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Forward engineering relational schemas based on conceptual models (in

languages such as UML and ER) is an established practice, with several

automated transformation approaches discussed in the literature and

implemented in production tools. These transformations must bridge the gap

between the primitives o�ered by conceptual modeling languages on the

one hand and the relational model on the other. As a result, it is often the

case that some of the semantics of the source conceptual model is lost

in the transformation process. In this paper, we address this problem by

forward engineering additional constraints alongwith the transformed schema

(ultimately implemented as triggers). We formulate our approach in terms of

the operations of “flattening” and “lifting” of classes to make our approach

largely independent of the particular transformation strategy (one table per

hierarchy, one table per class, one table per concrete class, one table per

leaf class, etc.). An automated transformation tool is provided that traces the

cumulative consequences of the operations as they are applied throughout the

transformation process. We report on tests of this tool using models published

in an open model repository.

KEYWORDS

conceptualmodel semantics, forward engineering, relational schemas,model-driven,

semantics preservation

1. Introduction

Forward engineering relational schemas based on conceptual models such as (E)ER

or UML class diagrams is an established practice, with a number of transformation

strategies discussed in the literature (Torres et al., 2017; Guidoni et al., 2020) and

commercial tools available and widely used in production settings. The approaches

employed establish correspondences between the patterns in the source models and in

the target relational schemas, as is typically the case in model-driven approaches. For

example, in the one table per class approach (Keller, 1997; Fowler, 2002), a table is

produced for each class in the source model; in the one table per leaf class approach

(Philippi, 2005), a table is produced for each leaf class in the specialization hierarchy,
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with properties of superclasses accommodated at the tables

corresponding to their leaf subclasses; in the one table

per hierarchy approach (Torres et al., 2017), discriminator

columns are introduced in the table corresponding to the

superclass to identify which subclasses are instantiated by

the entity represented in a row. An important benefit of

all these approaches is the automation of an otherwise

manual and error-prone schema design process. Automated

transformations capture tried-and-tested design decisions,

improving productivity, and the quality of the resulting schemas.

Despite the various benefits of automated transformation,

there is often a mismatch between primitives of the conceptual

modeling language and those of the target technical space;

in this case, the relational model. Because of this, some of

the information that was embodied in the conceptual model

may be lost in the transformation process. In the case of

the transformation of specialization hierarchies, depending on

the class-to-table transformation strategy, invariants that are

expressed directly in the conceptual model through cardinality

constraints and association end typing may be weakened.

For example, consider a hierarchy with a class Person at

the top and a single subclass Student with a mandatory

attribute enrollmentNumber . In the one table per hierarchy

approach, mandatory attributes of subclasses (in this case

enrollmentNumber ) are implemented as nullable columns

of the table representing the whole hierarchy (in this case of

the table representing all persons). This is required in this

approach, because not all persons have enrollment numbers—

albeit all students do. This kind of cardinality constraint present

in the source model is no longer enforced by the target

relational schema, which admits a non-student person to be

assigned an enrollmentNumber and a student to have a null

enrollmentNumber . Foreign keys in other tables that should

identify only students (for example concerning the borrower of a

book in the university library) now identify persons indistinctly.

The first contribution of this paper is to identify the

constraints that are lost in the transformation of structural

conceptual models to relational schemas, independently of the

class-to-table transformation strategy applied. Our approach is

based on the primitive refactoring operations of flattening and

lifting of classes that can account for the transformation of a

specialization hierarchy into tables according to various class-to-

table transformation strategies in the literature (Guidoni et al.,

2020). Secondly, we show how to incorporate the generation of

the required constraints along a transformation of a conceptual

model into a relational schema. As the transformation advances,

at each application of an operation, we maintain a set of traces

from source to target model, ultimately producing not only

the relational schema, but also invariants that are applicable to

the resulting schema using the set of traces. These invariants

are implemented as triggers, detecting when data that violates

the conceptual model is introduced in the database. A fully

automated implementation of the transformation is provided.

This paper is further structured as follows: Section 2

discusses extant approaches to the transformation of a structural

conceptual model into a target relational schema, presenting the

primitive operations of flattening and lifting that can account

for the various transformation strategies (Guidoni et al., 2020); it

further provides an example conceptual model transformed with

two strategies for illustration. Section 3 discusses flattening and

lifting in further detail, presenting the aspects of the semantics

that are lost in the application of each of these operations,

identifying thus the constraints that should be added in order

to preserve the source model semantics. (Formal specifications

of the operations subjected to automated proof are provided in

Supplementary material). Section 4 shows how we instrument

the transformation process by maintaining a set of traces

that are updated in each flattening and lifting application;

these traces are ultimately used to generate triggers in the

database that reflect the constraints that are required by each

step in the transformation process; the automatically-generated

triggers accumulate all the required constraints. Section 5

reports on the implementation of the tool and on the tests that

were performed to validate the approach, using models made

available in an open model repository (Barcelos et al., 2022).

Section 6 discusses related work, and, finally, Section 7 presents

concluding remarks.

2. Background

2.1. Extant approaches

The relational model does not directly support constructs

corresponding to class generalization and specialization, and,

hence, realization strategies are required to cope with the use of

these notions in source conceptual models. Such strategies are

described by several authors (Keller, 1997; Fowler, 2002; Ambler,

2003; Shah and Slaughter, 2003; Philippi, 2005; Torres et al.,

2017; Guidoni et al., 2020) under various names. We include

here some of these strategies for the purpose of exemplification.

One common approach is the one table per class strategy,

in which each class gives rise to a separate table, with columns

corresponding to the class’s features. Specialization between

classes in the conceptual model is emulated and gives rise to

a foreign key in the table that corresponds to the subclass.

This foreign key references the primary key of the table

corresponding to the superclass. This strategy is also called

“class-table” (Fowler, 2002), “vertical inheritance” (Torres et al.,

2017), or “one class one table” (Keller, 1997), and is also very

common in the EER transformation literature (Teorey et al.,

1986; Markowitz and Shoshani, 1992). In order to manipulate

a single instance of a class, e.g., to read all its attributes or to

insert a new instance with its attributes, one needs to traverse

a number of tables corresponding to the depth of the whole

specialization hierarchy.
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A common variant of this approach is the one table per

concrete class strategy (Philippi, 2005). In this case, an operation

of “flattening” is applied for the abstract superclasses. In a

nutshell, “flattening” removes a class from the hierarchy by

transferring its attributes and relations to its subclasses. This

reduces the number of tables required to read or to insert all

attributes of an instance, but introduces the need for unions in

polymorphic queries involving the flattened abstract classes.

The extreme application of “flattening” to remove all non-

leaf classes of a taxonomy yields a strategy called one table per

leaf class. In this strategy, also termed “horizontal inheritance”

(Torres et al., 2017), each of the leaf classes in the hierarchy

gives rise to a corresponding table. Features of all (non-leaf)

superclasses of a leaf class are realized as columns in the leaf

class table. No foreign keys emulating inheritance are employed

in this approach.

A radically different approach is the one table per hierarchy

strategy, also called “single-table” (Fowler, 2002) or “one

inheritance tree one table” (Keller, 1997). It can be understood

as the opposite of one table per leaf class, applying a “lifting”

operation to subclasses instead of the “flattening” of superclasses.

Attributes of each subclass become optional columns in the

superclass table. This strategy usually requires the creation of

an additional column to distinguish which subclass is (or which

subclasses are) instantiated by the entity represented in the row

(a so-called “discriminator” column). The “lifting” operation is

reiterated until the top-level class of each hierarchy is reached.

In our previous work (Guidoni et al., 2020), we have

proposed a novel approach based on the combined and selective

use of both “lifting” and “flattening.” This approach leverages

the specialized semantics of the OntoUML (Guizzardi, 2005)

conceptual modeling language to precisely determine which

classes should be flattened and which should be lifted—given

a particular set of conceptualization choices made about the

domain. This is possible because OntoUML explicitly represents

in a system of stereotypes a number of finer-grained ontological

distinctions among types of classes. These stereotypes enable the

explicit representation of these choices.

Among these distinctions, a special attention is given to

kinds, i.e., special sorts of static classes that represent the

essential types of things in that domain. They tessellate the space

of existing entities at any given point in time, i.e., the kinds in

an OntoUML model are both mutually disjoint and together

exhaust the set of instances of that model. In other words, every

instance of an OntoUML model belongs to exactly one kind

and always to that same kind. Thus, kinds constitute a static

backbone of the conceptual model, which is then both refined

into subclasses and abstracted into superclasses. On one hand,

they are typically specialized by dynamic classes characterized

by contingent properties that their instances can bear in some

situations but not in others (e.g., a person can contingently

be a teenager or a student). When these dynamic classes are

characterized by intrinsic properties, they are called phases (e.g.,

teenager, living person); when by relational properties, they are

called roles (e.g., student, father, husband). On the other hand,

multiple kinds are refactored into abstract classes that represent

properties that are shared by their instances. These abstract

classes can also be either static (called categories) or dynamic

(called role mixins). Since every instance of a domain must

instantiate a kind, the use of these refactoring classes in a model

can lead to multiple classification schemes (e.g., an entity can be

both of the kind car but also instantiate the category physical

object). In other words, entities can instantiate several classes

but one unique kind and, hence, classes can specialize multiple

superclasses but at most one kind.

The approach discussed in Guidoni et al. (2020) leverages

these distinctions to automatically and in a reiterated way:

(a) “flatten” all the properties in the abstract classes until

they are projected into the specializing concrete classes; (b) in

sequence, “lift” all the properties of these concrete classes up

to their generalizing kinds. As result, the model concentrates

all the original information around kinds, which are then

mapped into relational tables. We call this strategy one table

per kind.

Finally, we highlight that the operations of “flattening”

and “lifting” are the same in all these different transformation

strategies. What varies across strategies are the different classes

that these operations target as focal points, and the different

orders in which they are iterated. All these strategies can be

conceived as complex procedures combining the very same

primitive operations of “flattening” and “lifting.”

2.2. Example transformations

In order to illustrate the consequences of the transformation

strategy selected on the resulting relational schema, we apply

here two different transformations to the (Onto)UML class

diagram shown in Figure 1. In this model, the abstract class

NamedEntity is specialized into concrete classes Person

and Organization . The abstract class Customer is

specialized into concrete classes PersonalCustomer and

CorporateCustomer . Persons are classified dynamically

according to life phase, and must be either in the Child or

the Adult phase. In the Adult phase, a Person can enter

into a SupplyContract (a relator kind) playing the role of

PersonalCustomer and thus hiring an Organization

as a Contractor . Organizations can also assume the

role of CorporateCustomer in a SupplyContract . The

transformation approaches selected for illustration are one table

per concrete class and one table per kind, and are used throughout

the paper. As discussed in the previous sub-section, the former

relies on the flattening of abstract classes (as they appear in

standard UML models). The latter makes use of OntoUML

stereotypes (Guizzardi et al., 2018) to determine when to apply

flattening and lifting.
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FIGURE 1

Example source conceptual model.

FIGURE 2

Target schema with the one table per concrete class strategy.

Figure 2 presents the resulting schema in the one table per

concrete class strategy. The abstract classes NamedEntity and

Customer have been flattened out, and a table is included for

each concrete class. Foreign keys are used to emulate inheritance

(e.g., the table ADULT corresponding to the concrete class

Adult has as its primary key a foreign key person_id which

identifies an entry in the table PERSON). Joins are required to

access all attributes of an instance of a subclass in tandem (e.g.,

to obtain the name and credit_rating of an instance of

PersonalCustomer represented in the database).
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FIGURE 3

Target schema with the one table per kind strategy.

Figure 3 presents the result of applying the one table

per kind strategy. Again, NamedEntity and Customer

(abstract classes) are flattened out. In addition, all concrete

classes are lifted until only one concrete class (the kind)

remains. There is no emulation of inheritance with foreign

keys; discriminators are used instead to identify the subclasses

that are instantiated by an entity. No joins are required to

access jointly attributes of an entity. A number of nullable

columns are introduced as the result of “lifting” (namely

credit_rating , credit_card , credit_limit due to

the migration of attributes in lifting; and person_id and

organization_customer_id due to the migration of

association ends opposite of SupplyContract in flattening

and lifting).

3. Bridging the semantic gap

We have observed during our investigations into the various

transformation strategies in the literature that they could all be

understood as complex procedures that could be formulated in

terms of lifting and flattening. Here, we present these operations

in detail, including their consequences to the existing attributes

and associations in the model.

Using the terminology of Lúcio et al. (2016) and Lano

et al. (2018), both operations can be understood conceptually as

endogenous model refactorings. An endogenous transformation

is one whose target and source models are represented in the

same language (here they are both class diagrams); a refactoring

is a transformation that performs update-in-place making local

changes to a part of the model. These are usually motivated

with the model editing intent (Lúcio et al., 2016), although here,

they have been motivated by progressing toward a model that

can be more easily translated in an ultimate exogenous model

transformation (one that produces a relational schema from a

class diagram). Because of that, in some cases, our operations

have the opposite intent of some refactoring operations in the

literature. For example, flattening is the opposite of “extract

class” of Fowler et al. (2012). The operations are similar to those

defined by Guizzardi et al. (2019), but are used there solely

for the purpose of model abstraction (and hence, the authors

of that work were not concerned with the loss of constraints

in the application of their operations). [“Flattening” as used

here should not be mistaken with the homonymous model

transformation pattern of Iacob et al. (2008), which refers to

the elimination of hierarchical containment structures in the

abstract syntax.] The operations are applied automatically once

the classes to be flattened or lifted in a step are identified.

We assume here that the source conceptual model consists

of (abstract and concrete) classes, attributes with multiplicity

constraints, binary associations also withmultiplicity constraints

at both association ends, generalizations between classes,

and generalization sets with varying isCovering and

isDisjoint metaproperties following the UML metamodel1.

Multiplicities are represented for simplicity with lower bound

cardinalities corresponding to either 0 or 1, and upper bound

cardinalities corresponding to 1 or * . The approach we propose

is not specific to OntoUML. In fact, the proposed operations

of lifting and flattening are general to all kinds of structural

conceptual models.

1 https://www.omg.org/spec/UML/.
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3.1. Flattening

In the flattening operation, shown schematically in Table 1,

every attribute of a class that is to be removed from the model

(Typex in gray) is migrated to each of its direct subclasses

(SubTypey). Association ends attached to the flattened superclass

are also migrated to the subclasses (creating new associations in

the process, one for each subclass). The lower bound cardinality

of the migrated association end (lxi) is relaxed to 0, as the

TABLE 1 The flattening operation.

original lower bound is not necessarily satisfied for each of

the subclasses. The cardinalities of attributes (attrk) as well as

association ends attached to classes other than the flattened class

(RelatedTypei) are maintained, as these are invariants that apply

to all subclasses in virtue of the semantics of specialization.

(For simplicity, the diagram represents only one association

between Typex and a RelatedTypei, but in fact, there can bemany

such associations).

Preconditions to the application of flattening are that

the class is at the top of the present hierarchy (i.e., it

has no superclass) and that is either abstract or all its

subclasses are complete specializations of it. (In the particular

case of a single subclass of an abstract class, flattening

is trivialized; in any case, the situation indicates a clear

model smell).

Figure 4 shows the result of the application of the

flattening operation on the abstract classes in the example

in Figure 1, with changes highlighted in red boxes.

The Person and Organization classes now have a

name attribute, due to the flattening of NamedEntity .

As a consequence of the flattening of Customer ,

PersonalCustomer , and the CorporateCustomer

now have an attribute creditRating . Further, the

SupplyContract class is now related directly to the

PersonalCustomer and the CorporateCustomer

classes. A minimum cardinality of 0 is used in the

association ends connected to PersonalCustomer

and CorporateCustomer .

FIGURE 4

Result of flattening NamedEntity and Customer .
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3.1.1. Missing constraints due to association
end migration in flattening and relaxed lower
bounds

The following constraints are missing from the resulting

model after the operation: (MC1), in the presence of an

association in the source model with an association end attached

to the flattened superclass and lower bound lxi = 1, we

must ensure that at least one instance of the target subclasses

is related to an instance of the RelatedTypei through the

associations that were introduced in the flattening operation,

in order to enforce the original lower bound cardinality. In

this case, for a particular SupplyContract , there is a

related PersonalCustomer or a CorporateCustomer ;

and (MC2), in the presence of an association in the source model

with an association end attached to the flattened superclass

and upper bound uxi = 1, we must ensure that an instance

of the superclass is related through the associations that were

introduced in the flattening operation to at most one instance

of the union of all subclasses. In this case, considering both

conditions, an instance of SupplyContract is related to

exactly one instance in the union of PersonalCustomer and

CorporateCustomer . A proof that these required (missing)

constraints MC1 and MC2 indeed follow from the semantics of

the original model and the definition of flattening is available in

the Supplementary material. We employed automated theorem

provers in the TPTP system. See flattening.p , in the

scope of the flattening of Customer for the formalization

in first-order logics in the TPTP syntax (and corresponding

formalization in CLIF). Proof reports are available (Vampire

4.6.1 Automated Theorem Prover).

3.2. Lifting

In the lifting operation, shown in Table 2, every attribute of

the class that is lifted (SubTypey in gray) is migrated to each

direct superclass, with lower bound cardinality (lk) relaxed to

0 (i.e., mandatory attributes become optional). Upper bound

cardinality (uk) is maintained. Association ends attached to

the lifted class are migrated to each direct superclass. The

lower bound cardinality constraints of the association ends

attached to classes other than the lifted class (RelatedTypei)

(if any) are relaxed to 0 in the same vein of the attributes

of the lifted subclass. When no generalization set is present

a Boolean attribute is added to each superclass, to indicate

whether the instance of the superclass instantiates the lifted class

(isSubTypey).

If a generalization set is used, a discriminator enumeration

is created (GSa) with labels corresponding to each SubTypey

of the generalization set (see Table 3). An attribute with

that discriminator type is added to each superclass (gsa).

Its cardinality follows the generalization set: it is optional

for incomplete generalization sets (and mandatory otherwise);

TABLE 2 The lifting operation.

TABLE 3 The lifting operation with a generalization set.

and multivalued for overlapping generalization sets (and

monovalued otherwise).

A precondition to the application of lifting is that the class is

a leaf of the present hierarchy (i.e., it has no subclass), and, if it is

a subclass in a generalization set, its siblings in the generalization

set must also be leaves of the present hierarchy. Approaches

that rely on lifting (such as one table per hierarchy) usually

rule out multiple inheritance, since in the presence of multiple

inheritance, the preservation of the cardinalities (lyi and uyi

becomes problematic) in the lifting step. Here, we operate under

the assumption that multiple inheritance is admissible, but

that further lifting steps will end up consolidating the various

associations introduced due to lifting to various subclasses into

a single one; in other words, we assume that lifted classes are

ultimately indirect specializations of a single class. In the one

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1020168
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Guidoni et al. 10.3389/fcomp.2022.1020168

FIGURE 5

Result of the lifting of Child , Adult , PersonalCustomer ,

CorporateCustomer , and Contractor .

table per hierarchy approach, this means that hierarchies are

disjoint (i.e., there is no class that specializes more than one top-

level class); in the one table per kind approach, this means that

kinds are disjoint (i.e., there is no class that specializes more than

a class).

The result of the lifting of CorporateCustomer ,

PersonalCustomer , Child , Adult , and Contractor

is shown in Figure 5. The lifting of Contractor to

Organization adds a discriminator isContractor

to that superclass and leads to a relaxed minimum

cardinality of 0 in the association end of hasContractor

attached to SupplyContract . This is because not all

organizations are involved in a SupplyContract . The

lifting of CorporateCustomer adds a discriminator

isCorporateCustomer to Organization along

with the (now optional) attributes creditRating and

creditLimit . The figure shows the accumulated results

of lifting of PersonalCustomer to Adult and the lifting

of Adult to Person . The lifting of the LifePhase

generalization set leads to the introduction of a lifePhase

attribute typed with a corresponding enumeration. The

multiplicity of the discriminator lifePhase is 1 given the

original generalization set is {disjoint, complete} (we

assume the cardinality [1..1] is the default multiplicity,

and hence omit it from mandatory monovalued attributes in

all diagrams).

3.2.1. Missing constraints due to lifted
attributes

The lifting of attributes has the following consequences:

(MC3) mandatory attributes are now optional, a situation which,

although necessary—since not all instances of the superclass are

instances of the lifted subclass—is inadmissible for instances

of the lifted subclass according to the original model. The

example model after lifting in Figure 5 admits the possibility

that a personal customer represented as an instance of Person

is assigned no value for creditRating . Further, (MC4)

instances of the superclass (even those that do not represent

instances of a lifted subclass) may indiscriminately be given

values to the lifted attributes. In the example model, it is

possible for a child represented as an instance of Person

to be assigned a value for creditCard , even though this

was inadmissible in the original model. The creation of a

discriminator attribute in the lifting process provides us the

means to formulate missing constraints to enforce the semantics

of the original model: assignment of a value to a lifted

attribute must be admitted conditionally on the value of the

discriminator. In the model shown in Figure 5, due to the

lifting of CorporateCustomer to Organization , we

need to condition the assignment of creditRating and

creditLimit to those instances of Organization for

which isCorporateCustomer=true . Since we have two

applications of lifting of PersonalCustomer to Adult

and then from Adult to Person , we have the condition

that persons may be assigned a creditRating and a

creditCard only when isPersonalCustomer=true (i)

and that is only admissible when lifePhase=ADULT (ii).

Note that discriminator attributes may also be subject to lifting

in further applications of the operation, and will also result in

additional occurrences of MC4 in those cases.

3.2.2. Missing constraints due to migration of
association ends to superclasses

The lifting operation results in the migration of association

ends from the lifted subclasses to their superclasses. As

a consequence, analogously to mandatory attributes, the

association ends opposite to the superclass must have their

lower bound cardinality (liy) relaxed. Again, the discriminator

attribute (isSubTypey or gsa) gives us the means to enforce the

semantics of the association is in the source model: (MC5),

in case liy = 1, we need to introduce a constraint that, for

each instance of the superclass, if isSubTypey = true (or

gsa is equal to or includes subTypey), then that instance

of the superclass must be associated to one instance of the

related class (RelatedTypei). (MC6), only those instances

with isSubTypey = true (or gsa is equal to or includes

subTypey) may be associated to an instance of the related

class (RelatedTypei), to ensure the association end typing

is respected. In the model shown in Figure 5, due to the

lifting of CorporateCustomer to Organization ,

we need to condition the association of an organization to

a supply contract through hasCorporateCustomer

to those instances of Organization for which

isCorporateCustomer=true . Likewise, due to the lifting

of Contractor to Organization , we need to condition
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the association of an organization to a supply contract through

hasContractor to those instances of Organization

for which isContractor=true . Since we have two

applications of lifting of PersonalCustomer to Adult

and then from Adult to Person , we have the condition that

persons must be associated with one SupplyContract when

isPersonalCustomer=true (i) and that is only admissible

when lifePhase=ADULT (ii). A demonstration that these

required (missing) constraints (MC3–MC6) indeed follow from

the semantics of the original model and the definition of lifting

is available in the Supplementary material (see lifting.p , in

the scope of the lifting of CorporateCustomer ).

3.3. Translating generalizations into
schemas

The literature on EER to relational schema mapping—

such as the seminal work of Teorey et al. (1986)—has early

on identified missing integrity constraints when translating

EER diagrams with generalization and subset hierarchies into

relational schemas. They have concentrated their efforts in

the one table per entity strategy, which does not apply any

operations such as flattening and lifting. In any case, the missing

constraints they have identified must be taken into account in

any transformation that still preserves generalizations in the

last translation step (e.g., one table per class, one table per

concrete class).

In these transformations, there is an emulation of

generalization in the relational schema. A table corresponding

to a subclass has as primary key a foreign key that refers to

entries in the table corresponding to the topmost superclass.

(In the case of multiple inheritance of classes in the top of

the hierarchy, this becomes a composite key). Let us consider

for instance the model in Figure 4, which is the result of the

flattening of abstract classes, and hence is the class model to be

translated into a relational schema in the one table per concrete

class approach. In the translation of this model (depicted earlier

in Figure 2), the table ADULT corresponding to the concrete

class Adult has a foreign key person_id which is the

primary key of PERSON, and likewise for CUSTOMERand

PERSONAL_CUSTOMER. A similar solution applies to the

other subclasses in the model.

3.3.1. MC7 missing constraint due to emulation
of a generalization

The emulation of generalization provides some guarantees

of referential integrity through the use of keys: an entry

representing a subclass instance will always be properly related

to its superclasses. However, the following missing integrity

constraint is identified by Teorey et al. (1986) (Section 3.1.4, with

terminology adjusted here): when a generalization set is disjoint,

it must be inadmissible for two tables corresponding to disjoint

subclasses to have entries that refer to the same “superclass key.”

This is required to preserve the semantics of disjointness and

applies in our example, to the tables CHILD and ADULTin the

one table per concrete class approach. Note that this constraint

is not required in approaches that remove all generalizations by

progressively applying flattening and lifting (e.g., one table per

leaf class, one table per hierarchy, and one table per kind).

4. The instrumented transformation

As we have observed in the previous section, the operations

produce cumulative effects throughout the transformation

process. We discuss here how this process is operationalized in

our implementation by maintaining a set of traces, which are

updated when each of the two operations are applied. We also

show the last step of the overall conceptual model to relational

schema transformation, which entails the production of triggers

to enforce the accumulated constraints from the final set of

traces and the refactored model.

4.1. Transformation process

Three class-to-table approaches have been implemented in

a plugin to Visual Paradigm2: one table per class, one table per

concrete class, and one table per kind. There are no manual

steps in our approach, and the implementation applies the

three transformation strategies fully automatically. The three

approaches are accommodated by applying flattening and lifting

operations in different orders and under different conditions. In

the one table per kind and in one table per concrete class, first,

all abstract classes are flattened, from the top of the hierarchy

until concrete classes are reached. In the one table per kind,

leaf concrete classes are lifted until all only kinds remain. In all

strategies, the resulting refactored class model is then translated

into a relational schema. (In the case of the one table per class

approach, no operations of flattening and lifting are performed,

and hence translation happens in the original model).

4.2. Traces

We have employed a trace table following the model shown

in Figure 6. A TraceTable is produced in each application of

the transformation and consists of a collection of TraceSet s

for each source class in the model. Each TraceSet identifies

the set of Trace s to target classes. The transformation begins

by initializing the TraceTable with one TraceSet for each

2 See https://github.com/nemo-ufes/forward-db-vp-plugin for the

full implementation.
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FIGURE 6

Trace table structure.

FIGURE 7

Initial trace table.

source class in the model each of which containing a single

Trace to the same class. As the transformation progresses,

traces in a trace set are updated. Required Filter s are added

in case of lifting, as will be detailed in the sequel.

Figure 7 shows the trace sets contained in the initial

TraceTable as an object diagram. For brevity, the traces for

Person , Organization , and SupplyContract classes

will be omitted as they remain unchanged throughout the

process to apply the one table per kind approach, which we

adopt in this example, as it applies both flattening (with an

intermediate result that reflects one table per concrete class)

and lifting.

In our running example, NamedEntity will be flattened

to the Person and Organization classes. This means that

NamedEntity will be identified by the union of all instances of

Person and Organization (rule presented in Section 3.1).

Thereby, is necessary to replace the traces that currently refer to

the flattened class with those referring to the subclasses in the

flattening operation. The same is true for the Customer class

and its subclasses. The result of this updates are shown in gray

in Figure 8. (If we are following the one table per concrete class

approach, this would be the final state of the trace table).

When lifting is performed on a subclass (to carry out one

table per kind strategy at this point in the transformation),

the traces currently referring to the lifted subclass are updated

FIGURE 8

Trace table after the flattening of NamedEntity and Customer .

with traces to the superclasses. Filters are added according

to the discriminators required as discussed in Section 3. The

set of mandatory properties that were lifted are added to the

filter. For example, the lifting of thePersonalCustomer

class indicates that it becomes identified in the Adult class

when the isPersonalCustomer attribute is equal to true ,

requiring the filling of the creditRating and creditCard

attributes. As the PersonalCustomer class no longer exists

in the resulting model, every reference to it in the trace

table is updated to the target class of the lifting process (in

this case, Adult ). Thereby, the PersonalCustomer and

Customer source classes that traced PersonalCustomer

now trace Adult (including filters). Figure 9 shows the result of

the lifting of PersonalCustomer , CorporateCustomer ,

and Contractor , whose lifting preconditions are established.

The trace for source classCorporateCustomer is updated to

Organization . The traces of source class Customer is also

updated, as it targeted the lifted classes. It now includes a trace

to Adult and a trace to Organization , since the previously

traced PersonalCustomer and CorporateCustomer

have been lifted to those classes. The trace for Contractor
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FIGURE 9

Trace table after the lifting of PersonalCustomer , CorporateCustomer and Contractor .

is updated to Organization . In all cases filters are added to

identify the subclass in the superclass.

Finally, Figure 10 shows the lifting of Child and Adult .

Note that since Adult already had a filter (in the trace set of

PersonalCustomer ), this filter is preserved, and the new

one is added (lifePhase=ADULT ). This is because the final

conditions that must be imposed on the target class are the

conjunction of these filters. At this point, no further operations

are applicable in the one table per kind approach and we

have the final state of the trace table for translation to the

relational schema. Each class in the set of target classes referred

to in the trace table corresponds to a table in the resulting

relational schema.

4.3. Generation of triggers

We focus here on the generation of triggers to detect

violations of the missing constraints that were identified in

Section 3. The trigger code is generated by using the final state

of the trace table and the source model.

4.3.1. Consequences of lifting

The process goes through the trace table to identify the target

classes that have filters that were the result of the lifting of

mandatory attributes; for example, isPersonalCustomer

for the target class Person and isCorporateCustomer

for Organization . A trigger specification must then detect

violations: if (i) the discriminator attribute in the filter

matches the filter value and at the same time any of the

columns corresponding to mandatory attributes are not filled

in (line 6 in Listing 1 for the PERSONtable and the filter

on isPersonCustomer ), addressing the missing constraint

MC3; or, if (ii) the discriminator attribute in the filter does not

match the filter value and any of the columns corresponding to

mandatory attributes are filled in (line 8 in Listing 1), addressing

the missing constraint MC4. (While the trigger shown in the

listing applies to inserts on PERSON, a trigger with the same

body is included for any subsequent updates. The listing of that

trigger is omitted here for brevity).

1 delimiter //
2 CREATE TRIGGERtg_person_i BEFORE INSERT ON person
3 FOR EACH ROW
4 BEGIN
5 declare msg varchar (128);
6 if (
7 (NEW.is_personal_customer = true AND (NEW.

credit_card is null OR NEW.credit_rating is null ))
8 OR
9 (NEW.is_personal_customer <> true AND (NEW.

credit_card is not null OR NEW.credit_card is not
null ))

10 )
11 then
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FIGURE 10

Trace table after the lifting operation on the generalization set with Child and Adult .

12 set msg = ’ERROR: ...[tg_person_i].’ ;
13 signal sqlstate ’45000’ set message_text = msg

;
14 end if;
15

16 if(
17 ( NEW.life_phase_enum <> ’ADULT’ AND (
18 (NEW.is_personal_customer is not

null AND NEW.is_personal_customer = TRUE ) OR
19 NEW.credit_rating is not null OR

NEW.credit_card is not null ) )
20 )
21 then
22 set msg = ’ERROR: ...[tg_person_i].’ ;
23 signal sqlstate ’45000’ set message_text = msg

;
24 end if;
25 END; //
26 delimiter ;

Listing 1 Trigger for the PERSONtable.

The process also identifies, for each target class (here

SupplyContract , Person , and Organization ),

whether they were originally associated with other classes in

the source model. When the associated source classes have

filters in their respective trace sets (here Contractor and

Customer for SupplyContract ), this means the associated

source classes were subject to lifting, and possible violations

of the original semantics need to be detected according

to the missing constraints identified in Section 3.2.2. The

following violations must be detected in the trigger: (i) if an

entry in the table corresponding to the target class (such as

SUPPLY_CONTRACT) is associated to a lifted source class

(such as Contractor ), but the required filters associated

to that source class are not satisfied (lines 7–19 of Listing 2

for SUPPLY_CONTRACTin its original association with a

Contractor ; lines 21–33 for the original association with a

Customer concerning its trace to Organization , and lines

35–48 for the original association with a Customer concerning

its trace to Person ). This addressesMC6.
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4.3.2. Consequences of flattening

The process also goes through the trace table to identify

those trace sets of originally associated classes with more than

one trace, which is a consequence of flattening. In our example,

this occurs for the association between SupplyContract

and Customer . As discussed in Section 3.1 (under “Missing

constraints”), we must ensure that a supply contract is

associated with exactly one instance in the union of

PersonalCustomer and CorporateCustomer in

lines 50–56 of Listing 2. This addresses the missing constraints

MC1 andMC2.

1 delimiter //
2 CREATE TRIGGERtg_supply_contract_i BEFORE INSERT ON

supply_contract
3 FOR EACH ROW
4 BEGIN
5 declare msg varchar (128);
6 if NEW.organization_contractor_id is not null
7 then
8 if not exists (
9 SELECT 1
10 FROMorganization
11 WHEREis_contractor = TRUE
12 AND organization.organization_id =

NEW.organization_contractor_id
13 )
14 then
15 set msg = ’ERROR: ...[tg_supply_contract_i

]’ ;
16 signal sqlstate ’45000’ set message_text=

msg;
17 end if;
18 end if;
19

20 if NEW.organization_customer_id is not null
21 then
22 if not exists (
23 SELECT 1
24 FROMorganization
25 WHEREis_corporate_customer = TRUE
26 AND organization.organization_id =

NEW.organization_customer_id
27 )
28 then
29 set msg = ’ERROR: ...[tg_supply_contract_i

]’ ;
30 signal sqlstate ’45000’ set message_text=

msg;
31 end if;
32 end if;
33

34 if NEW.person_id is not null
35 then
36 if not exists (
37 SELECT 1
38 FROMperson
39 WHEREis_personal_customer = TRUE
40 AND life_phase_enum = ’ADULT’
41 AND person.person_id = NEW.person_id
42 )
43 then
44 set msg = ’ERROR: ...[tg_supply_contract_i

]’ ;
45 signal sqlstate ’45000’ set message_text=

msg;
46 end if;
47 end if;
48

49 if( SELECT CASE WHENNEW.organization_customer_id
is null THEN 0 ELSE 1 END +

50 CASE WHENNEW.NEW.person_id is null is
null THEN 0 ELSE 1 END

51 ) <> 1
52 then
53 set msg = ’ERROR: ...[tg_supply_contract_i]’ ;
54 signal sqlstate ’45000’ set message_text=msg;
55 end if;
56 END; //
57 delimiter ;

Listing 2 Trigger for the SUPPLY_CONTRACTtable.

A listing for the trigger of the ORGANIZATIONtable is

provided in the Supplementary material.

4.4. Implementation restrictions

Whenever associations have lower bound cardinality 1 in

both association ends, there is a mutual dependency between

the instances of the associated classes. This is the case in the

example of the associations between SupplyContract

and Customer and between SupplyContract and

Contractor . In this case, enforcing both MC5 and MC6

after each insert becomes problematic, e.g., inserting a row in

the SUPPLY_CONTRACTtable would require an insertion in

the CUSTOMERtable and vice-versa. Unfortunately, this would

require related inserts to be part of a single transaction, and a

database implementation with transaction-level triggers, which

is not the case here. Hence, we have opted not to enforce MC5

and MC6 in tandem in the implemented trigger generation.

Violations of the missing constraint (MC5 in this case) could

be detected by a regular query that can easily be generated

from the trace table following the same procedure to obtain the

expressions concerning the triggering ofMC6.

We have not yet implemented support for detecting

violations of MC7, which applies to the emulation of

specialization with keys in disjoint hierarchies. As discussed

in Section 3.3, the constraint is not required in one table

per kind, which has been the focus of our efforts. To

support this constraint in general, further instrumentation of

the transformation process is required, in particular due to

flattening involving disjoint generalization sets. This is not

necessary for the particular case of OntoUML models, since

the required conditions for the relational schema can be

derived directly from the source model by inspecting the classes

stereotyped≪kind≫ and≪relator≫ along with generalization

set constraints.

5. Implementation and tests

Figure 11 contains a screenshot of the implemented object-

relational plugin for Visual Paradigm. The menu at the

top includes the “Database mapping” button to access the
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FIGURE 11

A screenshot of the object-relational plugin interface.

functionalities of the plugin. (The other buttons displayed are

part of the OntoUML plugin.3) The implementation supports

three transformation approaches (one table per class, one table

per concrete class, and one table per kind); different target DBMSs

for the generated scripts (MySql, Postgres, and standard SQL

1999); and some optimization and customization parameters.

In addition to the formal specification and automated proofs

for the flattening and lifting operations, we have performed

a number of tests on the implemented transformation. We

employed in the tests the first 30 projects published in

the OntoUML repository (Barcelos et al., 2022), which are

3 OntoUML plugin was developed to facilitate the development of

OntoUML models and verifies its compliance with OntoUML’s syntactical

rules (see Guizzardi et al., 2021 for more details), among other features.

This plugin can be found at https://github.com/OntoUML/ontouml-vp-

plugin.

produced by third parties (with a few exceptions in which

some of the authors of this paper were involved). We

used the one table per kind approach, as it exercises both

lifting and flattening. MySQL was selected as DBMS for the

tests. All generated scripts and triggers are provided in the

Supplementary material.

Table 4 provides a quantitative overview of the results,

reporting the number of generated tables (excluding those used

to represent N:N associations and multivalued attributes, which

are created regardless of the chosen object-relational approach)

as well as the number of constraints enforced by the resulting

artifacts. Constraints MC1 and MC2 are reported together

because the same generated command validates both cases (see,

e.g., lines 50–56 of Listing 2). The same occurs for MC3and

MC4. We excluded from the tests 8 of the first 30 projects

due to (i) syntactic errors in the source models, (ii) presence

of reserved keywords in labels, or (iii) complex handling of
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TABLE 4 Transformation process results.

Project Number

of classes

Number

of tables

MC1 and

MC2

constraints

MC3 and

MC4

constraints

MC6

constraint

aguiar2019ooco 55 19 12 16 28

ahmad2018aviation 21 5 0 10 16

aires2022valuenetworks-geo 24 19 18 0 6

amaral2019rot 48 26 48 2 18

amaral2020game-theory 22 11 0 2 16

amaral2020rome 48 35 38 0 16

amaral2022ethical-requirements 20 15 2 0 8

andersson2018value-ascription 13 11 0 0 2

bank-model 23 8 2 2 24

barcelos2013normative-acts 42 16 0 10 24

barros2020programming 12 1 0 6 0

Brazilian-governmental-organizational-structures 15 5 4 2 4

buchtela2020connection 19 6 0 0 2

buridan-ontology2021 53 20 0 10 82

carolla2014campus-management 17 12 0 0 18

castro2012cloudvulnerability 32 14 0 8 8

cgts2021sebim 29 10 0 2 2

chartered-service 11 11 0 0 0

clergy-ontology 29 13 0 14 58

cmpo2017 55 18 0 12 98

construction-model 13 7 0 4 6

debbech2019gosmo 22 10 0 2 34

datatypes (addressing complex datatype support and treating

reserved keywords is not yet implemented in the prototype).

As expected, the transformation of some projects did not

generate flattening-related MC1and MC2constraints because

they do not have associations involving abstract classes. These

constraints are quite numerous however in projects that include

classes defined at a high level of generality (typical of “core

ontologies”) such as “aguiar2019oco,” “aires2022valuenetworks-

geo,” “amaral2019rot,” and “amaral2020rome.” Further, some

of the projects do not include MC3 and MC4 because they

have no attributes in lifted classes or have no concrete class

hierarchies of depth greater than two (in which discriminators

from a previous lifting round are themselves lifted). MC6

occurrences are the most common as they relate to the typing

of associations in lifted classes (and thus are required for

every association involving lifted classes independently of the

cardinalities). The only projects with no occurrences of MC6

are “barros2020programming” (as it is a pure taxonomy with no

associations) and “chartered-service” (that has associations, but

does not employ specialization).

We have selected one project for exhaustive inspection,

namely “aguiar2019ooco”, which has the largest number of

classes in the sample and for which all types of constraints

were generated. We have manually inspected the source

model to derive test cases. The test cases (reported in the

Supplementary material) cover all of the constraints required

to preserve the semantics of the source model in the present

of lifting and flattening. Sixty test cases consist in attempting

to insert or update data that would offend the original model

semantics, and hence a pass in these test cases is an insert or

update error raised by the generated triggers (the number of

test cases does not correspond to the total number of missing

constraints because some test cases check inserts only, some

other test cases check updates only, and a number of those

concernmore than onemissing constraint). The test cases jointly

cover 100% of the conditions (IFs) in the generated triggers for

the model. Another 36 test cases were added to insert or update

data that does not offend the original model semantics, to make

sure that they would not result in unintended insert or update

errors.

An example of test case (TC_AGUIAR_MC3and4_001) is

shown in Listing 3, that exercises the database corresponding

to the fragment shown in Figure 12 (from “aguiar2019ooco”).

As a result of the lifting process, two discriminator columns are

introduced in the table corresponding to the Language kind.

The is_object_oriented_programming_language
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FIGURE 12

Fragment of the “aguiar2019ooco” project that results in iterated

lifting.

discriminator column is introduced as a result

of the first application of lifting, and the

is_programming_language is introduced in the

second application of lifting. As a consequence, the column

is_object_oriented_programming_language can

only be given a value when is_programming_language

= “1” (i.e., corresponds to true ). The test case attempts

to insert a new language, with identifier 3 (language_id

= 3), marked as an object-oriented programming language

(is_object_oriented_programming_language

= “1” ), but not marking it as a programming language

(is_programming_language = “0” ). This should

result in a violation of the insert trigger for the language table.

1 Test case name: TC_AGUIAR_MC3and4_001
2 Project name: aguiar2019ooco
3 Missing constraints evaluated: MC3and4 Number

: 1 Action: Insert
4 Objective: Check whether MC3 and MC4 are correctly

enforced in the case of lifting of "Object-
Oriented Programming Language" and "Programming
Language".

5 Test: Insert a row in the table ’language’ that is
marked as an "Object-Oriented Programming Language
" but not as "Programming Language".

6 Expected result: Error.
7 Script:
8

9 INSERT INTO ‘language‘
10 (‘language_id‘, ‘is_programming_language‘, ‘

is_object_oriented_programming_language‘)
11 VALUES (’3’, ’0’, ’1’);
12

13 Return message: ERROR: Violating conceptual model
rules[tg_language_i].

14 Test result: PASS
Listing 3 Example test case TC_AGUIAR_MC3and4_001.

We have performed some simple tests to assess the

performance overhead imposed with the introduction of the

TABLE 5 Transformation design time performance.

Project Schema

generation (time

in seconds)

Triggers

generation (time

in seconds)

aguiar2019ooco 0.019 0.026

buridan-ontology2021 0.056 0.063

cmpo2017 0.168 0.237

validation triggers. We selected the table from our test set

that is accompanied by the largest number of constraints in

triggers, namely the METHOD_MEMBER_FUNCTIONtable in

“aguiar2019ooco.” This table’s triggers enforce seven constraints

that resulted from lifting and flattening. We have contrasted the

performance of 10 individual record inserts in the table with and

without the triggers. We have found the following results: 10

ms on average for an insert in the table when the triggers are

enabled; and 9 ms on average for an insert when the triggers are

disabled. This indicates the overhead is not prohibitive. Further

performance analysis in actual applications is straightforward,

since triggers can be disabled and regular operation (that does

not violate constraints) assessed directly.

Finally, in order to assess the performance of the

transformation itself (design time performance), we have

measured the time required to generate all relational schemas

and triggers in the largest models in our test set. The results are

presented in Table 5, showing the response times in seconds for

the generation of the schema and of the scripts for the three

largest projects in the test set. Measurements were obtained in

a Windows 10 notebook with an i3 1.8 GHz processor (third

generation), 250 GB SSD and 8 GB RAM.

6. Related work

Banerjee et al. (1987) propose well-defined rules that

cover many aspects of object-oriented database schema

manipulations, including “dropping an existing class.”

Differently from our work, their overall objective is to perform

evolutionary manipulations of object-oriented schemas, so

there is no concern for preservation of all aspects of the original

model. The same can be said of several other works, like

those of Penney and Stein (1987) and Lerner and Habermann

(1990). They also rely on the solution space of object-oriented

database systems.

Some work on refactoring strategies on UML class diagrams

aim to preserve the syntactic correctness and/or semantics of

the original model. For example, Markovic and Baar (2005)

detail some refactoring rules along with their impacts on OCL

constraints. Baar andMarkovic (2006) focus on the preservation

of semantics in the face of a “MoveAttribute” operation. As
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discussed in Section 3 concerning the refactoring presented

by Fowler et al. (2012), the intent here is also model editing, and

so the supported operations do not match those we require for

relational schema realization.

There are also different approaches that aim to obtain

SQL implementations of explicitly formulated OCL constraints.

Some of these approaches, e.g., OCL2SQL (Demuth and

Hußmann, 1999; Demuth et al., 2001), Incremental OCL

constraints checking (Oriol and Teniente, 2014) and OCLFO

(Franconi et al., 2014) are focused on mapping OCL Boolean

expressions only, while others such as SQL-PL4OCL (Egea

and Dania, 2017) and MySQL4OCL (Egea et al., 2010)

consider OCL expressions in general. One other approach,

namely, GeoUML (Pelagatti et al., 2009) considers the

SQL implementation of special-purpose OCL constraints for

expressing geo-spatial relations.

Some ontology-based approaches focus on: (i) the relational

realization of computational OWL ontologies, or (ii) on the

access of data in relational databases using computational

ontologies. In the former group, we have approaches such as

those of Vyšniauskas et al. (2011) and Afzal et al. (2016), which

implement the one table per class strategy, thus, mapping each

OWL class to a relational table. In the latter group, we have

Ontology-Based Data Access (OBDA) techniques (Poggi et al.,

2008) that work with the translation of high-level queries into

SQL queries. Users of an OBDA solution are required to write a

mapping specification that establishes how entities represented

in the relational database should be mapped to instances of

classes in a computational (RDF- or OWL-based) ontology. The

OBDA solution then enables the expression of queries in terms

of the ontology, e.g., using SPARQL. Each query is rewritten by

the OBDA solution following the manually-written mappings

into SQL queries that are executed at the database. Results of the

query are then mapped back to triples and consumed by the user

using the vocabulary established at the ontology. See Guidoni

et al. (2021) for an integration of ODBA techniques with the

forward engineering of relational schemas as described in this

paper. In that work, we provide an approach to automatically

generate the otherwise manually-rewritten mappings. These

mappings are used by the ODBA solution to automatically

rewrite queries expressed in terms of the source conceptual

model. This includes the automatic rewriting of polymorphic

queries expressed in terms of superclasses that are flattened out.

There is a variety of studies focusing on mapping structural

conceptual models, such as EER diagrams or UML class

diagrams, into relational schemas, such as those performed

by Shah and Slaughter (2003), Hull and King (1987), Teorey

et al. (1986), and Pergl et al. (2013). Shah and Slaughter

(2003) discuss the various class-to-table strategies but do not

provide detailed model transformation rules for realizing these

strategies, and do not consider the consequences of the strategies

in terms of preservation of semantics. The seminal study

presented by Teorey et al. (1986) proposes transformation

rules to bridge the constructs of EER diagrams with those of

relational schemas, identifying missing constraints for disjoint

generalizations as we discussed in Section 3.3. More recently,

Pergl et al. (2013) have discussed how to transform OntoUML

models into relational schemas. In his Ph.D. thesis, Rybola

(2017) proposes the transformation process, presenting quite

sophisticated ways of preserving integrity constraints. Validation

triggers were proposed to preserve the semantics of the original

constructs from the source OntoUML model (modal aspects

of the stereotypes which we do not address here). A common

trait of these approaches is that they consider solely the

one table per class strategy for transforming generalization

hierarchies. While this yields a straightforward relation between

the conceptual model and the relational schema, using the

resulting relational schema may be cumbersome depending on

the source conceptual model, in particular in the presence of

generalization hierarchies, which are emulated as we discussed

in Section 3.3. For example, retrieving all the attributes of

an instance of a leaf class requires joins involving a number

tables equal to the depth of the whole specialization hierarchy.

Because of this, these tools are usually employed by providing

a UML class diagram that is in fact a visual representation

of the relational schema: the model is produced manually

at a lower level of abstraction, with automation restricted

to straightforward translation. In some cases, stereotypes for

primary and foreign keys are introduced in the notation (Shah

and Slaughter, 2003).

Alloy is commonly used in the literature to validate semantic

changes in UML class models. For example, the work of Cunha

et al. (2015) proposes to identify semantic losses through

bidirectional transformations using Alloy. Their job consists

of performing transformations for Alloy through the UML

and OCL specifications, and to translate them back to UML

and OCL, thus allowing to verify and validate the results of a

transformation in Alloy. Gheyi et al. (2007) present a catalog

of primitive transformations to predict whether a change in the

source model will cause semantic loss. To do so, the authors

formalize a static semantics for Alloy to match the source model

semantics. With this, it is possible to predict whether any change

in the source model will cause semantic losses. These approaches

provide useful general frameworks which could be employed to

formalize the operations we have discussed here.

Finally, there are a number of model transformation

specification languages in the literature, including most

prominently ATL (Jouault and Kurtev, 2005), the Epsilon

Transformation Language (ETL) (Kolovos et al., 2008) and those

solutions implementing the MOF QVT specification (Kurtev,

2007). These languages focus on the specification of a model

transformation in terms of the constructs present in source and

target metamodels. Model transformation specifications written

in these languages are usually interpreted with a corresponding

transformation engine to execute the transformation of a specific

source model. Model transformation languages operate at the
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abstract syntax level and are neutral with respect to the semantics

of the source and target languages. We focus here instead on the

content of the transformation, i.e., we are concerned with the

design decisions that can be generalized into a specific model

transformation and with the semantics of the source model

and its correspondence with the resulting relational schema.

In principle, any of these transformation languages could have

been used for the implementation of the transformation we

present here.

7. Conclusions

We have focused here on the consequences of various

class-to-table transformation strategies, such that the relational

schema can be complemented with integrity constraints that

reflect the source conceptual model constraints. We have

formulated the approach in terms of the consequences of

flattening and lifting thus account for various transformation

strategies in the literature, including one table per concrete class,

one table per leaf class, one table per kind, one table per hierarchy.

A common characteristic of many approaches in the

literature (Teorey et al., 1986; Hull and King, 1987; Shah and

Slaughter, 2003; Pergl et al., 2013) is that they consider solely

the one table per class strategy for transforming generalization

hierarchies, which is also the approach adopted in the various

commercial tools to perform this kind of transformation.

A result is that the conceptual model is in fact produced

manually by the modeler at a lower level of abstraction, with

automation restricted to straightforward translation. That is

detrimental to the objectives of model-driven development,

including abstraction and platform-independence. In this light,

our work contributes to a fuller application of model-driven

transformation of conceptual models, by effectively decoupling

conceptual models from their implementation.

We have elaborated a formalization (see

Supplementary material) based on a simple translational

semantics to demonstrate that the application of the operations

of flattening and lifting does not introduce elements that

contradict the original source model (axioms added due to

flattening and lifting do not lead to an unsatisfiable theory).

Further, the formalization we have provided demonstrates

that the missing constraints are indeed required to preserve

constraints implied by the model before the application of each

operation. Despite that, more general formalization would be

desirable. In particular, we have yet to demonstrate formally

that the set of missing constraints we have identified is complete

with respect to the original model.

Approaches that use flattening require polymorphic queries

to be written with unions of the (base) tables corresponding

to the subclasses of the flattened class. For example, queries

involving instances of Customer in our running example must

be written in terms of the union of PERSONAL_CUSTOMER

and CORPORATE_CUSTOMERin the one table per concrete

class approach. We have already worked out an approach to be

reported soon based on the generation of database views that

produce the unions that are required for polymorphic queries

involving classes that are flattened. This simplifies polymorphic

query rewriting, and reflects flattened classes at the level of the

relational schema. This approach also leverages the trace sets

we have discussed in this paper. See Guidoni et al. (2021) for

a solution for automatic polymorphic query rewriting based on

OBDA techniques integrated with the approach described in

this paper.

Approaches based on lifting further require the

user to perform queries involving instances of lifted

subclasses to be written with filters based on the generated

discriminators. This is also addressed in our view generation

approach, and is supported by the OBDA-based approach

in Guidoni et al. (2021).

An important limitation of the approach we discuss here

is that we do not deal with existing (OCL) constraints that

need to be rewritten in the transformation process due to lifting

and flattening. (For example, consider the constraint that a

contractor should not be a customer of itself in the scope of a

supply contract). We expect we can profit from query rewriting

strategies in the literature—such as those used in Ontology-

Based Data Access (Calvanese et al., 2017)—to address this in

the future. We also aim to investigate to what extent we can

leverage the aforementioned views such that OCL invariants can

be directly enforced at the database level with references to those

views instead of rewriting. We also do not address behavioral

and dynamic aspects, and provide no special treatment for

whole-part relations.
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