
TYPE Original Research

PUBLISHED 27 January 2023

DOI 10.3389/fcomp.2022.1008296

OPEN ACCESS

EDITED BY

Bernhard Thalheim,

University of Kiel, Germany

REVIEWED BY

Maha Khemaja,

University of Sousse, Tunisia

Evellin Cardoso,

Universidade Federal de Goiás, Brazil

*CORRESPONDENCE

Tomas Jonsson

tomas@genicore.se

SPECIALTY SECTION

This article was submitted to

Software,

a section of the journal

Frontiers in Computer Science

RECEIVED 31 July 2022

ACCEPTED 08 November 2022

PUBLISHED 27 January 2023

CITATION

Jonsson T (2023) Conceptual data

systems architecture principles for

information systems.

Front. Comput. Sci. 4:1008296.

doi: 10.3389/fcomp.2022.1008296

COPYRIGHT

© 2023 Jonsson. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Conceptual data systems
architecture principles for
information systems

Tomas Jonsson*

R&D Department, Genicore, Gothenburg, Sweden

Information systems alignment with enterprise evolution a�ects the

performance of enterprises. The systems conceptual and data quality,

development time and sustainable life cycle management, are issues for

enterprise competitiveness. The ability to directly generate enterprise

information systems from models has been thought of as a solution to

improve on these issues. Model-driven systems have been a research topic

for decades. Fundamental principles for a proven model-driven information

systems architecture are outlined in this article. Architectural foundation is

a separation of user communities conceptual domain from the information

technical domain. The users domain is modeled as an information system

model in three layers, conceptual data logic model, interface model and user

community model. The technical domain is a platform, allowing the modeling

and execution of such a model. These principles have been applied in practice

and proven viable. Two platforms and applications, which adhere to these

principles, are briefly described.

KEYWORDS

information system architecture, model language, model driven system, conceptual

model, model transformation, model execution, model suite

1. Introduction

Enterprise Information Systems (EIS) are sociotechnical systems where the

Information Technology (IT)-based Information Systems (ITbIS) and actors

communicate with each other. Enterprises are organic entities, which continuously

undergo changes due to internal and external factors, Rouse (2005). To maintain the

alignment between ITbIS and the enterprise, reconfiguration of ITbIS has to be quick

and precise. Misalignment impacts the enterprise performance, Ullah and Lai (2013) and

drives the need to replace systems with associated costs and risks. A second replacement

driver is the reliance on technical platforms, which go out of date.

Another aspect of ITbIS is the user interaction, Wegner (1997) and Wegner and

Goldin (2003), providing users with an interactive information service, Goldin et al.

(2000) which supports and empowers them. Such a service should provide information,

which ismeaningful and correct.Meaningful information contains structures of concepts

and data, which are aligned with the users conceptual space, coupled to the natural

language of users.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.1008296
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.1008296&domain=pdf&date_stamp=2023-01-27
mailto:tomas@genicore.se
https://doi.org/10.3389/fcomp.2022.1008296
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2022.1008296/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jonsson 10.3389/fcomp.2022.1008296

In this article, we describe the general principles for

information systems development and the Conceptual Data

Systems Architecture (CDSA). The CDSA provides meaningful

structures of data to users, with increased conceptual precision,

and at the same time simplifies the development and Life

Cycle Management (LCM) of ITbIS. CDSA is a layered systems

modeling and execution architecture focusing on data-related

enterprise concepts and user interaction.

The development of CDSA was influenced by the school

of Scandinavian informatics, which was rooted in the works of

Langefors (1980). It was also influenced by the Scandinavian

school of object orientation, in particular, the idea of a system

object model with subsystems as perspectives of the model, for

different actor roles within an enterprise, Reenskaug (1977). The

definition of the model logic and execution was influenced by

functional programming, in particular, the lack of side effects

and the notion of lazy evaluation.

The fusion of these ideas led to an architecture with

data objects as the metastructure for conceptual information

modeling. A conceptual model which will contain all relevant

enterprise data concepts and related logic, for a certain ITbIS.

Additionally, there is a facility for modeling perspectives of the

conceptual model, to satisfy conceptual spaces of various user

roles and activities.

Tools development for modeling and code generation were

influenced by theMjølner Project, in particular their metasystem

environment, based on a particular kind of object-oriented

abstract syntax tree, Madsen and Nørgaard (1987). This object-

oriented metaprogramming system was used to create the

first version of a conceptual data object modeling language

in 1997.

2. From users conceptual domain to
IT domain

Enterprise Information Systems are sociotechnical systems

where ITbIS and actors communicate with each other.

Communication is about exchanging meaningful messages of

data. The value of an ITbIS, from a user perspective, is to a

high degree dependent on the quality of the conceptual structure

and the data it communicates. For ITbIS developers however,

focus is on the computational processes that deliver the desired

conceptual structure and data.

Developers and users accordingly have different perspectives

and conceptual spaces of computer systems (Figure 1). One of

the most common reasons for unsuccessful ITbIS development

projects is the inability of developers to capture the conceptual

space of users and produce adequate systems requirements,

Sumner (1999) and McManus and Wood-Harper (2007). This

leads to end results which are not satisfactory, in terms of

function, time and cost.

FIGURE 1

Two perspectives and conceptual spaces of information systems

lead to communication problems.

Conceptual models play an important role in the

development of information systems, Embley and Thalheim

(2011) and Thalheim (2012). These models are used to capture

and reflect relevant conceptual structures for a user community

in an enterprise. Conceptual models play an important

role in the communication between users, domain experts,

modelers and system designers, in the LCM of ITbIS. Thus, the

conceptual model has an important role in the requirement

process. However, the path from conceptual model to executing

IT system can be a long manual process, requiring design and

programming craftsmanship.

The transformation process, from user conceptual

domain to target ITbIS, in traditional approaches (Figure 2),

involves several steps of manual transformations. Initially, a

conceptual model could be made which together with functional

requirements becomes the system requirements. From this, a

system design is made, including data base design, functional

logic design and user interface design. The system design is then

coded in one or several languages, depending on the underlying

technical environment. The technical environment is made up

of compiler, database engine and other frameworks.

Each step involves several degrees of freedom for

interpretation and implementation compromises. This

leads to deviations from the conceptual space of users.

Time from an established conceptual model to a deployed

system is often in the order of years. Since enterprises change

continuously, a deployed system is in some respect, misaligned

already from deployment. Alternatively, development is

troubled with creeping requirements when changes in the

enterprise are forced into the development cycle, delaying

deployment and increasing cost.

Changes to ITbIS is driven from two different sources,

changes in users conceptual domain and changes in the

target environment. Enterprises are organic in the sense

that they continuously evolve and change. For ITbIS to be

aligned with the enterprise, LCM needs to be continuous

and synchronized between the enterprise and ITbIS. In target

technical environment, changes of various components, such

as operating systems, database engines and other components,

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008296
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jonsson 10.3389/fcomp.2022.1008296

FIGURE 2

Traditional architecture of conceptual domains for information systems and its life cycle management.

require major rework or reimplementation of the system.

This requires resources, takes time and is a cause for

alignment disruption.

When systems are coded in some programming languages,

the code contains a weave of user concepts and technical

concepts such as database, interface and framework concepts.

The LCM of such implementations thus becomes a very

complex issue.

3. Principles for model-driven
information systems architectures

3.1. Information, data and models

In this context, it is useful to provide a definition for

information and its relationship to models, conceptual models

in particular.

Langefors stated the infological (Equation 1) (Langefors,

1980). The message of the equation is that there is a correlation

between I information conveyed, S the receiving structure, i.e.,

the conceptual structure of the mind of the user and D data, i.e.,

communicated structure from ITbIS, as would be defined in a

conceptual model.

For information to be conveyed, data communicated with

the users should match the S structure of users pre-knowledge.

Since S is users knowledge, conceptual modeling for ITbIS can

be considered as a form of knowledge modeling.

I = i(D, S, t) (1)

D= data represent the intended information

S= the “receiving structure” (pre-knowledge) of the user

t= the time available for the user to interpret data D

I= information conveyed by the data D

i= the information function

3.2. Separation of conceptual domains

In Denning (2003), Denning discuss the principles of

computing and separation of the general principles from

technologies. In Jaakkola and Thalheim (2011), the authors

discuss general principles for WEB information systems, in the

dimensions of model and execution architecture. In both cases,

a separation of technical and conceptual domains is argued to

be independent from each other in respect to the development

and LCM (Figure 3). The glue between the domains is the

modeling framework.

With a model-driven IT system, i.e., model execution,

the development process and LCM will be free from manual

transformation processes. Development will be simplified and

consistency between conceptual model and implementation

can be guaranteed, Jonsson and Enquist (2017). Changes in

the users domain, which is continuous, can now be managed

as reconfigurations of the system model, without a need for

technical reprogramming. This allows for maintaining the ITbIS

over time, corresponding to the life cycle of an enterprise.

The strive for domain separation has resulted in several

semantic modeling languages with the ambition to generate

ITbIS from conceptual models such as ADAPLEX, TAXIS

and GALILEO, Borgida (1985). Some architectures have also

been developed based on this separation, such as Model-

Driven Architecture (MDA) from the Object Management

Group (OMG, 2014).

In a literature review of the experiences from applying the

model-driven engineering and model-driven development in

the industry, Mohagheghi and Dehlen (2008), there where few

cases of significant productivity and software quality increases.

However, the positive exceptions were cases based on domain-

driven development and domain-oriented languages from the

telecom industry. Another domain-oriented successful case is

that of Carmen Rave Modeling Language, for Crew Roster

modeling and system generation, Kohl and Karish (2004).

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008296
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jonsson 10.3389/fcomp.2022.1008296

FIGURE 3

Architecture with separation of conceptual domains for information systems, allowing for independent life cycle management in these domains.

We firmly believe that domain-driven development in

conjunction with code generation is a way forward in software

development. Our proposed architecture CDSA is a domain

modeling and execution architecture, where the domain is ITbIS.

The OMG MDA presents some general principles

for an architecture of three model layers. Computational

Independent Model (CIM) represents the enterprise domain

objects. Platform-Independent Model (PIM), a technology-

independent computational information systems model, and

Platform-Specific Model (PSM), a platform technology-specific

information systems model. The general idea is to start with a

CIM and then transform it to PIM and then to PSM and finally

to executing system code. The ambition is to automate these

transformations, in particular from PIM to PSM to code. This

basic idea seems to be a structured and attractive proposal.

However, OMG also proposed and standardized using

Unified Modeling Language (UML) as languages for these

models. UML is a rather complex package of 14 types of

diagrams plus logic language, describing various aspects of a

system. It then becomes a very complex task for tool vendors,

based on these various aspects of a system, to verify consistency

and then to generate a coherent system. As of September 2022,

OMG states, OMG (2022) that typically only 50–70% of PSM can

be generated from PIM.

Our approach to system modeling is somewhat different

from thementioned approaches and yields 100% transformation

from model to executing system. We propose a model suite

with three layers. A conceptual model of enterprise domain

objects provides for a combination of conceptual structure and

declarative functional logic.We add to this, one layer of interface

model and one layer of actor role model.

To put it in MDA terminology, we model the CIM as an

enterprise object model with both structure of concepts and

logic constraints (not computation). Then, we add interface and

actor models to define how and by whom concepts in the CIM

should be communicated, this is now the PIM, still computation

free. This PIM can be automatically transformed into executing

system code by a technical platform. So, only one transformation

is needed, instead of the three in MDA.

4. Principles for CDSA system model
architecture

ITbIS, in the context of enterprises, exist in an environment

of different user roles. We consider these systems from four

perspectives, data concepts, logic, data users and data interface.

To describe an ITbIS, CDSA defines three interconnected

layers of models with different modeling language principles

(Figure 4).

4.1. Structure of users data concepts
domain

The foundation for the architecture is the conceptual model

of users data domain, i.e., enterprise objects, which is a unified

structure of data-related concepts of all intended users. In its

basic form, the model language is process free, as the role

of the information system is to provide information to actors

in the enterprise, while actors drive the enterprise processes.

In some cases, a state diagram model component could be

added to express the object life cycle, as a means for explicit

sequential control.

4.2. Users with conceptual domains

Users are part of the sociotechnical EIS and communicate

with ITbIS. For ITbIS in an enterprise context, there will be users

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008296
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jonsson 10.3389/fcomp.2022.1008296

FIGURE 4

System Model Framework Architecture in Conceptual Data Systems Architecture (CDSA), with its three-layer model suite.

with different roles and interest of concepts and data. Different

roles in enterprises affect usage of the ITbIS, so a model of user

roles is needed.

4.3. Interface to conceptual structure

To describe the communication between the technical

system and the social system, messages need to be defined,

adhering to the conceptual structure of users, i.e., the conceptual

model. We refer to these messages as views, which in practice

can have different forms, such as a layout for computer screen,

document, or XML format definition. As different roles of an

enterprise focus on different concepts and data, certain sets of

messages should be related to certain roles.

4.4. Principles for CDSA conceptual
models

4.4.1. General principles

The language for CDSA conceptual models is a Conceptual

Data Logic Language (CDLL). CDLL can be described as a

domain model language, where the domain is information.

CDLL is object oriented, including object types, inheritance,

polymorphism, data properties, relations and logic. An essential

difference from traditional object-oriented languages is that

there are no processing concepts such as methods or functions

related to the object type. Instead, logic is added to attributes to

define their value and state. Furthermore, logic can only affect

state and value of the attribute it is defined on, thus the language

is pure functional in respect to lack of side effects.

As can be seen in Figure 5, the CDLL meta model is divided

into three basic components, concept declaration, attribute

definition and concept reference.

4.4.2. Concept declarations

By using declarations of object types with attributes, it is

possible to declare a structure of concepts based on the notion

of objects. Additionally, there can be concepts other than object

types and attributes, such as, for example, states, called static

concepts. All concepts can be referenced and included in logic

statements explained below.

4.4.3. Attribute definition

Attributes are in this kind of language more than a slot for

data, with both additional states and logic expressions.

4.4.3.1. Type and dimension

Dimension applies to attributes and typically there will

be 0-, 1- and 2-dimensional attributes, although there could

be higher dimensions. Dimension 0 represents a single value,

dimension 1 is a set of values and dimension 2 is a set of sets

of values.

Relations are binary, relating to another or the same object

type. Relation attributes have the corresponding object type with

a dimension of 0 or 1.

Property types can be considered from a conceptual or a

computer science perspective. From a conceptual perspective, a

property can be a measurement, which can be represented by a

real number datatype in a computer. Following is a list of data

types that are typically part of a CDSA platform.

• Measurement - Real number and unit label

• Countable - Integer

• State - Boolean

• Text - String

• Timepoint - Integer (seconds related to a certain start time)

• Color - Integer x 3 (red, green and blue)

• Media - String (file path or URI) or media itself

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008296
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jonsson 10.3389/fcomp.2022.1008296

FIGURE 5

Conceptual Data Logic Language (CDLL) meta model overview with its three main components, Concept declaration, Concept reference, and

Attribute definition.

In addition, a property can have the type of an object-

type reference.

4.4.3.2. Logic

In Figure 5, it is indicated that there are four slots for adding

logic to an attribute, value, possible values, valid value and

changeable state. In certain implementations, additional slots

have been applied, such as readable, can-add value, can-delete

value, etc.

Logic is defined by some language, either using the language

of the target platform such as java or C++ or using a logic

language designed for the architecture. In case of target platform

language, certain restrictions apply, specifically the logic should

form an expression or algorithm returning a value, without

causing side effects. The advantage of using a target environment

language is that it is easier to implement code generation from

the model, however a logic language properly designed for this

type of model would be more appropriate.

4.4.4. Example model

In Figure 6, an object-type diagram of a model is shown,

in the notation style, i.e., graphical syntax, we developed. This

diagram does not display properties and is intended for model

navigation in large models, in somemodeling tool. Sub-types are

located inside the super-type as subsets of a set. That is, an object

type represents a set of instances and a super-type represents the

union of all sub-type sets. A consequence is that this, by default,

cluster type hierarchies together, for easier navigation in large

models. Property declaration and attribute definitions would be

handled in separate panels or windows, by first selecting the

object type of interest.

Relation attributes are either single value (dimension 0) with

a square symbol or set (dimension 1) with a circle symbol. UML

FIGURE 6

Object-type diagram of an example model. Notation shows

object types with label, icon and relation attributes. Sub-types

are constrained within the boundaries of their super-type. Other

notations could be used. Complete model is listed in Listing 1.

class diagram style including properties could also be used if

desired, as the language itself does not impose specific graphical

notation, it is the meta model principle that is of importance.

In Listing 1, the complete model is shown, with properties

and some function definitions. For Vehicle type, a possible and

a change function is added and for Person type possessions value

function is added.

system ’People - Vehicle’ language ’en’

baseModel

’Vehicle’ thing

’brand’ text

possible ["SAAB", "Volvo", "Mercedes",

"BMW", "Kawasaki"];

’model’ text

’registration number’ text

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008296
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jonsson 10.3389/fcomp.2022.1008296

change system.’current user’.role.

name = "registration admin"

’value’ number "€"

’picture’ file

’owner’ ’Person’ as ’possession’

end ’Vehicle’

’Car’ thing kindof ’Vehicle’

’Power’ number "hp"

end ’Car’

’Bus’ thing kindof ’Vehicle’

’number of passenger’ integer

end ’Bus’

’Motorcycle’ thing kindof ’Vehicle’

end ’Motorcycle’

’Person’ person

’given name’ text

’family name’ text

’possession value’ number "€"

value sum(possession.value)

’possession’ ’Vehicle’ set as ’owner’

end ’Person’

end baseModel

end system

Listing 1 CDLL example listing as generated from a modeling tool.

4.4.5. Concept reference, symbols and labels

With labels, we mean a word or a natural language

expression that is used to refer to the concept. For multilanguage

user environments it is preferable to have support for defining

labels using different natural languages, for the same concept.

Symbols can also be used for concept reference and has been

used mostly for object types as alternative type identification in

modeling tools and screen-based interfaces.

4.4.5.1. Natural language and model of concepts

A labeling method has been developed, to couple concept

declaration structure to semantics of natural language. Rules

for constructing English language sentences from the model

have been developed and some of them are described below.

They are used to validate a consistently labeled model and

to generate a dictionary of declared concepts, with generated

statements about the concept. These statements can be used in

an LCM process to test users acceptance of concept definitions

and labeling.

• has rule - <object type>has <attribute>[which can be

<possible>]

• can be rule - <object type>can be <state>

• kind of rule - <object type>is a kind of <super type>

• which can be rule - <object type>which can be <sub types>

4.4.5.2. Example dictionary

Dictionary for People - Vehicle

brand [n,pr] vehicles have a brand which can

be for example SAAB, Volvo or Mercedes

bus [n,ot-thing] buses are some kind

of vehicles

car [n,ot-thing] cars are some kind

of vehicles

family name [n,pr] people have a family name

given name [n,pr] people have a given name

model [n,pr] vehicles have a model

motorcycle [n,ot-thing] motorcycles are some

kind of vehicles

number of passenger [n,pr] buses have number of

passengers

owner [n,r] vehicles can have an owner which

is a person

person [n,ot-actor]

picture [n,pr] vehicles have a picture

possession [n,r] people can have many

possessions which are vehicles

possession value [n,pr] people have possession

value

power [n,pr] cars have power

registration number [n,pr] vehicles have a

registration number

value [n,pr] vehicles have value

vehicle [n,ot-thing] A vehicle is either a

car, a bus or a motorcycle.

Format description

word [-,-]

[n,-] noun, [adj,-] adjective

[-,ot-*] object type-object kind, [-,r]

relation, [-,pr] property

Listing 2 Example of generated dictionary.

4.4.6. Execution principle

The execution environment shall allow for object instance

creation and ensure that all instances of objects are persistent

and searchable, until explicitly deleted. Changes in object states

shall be distributed to all parties with an interest in such

state and a mechanism for transactional integrity needs to be

in place.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008296
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jonsson 10.3389/fcomp.2022.1008296

Since the CDLL model is strictly functional from the

perspective of attributes, principles of data-flow execution can

be applied, Johnston et al. (2004) which could give an additional

benefit of intrinsic parallelism. Data dependency graphs are

generated from the logic expressions. Execution engine or code

generation handles the data-flow as appropriate (Figure 7).

4.4.7. Conceptual modeling guidance

The architecture has both a conceptual model layer and

a (conceptual model) view layer. It is important to take this

into account when creating the conceptual model. Meaning,

modeling the conceptual objects in themselves, and not

perspectives of these objects. For instance, at a university there

FIGURE 7

CDSL data-flow execution principle where reevaluation of a

function occurs as appropriate, either when an input value is

changed and/or when the result is accessed. Arrows indicate the

direction of data-flow.

are students, teachers, researchers, administrators, etc. Modeling

them as separate type entities would in this case be wrong,

since they are all people who can appear in one or more roles.

Information perspectives of people in different roles should be

represented with different views of person information.

The modeling language and its application in the modeling

process are in our case guided by the Phenomenological

Foundational Ontology, briefly described in Jonsson

and Enquist (2019). The ontology is founded in the

phenomenological system of Edmund Husserl (1859–1938), as

described in Woodruff Smith (2003). The phenomenological

system reasons about what exists, mental objects and related

ontological regions. The ontology guides modelers by giving

them possible categories of neutral (nonperspective biased)

object types, such as thing, actor, location, event, agreement

and value.

4.5. Perspectives and interface principles
for CDSA systems

An enterprise consist of actors working together creating

something of value. Different actors, or groups of actors,

have different conceptual perspectives of the enterprise. To

collaborate they need to communicate, i.e., there needs to be

some coupling between users conceptual spaces. Here, it is in

place to point out that not all enterprise actors conceptual

spaces, necessarily should be included in one system. Which

FIGURE 8

Views principle illustrated as interfaces to a corresponding conceptual model. The components of a form-based interface model language are

object views, relation views, and property views. Each view component is related to a component in the object-type model. During system

execution, interface panels are populated with data from object instances, as selected by the user.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008296
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jonsson 10.3389/fcomp.2022.1008296

actor perspectives to include in one system depends on how

conceptually coupled they are and how frequent communication

is between them.

If the ITbIS system is to be compatible with different

enterprise perspectives, the system modeling facility needs

to include a perspective-modeling component. We call

these perspectives for views. It is through views that users

communicate with an ITbIS. A view can thus be regarded as a

message format definition, which is comprised of semantics and

syntax. The semantics is the conceptual content and the syntax

is the format. Views are mostly formed as a hierarchy of object

components, always adhering to the semantics of the conceptual

model, starting from a root object.

In Figure 8, a simple form-oriented syntax is shown.

For each concept component type of the conceptual meta

model, there needs to be at least one corresponding interface

component type, representing a syntactic structure. A view is

then a composition model of interface components, relating to

components of the conceptual model.

The same principle was advocated in the Naked Object

approach, Pawson (2004). In this case, one view per object

type is autogenerated from an object-type structure. Similarly

in CoreWEB, Jonsson and Enquist (2017) a default view is

generated with a view panel for each object type. Additionally,

custom views can be configured and represented in a

views model.

For such interactive screen-oriented user interfaces, there

could be different syntaxes, i.e., styles. From simplistic form

styles as shown, to more complex form styles with several

alternative interface components for each meta model concept

component, including various kinds of graphics. However, the

semantic structure of the conceptual model should be preserved

and be apparent in the interface. For instance, a property

concept should always be conveyed in relation to the object to

which it belongs.

To provide a machine-to-machine interface, XML-based

views could be used with default or configured views of the

conceptual model. When communicating with other conceptual

domains, such as external enterprises, conversion of conceptual

spaces would be required.

4.6. User model principles for CDSA

There are two primary types of users of ITbIS, people

and other IT systems (Figure 9). For people in the enterprise

context, we define roles, which are related to specific views

and then assigned to individual users. Similarly for external IT

systems, a set of message formats are defined and assigned for

communication with a specific network address. This is the basic

principle of a user model, sufficient in many cases.

Beyond basic principles and the scope of this article, there

can be both role structures, organizational structures and activity

models, as represented by enterprise architecture models.

5. Results

5.1. Summary of principles

Following is a summary of the three basic principles for

CDSA.

FIGURE 9

Principle of user model connecting the social world to the interface of the Information Technology based Information Systems (ITbIS),

completing a model of a sociotechnical system.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008296
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jonsson 10.3389/fcomp.2022.1008296

• Separation of user conceptual and technical conceptual

domains, with a user concept system model framework,

which is executable by the technical domain.

• Model suite for a system model framework in three coupled

layers, concept, view and user layer. Concept layer for

declaring and defining concepts, view layer for perspectives

of conceptual structure and user layer for directing sets of

views to users or groups of users.

• Conceptual data logic language, declaring and defining

data concepts without involving processing concepts.

This minimizes the number of model concepts,

avoids computational side effects and allows for

data-flow execution.

5.2. Platforms and system cases

5.2.1. Core enterprise architecture framework

CoreEAF is a distributed parallel processing CDSA

environment for ITbIS, where processing take place on

server and clients. The server distributes and coordinates

data exchanges between clients. Target languages for the core

functionality are C++ and SQL, with additional XML based

languages for systems to systems communication and document

generation. Some of the capabilities of the related execution

engine are described at: http://www.genicore.se/index.htm?

page=corepro.

5.2.2. System cases with CoreEAF

CoreEAF was initially developed to support building a

customized project planning and management system for

the Swedish Defense Material Agency. This system gradually

replaced several other systems and grew to a complete Enterprise

Resource Planning (ERP) system, Jonsson and Enquist (2015)

with over 5,000 user concepts and 3,000 users. The system and

platform have been developed and supported over 25 years.

The system model updates every 4 months, driven by enterprise

evolution and platform updates every 5 years, driven by changes

in technical infrastructure. The platform has subsequently been

used for a number of other systems in the public sector in

Sweden. The platform is also used as a meta modeling facility,

to generate new versions of the platform itself.

5.2.3. CoreWEB

CoreWEB is a non-commercial software as a service

implementation based on the CDSA, for education and

prototyping. CoreWEB allows a conceptual modeler to generate

versions of a system from a CDLL model, complete with user

interface. The system can further be refined through modeling

customized views and user roles. CoreWEB has been used for

prototyping, deployed systems and in education at Gothenburg,

Rostock (Lambusch et al., 2020) and Kiel universities, as well

as demonstrated at some conferences (Jonsson and Enquist,

2017, 2018; Jonsson and Rimfors, 2020). CoreWEB is available

at https://ameis.se/cml/index.htm. Some course materials for

students are also available.

6. Discussion and future directions

This article outlines the principles for a model-based

architecture, which could be extended in different directions.

The three-layer modeling suite is a domain model architecture,

where the domain is IT-based enterprise information systems

(ITbIS). It does not address many enterprise architecture issues,

such as work processes, goals and strategies. But perhaps, CDSA

can become a component in some more general enterprise

architecture frameworks.

6.1. Consequences of applying CDSA
principles

• Pure conceptual space. Development and LCM processes

take place in the conceptual space of users, which means

that both developers and users focus on the same concepts

and talk the same language.

• Co-creative development process. By repetitively generating

instances of a system from the model during development

process, users and other enterprise actors can actively

participate in an exploratory and co-creative process.

• Alignment between the ITbIS and enterprise, maintained

over time. With change cycles from minutes to days in

most cases, keeping up with enterprise evolution is not a

problem. However, it is important that the user community

is mentally aligned with system changes. In our experience,

it is recommended to collect and implement modification

requests continuously for a verification purpose and to have

releases in cycles of 3–12 months.

• Reduction of complexity. The functional, non side effect,

nature of the model language makes calculation and

logic errors trivial to pinpoint. Reduction in the number

of statements required for a system also reduces the

complexity. The above-mentioned ERP system roughly

consists of 13,000 conceptual model statements and 20,000

statements for the form-based interface model, making a

total of 33.000 statements. Without any direct comparison

case, we estimate that this is in one to two orders (10–

100) of statement reduction, compared to traditionally

coded systems.

• Fifth generation programming. In Thalheim (2021) and

Thalheim and Jaakkola (2020) the authors argue that when

a program is described and generated from a model,

Models as a Program (MaaP), it is a case of 5th generation

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008296
http://www.genicore.se/index.htm?page=corepro
http://www.genicore.se/index.htm?page=corepro
https://ameis.se/cml/index.htm
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jonsson 10.3389/fcomp.2022.1008296

programming. For a specific application domain, we have

shown how this is possible.

6.2. Future directions

• Work on refining the foundational phenomenological

ontology is ongoing.

• Development of a logic language. In mentioned platforms,

the target environment language has been used to define

logic of the model. In an exploratory project, an expression

parallel processing data-flow language and compiler for

WEB applications was developed. One future project is

to integrate the logic of this language into the CoreWEB

environment.

• We aim to expand our community network related to

conceptual modeling, modeling to programs and models

as programs.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author.

Author contributions

The author confirms being the sole contributor of this work

and has approved it for publication.

Funding

This research was funded by the Genicore AB.

Acknowledgments

All tool and architecture development has been performed in

parallel with commercial systems development projects without

external funding. In 2015, Genicore decided to disseminate

knowledge about the architecture and principles developed,

which resulted in the first publication at CAISE, Jonsson and

Enquist (2015) in cooperation with Gothenburg University.

Later academic engagement led to cooperation with Kiel and

Rostock Universities.

Conflict of interest

TJ was employed by Genicore.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Borgida, A. (1985). Features of languages for the development of information
systems at the conceptual level. IEEE Softw. 2, 63–72. doi: 10.1109/MS.1985.23
0050

Denning, P. J. (2003). Great principles of computing. Commun. ACM 46, 15–20.
doi: 10.1145/948383.948400

Embley, D. W., and Thalheim, B. (2011). “Handbook of conceptual modeling:
theory, practice, and research challenges,” in Handbook of Conceptual Modeling
(Berlin; Heidelberg: Springer Berlin Heidelberg).

Goldin, D., Srinivasa, S., and Thalheim, B. (2000). “IS=DBS+Interaction: towards
principles of information system design,” in Conceptual Modeling—ER 2000, Vol.
1920, eds G. Goos, J. Hartmanis, J. van Leeuwen, A. H. F. Laender, S. W. Liddle,
and V. C. Storey (Berlin; Heidelberg: Springer Berlin Heidelberg), 140–153.

Jaakkola, H., and Thalheim, B. (2011). “Architecture-driven modelling
methodologies,” in Information Modelling and Knowledge Bases, Vol. XXII
(Jyväskylä: IOS Press), 97–116.

Johnston, W. M., Hanna, J. R. P., and Millar, R. J. (2004). Advances
in dataflow programming languages. ACM Comput. Surveys 36, 1–34.
doi: 10.1145/1013208.1013209

Jonsson, T., and Enquist, H. (2015). “CoreEAF-a model driven approach to
information systems,” in CEUR Workshop Proceedings, Vol. 1367 (Stockholm),
137–144.

Jonsson, T., and Enquist, H. (2017). “Semantic consistency in enterprise models-
through seamless modelling and execution support,” in Proceedings of the {ER}

Forum 2017 and the {ER} 2017 Demo Track, volume 1979 of CEUR Workshop
Proceedings (Valencia: CEUR-WS.org), 343–346.

Jonsson, T., and Enquist, H. (2018). “Phenomenological ontology guided
conceptual modeling for enterprise information systems,” in Advances in
Conceptual Modeling, volume 11158 of LNCS (Xi’an: Springer International
Publishing), 31–34.

Jonsson, T., and Enquist, H. (2019). “Phenomenological framework for
model enabled enterprise information systems,” in New Trends in Databases
and Information Systems, Vol. 1064 (Cham: Springer International Publishing),
176–187.

Jonsson, T., and Rimfors, M. (2020). “CoreWEB-semantic expressions in
conceptual models for generation of information systems,” in Modellierung
2020 Short, Workshop and Tools Demo Papers, Vol. 2542 (Vienna: CEUR),
208–212.

Kohl, N., and Karish, S. E. (2004). Airline crew rostering: problem
types, modeling, and optimization. Ann. Operat. Res. 127, 223–257.
doi: 10.1023/B:ANOR.0000019091.54417.ca

Lambusch, F., Enquist, H., and Jonsson, T. (2020). “Creating vividness
through executable models: a teaching case for conceptual modelling,” in
Forum at Practice of Enterprise Modeling 2020, Vol. 2793 (Latvia: CEUR),
13–23.

Langefors, B. (1980). Infological models and information user views. Inf. Syst. 5,
17–32. doi: 10.1016/0306-4379(80)90065-4

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008296
https://doi.org/10.1109/MS.1985.230050
https://doi.org/10.1145/948383.948400
https://doi.org/10.1145/1013208.1013209
https://CEUR-WS.org
https://doi.org/10.1023/B:ANOR.0000019091.54417.ca
https://doi.org/10.1016/0306-4379(80)90065-4
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jonsson 10.3389/fcomp.2022.1008296

Madsen, O. L., and Nørgaard, C. (1987). An object-oriented
metaprogramming system. DAIMI Rep. Ser. 16, 7592. doi: 10.7146/dpb.v16i236.
7592

McManus, J., and Wood-Harper, T. (2007). Understanding the sources of
information systemsproject failure. J. Inst. Manag. Serv. 51, 38–43. Available
online at: https://www.ims-productivity.com/user/custom/journal/2007/Autumn/
MSJaut07.pdf

Mohagheghi, P., and Dehlen, V. (2008). “Where is the proof?-a review of
experiences from applying MDE in industry,” in Model Driven Architecture
–Foundations and Applications, Vol. 5095, eds I. Schieferdecker and A. Hartman
(Berlin; Heidelberg: Springer Berlin Heidelberg), 432–443.

OMG (2014). Object Management Group Model Driven Architecture (MDA)
MDA Guide rev. 2.0. Technical report, Object Management Group.

OMG (2022). MDA FAQ, How is MDA being delivered? In what kind of tools?
Technical report, Object Management Group.

Pawson, R. (2004). Naked Objects (Ph.D. thesis). University of Dublin, Trinity
College, Dublin, Ireland.

Reenskaug, T. (1977). “PROKON/PLAN-a modelling tool for project planning
and control,” in IFIP Proceedings (Toronto, ON), 717–722.

Rouse,W. B. (2005). A theory of enterprise transformation. Syst. Eng. 8, 279–295.
doi: 10.1002/sys.20035

Sumner, M. (1999). “Critical success factors in enterprise wide information
management systems projects,” in Proceedings of the 1999 ACMSIGCPRConference

on Computer Personnel Research-SIGCPR ’99 (New Orleans, LA: ACM Press),
297–303.

Thalheim, B. (2012). “The art of conceptual modelling,” in
Information Modelling and Knowledge Bases XXIII, volume 237 of
Frontiers in Artificial Intelligence and Applications (Tallin: IOS Press),
149–168.

Thalheim, B. (2021). “From Models_For_Programming to
Modelling_To_Program and Towards Models_As_A_Program,” in Modelling
to Program, Vol. 1401, eds A. Dahanayake, O. Pastor, and B. Thalheim (Cham:
Springer International Publishing), 3–44.

Thalheim, B., and Jaakkola, H. (2020). “Model-based fifth generation
programming,” in Information Modelling and Knowledge Bases XXXI
(Lappeenranta), 381–400.

Ullah, A., and Lai, R. (2013). A systematic review of business and
information technology alignment. ACM Trans. Manag. Inf. Syst. 4, 1–30.
doi: 10.1145/2445560.2445564

Wegner, P. (1997). Why interaction is more powerful than algorithms. Commun.
ACM. 40, 80–91. doi: 10.1145/253769.253801

Wegner, P., and Goldin, D. (2003). Computation beyond turing machines.
Commun. ACM. 46, 100–102. doi: 10.1145/641205.641235

Woodruff Smith, D. (2003). “Pure” logic, ontology, and phenomenology.
Revue Internationale de Philosophie 2003/2, 21–44. doi: 10.3917/rip.224.
0021

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008296
https://doi.org/10.7146/dpb.v16i236.7592
https://www.ims-productivity.com/user/custom/journal/2007/Autumn/MSJaut07.pdf
https://www.ims-productivity.com/user/custom/journal/2007/Autumn/MSJaut07.pdf
https://doi.org/10.1002/sys.20035
https://doi.org/10.1145/2445560.2445564
https://doi.org/10.1145/253769.253801
https://doi.org/10.1145/641205.641235
https://doi.org/10.3917/rip.224.0021
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Conceptual data systems architecture principles for information systems
	1. Introduction
	2. From users conceptual domain to IT domain
	3. Principles for model-driven information systems architectures
	3.1. Information, data and models
	3.2. Separation of conceptual domains

	4. Principles for CDSA system model architecture
	4.1. Structure of users data concepts domain
	4.2. Users with conceptual domains
	4.3. Interface to conceptual structure
	4.4. Principles for CDSA conceptual models
	4.4.1. General principles
	4.4.2. Concept declarations
	4.4.3. Attribute definition
	4.4.3.1. Type and dimension
	4.4.3.2. Logic

	4.4.4. Example model
	4.4.5. Concept reference, symbols and labels
	4.4.5.1. Natural language and model of concepts
	4.4.5.2. Example dictionary

	4.4.6. Execution principle
	4.4.7. Conceptual modeling guidance

	4.5. Perspectives and interface principles for CDSA systems
	4.6. User model principles for CDSA

	5. Results
	5.1. Summary of principles
	5.2. Platforms and system cases
	5.2.1. Core enterprise architecture framework
	5.2.2. System cases with CoreEAF
	5.2.3. CoreWEB

	6. Discussion and future directions
	6.1. Consequences of applying CDSA principles
	6.2. Future directions

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

