) use EGEMAPS to
predict BPM from speech on the segment level, and achieve an root
mean squared error (RMSE) of 12 BPM.

Inspired by these past findings, we attempt to predict HR in
the form of BPMs using speech signals. In line with our previous
results for cortisol, we use an long short-term memory (LSTM)
architecture on EGEMAPS features. As all three datasets were
recorded in different locations with potentially different acoustic
conditions, we are faced with the well-understood domain
mismatch problem (Ben-David et al., 2010), where models
trained on data from one domain might not generalise well to
different domains. Moreover, as discussed in Section 3, the two
datasets cover non-overlapping ranges of the BPM range, with

subjects in REG-TSST having a generally lower BPM than subjects in
ULM-TSST, and are also recorded in different conditions, with ULM-

TSSTconsisting of far-field and REG-TSSTof near-field recordings. To
address this issue, we first train two single-domain models using
both available datasets in isolation and then train a multi-domain
model using data from both datasets. In all cases, we evaluate and
report model performance separately for each dataset.

RMSE results are shown in Table 3. Our initial observation is
that all models perform better on the ULM-TSST dataset, and that in-
domain models perform better than their cross-domain
counterparts. Moreover, the multi-domain model does not bring
any improvements compared to the single-domain ones. The
limited overlap partially explains this in the BPM range for the
two datasets; combining the data does not lead to considerable
benefits since the target is different. The best performing
combination is obtained when training and testing on the ULM-

TSST dataset, and achieves an RMSE of 19 BPMs. This is lower than
the results reported by previous works (Jati et al., 2018), which
were, however, performed on different data and are thus not
directly comparable to ours. Moreover, as discussed above,
potential movements of the subjects lead to more unreliable
measurements, which make the target more of a challenge to learn.

In general, predicting HR from free speech signals is a
challenging task and is especially hampered by the lack of
information whenever subjects remained silent. This is
illustrated in Figure 12, where we present frame-wise BPM
predictions vs ground truth signals for three subjects coming
from the REG-TSST and ULM-TSST datasets. As seen in particular for

FIGURE 11 | Box plots of BPM value. Showing the ground truth REG-TSST and predicted for FAU-TSST. Grouped based on raw cortisol (nmol/L) measures taken at
time-points S2-S5. (A) Predicted BPM with cortisol groups at S2–S5 for FAU-TSST. (B) Ground truth, BPM with cortisol groups at S2–S5 for REG-TSST.

TABLE 3 | RMSE as BPM for single- and multi-domain results for BPM prediction
on the REG-TSST and ULM-TSST corpora using EGEMAPS and the LSTM-based
architecture.

ρ REG-TSST ULM-TSST

Train Dev Test Dev Test

REG-TSST 39.90 38.57 20.98 22.96
ULM-TSST 36.53 40.80 19.32 22.70
REG-TSST and ULM-TSST 36.23 38.96 23.07 23.05

Emphasised results indicate strongest performance on given evaluation set.
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subject U-64 (right), there may be periods of prolonged silence,
where the audio modality is unavoidably a bad predictor of HR.
Interestingly, even though we found silence periods occurring
whenever subjects struggled with finding something to say during
the interview task, we do not necessarily see an accompanying rise
in BPMs, as seen for subject U-64.

Despite the relatively low performance obtained by our speech-to-
BPMmodels, we still use them to obtain BPMpredictions on the FAU-

TSST dataset, as we are primarily interested in the usefulness of
predicted BPM values for stress modelling. In Figure 11, we show
the distribution of predicted BPM values for cortisol measurements
obtained at different time points. Surprisingly, we observe a
downward trend for BPMs as the stress level increases. This
counterintuitive finding can be explained as follows: when subjects
move a lot, the BPM monitoring devices may lead to erroneous
measurements. Therefore, rather than these low measurements
implying that stress leads to a lower BPM, we interpret them as a
demonstration that BPM signals, though theoretically well justified as
predictors of stress, are nevertheless a challenge to collect in practice.
Thus, BPMalonemay be inferior to signals like voice that are easier to
manage and provide richer information for evaluation. However, the
trend is not what we expect. We still see a separation between
different cortisol levels, indicating that predicting HR from
speech signals can be a useful proxy for stress prediction.
Two-sample independent t-tests show that all differences are
significant at the p < 0.05 level except the middle vs high
percentiles as measured at S4.

6.4 Respiration
The final biological signal we examine here is respiration derived
from chest displacement with a range of (−10:+10), which, similarly
to the emotional dimensions, is only available for ULM-TSST. Based on
previous research (Suess et al., 1980), we expect this signal to have a
solid connection to stress. Although this physiological signal has
strong potential for several affective applications (Wu et al., 2010; Ishii
et al., 2016; Zhang et al., 2017), to the best of our knowledge, there has
been little work on predicting it from other modalities. As we have
both audio and video signals available for ULM-TSST, we attempt to use
both to model respiration. However, similar to the other biomarkers,
we only use the audio modality when predicting this signal for the
other two datasets, as this is the only modality shared among all.
Given that process of breathing, and vocalising shares related

anatomy, we naturally expect the audio modality to be a strong
predictor of respiration. Similarly to the emotional dimensions, cf.
Section 6.2, we only predict respiration on the interview task of FAU-
TSST and REG-TSST, as this was the only task available for ULM-TSST.

In Table 4, we show multimodal results for the recognition of
respiration rate in the ULM-TSST corpus. As the signal is measured in
arbitrary units, we reportNRMSE,which is equivalent to the standard
RMSE normalised by the target range. Late fusion of the two
modalities brings the strongest results. However, unimodal
EGEMAPS features appear to be only slightly lower than the best
multimodal result, indicating that they can be used to predict
respiration in isolation. This is not too surprising, as the speech
and respiration are likely highly correlated, and artefacts from
breath will inherently remain with the audio features. This may
be to a lesser degree for the VGGFACE features, mainly due to
possible occlusions, which may not observe mouth movement
related to deeper breath.

From the box plots of Figure 13, we can observe that the
respiration signals predicted appear to behave in an expected
way for such cortisol groupings, for both the FAU-TSST and REG-

TSST corpora. For example, we observe a rise in respiration levels
as cortisol increases for REG-TSST; this trend also manifests for
FAU-TSST but less pronounced. Two-sample independent t-tests
show that all differences are significant at the p < 0.05 level,
except the mid vs high percentiles sampled at S1, S3, S6, and S7
for FAU-TSST, the high vs low percentiles measured at S5 for FAU-

TSST, and the low vs mid-percentiles sampled at S4 and S5 for
REG-TSST. This shows that predicted respiration signals can be
valuable biomarkers of stress. Our results show that respiration
can be successfully recognised from both speech and other
audio, and that the predicted signals are used for identifying

FIGURE 12 | Frame-wise BPM predictions vs ground truth for subject R-1 from the REG-TSST dataset and subjects U-39 and U-64 from the ULM-TSST dataset.
Shaded (green) area represents segments detected as having speech by the VAD. Predictions have been smoothed with a moving average filter with a window size of 30
for visibility. (A) R-1 BPM. (B) U-39 BPM. (C) U-64 BPM.

TABLE 4 | normalised root mean squared error (NRMSE) results for unimodal and
multimodal Audio + Video (A + V) respiration prediction range [−10:10] on the
development test sets of the ULM-TSST corpus utilising an LSTMs. For the
multimodal results, we perform both early and late fusion.

NRMSE Dev Test

EGEMAPS 0.118 0.122
VGGFACE 0.146 0.139
A + V (Early) 0.142 0.143
A + V (Late) 0.120 0.120

Emphasised results indicate strongest performance on given evaluation set.
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speaker states. As respiration prediction from other modalities
remains an underexplored topic, our findings warrant a closer
investigation in follow-up work.

7 LIMITATIONS

Dealing with human naturalistic data brings several challenges
from a machine learning perspective, and from the analysis we
have performed on the three corpora of interest, we see that
variance in the display of physiological signals is one such
challenge. In this current work, our approach was somewhat
“brute-force” in nature, in that we did not condition the
models or “correct” the targets with consideration to any
specific subject or corpora variance. This can be more
limiting when it comes to variation due to the assay applied
for cortisol extraction. A transformation from raw cortisol
values derived from different assays to cortisol factor scores for
better comparison has been suggested by Miller et al. (2013),
but this approach needs replication to ascertain its reliability
and validity. It would be of interest to explore the benefit of this
correction in future work, as well as other personalised
training methods which may allow for a more robust result
which in turn is more globally generalisable
(Triantafyllopoulos et al., 2021).

Further to this, within the corpora themselves, there is a
heavy gender bias, which it should be noted may have an
implicate effect on the results obtained. For the FAU-TSSTand
ULM-TSSTsets, this is particularly prominent. Although this is
considered in the acoustic analysis conducted, the manifestation
of stress is generally known to vary across genders. In further
work, personalised training strategies would aid in exploring
this potential bias. Similarly, regarding demographics, the mean
age across all corpora is 24.02 years, with a reasonably small
standard deviation of 4.13 years. This of course limits the
current work as being only applicable to this age range, due
to the inherent variance that stress is known to have throughout
a lifetime, from factors including hormonal changes and overall
life satisfaction, without deep experiments analysis these results

should not be taken to be fully generalisable to a larger and more
diverse population.

CONCLUSION

In the current contribution, we explored several markers of stress,
learning from variousmodalities, with a core focus on the advantage of
speech-based features. We processed and unified three different
corpora collected under the well-known TSST, and we could verify
our previous finding from (Baird et al., 2019) that audio features are
best able to predict cortisol measurements taken approximately 15min
after the stress event. This effect was validated by a similar behaviour
found on unlabelled data. This research establishes that audio can be
utilised as a real-time guide for an individuals’ current state of stress.
Furthermore, a similar effect was found when using video-derived
features from the face, meaning that a multimodal approach may
provide further confidence, particularly given the potential periods of
silence during stressful situations. Moreover, we have shown that
emotion, heart rate, and respiration can be reliably recognised from
speech during stress and have a strong relation to cortisol levels. This is
found even when these physiological markers are not available during
the data collection process but are predicted using other available
modalities, mainly audio.

Our extensive analysis primarily shows that audio is suitable for the
recognition of several physiological markers of stress. However, we do
see, that as with many states of wellbeing, there is a large variance in
stress manifestation in an individual, which makes generalisation a
challenge. Given this, one needs to explore in follow-up work the
potential for personalised machine learning strategies for this domain.
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