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Modern microscopy technologies allow imaging biological objects in 3D over a wide

range of spatial and temporal scales, opening the way for a quantitative assessment of

morphology. However, establishing a correspondence between objects to be compared,

a first necessary step of most shape analysis workflows, remains challenging for

soft-tissue objects without striking features allowing them to be landmarked. To address

this issue, we introduce the µMatch 3D shape correspondence pipeline. µMatch

implements a state-of-the-art correspondence algorithm initially developed for computer

graphics and packages it in a streamlined pipeline including tools to carry out all steps

from input data pre-processing to classical shape analysis routines. Importantly, µMatch

does not require any landmarks on the object surface and establishes correspondence in

a fully automatedmanner. Our open-sourcemethod is implemented in Python and can be

used to process collections of objects described as triangular meshes. We quantitatively

assess the validity of µMatch relying on a well-known benchmark dataset and further

demonstrate its reliability by reproducing published results previously obtained through

manual landmarking.

Keywords: bioimage analysis, shape quantification, correspondence, alignment, computational morphometry

1. INTRODUCTION

Recent progress in microscopy technologies and computational imaging enable the acquisition
of large volumes of high-resolution 3D bioimage datasets (Ramirez et al., 2019; Voigt et al.,
2019). This increase in imaging quality and throughput makes it possible to visually investigate
the tri-dimensional morphology of biological systems at the mesoscopic (Hahn et al., 2020) and
microscopic scales (Belay et al., 2021). As a consequence, a growing number of studies focus on
quantitatively describing shape variability in the 3D structure of biological objects as observed in
biological images (Kalinin et al., 2018; Driscoll et al., 2019; Heinrich et al., 2020).

The quantitative comparison of the shape of objects usually requires that a point-to-point
mapping between them, also referred to as correspondence,matching, or registration, is established.
This fundamental task is however in general non-trivial because the number of possible
mappings scales factorially with the size of the object’s surface. The problem of automating
shape correspondence has therefore been extensively studied in computer vision (Van Kaick
et al., 2011), with applications to medical image analysis (Bône et al., 2018) and evolutionary
biology (Martínez-Abadías et al., 2012). Existing 3D shape correspondence methods are however
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overwhelmingly designed for macroscopic, highly-stereotypical
data such as human organs or skeletal scans and do not
translate easily to soft-tissue objects with less predictable
morphological variations, extracted from noisy biological images
at the micro- or mesoscopic scale. Biological entities such as
cells, tissues, and small organisms indeed exhibit a significant
degree of variation in morphology, even within groups of
similar objects (e.g., cell types, organoids, early embryos). In
addition, biological images also generally offer a much lower
signal-to-noise ratio than 3D medical acquisition devices or
object scanners. Object surfaces extracted from bioimages are
thus likely to require extensive “cleaning” prior to shape
analysis. Finally, biological experiments most often involve
large populations of objects, calling for computationally light
and scalable approaches. While several microscopy-specific
methods have been proposed for intensity (volume)-based
registration (Preibisch et al., 2010; Paul-Gilloteaux et al., 2017),
fewer focus on the problem of surface-based registration and
existing ones require either manual intervention (Boehm et al.,
2011) or specific equipment (Horstmann et al., 2018), or rely on
the construction of a shape atlas (Grocott et al., 2016; Toussaint
et al., 2021), limiting their use to collections with small amount
of shape variability.

In this work, we present µMatch (pronouncedmicroMatch), a
3D shape correspondence pipeline tailored to the particularities
of structures as they appear in bioimage data. µMatch
automates the computation of dense correspondence maps
between pairs of 3D mesh surfaces, without the need for
any (pseudo-) landmarks. Mesh surfaces are particularly
convenient representations for computational geometry and
can easily be extracted from segmented voxel data. This input
format is therefore ideally suited to the various operations
needed for correspondence retrieval and general enough to
accommodate a vast range of object geometries, making µMatch
amenable to a wide range of bioimage analysis applications.
We combine state-of-the-art methods initially developed for
graphics and computer vision applications, and package them
into a user-friendly, open-source end-to-end Python pipeline.
In particular, µMatch contains tools to facilitate each steps
required to align collections of 3D shapes of biological objects
described as triangular meshes, ranging from mesh cleaning to
symmetry identification, correspondence map extraction, and
ultimately basic shape analysis. Our pipeline is designed to be
computationally light and is thus amenable to the analysis of large
shape collections.

The paper is organized as follows: in Section 2, we review
the shape correspondence literature that is most relevant
to our work and define the notations used through the
manuscript. We present µMatch in Section 3 and provide
technical details describing each step in the pipeline. We
then quantitatively assess in Section 4 the performance
of µMatch on a biologically-relevant benchmark dataset
for shape correspondence, and demonstrate µMatch’s ability
to recover previously reported morphological differences in
embryonic limb development of wild-type and Apert syndrome
mouse models. Finally, we conclude with a discussion in
Section 5.

2. THE SHAPE CORRESPONDENCE
PROBLEM

2.1. Literature Overview
Biological morphometry historically relies on manually

selected homologous landmarks, defined as anatomically
unambiguous and consistent features of the object of
interest (Bookstein, 1997). Relying on these landmark points
provides an implicit form of sparse correspondence between

objects, which then allows aligning collections of specimen via
Procrustes analysis, a classical strategy consisting of removing
geometrical transformations that do not affect the shape of
an object (specifically, translations, scaling and rotations)
so as to statistically study the extent and nature of shape

differences (Rohlf and Slice, 1990).
Landmark-based morphometry, also called geometric

morphometrics (Dryden and Mardia, 2016), is actively used at
the macroscopic scale in the context of medical imaging (Yeh
et al., 2021), anatomy (Finka et al., 2019), taxonomy (Karanovic
and Bláha, 2019), and plant science (Lucas et al., 2013). However,
when considered at the smaller mesoscopic or microscopic
scales, biological objects such as soft tissues and cells in isolation
rarely possess well-localized and unambiguously-identifiable
features that could reliably act as landmarks, despite having
non-trivial shapes. In geometric morphometrics, the fact
that landmarks are homologous and that they correspond
to the same biological structure or function across different
individuals is relevant (Klingenberg, 2008). For the non-rigid,
featureless objects most often encountered in microscopy, a
more appropriate alternative consists of identifying a dense
(continuous) correspondence that only uses geometry and does
not rely on the existence of a finite set of unique, localized
features derived from functional or evolutionary factors. This
type of approach is successfully used in several frameworks
in 2D (Laga et al., 2014; Phillip et al., 2021). Extending these
methods to 3D shapes is unfortunately challenging when at
all possible, and existing solutions impose strong constraints
on the topology of input objects and on the way they are
parameterized (Srivastava et al., 2010; Koehl and Hass, 2015).
As a result, most 3D shape correspondence workflow involving
objects extracted from bioimages still rely on manually annotated
(pseudo-) landmarks (Boehm et al., 2011; White et al., 2019).

Several algorithms that automatically retrieve a dense
correspondence between 3D surfaces have been proposed by the
computational geometry and computer graphics communities.
Herein it is generally assumed that the shapes to correspond
are near-isometric, meaning that they do not exhibit significant
deformations. This assumption alone unfortunately makes the
vast majority of solutions unsuitable to problems involving
collections of biological objects, where natural individual-
to-individual variability may fully deviate from isometry.
Most popular approaches retrieve a correspondence map
that minimizes a measure of distortion, such as the degree
of stretching or bending, using continuous optimisation
techniques (Schreiner et al., 2004; Sorkine and Alexa, 2007;
Schmidt et al., 2019). These methods however suffer from highly
non-convex energy landscapes composed of many sub-optimal
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local minima, and thus require a relatively good initialization
to converge to a good solution. This problem is circumvented
by Windheuser et al. (2011), in which a global solution is found
using a sophisticated technique to reduce the solution space and
then solve the optimization problem using a linear programming
approach. The latter approach is guaranteed to yield the lowest
distortion mapping and is therefore less likely to suffer from
symmetry problems and possible mis-assignments provided
that an appropriate distortion function is used. Each matching
however then requires hours of processing time even with GPU
speedup, making it poorly scalable to large bioimage datasets.

Another class ofmethods approaches the problem bymapping
each of the objects to correspond into intermediate domains
and then recovers a mapping between these domains. One such
example exploiting the relatively easier task of finding mapping
between intermediate domains is provided by Lipman and
Funkhouser (2009), available at https://github.com/pedrofreire/
shape-matching. There, a conformal parameterisation (i.e., an
angle-preserving mapping of the objects to the plane R2) is used
to flip the problem into searching for conformal automorphisms
of the plane using Möbius transformations. This method,
however, requires good landmarks for initialization and is
restricted to shapes of specific topology. Finally, Ovsjanikov et al.
(2012) take a more abstract approach by using the scalar function
space associated with each object as intermediate domain, in
a strategy referred to as functional mapping. The function
space is defined as the set of all functions from the object’s
surface, represented as a mesh M, to the real numbers, FM =
{

f :M → R
}

. This last technique is particularly interesting for
biological shape correspondence for a number of reasons: firstly,
it reduces 3D correspondence to a linear problem that does not
require initialization; secondly, it is relatively robust to non-
isometry and flexible compared to other continuous approaches
as it imposes few constraints on the input shapes; and finally,
it provides a computationally efficient means of determining
correspondences. For these reasons, we chose to make use of this
approach in the µMatch pipeline.

The above literature overview, and the design of the
µMatch pipeline, focuses solely on surface-based alignment.
An alternative could have been to review and rely on volume-
based alignment methods. Our rationale for choosing a surface-
based strategy instead is as follows. Volume-based alignment
approaches, as implemented for instance in the popular elastix
software (Klein et al., 2009) and commonly used in medical
imaging, are unable to handle objects with significantly different
orientations. Images must then be pre-aligned or a close-enough
initialization must be provided (Miao et al., 2016; Yang et al.,
2017). While medical image data often exhibit small enough
variations in object orientation (due to the acquisition protocols)
and small enough sample variation (due to the nature of the
objects being imaged) for this issue to be addressed with ad-
hoc methods, the extent of sample variation and orientation
difference in biological experiments cannot be known a priori.
In contrast, the performance of surface-based approaches is not
affected by the orientation difference and, as a consequence,
they do not require any pre-alignment step. A further issue with
biological data lies in the anisotropic nature of microscopy image

volumes, making additional steps of interpolation mandatory
when relying on voxels to align and further complicating the
task of volume-based strategies in the case of large orientation
differences. Surface-based methods, as they rely on meshes, have
the advantage of being blind to the anisotropy of the input
data. In addition to these technical aspects, most alignment
algorithms for bioimage analysis originate from medical imaging
in general and neuroimaging in particular, in which surface-
based alignment is now accepted to be superior to volume-based
alignment. Surface-based matching has indeed been shown to
map borders more accurately between brains than volume-based
registration (Brodoehl et al., 2020), further strengthening the case
for a surface-based approach. Finally, since biological images
most often capture objects that purely have a surface signal
(e.g., from membrane stains) and rarely have a conserved inner
structure akin to human organs, the information available for
alignment is overwhelmingly held in the object’s surface, making
it all the more relevant to rely on a surface-based method.

2.2. Notations and Problem Formulation
Through the article, we focus on the problem of establishing
correspondence between 3D biological objects represented as
meshes. We in particular do not study the downstream problems
of object segmentation and voxel set meshing. Obtaining
object segmentation from possibly noisy biological data can be
challenging but is beyond the scope of this paper. This problem
has been extensively studied and several robust state-of-the-art
methods relying on deep learning, such as the popular 3D U-
net (Isensee et al., 2021), are now freely available in user-friendly
softwares (Lucas et al., 2021). Once segmented, voxel sets can
reliably be meshed using classical methods such as the popular
marching cubes algorithm (Lorensen and Cline, 1987), provided
in widely-used 3D image processing Python libraries such as
scikit-image (van der Walt et al., 2014).

Triangular meshes are discrete approximations of 3D surfaces
commonly used as representations for computer graphics and
computational geometry. A mesh M is composed of vertices,
edges, and (triangular) faces to form a continuous but not smooth
surface, due to the presence of sharp edges connecting any two
neighboring faces. A mesh is generally defined by two arrays
of numbers, the first one containing the spatial positions of the
vertices, v ∈ R

nv×3, and the second one the mesh faces, f ∈

N
nf×3. Increasing the number of vertices of a mesh provides

increased resolution and smoothness, at the expense of increased
complexity and memory requirements.

Numerous classical Euclidean operators can be extended to
manifolds, and as a consequence to discretemeshes, including the
gradient ∇ and the Laplacian 1 = ∇2 = ∇ · ∇ operators. The
Laplacian is interesting in particular because its eigenfunctions
(i.e., the functions that are only scaled by the action of the
operator) provide a geometrically informative basis for the scalar
space of the manifold. The Laplace-Beltrami operator is the
generalization of the Laplacian to triangular meshes. For a mesh
of nv vertices, the Laplace-Beltrami operator is represented as a
sparse nv × nv matrix. Because a mesh is not differentiable, such
a discretisation requires care in order to reproduce the expected
behavior of the Laplacian: the most common formalism for doing
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FIGURE 1 | Geodesic path between two points on a surface. A geodesic

corresponds to the shortest path connecting any two arbitrary points on a

mesh. Molar tooth mesh data from Boyer et al. (2011).

is the cotangent Laplace-Beltrami operator (Pinkall and Polthier,
1993), given by

1ij =











cot(αij)+ cot(αji) j ∈ N(i)

−
∑

k1ik i = j

0 otherwise

, (1)

where αij is the angle adjacent to the edge ij, N(i) the connected

neighbors of the ith vertex, and cot the cotangent operator.
The shortest distance between any two points on a mesh is

given by a geodesic path, as illustrated in Figure 1. Formally,
given a triangular meshM with associated metric g, the geodesic
path x parameterized by t ∈ R between two points a and b on the
mesh is defined as

x(t) = argmin
x

∫ b

a

∑

µν

gµν
dxµ

dt

dxν

dt
dt, (2)

where µand ν correspond to coordinates on the mesh.
Two meshes are equivalent if there is a map between them

that preserves the metrics, and therefore the geodesic distances,
on them. The degree of deformation induced by a map can
thus be measured by calculating the extent to which geodesic
distances are altered by the map, captured in the geodesic
matrix GM. The geodesic matrix is constructed by computing
all pairwise geodesic distances such that [GM]ij contains the

geodesic distance between the two vertices i and j on themeshM.
A symmetry of a surface is defined as a self-mapping (i.e.,

automorphism) 9 of the mesh that leaves the geodesic matrix
unchanged, which is formally expressed as 9 :M → M such
that [GM]x,y = [GM]9(x),9(y) for every x, y ∈ M.

Finally, a correspondence 8 between two meshes is formally
defined as a mapping that assigns each vertex on a first mesh

M1 to each vertex on a second mesh M2 as 8 :M1 → M2. A
functional mapping T :FM1

→ FM2
maps the space of scalar

functions on one mesh (FM1
) to the scalar functional space

on the other (FM2
). As will be extensively discussed through

the paper, the functional mapping provides a useful way of
representing the correspondence between two meshes. In order
to use it, we need a concrete representation in the form of a finite
(k× k) correspondence matrix, denoted as C8.

3. µMATCH PIPELINE

We hereafter detail each step of the µMatch pipeline that
automatically retrieves a one-to-one mapping between pairs of
biological objects which surfaces are represented as triangular
meshes. The considered objects can be of any nature as long
as a mapping reasonably exists between them. To provide
an intuitive, non-biological toy example of what a reasonable
mapping means: while any four-legged animal such as cats and
dogs can plausibly be matched onto one another, they cannot
not be plausibly matched with a snake. It is worth noting that
there is no formal criterion to determine whether two shapes
can meaningfully be put in correspondence, nor for evaluating
the quality of the resulting correspondence in the absence of a
ground truth. The quality of a matching is therefore usually left
to qualitative evaluation.

The µMatch pipeline, summarized in Figure 2, is composed
of three main modules. It starts with a pre-processing stage in
which the meshes are prepared and cleaned and some important
quantities are pre-computed. The second step is the matching
algorithm itself, which exploits the functional mapping strategy.
Finally, the retrieved correspondence map can be further used
for shape analysis. µMatch is implemented in Python 3.7 and
is available at github.com/uhlmanngroup/muMatch. In addition
to the code itself, we also provide sample data and a script
exemplifying the use of the pipeline. For ease of use, all tunable
parameters involved in µMatch are gathered in a .yml file along
with a description of their meaning and range.

3.1. Pre-processing

To make them amenable to processing with µMatch, the
input objects must satisfy a number of technical requirements.
First, each object’s surface must be represented in the form
of a triangular mesh. These meshes must additionally be both
connected andmanifold. Being connected implies that, given any
two vertices in the mesh, it is possible to find a path consisting
of a subset of the mesh edges (i.e., the sides of the faces) that
links the two. The manifold condition imposes that the mesh
must represent a physically realizable continuous surface. More
specifically, it means that each edge in the mesh should be
incident to at most two faces, and that the faces attached to a
vertex should form an open disk or half-disk around the vertex.
An example of non-manifold mesh may involve two parts that
are connected by a single vertex, or the presence of an internal
face. These different notions are illustrated in Figure 3.

In addition, the matching process assumes that the
correspondence map is a bijection, meaning that it defines
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FIGURE 2 | Overview of µMatch. The pipeline, composed of three main steps, automatically retrieves a dense correspondence map between two arbitrary surfaces

of biological objects represented as triangular meshes. Individual substeps are listed in each of the boxes.

FIGURE 3 | Connectivity and manifold properties. Connectivity attributes

expected in a manifold mesh: (A) internal vertex with a full loop of surrounding

faces; (B) boundary vertex with a partial loop of surrounding faces. Two

examples of non-manifold connectivity: (C) sub-meshes connected by only a

single vertex; (D) a single edge shared by more than two triangular faces.

a way to match M1 to M2 as much as a way to match M2

to M1. It is therefore crucial that the pairs of meshes have
the same coverage, which implies that for each point in M1,
a corresponding point exists in M2 and vice versa. Finally, it
is important for all meshes in the collection to be constructed
by sampling as uniformly as possible the object’s surface. This
translates to vertices in the mesh being equally spaced on each
surface, or equivalently to triangular faces having a constant
area. µMatch makes use of a number of geometric quantities
associated with each mesh, including the geodesic matrix and the
Laplace-Beltrami eigen-decomposition introduced in Section 2.2,
that may be adversely affected by a non-uniform sampling.

In µMatch, input meshes are cleaned using PyMeshFix
0.14.1 (Attene, 2010), which offers built-in functionalities
to remove common errors in triangular meshes, including
degenerate and intersecting faces. As a result, output meshes are
manifold and watertight with a single connected component.
Meshes are subsequently resampled to a user-defined number
of vertices N that is smaller or equal than the total number of

vertices in the smallest of the input meshes. Importantly, this
resampling step processes all meshes to have the same number
of vertices regardless of the original number of vertices they
were composed of, relieving users from having to handle this
constraint. The value ofN should be chosen so as to aim at having
fine enough meshes to capture important shape features, while
limiting the number of vertices to what is necessary in order to
avoid overburdening the matching process later.

A final preprocessing step in µMatch, consists of calculating
the geodesic matrix of each input mesh using Lib-igl (Jacobson
and Panozzo, 2018). Although Lib-igl implements the fast
exact geodesic algorithm (Mitchell et al., 1985), it is still
computationally demanding with a run-time of O(N2 logN) and
memory requirement of O(N2), with N the number of vertices in
the mesh. For the sake of computational efficiency, we therefore
provide a custom data preparation script that precomputes the
geodesic matrices for the whole collection of objects and save
them to disk prior to the correspondence pipeline.

3.2. Correspondence
The core of µMatch is a landmark-free dense correspondence
algorithm adapted from Ovsjanikov et al. (2012), Litany et al.
(2017), and Halimi et al. (2019). The correspondence matrix,
describing the final mapping, is built from a collection of feature
descriptors and refined through filtering steps. The overall
workflow is summarized in Figure 4.

3.2.1. Feature Descriptors
Surface matching begins with the calculation of point-wise
feature descriptors, referred to as signature functions. Signature
functions describe the intrinsic geometry of an object and will
therefore return similar values at geometrically similar points
on each mesh to be matched. A number of such descriptors
have been developed and proposed for the specific purpose of
shape correspondence. The first and perhaps most intuitive one
is the Gaussian curvature of the mesh, defined as the product
of the two principal curvatures, calculated at different scales.
More sophisticated techniques include the heat kernel signature
(HKS) (Sun et al., 2009), based on solutions of the classical heat
equation ∂tT = 1T, where 1 is the Laplace-Beltrami operator
andT a temperature. The rough idea behind theHKS is to express
the remaining temperature after some time t for an initial “heat
impulse” fully concentrated at a given point of the mesh. The
HKS can be computed for multiple values of t at each point on
a mesh to generate a collection of feature descriptors. In practice,
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FIGURE 4 | Overview of µMatch’s correspondence workflow. The main elements involved in each steps are listed in the corresponding boxes.

the HKS can be calculated efficiently as

ht(x) =

N
∑

n=0

e−λntφn(x)
2, (3)

where {λi,φi} are the pairs of eigenvalues and eigenvectors of the
Laplace-Beltrami operator (calculated with Lib-igl in µMatch).

The wave kernel signature (WKS) (Aubry et al., 2011) is
closely related to the HKS but instead uses the Schrödinger wave
equation (i∂t+1)ψ = 0, which ordinarily governs the dynamics
of particles in quantummechanics. Unlike HKS, WKS assume an
approximate particle energy and then determines the long time
(i.e., t → ∞) averaged probability distribution for finding the
particle in a particular location on the surface. Sampling these
distributions for different values of particle energy once again
produces a collection of feature descriptors at each point on the
mesh. For fǫ(E) = exp

(

−0.5(ǫ − log(E))2/σ 2
)

, where ǫ is the
particle energy and σ a scale factor set by the difference between
the eigenvalues, it can be shown that the WKS is obtained as

sǫ(x) =

N
∑

n=0

fǫ(λn)
2φn(x)

2. (4)

Examples of several HKS and WKS, exhibiting these descriptors’
ability to capture geometrically similar features across
comparable objects, are illustrated in Figure 5.

In order to obtain robust and quickly-computed feature
descriptors for use on biological objects exhibiting potentially
subtle shape features, µMatch combines HKS and WKS. In
practice these quantities are calculated using only the eigenvalues
and eigenvectors of the Laplace-Beltrami operator as input,
together with the number of functions desired. The total number
of extracted HKS and WKS signature functions must be greater
or equal as the dimension of the functional space, which
corresponds to the size of the correspondence matrix to extract.
This parameter can be freely adjusted in µMatch and is set to 100
by default.

A final step in the computation of signature functions
consists of passing them through a neural network to improve
their overall quality in a process called deep functional maps.
Following Halimi et al. (2019), µMatch implements a 7-layer
ResNet, which is trained in an unsupervised fashion. Each

layer acts on the signature functions by first taking weighted
linear combinations of the different signature functions and
then passing the result through a non-linear activation function
(ReLU). The weights in the linear combination are adjustable
parameters that are tuned during the training process such
that the output signature functions span the functional space
better and therefore produce correspondence maps with lower
distortion. Note that while the loss is formulated on the geodesic
distance, the neural network is however constrained by the
input signature functions. Minimizing the geodesic distance
between the two inputs therefore amounts to minimizing
distortion subject to aligning the signature functions. As such,
the optimization is carried out on intrinsic shape properties (as
captured by the signature functions) and not on the geodesic
matrix itself. In order to train the network, a subset of the
collection of objects to be put in correspondence must serve as
training set. As ever, the size of the training set is a trade-off
between the ability of the trained network to effectively generalize
and the training time, and there is no universal rule to determine
how many objects should be included for training. In practice,
however, all objects may be used whenever the collection is small.
For collections composed of more than a hundred of meshes, a
representative subset can be chosen as the training set to speed
up computations. We recall that preparing the training set does
not require any manual annotation since the network is trained
in an unsupervised manner. For eachmesh in the training set, the
geodesic matrix, the Laplace-Beltrami eigenvectors, an array area
encoding the area around each vertex, and the feature descriptors
of each mesh are precomputed and saved to a single TensorFlow
.tfrecords file for fast data access.

3.2.2. Assignment Problem
The correspondence matching algorithm used in µMatch is
based on a method known as functional mapping (Ovsjanikov
et al., 2012, 2016) and entirely relies on the computed feature
descriptors. The core principle of functional maps is that any
mapping between two surfaces induces a corresponding linear
mapping between their functional spaces. Formally, this can be
demonstrated as follows. Assuming that two surfaces M1 and
M2 are put in correspondence by a smooth mapping8 :M1 →

M2, one can define a space of scalar functions on the surface
Mν as FMν

=
{

f :Mν → R
}

for ν = 1, 2. These spaces can
be shown to be infinite dimensional linear vector spaces and the
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A

B

FIGURE 5 | Feature descriptors computed in µMatch. A subset of the descriptors computed from the eigen-decomposition of the Laplacian operator are shown in

two different meshes of the TEETH dataset: (A) heat kernel signatures (HKS) for different values of t; (B) wave kernel signatures (WKS) for different values of ǫ. Both

types of descriptors can be observed to behave similarly in corresponding areas of the two meshes. Molar teeth mesh data from Boyer et al. (2011).

smooth mapping 8 thus induces a linear map T8 :FM1
→

FM2
through T8(f ) = f ◦ 8−1, called functional mapping.

The linear map T8 can be represented as a finite correspondence
matrix C8 by choosing a (finite) set of k basis functions on the
vector spacesFM1

andFM2
. The eigenfunctions of the Laplace-

Beltrami operator, {φi}
k
i=1, can be shown to form a complete

orthogonal basis of each respective functional space (Ovsjanikov
et al., 2012) and encode spatial resolution (also referred to as
frequency) when ordered according to their eigenvalues, denoted
{λi}

k
i=1, making their choice geometrically meaningful. Because

only the k first eigenfunctions are selected, they are referred to as
the reduced spectral basis.

A correspondence should first and foremost preserve the
signature functions. Given a set of n feature descriptors for each
mesh, A ∈ R

k×n and B ∈ R
k×n expressed in the reduced

spectral basis, this requirement implies that C8A ≃ B. In the
case of perfect isometry, the functional mapping can be shown to
commute with the Laplace-Beltrami operator such that C8L1 =

L2C8, with Lν the Laplace-Beltrami operator expressed in the
spectral basis of Mν , simply corresponding to a diagonal matrix
of the eigenvalues. Whilst exact equality is no longer true in
the general case, this relation still approximately holds and can
be exploited as a regulariser. The correspondence matrix can be
retrieved by solving the regularized linear least squares problem

C8 = argmin
C

‖CA− B‖2 + ‖δL⊙ C‖2 , (5)

where ⊙ is the Hadamard product and [δL]ij = λ
M2
i −

λ
M1
j , with

{

λ
Mν
µ

}k

µ=1
the eigenvalues of the Laplace-Beltrami

operator onMν .
In the presence of any intrinsic symmetries in the mesh,

a subset of eigenfunctions called the anti-symmetric space
are undistinguishable up to a flip of sign. The signature
functions therefore do not provide sufficient information to
unambiguously determine how this subset of the function space
is mapped between the two meshes. This can lead to parts
of the object being mapped with different orientations, leaving
large tear discontinuities in-between. To solve this, µMatch
implements an additional step after solving (Equation 5) in
order to ensure that the resulting map has low distortion. We
begin by noting that, much like any scalar function can be
decomposed using the spectral basis, so too can any bivariate
function, F :Mν × Mν 7→ R, the result being a k × k array.
Also, given such a bivariate function F on M1 and a mapping
8 :M1 7→ M2, 8 maps F to a bivariate function F8 on M2,
defined by F8(·, ·) = F(8−1(·),8−1(·)). When expressed in
the spectral basis with the correspondence matrix, it reduces
to the matrix product F8 = C8 FCT

8. The class of bivariate
functions that is particularly interesting for the purpose of shape
correspondence is the geodesic matrix and functions derived
from it. In µMatch, we don’t consider the geodesic matrix
directly, but rather its Gaussian at several scales σ , defined as
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K
Mν
σ = exp(−G2

Mν
/2σ 2), which better encodes neighborhood

information. Thus, we expect

C8K
M1
σ CT

8 ≃ KM2
σ . (6)

The K
Mν
σ matrices contain off-diagonal entries that provide

information on how different eigenfunctions should relate
to one-another, including for the anti-symmetric ones that
are not captured by the signature functions. In µMatch, a
few fixed values of σ are chosen corresponding to σ ∈

[0.25µ(GM), 0.5µ(GM), 0.75µ(GM)], where µ(GM) is the
mean surface distance defined as

µ(GM) =
1

A2
M

∫

M
GM(x, y) d2x d2y, (7)

for a meshM with geodesic matrix GM and surface area AM.
Decreasing the dimension of the spectral basis, captured by

the number of basis functions k, increases the stability of the
solution of Equation (5). It is therefore better to solve for the
correspondence matrix C8 at relatively low dimension, generally
lying in the range of k = 5 to 12 (µMatch uses k = 8 by
default), and then scale up in a process known as ZoomOut
Upsampling (Melzi et al., 2019). The downside of working at
low dimensions is that much of the off-diagonal information is
lost by the omission of higher frequency components from the

matrices K
Mν
σ . Therefore, in order to retain the high frequency

information that is required for computing the final kmax-

dimensional correspondence matrix, we first compute K
Mν
σ

matrices at the full dimension kmax, and from this derive the
following three reduced (k× k) matrices

[J
(0)

Mν ,σ
]ij = [KMν

σ ]ij, (8)

[J
(1)

Mν ,σ
]ij =

∑kmax

m=k+1
[K

Mν
σ ]im[K

Mν
σ ]mj, (9)

[J
(2)

Mν ,σ
]ij =

∑kmax

m,n=k+1
[K

Mν
σ ]im[K

Mν
σ ]mn[K

Mν
σ ]nj (10)

for i, j ∈
{

1, . . . , k
}

. The reduced matrices J
(1)

Mν ,σ
and

J
(2)

Mν ,σ
capture off-diagonal information related to the first k

eigenfunctions that would otherwise be lost in the k × k version

of K
Mν
σ (corresponding to J

(0)

Mν ,σ
). A k × k correspondence

matrix C
(k)
8 can then be obtained by solving the continuous

optimisation problem

C
(k)
8 = argmin

C

∑

σ

2
∑

i=0

∥

∥

∥
CJ

(i)

M1 ,σ
CT − J

(i)

M2 ,σ

∥

∥

∥

2

F
, (11)

using the solution of Equation (5) as initial value.
The final, full resolution correspondence matrix is obtained

by iteratively increasing k as follows. First, given C
(k)
8 , we solve

for the point-to-point map by computing a transition matrix Q

given as

Q = AM1
φ
(k)

M1
(C

(k)
8 )T(φ

(k)

M2
)T , (12)

and a probability matrix P given as

[P]ij = [Q2]ij/
∑

k

[Q2]ik. (13)

The point-to-point mapping 8 is then retrieved by passing P to
a linear assignment algorithm (Crouse, 2016), which assigns the
indices of vertices of one mesh to those of the other, yielding the
maximum probability point-wise correspondence. Conversely,
given the point-to-point mapping8 :M1 7→ M2, the associated
correspondence matrix of dimension k+ 1 can be computed as

C
(k+1)
8 = (φ

(k+1)

M1
)TAM1

5 φ
(k+1)

M2
, (14)

where AM1
is the mesh mass matrix encoding the area around

each vertex on M1, and φ
(k)

Mν
are matrices which columns

correspond to the first k Laplace-Beltrami eigenvectors of the
meshMν . Finally,5 is the matrix representation of8 given by

[5]ij =

{

1 8(i) = j

0 otherwise
. (15)

ZoomOut Upsampling thus proceeds to alternate between
solving for 5 and C8, incrementing the dimension by one each
time we solve for C8 and repeating until k = kmax, where kmax

is the dimension of the reduced spectral basis, chosen such that it
provides sufficient resolution for an accurate mapping.

3.2.3. Filtering
The occasional assignment errors and discontinuities that may
remain after the correspondence procedure can be filtered
out using a technique known as product manifold filter
(PMF, Vestner et al., 2017). The PMF aims at producing a
bijective and continuous correspondence map by using kernel
density estimation. Assuming a noisy and potentially sparse set of
I correspondences

{

xi → yi
}

i=1,...,I
and a kernel κ (i.e., window

function), the function F :M1 ×M2 → R defined as

F(x, y) =

I
∑

i=1

κ(d(x, xi)) κ(d(y, yi)), (16)

where d is a distance measure (the geodesic distance in our
case). The expression (Equation 16) will be maximized when the
distance between y and yi is similar to that between x and xi for
each i = 1, . . . , I.

A clean mapping 8 : x → y can thus be retrieved when
y maximizes (Equation 16), which can be expressed in matrix

form as Fσ = K
M1
σ (KM2

σ )T, where K
Mν
σ = exp(−G2

Mν
/2σ 2)

and σ = 0.3µ(G) as recommended in Vestner et al. (2017)
(see Equation 7). The matrix F is once again passed to a linear
assignment algorithm to yield a mapping of vertex indices from
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one mesh to the other, as done for the probability matrix P

in Section 3.2.2, to obtain an updated correspondence.
Ultimately, for a pair of meshes fed into the correspondence

pipeline, µMatch returns a correspondence in the form of two
matrices, N1 and N2, where N1 are the indices of vertices on the
first mesh and N2 on the second, such that [N1]n 7→ [N2]n for
each n ∈ N1. These arrays are saved to disk for reuse in the shape
analysis module or outside of µMatch.

3.3. Shape Analysis
3.3.1. Alignment and Statistical Shape Analysis
µMatch allows putting collections of objects in correspondence
in order to computationally retrieve the average shape and
morphological variations within the collection relying on
Procrustes analysis (Kendall, 1989). All objects in the collections
are first centered at the origin and scaled to be of unitary root
mean square norm. An arbitrary object in the collection is then
selected to act as reference, and correspondence maps between
this reference and all other objects in the collection are extracted.
The final step is to find the best alignment of each object in the
collection onto the reference by rotating it. The optimal rotation
angle is retrieved by solving the classical orthogonal Procrustes
problem (Gower and Dijksterhuis, 2004). Once all objects have
been aligned onto the reference, a new reference is obtained
by calculating the mean across the entire collection for each
corresponding points. The whole process is then repeated, now
aligning every shape in the collection to this new reference, and
a new updated mean is computed until convergence. The final
result is taken as mean shape for the collection.

Relying on the mean of the collection and each object aligned
to it, deviations from the mean can be extracted as follows. For
each point on the mean shape, µMatch calculates the standard
deviation of corresponding points across the entire collection.
This results in a scalar function on the reference shape indicating
where morphological variations occur and to which extent, and
can be visualized as a colormap on the mean shape mesh relying
on the vedo visualization library (Musy, 2021). In µMatch, the
script implementing this procedure takes as input a directory
containing a collection of meshes together with a path to their
pre-computed correspondences. The correspondences need only
be calculated between the reference shape and each of the other
shapes in the collection.

3.3.2. Morphing
Once correspondence between two shapes is established, a
continuous morphing between them can be extracted by first
aligning the two shapes via translation and rotation (similar to
the procedure described in Section 3.3.1, but without scaling),
then calculating the geodesic path connecting the two meshes,
and sampling shapes along that path. A geodesic being defined
as the shortest path connecting any two points in a space, its
computation solely requires a notion of distance between points
in that space. In Figure 1, we illustrated a geodesic path on amesh
M, where samples along the path correspond to positions on the
mesh. In the case of morphing, the space of interest is instead that
of surfaces represented by meshes of fixed connectivity meeting
the conditions introduced in Section 3.1: points in the space

correspond to the vertex positions and the distance is determined
by their connectivity. Samples along the resulting path therefore
correspond to meshes. Continuous morphing, going beyond
shape analysis of collections of equivalent samples, is of particular
interest for image-based modeling, for instance in the context of
developmental studies. In Figure 6A, we illustrate as an example
the surfaces of a developing mouse limb bud synthetically
generated by interpolating between a young and an old limb
bud sample. While the older limb bud sample has features (e.g.,
distributions of surface curvature) for which there is no simple
mapping onto the youngest limb bud, the collection of extracted
signature functions (Figures 6B,C) manages to capture the local
arrangement of these geometrical details with respect to the
overall bud shape and allows mapping them to the younger,
smoother limb bud in a qualitatively sensible way. As a result,
the morphing obtained based on this correspondence produce a
visually realistic evolution from one shape onto the other.

Technically, the continuous morphing is obtained following
the algorithm proposed in Kilian et al. (2007). Consider a mesh
M1 with vertices v, edges E, and a vector field X describing the
deformation of M1 onto some other mesh M2. The vector field
X is given by difference vectors between the two meshes and thus
assumes that a correspondence between M1 and M2 has been
calculated. Then, the norm ǫ, defined as

ǫ(X) =
∑

i,j∈E

〈Xi − Xj, vi − vj〉
2, (17)

measures the deformation between the two meshes. In order
to generate a sequence of meshes morphing the meshes onto
one another, the quantity (Equation 17) is minimized through
a multi-scale continuous optimisation procedure, starting with
low mesh resolution and few intermediate steps and sequentially
increasing both. The final geodesic path consists of a set of
intermediate meshes that reflects the continuous deformation of
one surface onto the other.

4. EXPERIMENTS

4.1. Quantitative Validation
In order to quantitatively validate µMatch, we use a teeth scan
dataset originally introduced by Boyer et al. (2011) and available
at www.wisdom.weizmann.ac.il/~ylipman/CPsurfcomp/ and
commonly exploited to assess 3D morphometry algorithms.
The dataset includes 45 meshes corresponding to mandibular
second molars of a variety of prosimian primates and their close
non-primate evolutionary relatives, summarized in Table 2. Each
specimen is annotated with a set of 16 manually-determined
landmarks placed by expert morphometricians that can be
used as ground-truth to assess the quality of an automatically-
retrieved correspondence. Although this dataset is composed
of objects toward the macroscale of the spectrum, it is one of
the rare available resources of biological objects for which a
ground truth sparse correspondence is available and is as such an
excellent candidate for benchmarking. Performance assessment
is then carried out following the Princeton benchmark protocol
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A

B C

FIGURE 6 | Morphing between two objects in correspondence. (A) Computationally retrieved “growth” of a mouse forelimb obtained by interpolating between two

matched meshes of mouse limb buds at early (E10 - E10.5) and late (E11 - E11.5) developmental stages. Meshes in green correspond to samples from the

MOUSE_LIMB dataset, while meshes in blue have been synthetically generated through by interpolating along the geodesic path connecting the green meshes.

Examples of the set of (B) HKS and (C) WKS used to extract the correspondence. Mesh data from Martínez-Abadías et al. (2018).

(Shilane et al., 2004; Kim et al., 2011) by computing the mean
geodesic error (GE) expressed as

GE =
1

A
1/2

M2

16
∑

i=1

GM2

(

8(l1i ), l
2
i

)

, (18)

where
{

l1i
}16

i=1
and

{

l2i
}16

i=1
are the ground-truth landmarks on

M1 and M2, respectively, 8 is the point-to-point mapping,
and GM2

and AM2
are the geodesic matrix and the surface

area of the mesh M2, respectively. The GE therefore measures
how well the main features of the objects have been mapped,
regardless of the amount of deformation there may be elsewhere
on the surface.

Several processing steps of the µMatch correspondence
module (Figure 4), namely the deep functionalmaps and product
manifold filter, aim at improving the final correspondence but
are not strictly necessary. While we do recommend including
them whenever possible, these steps do increase computation
time and the extent of the improvement they will bring cannot
be predicted in general for any arbitrary dataset. To provide
users with an example of the cost and gains involved, we have
quantified the quality of the retrieved correspondence in different

settings, by enabling and disabling the deep functional maps
and product manifold filter in the µMatch pipeline. In Table 1,
we report the average GE between ground-truth landmarks and
correspondence points obtained automatically with µMatch for
the whole dataset. We also indicate the average runtime to
establish correspondence in any given pair. A breakdown of
the average GE by species and the cumulative error curves are
provided in Figure 7A and Table 2, respectively. We observe
the respective merits of the deep functional maps and product
manifold filter to be as follows. The deep functional maps
improve the signature functions but do not impose smoothness
in the final correspondence, resulting in large GE variance. While
the correspondence runtime is not affected by deep functional
maps since the network is trained during preprocessing, a
significant extra amount of compute (∼3 h for this dataset)
is required ahead of the matching itself, impacting the total
duration of the pipeline. In contrast, the product manifold filter
ensures that the final correspondence is smooth and does not
feature major tears or discontinuities, resulting in small GE
variance. It is limited by the correspondence quality that can
be obtained from the original signature functions alone and
doubles the runtime per pair, but as a trade-off requires no
prior computation or training. The combination of the two yields
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TABLE 1 | Summary of results on the TEETH dataset.

No DFM, no PMF DFM, no PMF No DFM, PMF DFM, PMF

Average GE 10.7± 14.8 9.3± 12.8 6.5± 9.5 4.8± 3.8

Average runtime (seconds) 5 5 11 11

The average and standard deviation of the mean geodesic error (GE, Equation 18) between ground truth landmarks and predicted correspondence obtained with µMatch is reported for

different setting including or not the deep functional maps (DFM) and product manifold filter (PMF) steps, along with the average runtime per pair (the complete dataset is composed of

990 unique pairs). The GE is reported in units of normalized geodesic length, with lower values indicating better results. The complete µMatch pipeline corresponds to the last column

(DMF, PMF). Best results for each metrics are highlighted in bold.

TABLE 2 | Per-specie breakdown of results on the TEETH dataset.

Species Human Bonobo Chimpanzee Orangutan Gorilla

# samples 10 4 12 10 9

GE (No DFM, no PMF) 7.4± 12.1 5.8± 8.3 8.3± 12.8 17.0± 21.1 7.0± 9.5

GE (DFM, no PMF) 7.2± 11.9 5.8± 8.3 8.2± 12.7 12.0± 15.7 6.9± 9.3

GE (No DFM, PMF) 3.2± 2.1 3.3± 2.1 3.7± 2.6 11.9± 17.6 4.6± 2.9

GE (DFM, PMF) 3.2± 2.1 3.2± 1.9 3.7± 2.5 5.0± 3.6 4.3± 2.8

For each class, 0.5 × n × (n − 1) unique pairs can be put in correspondence, where n is the number of samples. The average and standard deviation of the mean geodesic error

(GE, Equation 18) between ground truth landmarks and predicted correspondence obtained with µMatch is reported for different setting including or not the deep functional maps

(DFM) and product manifold filter (PMF) steps. The GE is reported in units of normalized geodesic length, with lower values indicating better results. The complete µMatch pipeline

corresponds to the last row (DMF, PMF). Best results for each specie are highlighted in bold.

the best results, as it allows obtaining a smooth correspondence
from improved signature functions. The cost is however a high
runtime per pair for the correspondence itself, and the necessity
to go through an expensive training stage during preprocessing.

Once correspondence has been established between all meshes
in the collection, we carry out a further sanity check by reporting
the geodesic distance, or deformation, given by

δGM1M2
=

∑

i,j

∣

∣

∣

[

GM1

]

i,j∈E
−

[

GM2

]

8(i),8(j)

∣

∣

∣
, (19)

where E is the set of edges of the meshes M1 and M2,
and observing how it compares between the different species
present in the dataset. We hypothesize that samples from
different species will exhibit more shape deviations than
individuals from the same species, and investigate whether
this can be observed in the geodesic distances retrieved after
correspondence established by µMatch. The quantity (Equation
19) is calculated between all pairs in the collection, producing
a n × n matrix δG, with n the number of meshes in the
collection. Each sub-blocks of the matrix corresponding to
the different species can be averaged to produce a reduced
distance matrix, depicted in Figure 7B for the full µMatch
pipeline (with deep functional maps and product manifold filter).
The geodesic distances between species match what would be
expected from their phylogeny: molar surfaces of chimpanzees
and bonobos are highly similar, and also closely resemble human
teeth, while gorilla and orangutan molars are observed to be
morphologically more dissimilar. In addition to their differences
with other species, samples from the orangutan class appear to
be extremely diverse, resulting in a large intra-class distance.
This experiment provides a sanity check assessing the validity

of the algorithms implemented in the µMatch pipeline. We
orient the reader interested in a comparative assessment of the
relative performance of the selected correspondence algorithms
against published alternatives to the original works introducing
functional mapping (Ovsjanikov et al., 2012, 2016).

4.2. Case Study: Joint Shape Analysis of
Embryonic Limbs and Dusp6 Gene
Expression Patterns
In our previous study (Martínez-Abadías et al., 2018), we
performed geometric morphogenesis on a mouse model of
Apert syndrome, in which the Fgfr2 gene contains a mutation
which models the human syndrome. The goal was to explore
whether shape analysis of a gene expression pattern could
suggest the molecular basis of the phenotype. In addition to
analyzing the developing anatomical changes in the limb, we
also analyzed the 3D expression pattern of Dusp6, a gene
whose expression reflects the activity of FGF signaling. This
allowed subtle alterations in the gene expression pattern to be
detected before the anatomical phenotype was apparent, thus
strengthening the idea that altered FGF signaling is directly
responsible for the phenotype. That previous analysis however
depended on manual annotation of 3D landmarks on the data, a
process which was very labor-intensive and taking many weeks
to achieve. Here, we demonstrate that µMatch can be used
to automate this process, jointly quantify the evolution of the
shape of embryonic limb and gene expression pattern over
developmental time without human bias and achieving similar
results in a fraction of the time. We have chosen to reproduce
the results of this study to illustrate the use of µMatch on real
biological data containing objects that differ in size, orientation,
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FIGURE 7 | Validation of µMatch. (A) Cumulative geodesic error curve, reporting the proportion of predicted correspondence with an error (Equation 18) smaller than

a variable threshold, for different setting including or not the deep functional maps (DFM) and product manifold filter (PMF) steps. The complete µMatch pipeline

corresponds to the solid black curve (DMF, PMF). (B) Matrix of average geodesic distance (Equation 19) between species based on the correspondences obtained

with the full µMatch pipeline.

TABLE 3 | Summary of the MOUSE_LIMB dataset.

Early (∼E10) Mid (∼E10.5 to ∼E11) Late (∼E11.5)

Limb Dusp6 Limb Dusp6 Limb Dusp6

Unaffected 12/11 9/5 7/6 6/2 2/3 1/1

Fgfr2 mutant 3/11 6/7 8/8 3/3 7/5 2/5

For each condition, the number of available fore and hind samples of limb surface and

Dusp6 gene expression are indicated. Gene expression patterns are not available for all

limb samples, hence the smaller sample sizes.

and shape, and exhibit a mixture of inter-group and intra-group
variations of morphology.

The dataset we refer to as MOUSE_LIMB, publicly available
at dx.doi.org/10.5061/dryad.8h646s0, contains meshes extracted
from real optical projection tomography scans (Sharpe et al.,
2002) of the limbs and of the Dusp6 gene expression domains of
Apert syndrome (Fgfr2mutants) mouse embryos and unaffected
littermates ranging from E10 to E11.5, where EN stands for N
days after conception. Extracting these meshes requires the raw
image data to be first segmented, a step that can be carried out
by different methods. We refer readers interested in the details
of the segmentation process to the original study (Martínez-
Abadías et al., 2018). The meshes are grouped into forelimbs
and hind limbs of early (∼E10), mid (∼E10.5 to ∼E11) and
late (∼E11.5) developmental periods, according to Table 3. To
process these data, we set the number of vertices N to be
2000, and use default µMatch values, namely a functional space
dimension of k = 100, and 100 computed heat kernel and wave
kernel signatures.

For each age and genetic background group, a template
shape is chosen at random and used to initiate correspondences
with the remaining samples. From the mesh correspondences
obtained with µMatch, a Procrustes alignment of the limbs
surfaces is obtained following the procedure described in
Section 3.3.1, yielding an average limb with an associated
measure of variance at each vertex. Once limb surfaces are

matched, the correspondence can be further used to map internal
processes between them, allowing in particular to compare
Dusp6 gene expression data available for some of the limbs. The
parameters obtained from the limb alignment can then be used
to do a rigid registration of the gene expression patterns. This
is then further refined by iterative closest point alignment (Besl
and McKay, 1992; Chen and Medioni, 1992) and thin plate
spline (TPS) deformation to finely warp the objects onto one
another (Duchon, 1977). To implement the TPS deformation, the
surfaces are first sub-sampled to obtainM control points {cm}

M
m=1

and the warping is obtained as

δ(x) =

M
∑

m=1

ωmψ(‖x− cm‖), (20)

where ψ(r) = r2 log(r) is the thin plate spline kernel. The
coefficients {ωm}

M
m=1 are found by solving for Aω = v, where

[A]ij = ψ(
∥

∥ci − cj
∥

∥) ∀ i, j = 1, . . . ,M and [v]m is the difference
vector between the source and target surface at the control points
m = 1, ...,M. Once the objects have been warped onto one
another in this manner, a simple nearest neighbors search is used
to obtain a correspondence and the shape analysis procedure
described in Section 3.3.1 can be carried out again for the gene
expression data. The resulting average limbs and gene expression
patterns, color-coded according to local variance, are shown in
Figure 8. Following Martínez-Abadías et al. (2018), we display
results for hind limbs of the early and mid-early stages, and fore
limbs of the mid-late and late stages.

In Martínez-Abadías et al. (2018), the limb buds of Fgfr2
mutants from the late period (∼E11.5) were observed to separate
from those of unaffected littermates. During the mid-early
(∼E10.5) and early (∼E10) periods, the limbs of Fgfr2 mutant
mice were however undistinguishable from those of unaffected
specimen. Significant difference inDusp6 gene expression pattern
was observed between Fgfr2mutant animals and their unaffected
littermates for all groups except for the early time period.
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FIGURE 8 | Average limb and Dusp6 gene expression across the MOUSE_LIMB dataset. The averaged surfaces are color-coded according to the local variance (see

colorbars). The geodesic distance between the average shape of the unaffected specimen and Fgfr2 mutant is also reported for the limb and Dusp6 gene expression

pattern.

We recover the same results using µMatch, as illustrated
in Figure 9, demonstrating the validity of the automatically
retrieved correspondence. The difference in shapes was originally
quantified by Procrustes analysis relying on sparse set of semi-
landmarks along the most distal edge and on the dorsal and
ventral sides of the limb (Martínez-Abadías et al., 2018). In
contrast, our approach solves for a dense correspondence, taking
into account the entire object’s surface. The major advantage of
µMicro is that it is entirely landmark-free and fully automated.
Once limb surfaces are put in correspondence, their geodesic
distance can be used to further quantify the extent of their
morphological difference, and the recovered matching used
to also align their corresponding gene expression. As such,
provided that gene expression patterns have been acquired so
as to be appropriately registered inside the limb, comparing the
shape of gene expression patterns does neither require artificial
landmarking nor a separate correspondence map: they instead
get aligned based on their “container.” These results demonstrate
that µMatch can reliably be used on real bioimage data, which
may be noisy, in which samples may exhibit too large variations
in their morphology or orientation to rely on volume-based
alignment, and which may involve extracted meshes of different
numbers of vertices.

5. DISCUSSION AND CONCLUSIONS

We developed µMatch, an automated 3D shape correspondence
pipeline tailored to biological objects that are difficult or

impossible to landmark. The core element of the pipeline is
the correspondence algorithm, which is based on functional
mapping. As such, µMatch relies entirely on automatically-
extracted signature functions that capture the local geometry
of the object’s surface to retrieve an optimal matching. In
addition to the correspondence algoritm itself, µMatch includes
scripts to facilitate the whole workflow, from data pre-processing
(including mesh cleaning and pre-computation of important
quantities to speed up the correspondence process) to basic shape
analysis (including Procrustes analysis and morphing). Since
the input data format required by µMatch, namely triangular
meshes, is very generic, the pipeline can be used for a broad
range of objects. While µMatch has no hard limit on the input
mesh size, larger meshes will result in more computationally
demanding operations and therefore affect execution time. In our
experiments, consideredmeshes were composed of 2,000 to 3,000
vertices (corresponding to 4,000 to 6,000 faces). For much larger
meshes, we recommend to establish a first correspondence at a
lower resolution (i.e., on decimated meshes) and then extending
it to the full sized meshes. As a reference runtime for standard
laptops, establishing correspondence between two meshes of
2,000 vertices took approximately 17 s on a laptop with 16Gb
of RAM, an Intel Core i7 8th Generation CPU (8 cores), and an
Intel Corporation UHD Graphics 620 (rev 07) GPU. µMatch, is
implemented in Python and is freely available on GitHub under
BSD-3 Clause license.

We quantitatively validated µMatch relying on the TEETH
benchmark dataset (Boyer et al., 2011) for which ground
truth correspondence is available. Then, we explored the use
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FIGURE 9 | Analysis of the MOUSE_LIMB dataset based on geodesic distances of aligned objects. Vertex-wise deviations from the average shape are concatenated

for each mesh in the collection, and reduced by principal component analysis. The resulting two largest principal components are plotted for each sample to quantify

the morphological difference between the limbs and Dusp6 gene expression patterns of Fgfr2 mutants and unaffected littermates. The average limb (in yellow) and

Dusp6 gene expression pattern (in blue) for each group is displayed on top.

of µMatch to automate the analysis of a dataset of optical
projection tomography scans of mouse limbs (MOUSE_LIMB
dataset, Martínez-Abadías et al., 2018) and demonstrated that
our pipeline allows retrieving published results. This dataset
also includes gene expression patterns which morphologies
had originally been studied relying on landmarking. We
demonstrated that the limb surface correspondence obtained
with µMatch can be used to align the corresponding gene
expression patterns without the need for any landmarks,
and subsequently characterize their morphological differences.
Although involving rather small sample sizes, this experiment
is a proof-of-principle that the alignments provided by µMatch
can be used to compare the spatial morphology of processes
that are internal to the surfaces being matched. Beyond allowing
to reproduce and automate morphometry from data at the
mesoscopic scale, we hope that µMatch will make it possible
to investigate new shape-related questions at the cellular or
subcellular scale. Being able to reliably put soft-tissue objects
without landmarks in correspondence and use their alignment
to register internal processes is a first step toward atlas-free
registration, which would be useful in many biological studies
involving for instance spatial transcriptomics data.

In addition to enabling the quantitative study of collection
of equivalent 3D shapes, dense correspondence maps also
allow for continuous morphing between meshes. An exciting
future direction of this work is therefore to explore how
µMatch can be used to build spatiotemporal models of
deforming objects. In a biological context, for instance during
development or morphogenesis, complexity will almost always
significantly increase over time, resulting in possibly challenging

correspondence problems between younger, morphologically
simpler surfaces and older ones exhibiting more complex shapes.
Because correspondence is an essential first step toward mining
3D surface data extracted from bioimages, we hope that µMatch
will help enable new avenues in computational morphometry and
modeling for biology and lower the entry cost for life scientists
intending to rely on statistical shape analysis to explore their data.
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