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Feature-Based Classifiers for
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Alex Matskevych, Adrian Wolny, Constantin Pape* and Anna Kreshuk*

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany

The remarkable performance of Convolutional Neural Networks on image segmentation

tasks comes at the cost of a large amount of pixelwise annotated images that have

to be segmented for training. In contrast, feature-based learning methods, such as the

Random Forest, require little training data, but rarely reach the segmentation accuracy

of CNNs. This work bridges the two approaches in a transfer learning setting. We

show that a CNN can be trained to correct the errors of the Random Forest in the

source domain and then be applied to correct such errors in the target domain without

retraining, as the domain shift between the Random Forest predictions is much smaller

than between the raw data. By leveraging a few brushstrokes as annotations in the target

domain, the method can deliver segmentations that are sufficiently accurate to act as

pseudo-labels for target-domain CNN training. We demonstrate the performance of the

method on several datasets with the challenging tasks of mitochondria, membrane and

nuclear segmentation. It yields excellent performance compared to microscopy domain

adaptation baselines, especially when a significant domain shift is involved.

Keywords: microscopy segmentation, domain adaptation, deep learning, transfer learning, biomedical

segmentation

1. INTRODUCTION

Semantic segmentation—partitioning the image into areas of biological (semantic) meaning—is
a ubiquitous problem in microscopy image analysis. Compared to natural images, microscopy
segmentation problems are particularly well-suited for feature-based (“shallow”) machine learning,
as the difference between semantic classes can often be captured in local edge, texture, or
intensity descriptors (Belevich et al., 2016; Arganda-Carreras et al., 2017; Berg et al., 2019).
While convolutional neural networks (CNNs) have long overtaken feature-based approaches in
segmentation accuracy and inference speed, interactive feature-based solutions continue to attract
users due to the low requirements to training data volumes, nearly real-time training speeds and
general simplicity of the setup, which does not require computational expertise.

CNNs are made up of millions of learnable parameters which have to be configured based
on user-provided training examples. With insufficient training data, CNNs are very prone to
overfitting, “memorizing” the training data instead of deriving generalizable rules. Strategies to
suppress overfitting include data augmentation (Ronneberger et al., 2015), incorporation of prior
information (El Jurdi et al., 2021), dropout and sub-network re-initialization (Han et al., 2016; Taha
et al., 2021) and, in case a similar task has already been solved on sufficiently similar data, domain
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adaptation, and transfer learning. In the latter case, the network
exploits a large amount of labels in the so called “source” domain
to learn good parameter values for the task at hand, which are
further adapted for the unlabeled or sparsely labeled “target”
domain through unsupervised or weakly supervised learning.
For microscopy images, the adaptation is commonly achieved
by bringing the distributions of the source and target domain
data closer to each other, either by forcing the network to learn
domain-invariant features (Long et al., 2015; Roels et al., 2019;
Liu et al., 2020) or by using generative networks and cycle
consistency constraints (Zhang et al., 2018; Chen et al., 2019;
Januszewski and Jain, 2019). Alternatively, the domain shift can
be explicitly learned in a part of the network (Rozantsev et al.,
2018). In addition to labels in the source domain, pseudo-labels
in the target domain are often used for training (Choi et al.,
2019; Xing et al., 2019). Pseudo-labels can be computed from the
predictions of the source domain network (Choi et al., 2019) or
predictions for pixels similar to source domain labels (Bermúdez-
Chacón et al., 2019).

In contrast, Random Forest (RF), one of the most popular
“shallow” learning classifiers (Breiman, 2001), does not overfit on
small amounts of training data and trains so fast that in practice
no domain adaptation strategies are applied—the classifier is
instead fully retrained with sparse labels in the target domain.
However, unlike a CNN, it cannot fully profit from large amounts
of training data. The aim of our contribution is to combine
the best of both worlds, exploiting fast training of the Random

FIGURE 1 | (A) Training on the source dataset: many Random Forests are trained by subsampling patches of raw data and dense groundtruth segmentation. Random

Forest predictions are used as inputs and groundtruth segmentation as labels to train the Prediction Enhancer CNN to improve RF segmentations. (B) Domain

adaptation to the target dataset: a RF is trained interactively with brushstroke labels. The pre-trained PE is applied to improve the RF predictions. Optionally, PE

predictions are used as pseudo-labels to train a segmentation network for even better results with no additional annotations, but using a larger computational budget.

Forest for domain adaptation and excellent performance of
CNNs for accurate segmentation with large amounts of training
data. We use the densely labeled source domain to train many
Random Forests for segmentation and then train a CNN for
Random Forest prediction enhancement (see Figure 1). On the
target domain, we train a new Random Forest from a few
brushstroke labels and simply apply the pre-trained Prediction
Enhancer (PE) network to improve the probability maps. The
enhanced predictions are substantially more accurate than the
Random Forest or a segmentation CNN trained only on the
source domain. Furthermore, a new CNN can be trained using
enhanced predictions as pseudo-labels, achieving an even better
accuracy with no additional annotation cost. Since the Prediction
Enhancer is only trained on RF probability maps, it remains
agnostic to the appearance of the raw data and can therefore
be applied to mitigate even very large domain gaps between
source and target datasets, as long as the segmentation task itself
remains similar. To illustrate the power of our approach, we
demonstrate domain adaptation between different datasets of the
same modality, and also from confocal to light sheet microscopy,
from electron to confocal microscopy and from fluorescent light
microscopy to histology. From the user perspective, domain
adaptation is realized in a straightforward, user-friendly setting
of training a regular U-Net, without adversarial elements or task
re-weighting. Furthermore, a well-trained Prediction Enhancer
network can be used without retraining, only requiring training
of the Random Forest from the user. Our Prediction Enhancer
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networks for mitochondria, nuclei, or membrane segmentation
tasks are available at the BioImage Model Zoo (https://bioimage.
io) and can easily be applied to improve predictions of the
Pixel Classification workflow in ilastik or of the Weka Trainable
Segmentation plugin in Fiji.

2. METHODS

Our approach combines the advantages of feature-based and
end-to-end segmentation methods by training a Prediction
Enhancer network to predict one from the other. On the target
dataset, retraining can be limited to the feature-based classifier as
its predictions—unlike the raw data—do not exhibit a significant
domain shift if the same semantic classes are being segmented. In
more detail, we propose the following sequence of steps (see also
Figure 1):

1. Create training data for the Prediction Enhancer CNN by
training multiple Random Forests on random samples of the
densely labeled source domain.

2. Train the Prediction Enhancer using the RF predictions as
input and the ground-truth segmentation as labels.

3. Train a Random Forest on the target dataset with a
few brushstroke labels and use the pre-trained Prediction
Enhancer to improve the predictions.

4. Use the improved predictions as pseudo-labels to train a CNN
on the target dataset. This step is optional and trades improved
quality for the computational cost of training a CNN from
scratch.

Note that the Prediction Enhancer only takes the predictions of
the Random Forest as input. Neither raw data nor labels of the
source dataset are needed to apply it to new data. Our method
can therefore be classified as source-free domain adaption, but the
additional feature-based learning step allows us to avoid training
set estimation or reconstruction, commonly used in other source-
free or knowledge distillation-based approaches like Du et al.
(2021) and Liu et al. (2021). At the same time, we can fully
profit from all advances in the field of pseudo-label rectification
(Prabhu et al., 2021; Wu et al., 2021; Zhang et al., 2021; Zhao
et al., 2021), applying those to pseudo-labels generated by the
PE network.

2.1. Prediction Enhancer
The Prediction Enhancer is based on the U-Net architecture
(Ronneberger et al., 2015). To create training data, we train
multiple Random Forests on the dense labels of the source
domain, using the same pixel features as in the ilastik pixel
classification workflow (Berg et al., 2019). To obtain a diverse
set of shallow classifiers we sample patches of various size and
train a classifier for each patch based on the raw data and dense
labels. Typically, we train 500–1,000 different classifiers. Next, we
train the U-Net following the standard approach for semantic
segmentation, using Random Forest predictions (but not the raw
data) as input and the provided dense labels of the source domain
as the groundtruth. To create more variability, we sample from
all previously trained classifiers. We use either the binary cross
entropy or the Dice score as loss function.

Segmentation of a new dataset only requires training a single
Random Forest; its predictions can directly be improved with
the pre-trained Prediction Enhancer. Here, we use ilastik pixel
classification workflow, which enables training a Random Forest
interactively from brushstroke user annotations.

2.2. Further Domain Adaptation With
Pseudo-Labels
The Prediction Enhancer can improve the segmentation results
significantly, as shown in Section 3. However, it relies only on
the Random Forest predictions, and can thus not take intensity,
texture or other raw image information into account. To make
use of such information and further improve segmentation
results, we can use the predictions of the Enhancer as pseudo-
labels and train a segmentation U-Net on the target dataset. We
use either Dice score or binary cross entropy as loss and make
the following adjustments to the standard training procedure to
enable training from noisy pseudo-labels:

• Use the RF predictions as soft labels in range [0, 1] instead of
hard labels in {0, 1}.
• Use a simple label rectification strategy to weight the per-pixel

loss based on the prediction confidence (see Section 2.2.1).
• In the final loss, add a consistency term similar to Tarvainen

and Valpola (2017) that compares the current predictions to
the predictions of the network’s exponential moving average
(see Section 2.2.2).

2.2.1. Label Rectification
Label rectification is a common strategy in self-learning-
based domain adaptation methods, where predictions from the
source model are used as pseudo-labels on the target domain.
Rectification is then used to correct for the label noise. Several
strategies have been proposed, for example based on the distance
to class prototypes in the feature space (Zhang et al., 2021) or
prediction confidence after several rounds of dropout (Wu et al.,
2021).

Here, we adopt a simple label rectification strategy based on
the prediction confidence to weight the pseudo-labels y:

ŷk = ωk yk, (1)

where k is the class index. The pseudo labels yk correspond to
the predictions of the Prediction Enhancer and are continuous
in the range [0, 1]. For the case of foreground/background
segmentation k ∈ {0, 1} and we define the per-pixel weight for
the foreground class as

ω1 = 1− abs(p1 − η1). (2)

Here, p1 is the foreground probability map predicted by the
segmentation network and η1 a scalar value, defined as the
exponentially weighted average computed over the foreground
mask S:

η1 ← λ η1 + (1− λ) ∗ mean(S),

where S = {p1(x)|x ∈ X and y1(x) > 0.5}. (3)
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Here,X is the set of all pixels in the input image.We set λ = 0.999
in all experiments. The weight ω0 for the background class is
computed in the same manner.

2.2.2. Consistency Loss Term
For training with pseudo-labels we introduce a consistency term
in the loss function, which is based on the “Mean Teacher”
training procedure for semi-supervised classification (Tarvainen
and Valpola, 2017). The loss term compares the output of
the network f with the output of the network g, defined as
the exponential moving average (EMA) of f . This method
promotes more consistent predictions across training iterations.
We make use of this method for training a segmentation
network (parameterized by θf ) from pseudo-labels. Its EMA, g
is parameterized by

θg ← αθg + (1− α)θf , (4)

where we set the smoothing coefficient α to 0.999 following
(Tarvainen and Valpola, 2017).

Given that we are comparing the per pixel predictions of the
current network and its EMA, we use the loss function that is
also employed for comparing to the pseudo labels: we either use
the Dice loss

LDice,c(pf , pg) =
2
∑N

i pf ,i pg,i
∑N

i p2
f ,i
+

∑N
i p2g,i

(5)

or the binary cross entropy loss

LBCE,c(pf , pg) =
1

N

N∑

i

pg,ilog(pf ,i)+ (1−pg,i)(1− log(pf ,i)). (6)

Here x denotes the input image, pf = f (x), pg = g(x), and N is
the number of pixels. The combined loss function is

L
full
R = LR + LR,c, (7)

where R is either Dice or BCE. The term LR compares the output
from f with pseudo-labels defined in Equation 1 and LR,c is the
consistency term.

3. RESULTS

3.1. Data and Setup
We evaluate the proposed domain adaptation method on
challenging semantic segmentation problems, including
mitochondria segmentation in Electron Microscopy (EM),
membrane segmentation in electron, and light microscopy (LM)
as well as nucleus segmentation in LM. Table 1 summarizes all
datasets used for the experiments. Table A1 lists the data size as
well as the train, validation, and test splits for all datasets.

Some of the datasets we use represent image stacks and could
be processed as 3D volumes with different levels of anisotropy.
We choose to process them as independent 2D images instead
to enable a wider set of source/target domain pairs. If not noted
otherwise, training from pseudo-labels is performed using the
consistency loss term and label rectification (Equation 7). We
use a 2D U-Net architecture (Ronneberger et al., 2015) with
64 features in the initial layer, four downsampling/upsampling
levels and double the number of features per level for all
networks. The network and training code is based on the PyTorch
implementation from Wolny et al. (2020). For all training runs
we use the Adam optimizer with initial learning rate of 0.0002,
weight decay of 0.00001. Furthermore, we decrease the learning
rate by a factor of 0.2 if the validation metric is not improving
for a dataset dependent number of iterations. We use binary
cross entropy as a loss function for the mitochondria (Section
3.2) and nucleus (Section 3.4) segmentation and dice loss for the
membrane segmentation (Section 3.3).

3.2. Mitochondria Segmentation
We first perform mitochondria segmentation in EM. We train
the Prediction Enhancer on the EPFL dataset (the only FIB/SEM
dataset in the collection) and then perform source-free domain

TABLE 1 | The datasets used in the experiments.

Name EPFL VNC MitoEM-R MitoEM-H Kasthuri CREMI

(A) ELECTRON MICROSCOPY DATASETS USED IN THE EXPERIMENTS.

Organism/tissue Mouse/hippocampus Fruitfly/ventral nerve cord Rat/cortex Human/cortex Mouse/cortex Fruitfly/brain

Modality FIBSEM ssTEM sbEM sbEM ssTEM ssTEM

Tasks Mitochondria Mitochondria, membranes Mitochondria Mitochondria Mitochondria Membranes

Resolution 5 × 5 × 5 nm 45 × 5 × 5 nm 30 × 8 × 8 nm 30 × 8 × 8 nm 30 × 3 × 3 nm 40 × 4 × 4 nm

References Lucchi et al., 2013 Gerhard et al., 2013 Wei et al., 2020 Wei et al., 2020 Kasthuri et al., 2015 cremi.org

Name Root Ovules DSB-FL Monuseg

(B) LIGHT MICROSCOPY DATASETS USED IN THE EXPERIMENTS.

Organism/tissue Arabidopsis/lateral root Arabidopsis/ovules Various/nuclear stain Human/kidney

Modality Lightsheet Confocal Fluorescence Histopathology

Tasks Membranes Membranes Nuclei Nuclei

Resolution 0.25×0.1625×0.1625 µm 0.235×0.075×0.075 µm

References Wolny et al., 2020 Wolny et al., 2020 Caicedo et al., 2019 Kumar et al., 2019
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adaptation on the VNC, MitoEM-R, MitoEM-H, and Kasthuri
datasets. For domain adaption, the Random Forest for initial
target prediction is trained interactively in ilastik using a separate
train split. The RF predictions are then improved by the PE and

TABLE 2 | Results for mitochondria segmentation in EM.

Model/Dataset EPFL VNC MitoEM-R MitoEM-H Kasthuri

Source net 0.933 0.695 0.738 0.591 0.723

Y-Net – 0.713 0.781 0.678 0.0

RF 0.625 0.647 0.511 0.338 0.590

PE 0.824 0.840 0.705 0.624 0.778

Pseudo-label net – 0.884 0.793 0.751 0.834

Target net 0.933 0.891 0.939 0.920 0.942

Quality is measured by the F1-score of the mitochondria prediction (higher is better). EPFL

dataset is used as the source for domain adaptation by the Y-Net, Prediction Enhancer

(PE), and Pseudo-label net. Best result is shown in bold.

the improved predictions are used as pseudo-labels for a U-Net
trained from scratch (Pseudo-label Net). We compare to direct
predictions of a U-Net trained for Mitochondria segmentation
on the source domain EPFL (Source Net) and to the Y-Net (Roels
et al., 2019), a different method for domain adaptation, which is
unsupervised on the target domain, but not source-free. We also
indicate the performance of a U-Net trained on the target dataset
as an estimate of the upper bound of the achievable performance
(a separate train split is used).

Table 2 summarizes the resulting F1 scores (higher is better)
for the source dataset and all target datasets. The Enhancer
improves the Random Forest predictions significantly on all
target datasets and the CNN trained from pseudo-labels
further improves the results. The pseudo-label CNN always
performs better than the source network or the Y-Net, which
fails completely for the Kasthuri dataset where the domain
gap is particularly large. Figure 2 shows an example of the
improvements from RF to PE and PE to Pseudo-label Net.

For the mitochondria segmentation task we also check if
training the PE on multiple source datasets improves results.

FIGURE 2 | Mitochondria predictions of the Random Forest trained in ilastik, Prediction Enhancer, and Pseudo-label CNN (“Segmentor”) as well as the groundtruth

segmentation, on the MitoEM-H dataset. The Enhancer was pre-trained on the EPFL dataset; EPFL raw data shown under Source.
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Table 3 shows that this is indeed the case, especially for the
Kasthuri dataset.

3.3. Membrane Segmentation
We perform membrane segmentation both in EM and LM data.
Obtaining a (semantic) membrane segmentation is often the first
step in methods for instance segmentation of neurons or cells
as direct prediction of an instance segmentation with a CNN
is highly non-trivial due to the label invariance problem. As a
consequence we are interested in the quality of the final instance
segmentation, not the intermediate boundary segmentation, in
these experiments and set up a up a Multicut based post-
processing procedure similar to Beier et al. (2017) to obtain
instances from the boundary predictions. We then evaluate the
instance segmentation using the Variation of Information (Meilă,
2003). Direct evaluation of the boundary predictions via the
F1-score is often not indicative of the quality of the resulting
instance segmentation due to the large influence of relatively
small prediction errors, such as holes (Arganda-Carreras et al.,
2015). For the Variation of Information lower values correspond
to a better segmentation.

In EM we perform boundary segmentation of neural tissue
using the VNC dataset as source and three different datasets
from the CREMI challenge (cremi.org) as target. Table 4 shows
that the PE significantly improves the RF predictions for all
three target datasets. The network trained on pseudo-labels
can further improve results, especially for CREMI B and C,
which pose a more challenging segmentation problem due to
more irregular and elongated neurites compared to CREMI
A. Both PE and Pseudo-label Net perform significantly better

TABLE 3 | Mitochondria segmentation results for PE trained on multiple source

datasets.

Source EPFL VNC MitoEM-R MitoEM-H Kasthuri

EPFL 0.811 0.786 0.627 0.505 0.612

EPFL, VNC 0.806 0.818 0.642 0.515 0.672

EPFL, VNC

MitoEM-R, MitoEM-H
0.833 0.832 0.675 0.586 0.720

The left column indicates the source datasets, quality is measured with the F1 score.

TABLE 4 | Results for boundary segmentation in EM.

Model/Dataset CREMI A CREMI B CREMI C

Source net 1.031 2.089 1.925

RF 1.092 2.231 1.797

PE 0.856 2.107 1.756

Pseudo-label net 0.840 1.806 1.593

Target net 0.559 0.739 1.055

Quality is measured by the Variation of Information (lower is better) after instance

segmentation via Multicut post-processing. Source Net and PE are trained on the VNC

dataset and then applied to the three target datasets CREMI A, B, and C. RF is trained

interactively with ilastik on each target dataset. Best result is shown in bold.

than a segmentation network trained on the source dataset. The
segmentation results of a segmentation network trained on a
separate split of the target dataset are shown to indicate an upper
bound of the segmentation performance. Figure 3 shows the
improvement brought by the PE and the Pseudo-label Net on an
image from CREMI C.

In LM we perform boundary segmentation of cells in
a confocal microscopy image stack of Arabidopsis thaliana
ovule tissue. We use a light-sheet microscopy image stack of
Arabidopsis root tissue as source data. Note that we downsample
the Ovules dataset by a factor of 2 to match the resolution of the
Root dataset (see Table 1B). The results are shown in the “Root
(LM)” column in Table 5. The PE significantly improves the RF
results and pseudo-label training improves them even further. In
this case the quality of the pseudo-label net almost reaches the
target network. Note that the overall quality of results reported
here is inferior compared to the results reported in Wolny et al.
(2020). This can be explained by the fact that all models only
receive 2D input, whereas the state-of-the-art uses 3D models.

We also experiment with a much larger domain shift and
apply a PE that was trained on the EM dataset CREMI A as
source. The results are shown in the “CREMI (EM)” column in
Table 5. As expected, transfer of the source network fails, because
it was trained on a completely different domain. However, the PE
successfully improves RF predictions. The fact that the PE only
receives the RF predictions as input enables successful transfer
in this case; while the image data distribution is very different in
source and target domain, RF probability maps look sufficiently
similar. Furthermore, the resolution of the two domains differs
by almost three orders of magnitude. However, the size of
the structures in pixels is fairly similar, enabling successful
domain adaptation. Figure 4 shows RF, PE and Pseudo-label Net
predictions next to the source and target domain data. In this
case, training with pseudo-labels does not improve the result,
probably because the predictions get smoothed significantly
compared to the PE, as can be seen in the figure.

3.4. Nuclei Segmentation
As another example of cross-modality adaptation, we perform
nucleus segmentation between fluorescence microscopy images
from Caicedo et al. (2019) (DSB-FL) and histopathology images
of the human kidney from Kumar et al. (2019) (Monuseg).
Table 6 shows the results for using Monuseg as source and
DSB-FL as target (column “DSB-FL”) and vice versa (column
“Monuseg”). The Enhancer and pseudo-label training offer a
modest improvement for the transfer from Monuseg to DSB-
FL. For the transfer in the opposite direction the Enhancer yields
inferior results compared to ilastik predictions and consequently
also inferior results for pseudo-label training. This observation
can be explained by the fact that the images in the DSB-FL
dataset were acquired with different microscopy modalities and
resolutions, resulting in significantly different nuclei sizes across
the dataset. In contrast, the size of nuclei in the Monuseg dataset
is uniform and closest to the smallest nuclei in DSB-FL. We
identify this behavior as a limitation of our method and further
investigate the results in Table 9.
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FIGURE 3 | Boundary predictions of the Random Forest trained in ilastik, Prediction Enhancer, and Pseudo-label Net, as well as the groundtruth segmentation, on the

CREMI C dataset. The Enhancer was pre-trained on VNC, VNC raw data shown under Source.

TABLE 5 | LM-Boundaries and cross modality experiments: Variation of

Information after applying graph partitioning (Multicut) to the boundary predictions.

Model/Source Root (LM) CREMI (EM)

Source net 1.782 3.257

RF 1.891 1.891

PE 1.576 1.605

Pseudo-label net 1.563 1.834

Target net 1.561 1.561

Best result is shown in bold.

3.5. Ablation Studies
In the following, we perform ablation studies to determine the
impact of some of our design choices on the overall performance
of the method.

First, we investigate if the consistency loss (CL, Equation 6)
and label rectification (LR, Equation 1) improve the accuracy
obtained after pseudo-label training. We perform pseudo-label

training for mitochondria segmentation on the VNC and
MitoEM-R datasets using the PE trained on VNC to generate the
pseudo-labels.We perform the training without anymodification
of the loss, adding only CL, adding only LR and adding both
CL and LR. The results in Table 7 show that both CL and LR
improve performance on their own. Combining them leads to an
additional small improvement on VNC and to a slight decrease
in quality on MitoEM-R.

Using the same experiment setup, we also investigate whether
using the PE enhancer for generating the pseudo-labels is actually
beneficial compared to using the RF trained on target or using the
source network. Table 8 shows that using the PE for pseudo-label
generation significantly improves over the two other approaches.
We have also studied the influence of the size of the Random
Forests used for training the PE, but found that it did not have a
significant influence on PE performance. SeeTable A2 for details.

3.6. Limitations
The high number of layers, their interconnections and especially
skip-connections between them allow the U-net to implicitly
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FIGURE 4 | Boundary predictions of the Random Forest trained in ilastik, Prediction Enhancer, and Pseudo-label Net, as well as groundtruth segmentation, on the

Ovules dataset. The Enhancer was pre-trained on CREMI A, CREMI A raw data shown under Source.

TABLE 6 | Results of nucleus segmentation.

Source Method/Target DSB-FL Monuseg

Ilastik 0.856 0.601

DSB-FL Source net – 0.014

Enhancer – 0.620

Pseudo-label net – 0.654

Monuseg Source net 0.001 –

Enhancer 0.669 –

Pseudo-label net 0.730 –

Target net 0.936 0.721

DSB-FL columns shows results for domain adaptation from Monuseg (Histopathology) to

DSB-FL (Fluorescence), Monuseg column shows the opposite. The segmentation quality

is measured by the F1 score, best result shown in bold.

learn a strong shape prior for the objects of interest. This effect
is exacerbated in our Prediction Enhancer network as it by
design does not observe the raw pixel properties and has to

TABLE 7 | Results of pseudo-label network training using different loss functions.

Method/Dataset VNC MitoEM-R

PE 0.840 0.705

Pseudo-labels 0.869 0.768

Pseudo-labels + CL 0.877 0.788

Pseudo-labels + LR 0.869 0.798

Pseudo-labels + CL + LR 0.884 0.793

Mitochondria segmentation with EPFL as source dataset and VNC, MitoEM-R as target

datasets. Segmentation accuracy is measured by the F1 score, best result shown in bold.

exploit shape cues even more than a regular segmentation U-net.
While this effect is clearly advantageous for same-task transfer
learning, it can lead to catastrophic network hallucinations if very
differently shaped objects of interest need to be segmented in the
target domain. To illustrate this point, we show the transfer of
a PE learned for mitochondria on the EPFL dataset to predict
boundaries on the VNC dataset and vice versa in Figure 5. The
PE amplifies/hallucinates the structures it was trained on while
suppressing all other signal in the prediction.
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Besides the hallucinations observed in the case of very
different shapes of objects in source and target, the size
distribution of objects also matters. In Section 3.4, we have
investigated transfer between nuclei imaged in histopathology
and fluorescence microscopy and observed that the Enhancer
yields inferior results for the transfer from histopathology to

TABLE 8 | Results of pseudo-label network training using RF, Source Network,

and PE for label generation.

Pseudo-labels VNC MitoEM-R

RF 0.546 0.648

RF w/ CL + LR 0.584 0.656

Source Net 0.707 0.754

Source Net w/ CL + LR 0.794 0.765

PE 0.869 0.768

PE w/ CL + LR 0.884 0.793

Mitochondria segmentation with EPFL as source dataset and VNC, MitoEM-R as target

datasets. Segmentation quality is measured by the F1 score, best result shown in bold.

fluorescence. This can possibly be explained by the fact that the
fluorescence dataset contains images of different modalities and
resolution, in which the nuclei appear in different sizes. In some
of the images the nuclei are small and have a similar average
size as in the histopathology dataset, in another one they are
of medium size and in yet another of much larger size. We
have split the fluorescence dataset into these three modalities
(“Small,” “Medium,” “Large”) and list the corresponding results
inTable 9. The quality of the Enhancer and pseudo-label network
predictions drops dramatically for large nuclei sizes, bringing us
to hypothesize that such a significant difference in object size
constitutes a domain shift ourmethod cannot easily address, even
if the underlying problem is so simple it can almost be solved by
the Random Forest alone.

A further potential limitation for our method are systematic
differences between the error characteristics of the shallow
classifiers used for training on the source dataset and the Random
Forest used during inference on the target dataset. We set up
a synthetic experiment to investigate this case and train the
Enhancer using a mixture of the Random Forest predictions
and ground-truth labels as input. Table 10 shows the results

FIGURE 5 | Failure case: different segmentation tasks in source and target datasets. (A) Domain adaptation of a PE trained for mitochondria segmentation on the

EPFL dataset to boundary prediction task on the VNC dataset. (B) Domain adaptation of a PE trained for boundary prediction on the VNC dataset to mitochondria

segmentation task on the EPFL dataset.
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TABLE 9 | F1-scores for nucleus segmentation in fluorescence microscopy

images.

Method/Nucleus size All Small Medium Large

Ilastik 0.856 0.801 0.851 0.936

Enhancer 0.670 0.784 0.707 0.485

Pseudo-label net 0.730 0.805 0.776 0.592

We split the dataset into three subsets based on the mean nucleus size per image and

obtain 22 images with small nuclei, 12 with medium sized nuclei, and 16 with large nuclei.

“All” is referring to the average score for all images and is the same as reported in Table 6.

TABLE 10 | The quality of Enhancer predictions on the target data when trained

on a mixture of random-forest and ground-truth label on source.

Mixture/Dataset (Metric) MitosVNC (F1) MembranesCremiB (VoI)

RF0%GT100% 0.521 3.113

RF25%GT75% 0.635 2.828

RF50%GT50% 0.697 2.423

RF75%GT25% 0.670 2.032

RF100%GT0% 0.840 2.107

ilastik 0.647 2.23

For the mitochondria segmentation task we use EPFL as source and VNC as target, the

quality is measured by the F1-Score (higher is better). For the membrane segmentation

task we use VNC as source and CremiB as target, the quality is measured by the Variation

of Information after Multicut segmentation (lower is better). “ilastik” denotes the quality of

the Random Forest predictions used on the target, which were obtained by interactive

training in ilastik. Best result is shown in bold.

for mitochondria prediction using EPFL as source and VNC
as target (cf. Section 3.2) as well as for membrane predictions
using VNC as source and CremiB as target (cf. Section 3.3).
For both experiments we present the Enhancer network with a
weighted linear combination of the smoothed groundtruth and
the Random Forest predictions during training and tune the
weight coefficient between 0 and 100%. For reference we also
report the performance of the ilastik Random Forest that is being
“enhanced” on the target dataset. We observe that the prediction
quality of the Enhancer is significantly better when trained with
a large contribution the Random Forest predictions or from
pure Random Forest predictions. We conclude that systematic
differences in the errors on source and target, especially if the
error rate is significantly lower on source, negatively affect the
accuracy of our method.

4. DISCUSSION

We have introduced a simple, source-free, weakly supervised
approach to transfer learning in microscopy which can overcome
significant domain gaps and does not require adversarial
training. In our setup, the feature-based classifier which is
trained from sparse annotations on the target domain acts
as an implicit domain adapter for the Prediction Enhancer
network. The combination of the feature-based classifier and the
prediction enhancer substantially outperforms the segmentation

CNN trained on the source domain, with further improvement
brought by an additional training step where the Enhancer
predictions on the target dataset serve as pseudo-labels. Since the
Enhancer network never sees the raw data as input, our method
can perform transfer learning between domains of drastically
different appearance, e.g., between light and electron microscopy
images. By design, this kind of domain gap cannot be handled
by unsupervised domain adaptation methods which rely on
network feature or raw data alignment. Furthermore, even for
small domain gaps and in presence of label rectification strategies,
pseudo-labels produced by the Prediction Enhancer lead to much
better segmentation CNNs than pseudo-labels of the source
network. We expect these results to improve even further with
the more advanced label rectification approaches which are now
actively introduced in the field.

Themajor limitation of our approach is the dependency on the
quality of the feature-based classifier predictions. We expect that
in practice users will train it interactively on the target domain,
which already produces better results than “bulk” training: in our
mitochondria segmentation experiments, also shown in Table 2,
there was commonly a 1.5- to 2-fold improvement in F1-score
between interactive ilastik training in the target domain and
RF training in a script without seeing the data. In general, the
performance of the Prediction Enhancer will lag behind the
performance of a segmentation network trained directly on the
raw data with dense groundtruth labels except for very easy
problems that can be solved by the RF to 100% accuracy. In a
way, the Random Forest acts as a lossy compression algorithm
for the raw data, which reduces the discriminative power for
the Enhancer. However, the pseudo-label training step can again
compensate for the “compression” as it allows to train another
network on the raw data of the target domain, with pseudo-labels
for potentially very large amounts of unlabeled data.

We have also investigated further limitations of our method
and found that it is only applicable if the shape and size
distribution of objects in the source and target datasets are
sufficiently similar. If this is not the case, the accuracy of our
method will drop and, in case of dramatic differences between
objects of interest, such as membranes vs. mitochondria, it may
even hallucinate structures of similar shape as found in the source
data. Furthermore, our method relies on the fact that the data
distribution of the Random Forest predictions is closer than the
raw data distribution between source and target dataset. Given
that we always use the same convolutional filter banks for feature
computation, the Random Forests on source and target share
the same inductive bias and this assumption will most of the
time hold up when segmenting the same semantic class (with
similar shape and size distributions). However, in some cases
systematic differences between Random Forest predictions on
source and target may still exist, for example if the source data
has much higher signal-to-noise ratio and thus presents an easier
segmentation problem. In this case the segmentation accuracy of
our method will suffer despite close shape and size distribution.

For simplicity, and also to sample as many source/target pairs
with full groundtruth as possible, we have only demonstrated
results on 2D data, in a binary foreground/background
classification setting. Extension to 3D is straightforward and
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would not require any changes in our method other than
accounting for potentially different z resolution between source
and target datasets. Extension to multi-class segmentation would
only need a simple update to the pseudo-label training loss.

In future work, we envision integration of our approach with
other pseudo-label training strategies. Furthermore, as pseudo-
label training can largely be configured without target domain
knowledge, we expect our method to be a prime candidate for
user-facing tools which already include interactive feature-based
classifier training.
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APPENDIX

Data and Setup

TABLE A1 | The number of samples used for train, validation and test splits as well as the size of one of the sample in pixels.

Name EPFL VNC MitoEM-R MitoEM-H Kasthuri CREMI

(A) DATA SIZES AND SPLITS USED FOR THE ELECTRON MICROSCOPY DATASETS

Train samples 165 1 1 1 1 3

Size train samples 165 × 768 × 1,024 12 × 1,024 × 1,024 300 × 4,096 × 4,096 300 × 4,096 × 4,096 75 × 1,613 × 1,463 90 × 1,250 × 1,250

Val samples 1 1 1 1 1 3

Size val samples 40 × 768 × 1,024 4 × 1,024 × 1,024 100 × 4096 × 4,096 100 × 4,096 × 4,096 10 × 1,613 × 1,563 10 × 1,250 × 1,250

Test samples 1 1 1 1 1 3

Size test samples 125 × 768 × 1,024 4 × 1,024 × 1,024 100 × 4,096 × 4,096 100 × 4,096 × 4,096 75 × 1,553 × 1,334 25 × 1,250 × 1,250

Name Root Ovules DSB-FL Monuseg

(B) DATA SIZES AND SPLITS USED FOR THE LIGHT MICROSCOPY DATASETS

Train samples 30 42 435 4

Size train samples 355 × 505 × 1,320 340 × 1,035 × 992 325 × 360 1,000 × 1,000

Val samples 2 2 12 1

Size val samples 343 × 535 × 1,165 374 × 1,014 × 1,089 330 × 375 1,000 × 1,000

Test samples 4 6 50 1

Size test samples 373 × 493 × 1,378 373 × 1,200 × 1,094 345 × 390 1,000 × 1,000

Note that we give the averaged sizes in case the size of samples differs across the dataset.

Influence of Number of Random Forests
Here, we study the influence of the number of trees per Random
Forest on the Enhancer. We train the Enhancer from RF
predictions where each Forest contains 50, 100, 150 or a number
of trees drawn randomly from the range 50 to 150. Table A2
shows the results for the same data as used in Section 3.2 where
we have used 100 trees per RF. Note that the results do not
directly correspond to any of the results in Table 2where we have
used further refined target RFs. Here, we observe that the quality
of the enhancer is not systematically influenced by the number
of trees.

TABLE A2 | F1-scores of the prediction enhancer trained on RF predictions with

different numbers of trees for mitochondria segmentation.

EPFL VNC MitoEM-R MitoEM-H Kasthuri

50 trees 0.809 0.770 0.607 0.492 0.652

100 trees 0.811 0.786 0.627 0.505 0.612

150 trees 0.811 0.791 0.614 0.504 0.619

50–150 trees 0.814 0.802 0.634 0.525 0.595

EPFL is the source dataset.
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