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Introduction: This paper proposes a Bayesian surprise learning algorithm

that internally motivates the cognitive radar to estimate a target’s state (i.e.,

velocity, distance) from noisy measurements and make decisions to reduce

the estimation error gradually. The work exhibits how the sensor learns from

experiences, anticipates future responses, and adjusts its waveform parameters

to achieve informative measurements based on the Bayesian surprise.

Methods: For a simple vehicle-following scenario where the radar

measurements are generated from linear Gaussian state-space models, the

article adopts the Kalman filter to carry out state estimation. According to

the information within the filter’s estimate, the sensor intrinsically assigns a

surprise-based reward value to the immediate past action and updates the

value-to-go function. Through a series of hypothetical steps, the cognitive

radar considers the impact of future transmissions for a prescribed set of

waveforms–available from the sensor profile library–to improve the estimation

process.

Results and discussion: Numerous experiments investigate the performance

of the proposed design for various surprise-based reward expressions. The

robustness of the proposed method is compared to the state-of-the-art for

practical and risky driving situations. Results show that the reward functions

inspired by estimation credibility measures outperform their competitors when

one-step planning is considered. Simulation results also indicate that multiple-

step planning does not necessarily lead to lower error, particularly when the

environment changes abruptly.

KEYWORDS

linear Gaussian dynamic systems, cognitive radar, expectation of Bayesian surprise,

surprise-based internal reward, estimation credibility

1. Introduction

With the rise of new generation cars capable of autonomous behavior, safety remains

essential to individuals considering their next vehicle (Sokcevic, 2022). Security in self-

driving cars requires all major parts to communicate effectively with the environment,

so it functions accurately at all times. Consumers expect security to be built into

the design, development, and integration processes to demonstrate high accuracy and
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trustworthiness in these autonomous systems (Hou et al., 2021,

2022; Wang et al., 2021a,b).

According to the recent Deloitte consumer study, advanced

driver assistance systems (ADAS) such as blind spot detection

and automatic emergency braking are at the top of the list

of consumers (Proff et al., 2022). The essential goal of ADAS

technology is to use a variety of sensors [e.g., radar, LiDAR

(light detection and ranging), camera, etc.] and software to

trigger intelligent adaption, optimize system performance, and

mitigate potential risks (Hou et al., 2014; Jo et al., 2015; Hussain

and Zeadally, 2018). Unlike video cameras and LiDAR, radar

isn’t affected by bad weather and light conditions, and it can

partially detect hidden targets behind other vehicles (Hakobyan

and Yang, 2019; Roos et al., 2019). Also, a radar sensor is small,

lightweight, and cheap, which makes it a perfect candidate to

advance safety benefits in ADAS for automotive manufacturers

(Neel, 2018). Therefore, an intelligent radar that can help a

self-driving car map its surroundings is significant to achieving

higher levels of automation and safety.

The cognitive radar (Haykin, 2006) is one engineering

solution that enables current driving technology to reach

autonomy (Greco et al., 2018; Hou et al., 2021). As a situation

assessment module that is a critical system component of an

intelligent adaptive system (Hou et al., 2014), the cognitive radar

automatically and constantly interacts with its environment

to collect information, learn, plan and adjust its operating

parameters to perform reliable target tracking without human

intervention. The model is based on how biological agents

acquire knowledge and adapt to the world’s uncertainties

through the perception and action process (Haykin et al., 2012).

The sensor decides on a transmit waveform that anticipates a

better estimate of the target’s state (i.e., distance, velocity) given

the information in the received radar measurements. However,

for developing trustworthy self-driving cars, unpredictable

driving scenarios (e.g., sudden stops) challenge the design of

cognitive radar (Gurbuz et al., 2019). The design goal is to

estimate the target’s state, which minimizes the mean squared

error to gain informative radar measurements over time. To

this end, this paper focuses on designing a cognitive radar that

quantifies new information from noisy radar measurements,

learns from past transmissions, and anticipates future responses

to enhance state estimation in uncertain driving situations.

Numerous studies in cognitive science suggest that

surprising events which occur far from expectation trigger

attention, promote learning, and information-seeking behaviors

(Baldassarre and Mirolli, 2013; Stahl and Feigenson, 2015).

Surprise is a feeling of astonishment caused by the dissimilarity

between an expectation and an actual observation (Barto et al.,

2013), which is used in prior works to measure the amount

of information associated with an unexpected event (Baldi

and Itti, 2010). Amongst the different definitions of surprise

(Shannon, 1948; Baldi, 2002; Friston, 2010; Palm, 2012; Faraji

et al., 2018), the most well-known expressions are the Shannon

surprise (Shannon, 1948), the Bayesian surprise (Baldi, 2002),

and the free energy (Friston, 2010). For a biological agent,

the Shannon surprise measures the unlikeliness of an event

outcome (Shannon, 1948). The Bayesian surprise measures how

much an agent’s belief changes when a new observation is made

(Baldi, 2002). Meanwhile, free energy combines both ideas of

the Bayesian surprise and the Shannon surprise for agents to

make better predictions and select suitable actions (Friston,

2010).

This paper applies the Bayesian surprise as the main

methodology to compute the amount of new information

contained in received radar measurements. Previous works have

adopted the Bayesian surprise for different model assumptions

and applications to measure how much information new data

provides based on prior knowledge (Itti and Baldi, 2009; Baldi

and Itti, 2010; Sutton and Barto, 2018; Çatal et al., 2020;

Liakoni et al., 2021). For example, the Bayesian surprise is

used to predict the human gaze for computer vision and

surveillance applications in Itti and Baldi (2009) and Baldi

and Itti (2010). Similarly, the Bayesian surprise is considered

in Çatal et al. (2020) to detect anomalies in an unsupervised

manner for the safe navigation of autonomous guided vehicles.

Bayesian surprise is also viewed in associative learning, where

it’s employed as an error-correction learning rule for the

Rescorla-Wagner model (Sutton and Barto, 2018). In addition,

Liakoni et al. (2021) develops a Bayesian interpretation of

surprise-based learning algorithms that modulates the rate

of adaptation to new observations for estimating model

parameters. In a recent paper by the same authors of this

article, the Bayesian surprise is proposed as the primary

approach to improving the state estimation problem in cognitive

radar (Zamiri-Jafarian and Plataniotis, 2022). The research

shows that minimizing the state estimation error is aligned

with maximizing the expectation of Bayesian surprise, which

leads to acquiring informative radar measurements. The ideas

discussed in Zamiri-Jafarian and Plataniotis (2020, 2022) show

that the Bayesian surprise provides a unifying framework for

understanding commonalities amongst methods which lead to

exciting connections and inspire future developments.

For a simple vehicle-following scenario, this paper presents

a new design of cognitive radar that learns and plans based on

the Bayesian surprise. The radar measurements are constructed

from a class of linear Gaussian dynamic systems where the

model dynamics are derived for constant acceleration and

constant jerk. Assuming that the system’s parameters are

available, the article applies Kalman filtering (Simon, 2006)

to perform state estimation. Given that the Bayesian surprise

is proposed to measure the information within the current

state estimate, this research adopts a reinforcement learning

method where the reward is calculated internally by the sensor

rather than being assigned in a supervised fashion. Since the

intrinsic reward drives the cognitive radar to learn from past

transmissions, we argue that the rewardmust relate to the design
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objective. In this regard, the authors investigate how to define a

reward function that aligns with reducing the estimation error.

Furthermore, the paper explores the possibility of enhancing

the decision-making process by adding a multiple-step planning

mechanism that hypothetically anticipates the sensors’ future

estimation response for an available set of actions. This design

assumes that the sensor is equipped with a predefined set of

measurement noise covariances, where each one signifies a

distinct waveform.

Despite considerable success in modeling cognitive

radar (Haykin, 2012; Haykin et al., 2012; Bell et al., 2015;

Feng and Haykin, 2018), limited studies address the design

aspect according to the choice of information measure and its

corresponding waveform selection strategy. A comprehensive

analysis of potential techniques is provided in Zamiri-Jafarian

and Plataniotis (2022) that re-introduces alternative information

measures in the context of linear Gaussian dynamic models and

derives the waveform selection procedure for each approach

with respect to attaining informative radar measurements. For

the case where the design also assumes learning, the state-of-

the-art applies the Shannon entropy to quantify information

and determines the internal reward as a function of the Shannon

entropy (Haykin, 2012; Haykin et al., 2012; Feng and Haykin,

2018). To facilitate comparison, this paper examines a series

of reward expressions in terms of the Bayesian surprise and

illustrates how they are related to the design objective. However,

finding the optimal reward is beyond this research.

Moreover, the article carries out numerous Monte Carlo

simulations to thoroughly evaluate and compare the estimation

performance of the proposed cognitive radar with the state-

of-the-art. A frequency-modulated continuous wave (FMCW)

radar sensor is considered that operates in the 77 GHz frequency

band (Hasch et al., 2012). The authors set the parameters of the

FMCW radar to support single-target tracking in highway and

urban environments. The paper examines different aspects of

estimation performance by implementing two practical driving

encounters; one demonstrates driving on the highway with

constant acceleration, while the other adopts an unexpected

stopping during an in-city driving experience. The credibility of

the proposed learning and planning algorithm is verified with

respect to the root mean square error (RMSE). Results explore

whether the tracking performance improves when the radar

switches from one-step planning to multiple-step planning in

both driving scenarios.

The remaining of this paper is organized as follows. Section

2 provides the model assumptions and presents the research

objective in designing cognitive radar for a simple vehicle-

following scenario. Section 2 derives two sets of linear Gaussian

dynamic systems that determine the basis of modeling practical

driving scenarios. Section 3 discusses prior research and

presents our proposed learning solution to the state estimation

problem in cognitive radar. Section 4 investigates the estimation

performance of the proposed learning and planning algorithm

by emulating real-life driving experiences in highway and urban

environments. Results are compared to the state-of-the-art for

different experiments. Finally, Section 5 concludes the paper.

1.1. Notation

In this paper, scalar variables are represented by non-bold

lowercase letters (e.g., c), the vectors are denoted by bold

lowercase letters (e.g., x), matrices and sets of vectors are shown

as uppercase bold letters, (e.g., F). In addition, tr{.}, |.|, and

||.|| represent the trace operator (e.g., tr{A}), the determinant

operator (e.g., |A|) and the norm operator (e.g., ||x||2
P−1 =

xTP−1x). Also, {.}T applies the transpose operation on matrices

(e.g., FT).

2. Problem formulation

Figure 1A depicts a simple vehicle-following scenario, where

a host vehicle equipped with a cognitive radar tracks the

state dynamics of a target vehicle (i.e., distance, velocity). The

cognitive radar can detect the dynamic changes of the target

vehicle from the received radar signal and consequently adapts

the dynamics of the host vehicle to prevent accidents. The

radar signal that hits the target vehicle and bounces back to the

host vehicle presents useful information about the target’s state.

According to this information, the cognitive radar decides on a

waveform (or signal) that improves the future estimate of the

target’s state and selects it for transmission.

Reliable and accurate target tracking is the primary design

goal of cognitive radar. To fulfill this objective, Figure 1B

illustrates the general model of a cognitive radar as an example

of S. Haykin’s cognitive dynamic system (Haykin, 2012). In its

most general structure, the cognitive radar includes a radar

environment, a receiver, a feedback information channel, and

a transmitter. According to Figure 1B, the target vehicle is

embedded in the radar environment. The radar is equipped with

a sensor profile library that contains distinct waveforms suitable

for short and long-range applications. In a single cycle that takes

place at one time instant, the system undergoes various stages.

The receiver estimates the target’s state (i.e., distance, velocity)

by processing radar measurements and then conveys some

form of this estimate to the transmitter through the feedback

information channel. Based on the information provided by

the receiver, the transmitter chooses the waveform—available

from the sensor profile library—that contributes more to state

estimation and leads to informative radar measurements. Lastly,

the selected waveform is applied to the radar environment and

the same cycle is repeated.

This paper proposes a comprehensive methodology to gain

informative radarmeasurements that reduce the state estimation

error on a cycle-by-cycle basis. In a recent article, the authors
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FIGURE 1

(A) A simple vehicle-following scenario (Feng and Haykin, 2018), and (B) the block diagram of the cognitive radar as an autonomous system

(Zamiri-Jafarian and Plataniotis, 2022).

FIGURE 2

A learning design of cognitive radar for L-step planning.

adopt a simple design where the sensor measures the impact

of prospective waveforms—available from the sensor profile

library—to state estimation and selects the one that maximizes

the expectation of Bayesian surprise. Compared to the authors’

work in Zamiri-Jafarian and Plataniotis (2022), this paper adopts

a reinforcement learning technique with surprise-based intrinsic
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rewards to improve tracking performance mainly caused by

risky driving situations (e.g., sudden stops). Figure 2 depicts

the block diagram of a cognitive radar capable of learning

from past transmissions and anticipating future responses by

planning multiple time steps, which is inspired by Haykin’s

cognitive dynamic system (Haykin, 2012). To this end, the

following introduces the model assumptions for designing the

cognitive radar and mathematically formulates the objectives of

this research.

2.1. Linear Gaussian dynamic system

For the simple driving scenario shown in Figure 1A, the

paper assumes the radar measurements are constructed from a

class of linear Gaussian state-space models (Simon, 2006), which

at discrete time k are expressed as

xk+1 = Fkxk + wk

zk = Hkxk + vk
(1)

where xk ∈ R
n, Fk ∈ R

n×n, and wk ∈ R
n are respectively

the state vector, the transition matrix, and the state noise; while

zk ∈ R
m, Hk ∈ R

m×n, and vk ∈ R
m denote the measurement

vector, the measurement matrix, and the measurement noise,

respectively. According to Equation 1, the evolution of the state

follows first-order Markov-chain process and the noise elements

are assumed additive zero-mean white Gaussian distribution

(i.e., wk ∼ N (0n×1,Qk) and vk ∼ N (0m×1,Rk)). Qk ∈ R
n×n

and Rk ∈ R
m×m represent the state noise covariance and the

measurement noise covariance, respectively. Furthermore, the

initial state follows a Gaussian distribution, denoted as x0 ∼

N (x̂(0|0),P(0|0)), and is mutually uncorrelated with the noise

elements.

Depending on the driving scenario, the state xk represents

the entities of motion regarding the host and target vehicle,

including distance, velocity, acceleration, etc. To emulate real-

life highway and urban driving experiences, the following

demonstrates two sets of linear Gaussian dynamic systems for

constant acceleration and constant jerk.

2.1.1. Constant acceleration

For the case which constant acceleration is presumed during

driving experience, xk, is defined as follows

xk = [v0x,k, a
0
x,k, dx,k, v

1
x,k, a

1
x,k]

T , (2)

where v0
x,k

and a0
x,k

are the velocity and acceleration of the

host vehicle; v1
x,k

and a1
x,k

are the velocity and acceleration of the

target vehicle; dx,k represents the longitude distance between the

two vehicles. According to the equations of motion for constant

acceleration, Fk and Qk are derived as (Venhovens and Naab,

1999):

Fk =















1 Ts 0 0 0

0 1 0 0 0

−Ts −T2
s /2 1 Ts T2

s /2

0 0 0 1 Ts

0 0 0 0 1















,

Qk =















T4
s /4 T3

s /2 −T5
s /12 0 0

T3
s /2 T2

s −T4
s /6 0 0

−T5
s /12 −T4

s /6 T6
s /18 T5

s /12 T4
s /6

0 0 T5
s /12 T4

s /4 T3
s /2

0 0 T4
s /6 T3

s /2 T2
s















σ 2
q

(3)

where Ts and σ 2
q refer to the sample time and the state

noise variance, respectively. Assuming that the available radar

measurements are the velocity of the target vehicle and the

longitude distance, the measurement matrix becomes

Hk =

[

0 0 0 1 0

0 0 1 0 0

]

. (4)

The measurement noise covariance depends on the

waveform that the radar sensor transmits for target tracking.

FMCW is the most standard modulation format, where linear

frequency ramps with different slopes are conveyed (Roos et al.,

2019). The FMCW modulation with Gaussian shaped pulse is

commonly used in designing autonomous radars since it exhibits

excellent range and velocity resolution. Hence, for a Gaussian

shaped pulse with FMCW modulation, Rk is defined as follows

(Kershaw and Evans, 1994):

Rk(λk−1, bk−1) =






c2

(2π fc)2η
( 1
2λ2

k−1

+ 2λ2
k−1

b2
k−1

) −
c2bk−1λ

2
k−1

2π fcη

−
c2bk−1λ

2
k−1

2π fcη

c2λ2
k−1
2η






(5)

where λk−1, bk−1, c, fc, B and η are respectively the pulse

duration, the chirp rate, the speed of light, the carrier frequency,

signal bandwidth and the received signal-to-noise ratio (SNR).

As shown in Equation 5, the measurement noise covariance

depends on the pulse duration and chirp rate at k−1 time index.

This indicates the systems selection of the transmitted waveform

(i.e., λk−1 and bk−1) at the previous time cycle influences the

radar measurements (i.e., zk) at the current cycle. Note that

both λk−1 and bk−1 are the design parameters that signifies the

radar waveform based on the tracking application (e.g., single or

multiple target tracking). Since the transmitter and the receiver

of the radar sensor are both mounted on the host vehicle, the

received SNR for the target vehicle located at distance d =
√

d2x + d2y maybe obtained as (Kershaw and Evans, 1994):

η = (
d0

d
)4 (6)
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where dy is the lateral distance and d0 is the distance at which 0

dB SNR is achieved.

2.1.2. Constant jerk

Implementing more practical driving scenarios (i.e., slowing

down, detouring) requires an inconstant acceleration that varies

over time. Since jerk is the acceleration derivative, we also

determine the model parameters of Equation 1 for constant jerk.

To do so, the state vector is defined as

xk =
[

v0
x,k

, a0
x,k

, j0
x,k

, dx,k, v
1
x,k

, a1
x,k

, j1
x,k

]T
(7)

where j0
x,k

and j1
x,k

represent the jerk of the host vehicle and

target vehicle, respectively. Consequently, Fk andQk are derived

from the equations of motion with the assumption of constant

jerk as follows

Fk =

























1 Ts T2
s /2 0 0 0 0

0 1 Ts 0 0 0 0

0 0 1 0 0 0 0

−Ts −T2
s /2 −T3

s /6 1 Ts T2
s /2 T3

s /6

0 0 0 0 1 Ts T2
s /2

0 0 0 0 0 1 Ts

0 0 0 0 0 0 1

























, (8)

Qk =





















T6
s /36 T5

s /12 T4
s /6 −T7

s /144 0 0 0

T5
s /12 T4

s /4 T3
s /2 −T6

s /48 0 0 0

T4
s /6 T3

s /2 T2
s −T5

s /24 0 0 0

−T7
s /144 −T6

s /48 −T5
s /24 T8

s /288 T7
s /144 T6

s /48 T5
s /24

0 0 0 T7
s /144 T6

s /36 T5
s /12 T4

s /6

0 0 0 T6
s /48 T5

s /12 T4
s /4 T3

s /2

0 0 0 T5
s /24 T4

s /6 T3
s /2 T2

s





















σ 2
q . (9)

Since the aim of the radar is to track v1
x,k

and dx,k, the

measurement matrix is adjusted as follows

Hk =

[

0 0 0 0 1 0 0

0 0 0 1 0 0 0

]

, (10)

and the measurement noise covariance is computed from

Equation 5.

While Equation 1 suffices to model the motion dynamics of

simple driving situations, modeling complex driving scenarios

that consider multiple targets requires switching dynamic

models that may not necessarily be expressed as linear Gaussian

dynamic systems.

2.2. Sensor profile library

As illustrated in Figure 2, the cognitive radar is equipped

with a prescribed set of measurement noise covariances, referred

to as the sensor profile library. It was discussed that the

measurement noise covariance is computed based on the pulse

duration and chirp rate (see Equation 5). The sensor profile

library holds a large set of measurement noise covariances,

denoted as R. Since going through the entire library at each

time cycle to select the informative measurement (or optimum

waveform) is computationally expensive and time-consuming,

a localized set is considered instead. This paper adopts a k-

Nearest Neighbours (kNN) method to obtain the localized set

RL
k
= {R(1),R(2), ...,R(NL)} ∈ R, which includes measurement

noise covariances that are neighbor to Rk. The work in Feng

and Haykin (2018) views this localization approach as a form

of an attention mechanism, which is one of the basic principles

of cognition in modeling intelligent radar sensors.

2.3. Research objective

The ultimate goal of the cognitive radar is to estimate the

target’s state from the uncertain radar measurements while

sustaining low estimation error on a cycle-by-cycle basis. Based

on the model assumptions, this work aims to exploit how

the sensor can manipulate the waveform signal parameters to

improve the target’s state estimate for the upcoming time cycle.

To this end, the following presents the design objective in terms

of a state estimation problem and proposes research questions

on modeling the distinct blocks of cognitive radar.

Given the motion dynamics of the vehicle-following

scenario is expressed by Equation 1; the state estimation problem

becomes finding the estimated state, denoted as x̂k ∼ p(xk|Zk),

that minimizes the following objective function at each time

instant

arg min
x̂k∈R

n

E[x̃Tk x̃k] (11)

where x̃k = xk − x̂k is the error between the true

state and the estimated state, and p(xk|Zk) is the probability

density function (PDF) of the estimated target’s state given all

radar measurements up to time k, denoted as Zk. Equation 11

estimates the target’s state and finds p(xk|Zk) that minimizes the

mean squared error. This paper proposes the following research

problems that address how a radar sensor can learn and plan to

accomplish the design objective.

Research Problem 1. Suppose that the parameters of the

model in Equation 1 are known. Determine the amount of new

information in radar measurements that contribute to estimating

the target’s state x̂k.

The first research problem captures the essence of the

information processor in Figure 2. Computing the information

of the estimated target’s state is crucial because the sensor assigns

reward values according to this information. Meanwhile, the

following research problem deals with the nature of the reward

and its connection to the design objective.
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Research Problem 2. Let us consider that the action taken at

the previous cycle is the transmitted waveform characterized by

the measurement noise covariance, Rk. Assume a reward value is

associated with the past action that indicates the consequence of

previous waveform transmissions. Based on Research Problem 1,

find a suitable function for the reward that drives the system to

reduce the state estimation error.

The above problem models the feedback information

channel in Figure 2, linking the information within the current

state estimate provided by the receiver to the learning

mechanism at the transmitter. Finally, the following provides the

basis of the learning and planning algorithm in the context of

reinforcement learning.

Research Problem 3. Let us consider that a set of

measurement noise covariances RL
k

are available (i.e., RL
k

=

{R(1),R(2), . . .,R(NL)}). Derive the learning and planning

algorithm for updating the value-to-go function and policy when

multiple-step planning is applied.

3. Proposed approach

This section reviews the state-of-the-art including Haykin’s

design specific to cognitive radar (Haykin, 2012) and discusses

an alternative approach that can apply to modeling such

systems (Baldi, 2002). Lastly, our proposed solutions to Research

Problems 1, 2, and 3 are presented.

3.1. Prior works

Numerous measures are suggested in statistics and

information theory to quantify information (Shannon, 1948;

Baldi, 2002; Friston, 2010). The most common is the Shannon

entropy, which measures the amount of self-information or

(Shannon surprise) of a particular observation, averaged over all

possible outcomes (Shannon, 1948). In Haykin (2012) and Feng

and Haykin (2018), the authors adopt the Shannon entropy

to measure the information of the estimated target’s state and

model the information processor as follows:

Hk = −

∫

xk∈R
n
p(xk|Zk) ln p(xk|Zk) dxk

(12)

=
1

2
ln

[

(2πe)n|P(k|k)|
]

where P(k|k) is the estimated state covariance when the

Kalman filter is applied for state estimation (i.e., p(xk|Zk) =

N (x̂(k|k),P(k|k))). Haykin further simplifies Equation 12 to

Hk = |P(k|k)| by making the case that the information within

the target’s state estimate is all captured in the determinant

of the its covariance. To ensure that the system decreases the

uncertainty in the state estimate between two subsequent cycles,

Haykin defines the reward, denoted as rk, in the following simple

form (Fatemi and Haykin, 2014; Feng and Haykin, 2018):

rk =
1H
k

Hk

(13)

where 1H
k

= Hk−1 − Hk is the incremental deviation of

the Shannon entropy at time k. The sign of 1H
k

in Equation 13

guides the system to make the correct decision, where a positive

reward indicates a reduction in estimation error due to the

previous waveform transmission. At the same time, a negative

one demonstrates a cost against the selected waveform.

While Haykin considers an information-theoretic approach,

in a recent publication, the authors of this work proposed

Bayesian surprise as the principal mechanism to acquire

information (Zamiri-Jafarian and Plataniotis, 2022). The effect

of the new radar measurement zk on the target’s state estimation

is determined by measuring the Kullback–Leibler (KL) distance

from the predicted PDF p(xk|Zk−1) to the posterior PDF

p(xk|Zk) as follows:

SB
k (zk) = DKL(p(xk|Zk−1), p(xk|Zk)) (14)

=

∫

xk∈R
n
p(xk|Zk−1) ln

p(xk|Zk−1)

p(xk|Zk)
dxk

Appendix provides the closed-form expression for the

Bayesian surprise when the Kalman filter is applied for state

estimation. Although Haykin’s approach is specific to cognitive

radar, similar schemes can apply for deriving reward expressions

given the choice of the information measure (e.g., Bayesian

surprise).

3.2. Solution to research problem 1

In line with the authors’ recent article, this paper proposes

the Bayesian surprise as the main approach to quantify the

amount of new information within the estimated state. In

Zamiri-Jafarian and Plataniotis (2022), the authors investigate

how the Bayesian surprise and its expectation provide

valuable information to improve future state estimations given

knowledge about prior estimates. With the assumption that

the parameters of the linear Gaussian state-space models (see

Equation 1) are somehow available, the Kalman filter is applied

as the optimal estimator to obtain the state mean, x̂(k|k), and its

covariance matrix, P(k|k) (Simon, 2006). Algorithm 1 presents

the two-step state prediction and estimation of the Kalman filter.

Since the research objective is reducing the mean squared

error (see Equation 11), the expectation of the Bayesian surprise

is more suitable to measure information rather than the

Bayesian surprise. According to Equation A2 in Appendix, the

expectation of Bayesian surprise with respect to p(zk|Zk−1) ∼
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Measurement update (Estimation):

x̂(k|k) = x̂(k|k− 1)+ Kk(zk −Hkx̂(k|k− 1))

P(k|k) = (In×n − KkHk)P(k|k− 1)

Kk = P(k|k− 1)HT
k
Pz̃(k|k− 1)−1

Time update (Prediction):

x̂(k+ 1|k) = Fkx̂(k|k)

P(k+ 1|k) = Qk + FkP(k|k)F
T
k

Algorithm 1. Kalman filter (Simon, 2006).

N (Hkx̂(k|k− 1),Pz̃(k|k− 1)) is computed as follows,

Ep(zk|Zk−1)
[SB

k (zk)] =

1

2
ln(|RkPz̃(k|k− 1)−1|)+ tr{(RkPz̃(k|k− 1)−1)−1} −m

(15)

where Ep(zk|Zk−1)
[||z̃(k|k − 1)||2

KT
k
P(k|k)−1Kk

] is simplified

to tr{(RkPz̃(k|k − 1)−1)−1} − m. According to Equation 15,

the uncertainty in measurements balanced by what the filter

perceives about the measurements (i.e., RkPz̃(k|k − 1)−1)

influences the expectation of Bayesian surprise.

3.3. Solution to research problem 2

The second research problem deals with the nature

of the reward and how it is defined for designing the

feedback information channel in cognitive radar. In a classical

reinforcement learning problem, the reward is a scalar value

that measures the goodness of an action at a given state and

is extrinsically predefined for all state-action pairs (Sutton and

Barto, 2018). The algorithm aims to find suitable actions for a

given situation to maximize some notion of reward. However,

in cognitive radar, the reward is provided internally based on

the sensor’s belief about the radar measurements. To put it

simply, let us assume that the transmitted waveform is the

action the radar applies to the environment. The reward then

reveals how good the previous transmission is according to

the sensor’s interpretation of the measurements, which is the

information within the target’s state estimate. The intrinsic

nature of the reward in cognitive radar is undoubtedly an

indication of autonomy.

As discussed, reward drives the radar to learn and

make decisions that eventually lead to gaining informative

measurements. Therefore, reward must be a function of the

design objective, which is reducing the state estimation error

on a cycle-by-cycle basis (see Equation 11). Since the paper

considers the expectation of Bayesian surprise to measure

the information within the target’s state estimate, the author’s

propose the following basic requirements to express reward:

• Reward is a deterministic function that is proportional to

the expectation of Bayesian surprise.

• Depending on the changes in the environment, the reward

could assume a positive or negative value. A positive value

is assigned when E[SB
k
] ≤ E[SB

k−1
] and a negative value is

due to E[SB
k
] > E[SB

k−1
].

The first condition is inspired by the work in Zamiri-

Jafarian and Plataniotis (2022). Authors showed that, at a single

instant, maximizing the expectation of Bayesian surprise leads

to informative measurements. Therefore, it is reasonable that

a measurement with a high expectation of Bayesian surprise

is associated with a higher reward. Meanwhile, the rationality

of the second requirement is traced back to the principle

of free energy (Friston, 2010) which explains how adaptive

systems (e.g., cognitive radar) resist a tendency to disorder. This

principle suggests that autonomous systems learn and make

better predictions by reducing the Bayesian surprise (or its

expectation) from one cycle to the next. Here, we have assumed

that the rule only applies to the previous cycle. To this end,

the reward at time k is a function of the following two entities,

given as

rk = gk(E[S
B
k−1],E[S

B
k ]) (16)

where gk(.) is a deterministic function. There are different

ways to define gk(.) that align with the cognitive radar design

objective. Note that finding the optimal function for reward is

beyond this paper. To facilitate comparison with state-of-the-art

methods, one choice is applying a similar approach to Haykin’s

reward, reintroduced as

rk =
1
E[SB]
k

a+ E[SB
k
]

(17)

where 1
E[SB]
k

= E[SB
k−1

] − E[SB
k
] is the incremental

deviation of the expectation of Bayesian surprise computed at

time k. In Equation 17, a is an arbitrary scaling value that is set

by the algorithm (e.g., a = E[SB
k
]|k=0).

In addition to Equation 17, the paper presents alternative

expressions for reward inspired by credibility measures in

estimation and control theory (Li and Zhao, 2001, 2005,

2006). According to Li and Zhao (2001, 2005, 2006), the

authors consider three metrics to determine the effectiveness

of estimators in terms of reducing uncertainty in noisy

measurements, which are: the Bayesian estimation error

quotient (BEEQ), the estimate measurement error measure

(EMER), and the Bayesian error reduction factor (BERF).

Table 1 provides the mathematical definition of these three error

measures. In Table 1, BEEQ quantifies the improvement of the

mean estimate over its predicted version in the measurement-

space, EMER evaluates the estimation process with respect to the

measurements, and BERF computes the overall improvement of

the estimation over both prediction andmeasurement update (Li

and Zhao, 2006). The goal is to seek an expression based on these
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TABLE 1 A list of estimation credibility measures (Li and Zhao, 2001, 2005, 2006) and their connection to the filter’s covariances.

Measures of estimation credibility Connection to the filter covariances

Bayesian estimation error quotient (BEEQ)

BEEQ =

∑Nmc
j=1 ||Hkx

j

k −Hkx̂
j(k|k)||

∑Nmc
j=1 ||Hkx

j

k −Hkx̂j(k|k− 1)||

BEEQ ∝ OM{RkP
−1
z̃ (k|k− 1)}

Estimate measurement error measure (EMER)

EMER =

∑Nmc
j=1 ||Hkx

j

k −Hkx̂
j(k|k)||

∑Nmc
j=1 ||Hkx

j

k − z
j

k||

EMER ∝ OM{Im×m − RkP
−1
z̃ (k|k− 1)}

Bayesian error reduction factor (BERF)

BERF =
BEEQ+ βkEMER

1+ βk

βk =

∑Nmc
j=1 ||Hkx

j

k −Hkx̂
j(k|k− 1)||

∑Nmc
j=1 ||Hkx

j

k − z
j

k||

BERF ∝
OM{RkP

−1
z̃ (k|k− 1)} + βkOM{Im×m − RkP

−1
z̃ (k|k− 1)}

1+ βk

βk ∝ OM{(RkP
−1
z̃ (k|k− 1))−1 − Im×m}

measures that particularly relate to the expectation of Bayesian

surprise. The following shows the connection between Kalman

filter covariance matrices and each metric in Table 1:

BEEQ ∝ OM

{

HkP(k|k)H
T
k

HkP(k|k− 1)HT
k

}

= OM{RkP
−1
z̃

(k|k− 1)},

(18)

EMER ∝

OM

{

HkP(k|k)H
T
k

Rk

}

= OM{Im×m − RkP
−1
z̃

(k|k− 1)},
(19)

where OM{.} represents a matrix operator such as the trace

or the determinant. Meanwhile for BERF, the relation becomes

BERF ∝

OM{RkP
−1
z̃

(k|k− 1)} + βkOM{Im×m − RkP
−1
z̃

(k|k− 1)}

1+ βk

(20)

where βk is the error ratios of the predicted state mean to

measurement, that is proportional to

βk ∝ OM

{

HkP(k|k− 1)HT
k

Rk

}

=

OM{(RkP
−1
z̃

(k|k− 1))−1 − Im×m}

(21)

Note that the expressions (Equations 18–20) depend on the

term RkPz̃(k|k − 1)−1 that also appears in the expectation of

Bayesian surprise. Thus, all of the above expression are suitable

candidates to define the reward function. In this paper, we

only concentrate on the BERF to express reward because βk is

closely related to the expectation of Bayesian surprise. Inspired

by Equation 20, we propose the following reward expression

rk =
|Rk−1P

−1
z̃ (k− 1|k− 2)| + E[SB

k−1](|Im×m − Rk−1P
−1
z̃ (k− 1|k− 2)|)

1+ E[SB
k−1]

−
|RkP

−1
z̃ (k|k− 1)| + E[SB

k ](|Im×m − RkP
−1
z̃ (k|k− 1)|)

1+ E[SB
k ]

(22)

where it satisfies both design requirements mentioned

earlier. The possibility of using the trace or determinant

for OM{.} is up to the designer. However, the determinant

accounts for all valuable information in RkP
−1
z̃

(k|k − 1) (or

Im×m − RkP
−1
z̃

(k|k − 1))—both diagonal and off-diagonal

elements—rather than the trace. In Equation 22, E[SB
k−1

] and

Rk−1P
−1
z̃

(k − 1|k − 2) capture the change of the estimation

error over subsequent cycles with respect to the BERF metric.

A positive reward ensures that the preceding action works

well in reducing the state estimation error. Furthermore, the

computation of reward requires the knowledge of E[SB
k−1

]

(see Equation 16). Since the feedback information channel in

Figure 2 is responsible for determining the reward, a short-

term memory block is presumed for designing the feedback

information channel that accounts for the preceding expectation

of Bayesian surprise. Though for complex reward functions (e.g.,

Equation 22), more memory is needed to design the feedback

information channel.

3.4. Solution to research problem 3

The solution to the final research problem addresses the

cognitive radar’s learning and planning ability that implements

the decision-making process. The policy and the value-to-go

function are two main components (Sutton and Barto, 2018)

in traditional reinforcement learning methods. The policy is

the blueprint the decision-maker uses to select an action given

knowledge of the current state of the environment. Meanwhile,

the value-to-go function quantifies the performance of the

policy by calculating the expected total reward for arbitrary

action. The most popular dynamic programming approach in

reinforcement learning is Q-learning, where the policy is the

result of maximizing the value-to-go function. The following

employs the same concepts to carry out the learning, planning,

and policy stage of the cognitive radar depicted in Figure 2.
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3.4.1. Learning

Learning is an important step that evaluates how much the

system gains from the action taken in the previous cycle by

computing the value-to-go function. As mentioned, the action

refers to the measurement noise covariance that characterizes

the radar signal waveform. Assuming that a set of measurement

noise covariance is available from the sensor profile library (i.e.,

{R(1),R(1), ...,R(NL)}), the value-to-go function for a particular

R is computed as follows

Vk(R) = E
π





∞
∑

j=0

γ jrk+j|Rk = R





(23)

= E
π

[

rk + γ rk+1 + γ 2rk+2 + ....|Rk = R
]

where γ ∈ [0, 1) represents the discount factor that

decreases the effect of future actions exponentially. Note that

Rk = R is the measurement noise covariance selected at the

previous time cycle, R ∈ {R(1),R(1), ...,R(NL)}. The expectation

operator in Equation 23 is calculated with respect to the policy

π . The policy πk(Rk,Rk+1) is a probability distribution of the

measurement noise covariance chosen at cycle k that includes

the influence of the one at cycle k − 1. By applying the linear

property of the expected value operator and the total probability

theorem, Equation 23 can be simplified to

Vk(R) = rk(R)+ γ

NL
∑

j=1

πk(R,R
(j))Vk+1(R

(j)) (24)

where rk(R) = E
π

[

rk|Rk = R
]

is the reward function and

the second term measures the effect of future selections. In

addition, πk(R,R
(j)) is defined as follows

πk(R,R
(j)) = P{Rk+1 = R(j)|Rk = R} (25)

where P{.} computes the probability. To rewrite the value-

to-go function in a recursive fashion, we have reformulated

(Equation 24 by including a weighted incremental update of

Vk(R), given as follows

Vk(R) = Vk−1(R) (26)

+α



rk(R)+ γ

NL
∑

j=1

πk(R,R
(j))Vk+1(R

(j))− Vk−1(R)





where α is the learning rate and Vk−1(R) is the value-to-go

function of R from cycle k − 1. Given the reward rk(R) and the

value-to-go functionVk−1(R), Equation 26 computes howmuch

the sensor learns from the immediate past transmission.

3.4.2. L-step planning

The planner is responsible for predicting the radar

performance by considering the impact of future measurements

through a series of hypothetical steps. The planner’s function

is to update the value-to-go function based on the predicted

reward for a prescribed set of measurement noise covariances

available from the sensor profile library. Compared to learning

that occurs once in each cycle due to the preceding past action

(i.e., Rk), the planning process takes place multiple times to go

through a whole set of measurement noise covariances. Planning

can extend to L stages, where each stage gives rise to a specific

value-to-go function. The purpose of the L-step planning is to

capture the influence of L future measurements in updating

the value-to-go function so that the system can make a better

decision.

Although planning executes the same tasks as learning,

there is no interaction with the environment when planning

is involved. Particularly, each measurement noise covariance

available from the sensor profile library is virtually applied. For

simplicity purposes, let us assume that there is only one-step

planning (i.e., L = 1). As a result of virtually applying R
(i)
k+1

∈

RL
k
, the hypothesized state prediction Kalman algorithm for

one-step planning becomes

P(k+ 1|k) = Qk + FkP(k|k)F
T
k (27)

P
(i)
z̃
(k+ 1|k) = R

(i)
k+1

+Hk+1P(k+ 1|k)HT
k+1 (28)

where P(k|k) is available due to the state estimation process,

and R
(i)
k+1

is calculated from Equation 5 for i = 1, 2, ...,NL. The

aim is to update the hypothesized value-to-go function, which

requires the predicted reward associated to R
(i)
k+1

. According

to Equation 16, the expectation of Bayesian surprise is needed

to compute the reward. Thus, the hypothesized expectation of

Bayesian surprise with respect to p(zk+1|Zk) is given as

Ep(zk+1|Zk)
[SB(i)

k+1] =
1

2
ln(|R

(i)
k+1

P
(i)
z̃
(k+ 1|k)−1|)+

tr{(R
(i)
k+1

P
(i)
z̃
(k+ 1|k)−1)−1} −m

(29)

which leads to the following predicted value for the reward

r
(i)
k+1

(R(i)) = gk+1(E[S
B
k ],E[S

B(i)

k+1])
(30)

where E[SB
k
] was obtained earlier from Equation 15. gk+1(.)

can take any form of Equations 17 or 22. It is noteworthy to

mention that the entities without the superscript (i) are the

actual values and not the hypothesized ones. Finally, the value-

to-go function as a result of the hypothesized actionR
(i)
k+1

= R(i)

is updated as

V
(i)
k+1

(R(i)) = Vk(R
(i))

(31)

+α



r
(i)
k+1

(R(i))+ γ

NL
∑

i′=1

πk(R
(i),R(i′))Vk+2(R

(i′))− Vk(R
(i))





where we have omitted the time index in R
(i)
k+1

from the

above equation to avoid confusion.
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In addition for L-step planning, all the calculation through

Equations (27–31) are carried out L number times, as shown

in Figure 2. In this regard, the value-to-go function for L-step

planning is obtained as

V
(ij...rl)

k+L
(R(l)) = V

(ij...r)

k+L−1
(R(l))+

α



r
(ij...rl)

k+L
(R(l))+ γ

NL
∑

l′=1

πk(R
(l),R(l′))V

(ij...r)

k+L+1
(R(i′))− V

(ij...r)

k+L−1
(R(l))





(32)

where (ij...l) represents the sequence of L future

measurement noise covariances selected from the sensor

profile library, denoted as (R(i),R(j), ...,R(l)), such

that R(i) ∈ RL
k
,R(j) ∈ RL

k+1
, ...,R(l) ∈ RL

k+L−1

and i, j, ..., l = {1, ...,NL}. Meanwhile, r
ij...rl
k+L

(R(l)) =

gk+L(E[S
B(ij...r)

k+L−1
],E[SB(ij...rl)

k+L
]) corresponds to the reward

as a result of the mentioned configuration.

3.4.3. Policy

Updating the policy is the final procedure in designing the

cognitive radar. Policy is the rule used by the sensor to decide

what to do given the knowledge about the current state of the

environment. In fact, the purpose of both learning and planning

is to improve the policy and guide the sensor toward informative

measurements. For that matter, a mixed strategy that balances

between exploitation and exploration is desirable in updating the

policy. Hence, this article uses the ǫ-greedy strategy to select the

measurement noise covariance for the next time cycle. With the

input of the policy block being {V
(ij...rl)
k+L

}
NL

i=1, Rk+1 based on the

ǫ-greedy strategy is chosen as

Rk+1 =



















R(i) ∈ RL
k

with probability ǫ

argmax
R(i)∈RL

k

V
(ij...rl)
k+L

with probability 1− ǫ
(33)

where with probability ǫ (e.g., 0.05) the radar selects Rk+1

randomly (exploration) and with probability 1 − ǫ (e.g., 0.95)

the maximum value-to-go function is chosen (exploitation). The

result in Equation 33 is the action that is applied to the radar

environment. To this end, the policy is updated according to the

following expression

πk+1(Rk,Rk+1) =



















P{Rk+1 ∈ RL
k
|Rk} =

ǫ
NL

P{Rk+1 = argmax
R(i)∈RL

k

V
(ij...rl)
k+L

|Rk} = 1− ǫ + ǫ
NL

(34)

which is then used to compute the value-to-go function for

learning and planning at the next cycle.

Algorithm 2 illustrates the proposed cognitive radar

algorithm for learning and L-step planning, where the

Initialization:

set x0, x̂(0|0), P(0|0), and E[SB
0 ],

set an arbitrary V0(R), ∀R ∈ R = {R(1), . . .,R(N)},

define π1(., .) to be a uniform distribution,

select R0 randomly fromR,

apply R0 to the environment.

1: for k = 1, ...,K

2: take measurement zk
3: State Estimation: compute Pz̃(k|k − 1) and P(k|k) from

Kalman algorithm

4: Information Processor: compute E[SB
k
] from Equation 15

5: Feedback Information Channel: calculate the internal

reward rk from Equations 17 or 22

6: Learning: update Vk(R) from Equation 26

7: Planning:

8: for i = 1, ...,NL

9: select localized setRL
k
based on Rk such that R

(i)
k+1

∈ RL
k

10: compute P(k + 1|k), P
(i)
z̃
(k + 1|k), and P(i)(k + 1|k + 1)

from Equations 27, 28, and Kalman algorithm.

11: compute hypothesized E[SB(i)

k+1
] from Equation 29

12: calculate hypothesized internal reward r
(i)
k+1

from Equation

30

13: update hypothesized value-to-go V
(i)
k+1

from Equation 31

14: . . .

15: for l = 1, ...,NL

16: select RL
k+L−1

based on R
(r)
k+L−1

such that

R
(l)
k+L

∈ RL
k+L−1

17: compute P(ij...r)(k+L|k+L−1) and P
(ij...rl)
z̃

(k+L|k+L−1)

from Kalman algorithm

18: compute hypothesized E[SB(ij...rl)

k+L
]

19: calculate hypothesized internal reward r
(ij...rl)
k+L

20: update hypothesized value-to-go V
(ij...rl)
k+L

from Equation 32

21: end for

22: . . .

23: end for

24: Policy: select Rk+1 from Equation 33 and update policy

πk+1 from Equation 34

25: apply Rk+1 to the environment

26: end for

Algorithm 2. Cognitive radar based on learning and L-step planning.

expectation of Bayesian surprise drives the sensor to acquire

informative radar measurements. Note that a similar process,

with some minor modifications, applies to modeling the

cognitive radar based on other definitions of surprise when

learning and L-step planning is considered. Table 2 lists the

various forms of measuring the information within the target’s

state estimate and its corresponding reward function. As
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previously mentioned, Haykin approximates the Shannon

entropy (defined in Equation 12 as Hk = |P(k|k)|. While

he argues that all the information about the target’s state is

captured by the determinant of the estimated state covariance,

this approximation may lead to different results. In this regard,

Table 2 presents two alternative forms of Haykin’s approach to

numerically investigate the impact of this approximation.

4. Simulation results

In this section, simulation results are presented to compare

the state estimation performance of the proposed cognitive

radar with state-of-the-art (Fatemi and Haykin, 2014; Feng and

Haykin, 2018). The following demonstrates the simulation setup

and parameter settings for generating radar measurements that

emulate the vehicle-following scenario in Figure 1A. Similar

to our recent work (Zamiri-Jafarian and Plataniotis, 2022),

we suggest a radar configuration suitable for single-target

tracking in practical environments. Two driving experiences

are implemented to examine various aspects of the estimation

performance. This section compares the system performance

of the proposed learning and planning algorithm to its

alternative competitor for different reward functions. The

impact of multiple-step planning in improving state estimation

performance is also analyzed through a series of experiments.

Results are verified over numerous Monte Carlo runs.

4.1. Simulation setup and data generation

The intention of this experiment is to evaluate the estimation

performance of the proposed cognitive radar. Since the paper

adopts the Kalman filter to perform state estimation, the model

parameters in Equation 1 (i.e., Fk, Qk, Hk, Rk, x̂(0|0) and

P(0|0)) are assumed given. In this regard, the sensor layout

and the parameter setting for generating radar measurements

are presented.

For the vehicle-following scenario shown in Figure 1A, the

simulation assumes that the two cars are moving forward in

the same lane (i.e., dy = 0). In this simulation, the FMCW

radar sensor is positioned on the host vehicle and operates in the

77 GHz frequency band for short- and long-range applications

(Hasch et al., 2012). The bandwidth of the transmitted radar

signal is set to B = 100 MHz, and 0 dB SNR is achieved at

d0 = 2000 m. According to Equation 5, the measurement noise

covariance is a function of pulse duration and the chirp rate,

Rk(λk−1, bk−1). By assuming that the radar sensor maintains

a maximum range of dmax = 100 m and a maximum

velocity of vmax = 100 m/s, the sensor profile library consists

of measurement noise covariances specified for the following

values:

λk−1 ∈ [10e−7 : e−7 : 10e−6] ∪ [1.1e−6 : e−6 : 10e− 5],

bk−1 ∈ [−e12 : 0.2e12 :−0.2e12] ∪ [0.2e12 : 0.2e12 : e12],

where λk−1 and bk−1 are configured to simulate a practical

radar sensor for single-target tracking applications (Roos et al.,

2019). The sensor profile library is composed of N =

1, 810 measurement noise covariances, denoted as R =

{R(i)(λk−1, bk−1)}
N
i=1. Since N is a large number, and searching

the entire library at each cycle is cost-ineffective, this paper

adopts the kNN method to obtain a smaller set with NL = 25

members. Figure 3 illustrates an example of a localized set of

measurement noise covariance, RL
k
, that is specified by pulse

duration and chirp rate.

This article demonstrates two driving experiences to

evaluate the state estimation performance of the proposed

cognitive radar: (i) a simple highway driving scenario and

(ii) adjusting to a sudden stop in an urban environment. For

the highway driving experience, we consider the dynamics

of two cars are expressed as Equations (3–5) when constant

acceleration is presumed. Since the true initial state, x0, and its

estimation elements (i.e., x̂(0|0), P(0|0)) depend on the driving

environment, without loss of generality, the true initial state for

highway driving is set to

x0 = [25 m/s, 3 m/s2, 100 m, 23 m/s, 2 m/s2]T ,

while the initial estimation of the state mean and its

covariance matrix are assumed as

x̂(0|0) = [24 m/s, 3 m/s2, 80 m, 23 m/s, 2 m/s2]T ,

P(0|0) = diag([100, 1, 100, 100, 1]).

A practical in-city driving encounter includes slowing down

and stopping due to unpredictable circumstances (e.g., rash

driving, careless pedestrians, and severe weather conditions). To

examine how the proposed cognitive radar learns and adapts in

such risky situations, we present the following driving scenario.

Let us assume that initially the target vehicle is driving with

constant velocity. At the sight of an unexpected event, the target

vehicle suddenly hits the brakes and comes to a stop. The

host vehicle that is following the target vehicle with constant

velocity—to avoid an accident—also hits the breaks and slows

down, until it comes to a complete stop behind the target vehicle

with a safe distance. Given that hitting the breaks changes

the acceleration linearly, we consider the model parameters of

constant jerk introduced in Equations (8–10). To this end, x0,

x̂(0|0), and P(0|0) are set to

x0

= [16.7 m/s, 0 m/s2, 0 m/s3, 27.8 m, 13.9 m/s, 0 m/s2, 0 m/s3]T ,

x̂(0|0) = [16 m/s, 0 m/s2, 0 m/s3, 27 m, 13 m/s, 0 m/s2, 0 m/s3]T ,

P(0|0) = diag([100, 1, 1, 100, 100, 1, 1]),
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TABLE 2 Various methods of modeling the cognitive radar.

Method Information processor Reward function

Haykin’s Approach Hk = |P(k|k)| rk =
1H

k

Hk

Alternative form 1

of Haykin’s Approach
Hk = ln |P(k|k)| rk =

1H

k

Hk

Alternative form 2

of Haykin’s Approach
Hk =

1
2
ln

[

(2πe)n|P(k|k)|
]

rk =
1H

k

Hk

Proposed Approach 1 E[SB
k ] =

1
2
ln |RkPz̃(k|k− 1)−1| + tr{(RkPz̃(k|k− 1)−1)−1} −m rk =

1
E[SB]
k

a+ E[SB
k ]

Proposed Approach 2 E[SB
k ] =

1

2
ln |RkPz̃(k|k− 1)−1| + tr{(RkPz̃(k|k− 1)−1)−1} −m rk from Equation 22

FIGURE 3

An example of a neighboring set RL

k
with NL = 25 members (Zamiri-Jafarian and Plataniotis, 2022).

where the values are adjusted according to an urban

environment. Figure 4 illustrates how the actual state vector

entities—velocity, acceleration, jerk, and the longitude

distance— change over time based on the suggested

driving scenario. Note that the estimated initial state

x̂0 ∼ N (x̂(0|0),P(0|0)) is a random value that changes

per Monte Carlo run. This simulation sets the state noise

variance to σ 2
q = 0.01 and the sample time Ts = 0.1 s for

computing Fk and Qk to ensure constant acceleration in

highway driving and constant jerk in urban driving. Finally,

the learning rate, the discount factor, and the greedy factor

in this simulation are assigned as α = 0.1, γ = 0.5 and

ǫ = 0.1, respectively.

4.2. Metrics and performance evaluation

This paper considers the root mean square error (RMSE) to

evaluate the estimation performance of the proposed cognitive

radar, defined as

RMSEk =

√

√

√

√

√

1

Nmc

Nmc
∑

j=1

||x
j
k
− x̂j(k|k)||2 (35)

where x
j
k
and x̂j(k|k) are the state vector and the estimated

state vector of the j-th Monte Carlo simulation at time step

k, respectively. Nmc represents the number of Monte Carlo
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FIGURE 4

The true state vector dynamics for the urban driving experience.

simulations. For performance comparison, the paper adopts the

various schemes listed in Table 2.

4.2.1. Learning with one-step planning

This section presents the estimation response of the

proposed radar design by tracking the velocity of the

target vehicle, v1
x,k

, and the longitude distance, dx,k, when

learning with one-step planning are involved. The experiment

examines target tracking in highway and urban driving

scenarios. Results are obtained for Nmc = 10,000 Monte

Carlo runs.

Figures 5A,B, respectively, illustrate the RMSE performance

of longitude distance and velocity of the target vehicle for

the highway driving experience. The results are plotted in

a logarithm scale for the duration of 10 s. Let us first

compare Haykin’s design with its alternative approaches. As

shown in both figures, the alternative forms of Haykin’s design

outperform his approach, indicating that the approximation

of Equation 12 leads to different results. This inconsistency

implies that the estimation performance is numerically sensitive

to the choice of the information processor in computing

the reward value. Despite some instances, alternative form

2—which is the full Shannon entropy expression—presents

a lower error level than its approximation forms. In the

meantime, our proposed techniques based on the expectation of

Bayesian surprise significantly exceed Haykin’s design. Although

proposed approach 1 has a similar reward function to Haykin’s

scheme, the expectation of Bayesian surprise provides sufficient

information to improve the state estimation process compared

to the determinant of the estimated state covariance. Note

that in this simulation, we have set a = E[SB
k
]|k=0 to

normalize the reward function with respect to the initial

expected Bayesian surprise. Since the order of E[SB
k
] drastically

varies (i.e., toward a minimum), we have included a to

obtain a smooth and normalized reward. While the latter

experiences a higher error level than alternative forms 1 and

2, our second proposed approach significantly surpasses all

the other designs by a landslide. This is due to the fact

that the suggested reward expression based on the BERF

credibility measure aligns with successively reducing the state

estimation error.

Figures 6A,B, depict the RMSE curves of the longitude

distance and target velocity when the vehicle-following scenario

takes place in an urban environment, respectively. As previously

discussed, this experiment evaluates the tracking performance

of the cognitive radar for the methods listed in Table 2 when

the target vehicle unexpectedly brakes and stops. Results are

simulated for 7 s. Since the dynamics of the true state vector

changes according to Figure 4, the estimation performance of

the longitude distance and target velocity drastically shifts in two

time instances, when (i) the acceleration of the target vehicle

starts to decrease (i.e., braking), and (ii) the target vehicle comes

to a complete stop. As shown in both figures, our proposed radar
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FIGURE 5

The RMSE of (A) the longitude distance and (B) the target’s velocity for one-step planning in highway driving.

FIGURE 6

The RMSE of (A) the longitude distance and (B) the target’s velocity for one-step planning in urban driving.

design based on approach 2 can adapt to these sudden changes

and experiences a minimum level of estimation error compared

to the state-of-the-art. This confirms that the proposed reward

expression in Equation 22 inspired by the BERF credibility

measure provides sufficient information to enhance system

performance for unforeseen driving situations. On the other

hand, Haykin’s design presents the poorest RMSE response in

tracking dx,k and v
1
x,k

. Similar to highway driving, the estimation

responses of Haykin’s approach and its alternative forms are

hypersensitive to the reward value for different approximations

of the Shannon entropy. However, in this experiment, the

first alternative form of Haykin’s approach is ranked second

among the other methods. Results show that the log determinant

of the estimated state covariance significantly outperforms its

subgroup competitors in tracking the state dynamics.

4.2.2. Learning with L-step planning

This section evaluates the estimation performance of

the proposed cognitive radar when the impact of L future

measurements is considered in estimating the target’s state for

the upcoming time cycle. The results of this experiment are

averaged over Nmc = 5, 000 Monte Carlo simulations for both

highway and urban driving scenarios. Since the RMSE results are

more distinguishable for v1
x,k

, the following only focuses on how

the estimation of the target’s velocity improves when multiple-

step planning is assumed. Meanwhile, the same conclusion for

estimating the target’s velocity also applies to the longitude

distance. Note that we have included the curves that challenge

our proposed approach 2 and Haykin’s approach.

Figure 7A illustrates the RMSE performance of the cognitive

radar for L = {1, 2} in highway driving. In the case of

highway driving, the estimation response of Haykin’s approach,

alternative form 2, and our proposed approach 2 are plotted

for one-step and two-step planning. As shown, the estimation

error substantially decreases by increasing the planning step

from one to two. However, for our proposed radar design,

the error reduction by changing L = 1 to L = 2 does not

improve compared to Haykin’s method and alternative form 2.

While all three ways eventually merge for two-step planning,

our second approach provides a smoother estimation response

over time. Furthermore, this section investigates the impact of

multiple-step planning for tracking the target velocity in risky

driving situations. For the unexpected stopping scenario in an

urban environment, Figure 7B depicts the RMSE performance

of Haykin’s approach, alternative form 1, and our proposed

approach 2 when L = 1 and L = 2. Although Haykin’s

approach improves considerably by an additional planning step,
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FIGURE 7

The RMSE of the target’s velocity for L = {1, 2} and Nmc = 5, 000 in (A) highway driving and (B) urban driving.

its alternative form 1 in some time instances experiences a

higher estimation error for two-step planning in contrast to one.

In the meantime, the estimation performance of our proposed

approach 2 fails for planning two time-steps, especially right

after the target vehicle hit’s the brake and slows down (i.e.,

k ∈ [11, 53]). The results from alternative form 1 and the

paper’s approach imply that increasing the planning step in

unpredictable driving circumstances does not necessarily lead

to better tracking performance. Even though Haykin’s design

presents a lower error for L = 2 (i.e., compared to L =

1), our proposed cognitive radar for L = 1 outperforms all

other techniques regardless of the time-step planning. This

is particularly observed when the cognitive radar tries to

adapt to the sudden stop by the target vehicle, after time

sample k = 10 in Figure 7B. Since increasing L is associated

with a longer simulation run time and higher computational

complexity, on average, our model for one-step planning

displays an adequate state estimation response. Therefore, it

seems that for driving scenarios where the dynamics of the

environment change abruptly, multiple-step planning is not an

optimum solution.

5. Conclusion

This article proposed a surprise-based learning and planning

algorithm for the cognitive radar that internally computes

rewards based on the expectation of Bayesian surprise and

decides on future waveform transmissions by minimizing the

estimation error over time. The radar measurements were

constructed from two sets of linear Gaussian state-space

models that describe the motion dynamics of a simple vehicle-

following scenario for constant acceleration and constant

jerk. Assuming that the model parameters are given, this

paper applied the Kalman filter for state estimation and the

expectation of Bayesian surprise to measure the information

within the filter’s estimate. The sensor assigned intrinsic reward

values depending on the expectation of Bayesian surprise to

signify the goodness of the preceding action and updated

the value-to-go function accordingly. Through a series of

hypothetical planning steps, the radar evaluated the contribution

of each prospective waveform—available from the sensor profile

library—to estimate the target’s future state (i.e., velocity,

distance), and it chose the one based on an exploitation-

exploration strategy. Several experiments were carried out

to examine and compare the estimation performance of the

proposed method to the state-of-the-art. Numerical results

were implemented to emulate real-life highway and urban

driving experiences. Results demonstrated that the reward

expressions inspired by credibility measures in control and

estimation theory are more suitable for achieving informative

radar measurements. Specifically, this research focused on the

Bayesian error reduction factor (BERF) for defining rewards

since it considered both the prediction process and the

measurement update, which captures the exact essence of the

Bayesian surprise. For one-step planning, the proposed cognitive

radar exceeds its competitor’s estimation performance with

respect to the mean squared error (RMSE). The paper also

showed that our approach for one-step planning displays lower

errors in risky driving situations than the alternative designs for

two-step planning.
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Appendix

Closed-form expressions for the Bayesian surprise are

possible in both state-space and measurement-space (Zamiri-

Jafarian and Plataniotis, 2022). Given that p(xk|Zk−1) =

N (x̂(k|k − 1),P(k|k − 1)) and p(xk|Zk) = N (x̂(k|k),P(k|k))

are available from the Kalman filter in Algorithm 1, the Bayesian

surprise from Equation 14 is simplified to

SB
k (zk) =

1

2

[

ln
|P(k|k)|

|P(k|k− 1)|
+ tr{P(k|k)−1P(k|k− 1)}

−n+ ||x̂(k|k)− x̂(k|k− 1)||2
P(k|k)−1

]

(A1)

where x̂(k|k), x̂(k|k−1), P(k|k−1), and n are the estimated state

mean, the predicted state mean, the predicted state covariance

matrix, and the state-space dimension, respectively. Meanwhile,

the Bayesian surprise in the measurement-space is derived as

SB
k (zk) =

1

2
[ln |RkPz̃(k|k− 1)−1| −m+

||z̃(k|k− 1)||2
KT
k
P(k|k)−1Kk

+ tr{(RkPz̃(k|k− 1)−1)−1] (A2)

where z̃(k|k − 1) = zk − Hkx̂(k|k − 1) is the

innovation vector, Pz̃(k|k − 1) = Rk + HkP(k|k − 1)HT
k

is the innovation covariance, and m is the dimension of the

measurement space. Due to the nature of the problem in

this paper, we focus on the Bayesian surprise expression in

measurement-space.
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