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For clinical decision support systems, automated classification algorithms

on medical image data have become more important in the past. For such

computer vision problems, deep convolutional neural networks (DCNNs)

have made breakthroughs. These often require large, annotated, and privacy-

cleared datasets as a prerequisite for gaining high-quality results. This proves

to be di�cult with rare diseases due to limited incidences. Therefore, it is hard

to sensitize clinical decision support systems to identify these diseases at an

early stage. It has been shown several times, that synthetic data can improve

the results of clinical decision support systems. At the same time, the greatest

problem for the generation of these synthetic images is the data basis. In this

paper, we present four di�erent methods to generate synthetic data from a

small dataset. The images are from 2D magnetic resonance tomography of

the spine. The annotation resulted in 540 healthy, 47 conspicuously non-

pathological, and 106 conspicuously pathological vertebrae. Four methods

are presented to obtain optimal generation results in each of these classes.

The obtained generation results are then evaluated with a classification net.

With this procedure, we showed that adding synthetic annotated data has a

positive impact on the classification results of the original data. In addition,

one of our methods is appropriate to generate synthetic image data from <50

images. Thus, we found a general approach for dealing with small datasets in

rare diseases, which can be used to build sensitized clinical decision support

systems to detect and treat these diseases at an early stage.

KEYWORDS

data augmentation, auxiliary classifier generative adversarial network (ACGAN), small

data, convolutional neural network (CNN), generative adversarial network (GANs),

medical image data, rare disease
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Introduction

Automated classification algorithms are an important

component of clinical decision support systems for medical

image data. However, their development usually requires large

amounts of annotated datasets for the training process (Frid-

Adar et al., 2018; Madani et al., 2018; Mikołajczyk and

Grochowski, 2018; Shorten and Khoshgoftaar, 2019; Islam and

Zhang, 2020). Collecting these medical data for classification

training is a complex and expensive effort (Madani et al.,

2018; Bhagat and Bhaumik, 2019; Shorten and Khoshgoftaar,

2019; Islam and Zhang, 2020; Yang et al., 2020), often

associated with numerous data security and privacy issues.

For rare diseases, it is even much more difficult to obtain

such a large dataset due to the limitation of the data

availability.

To save time and money whilst increasing the amount of

data for classification training, simple image augmentations,

such as rotation, translation, or mirroring, are often performed

as a first step (Krizhevsky et al., 2017; Shorten and Khoshgoftaar,

2019). A decisive disadvantage of augmentation is the

missing of new image information resulting in a limit to

the variation of data that can be augmented (Mikołajczyk

and Grochowski, 2018; Toda et al., 2021). For this reason,

the generation of synthetic data is increasingly used. One

architecture that has become particularly popular is the

Generative Adversarial Network (GAN) (Goodfellow et al.,

2020). In GANs, two different neural networks compete against

each other. One architecture generates synthetic data (called

generator), while the other network (called discriminator)

evaluates whether the generated image is from the original

or the synthetic dataset. Based on this output the generator

produces medical image data that resemble the original

dataset.

The GAN structure has been further developed over the years.

The DCGAN, the Conditional GAN, and the Auxiliary Classifier

GAN are well-knownmodels used inmedicine (Kazeminia et al.,

2020; Nandhini Abirami et al., 2021).

With the DCGAN, Radford et al. (2016) present an

architecture that uses deep convolutional networks in the

generator and discriminator to address the instability of the

basic GAN architecture and increase the resolution of the

synthesized images. This is essential if a good resolution

for more complex (medical) structures. However, unlike

the other two architectures mentioned, this structure

does not generate a class label. Therefore, generative

training would have been possible only on one class at a

time.

Several structures have been presented to anchor a

class relationship within the GAN. Mirza and Osindero

(2014) developed the conditional GAN (cGAN). In this

structure, additional information such as class labels is

included in the image generation process. This condition

is given to both the discriminator and the generator.

The discriminator decides at the end if it is a real

image.

Odena et al. (2017) also describe a class-dependent GAN,

the Auxiliary Classifier GAN (AC-GAN). This model shares

many similarities with the cGAN. However, unlike the cGAN,

the discriminator is additionally designed to evaluate the class

label. Because of this feature, this structure is preferred in

this work, as it provides significantly more options for finding

a general approach to medical data generation. Thus, unlike

classical data augmentation, an AC-GAN generates entirely new

data with a class label. Pioneering work on AC-GAN has shown

that adding synthetic data to train automatic classification

networks positively affects the results. For example, Waheed

et al. (2020) and Karbhari et al. (2021) used an AC-GAN to

generate synthetic data with associated labels and showed that

this significantly improved the classification of COVID-19 in

lung X-ray images. In the work of Enoch Kan et al. (2020),

an AC-GAN is used to generate realistic pediatric CT images

incorporating age information. The presented architecture

generates age-related high-resolution CT images to enrich

pediatric training datasets.

In this work, we used four methods of AC-GAN-based

data generation that differed in data transmission, data amount,

or data generation process. We used a small dataset of MRI

vertebral images. Since larger datasets are usually required for

classification training, we attempted to synthetically extend

this small dataset. The effects of the four different methods

on the generation result were investigated in a subsequent

training with a Convolutional Neural Network (CNN). The

used dataset is very general since the focus in this work is on

the small dataset instead of special diseases. Thus, we provide

an outlook on how clinical decision support systems can be

sensitized on diseases to a small dataset. The goal of this project

is to extend the existing dataset to a large amount of non-

personalized annotated data. Subsequently, the impact of the

synthetic data on the classification result of the original data will

be investigated.

The main points in this paper are:

• Application for the analysis of limited data sets (e.g., in the

context of rare diseases)

• Improvement of small data sets by generating synthetic

medical images with an AC-GAN

• Increasing the robustness of clinical decision support

systems (CDSS)

• No need for classic data augmentation of the base data.

• Successful data generation on a 2D dataset of <50 images

• Generation of the annotated data set from noise allows data

sharing according to privacy principles and data protection

without conclusions on the respective patients
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FIGURE 1

Segmentation and extraction of the data basis.

Materials and methods

At first, this section discusses the available data basis and

then explains the methods used for synthetic data generation

and classification of the anomalies.

Dataset

The dataset from the University of Siegen was open access

and previously used for automatic 3D segmentation of the spine

in MRI images (Zukić et al., 2014). From this dataset, we used

T1-weighted images of the lumbar spine in the sagittal plane

from 10 patients with a total of 175 slices without the automatic

3D segmentation.

The individual vertebrae in this work were manually 2D

segmented and extracted from the rest of the spine (ref.

Figure 1). Each of these images was limited to a size of 64 ×

64 pixels. Vertebral bones that could not be seen well or are no

longer complete at the upper edge of the image are not used

for training the AC-GAN. As a result, the dataset in this work

includes 693 MRI slice images. All vertebral bodies that were

fully depicted on each slice were classified by an experienced

radiologist (KZ: 7 years experience in clinical musculoskeletal

imaging and research). As a result, 540 vertebral bodies were

classified as healthy, 47 of them were classified as abnormal but

not pathological (e.g., hemangioma, benign sclerotic lesion, focal

fat metaplasia, intraspongious disc herniation) and 106 vertebral

bodies were classified as pathological (fracture, spondylitis,

metastasis). For training the classification network, these 693

slice images are augmented with the excluded image data (total

716 images). In addition, 200 generated images from each class

are added to the dataset.

Data generation

The AC-GAN consists of two networks that are trained

simultaneously: a discriminator (D) and a generator (G) (ref.

Figure 2). The generator receives noise input Ez represented by

a normal distribution pz with a corresponding class label, c± pc

FIGURE 2

AC-GAN architecture (figure is taken from Waheed et al., 2020).

D is the discriminator, G is the generator, x represents the real

image, c is the class label, and z is the noise vector.

FIGURE 3

Generator architecture. The noise vector z and the

corresponding label were an input to the generator, z and label

are then concatenated and transposed to the image size of the

original data set (3); to make the generator more stable, a batch

normalization (BN) is used; the numbers marked each layer.

in addition to the noise z. The output is an image Xfake =

G(c, z). The discriminator D takes as input layer an original or

a generated image and outputs a probability distribution P(S|X)

over possible image sources and a probability distribution over

the class labels P(C|X) = D(X). The discriminator is trained

to optimize the log-likelihood function, which is assigned to

the correct source (LS) (ref. Equation 1), and the log-likelihood

function of the correct class, LC (ref. Equation 2).

LS = E
[

log P
(

S = real
∣

∣Xreal
)]

+ E
[

log P
(

S = fake
∣

∣

∣
Xfake

)]

(1)

LC = E
[

log P
(

C = c
∣

∣Xreal
)]

+ E
[

log P
(

C = c
∣

∣

∣
Xfake

)]

(2)

The discriminator is trained to maximize LS + LC while the

generator is trained to maximize LC − LS (Odena et al., 2017).

Generator architecture:

The used generator architecture consisted of three

transposed convolutional layers and an output layer, which
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FIGURE 4

Discriminator architecture. The input layer is reduced using four fully linked convolutional layers. In between, batch normalization (BN) and a

dropout (D) were used to make the discriminator more stable. As a result the discriminator distinguished whether the input image is real or fake

and at the same time determined the associated label.

TABLE 1 Number of data in the individual methods.

Method Class No. of images Dataset

Method I

0 540

6931 47

2 106

Method II

0 47

1411 47

2 47

Method III

0 540 540

1 47 47

2 106 106

Method IV

0 540 540

1 47 47

2 106 106

No. of images, the number of images per class; dataset, the number of data that will be

put into the generation process.

upsample the image with a kernel size of 5 × 5. In the third

transposed convolutional layer, the information from the noise

vector (1) is concatenated with the information from the label

(2). Between the third layer and the output layer, a batch

normalization was performed to normalize the error per batch

and thereby stabilize the AC-GAN learning process (Ioffe and

Szegedy, 2015). The activation function in the transposed layers

was a ReLU activation function (ref. Equation 3). A hyperbolic

tangent (tanh) activation function (ref. Equation 4) was used in

the output layer.

f (x) = max(0, x) =







xi, if xi ≥ 0

0, if xi < 0
(3)

f (x) =

(

ex − e−x

ex + e−x

)

(4)

As an input, the generator received a vector of 100 random

numbers from the normal distribution pz and the desired class

label c. Therewith a 64× 64× 1 vortex image with a given label,

as shown in Figure 3, was generated.

Discriminator architecture:

The discriminator architecture is a CNN. The discriminator

model consisted of four convolutional layers with a kernel size of

3× 3. In each convolutional layer, the neurons are duplicated per

layer. Image reduction with a stride of 2 is performed on every

other convolutional layer. Batch normalization was applied to

each layer of the discriminator, except for the input layer and

output layer (ref. Figure 4). The leaky ReLU activation function

(ref. Equation 5) was used, except for the output layer. Here, a

sigmoid function (ref. Equation 6) was employed to distinguish

between the real and the fake image.

f (x) = max
(

x, leak× x
)

(5)

S (x) =
1

(

1+ e−x
) (6)

The softmax function (ref. Equation 7) normalized the

individual probabilities of each class, where the input vector is

represented by Ez. The standard exponential function was applied

to each element of the input vector. However, these are still

not in the required probability range (0, 1). With the softmax

function, the individual probabilities are normalized so that they

lie between 0 and 1. This serves to improve comparability. The

number of classes in the multi-class classifier is marked as K.

σ (Ez)i =
ezi

(

∑K
j=1 e

zi
) (7)

This discriminator architecture received original or

generated 64 × 64 × 1 vertebrae images as input. As an output,

the discriminator decided whether the image is real or fake

and evaluated the class label. Six training runs were performed

for each generator and discriminator architecture, adjusting

the batch size and learning rate hyperparameters sequentially.

In this work, we compared four adaptations of this AC-GAN

model, which are described in more detail below.
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FIGURE 5

Modified ResNet18 architecture (He et al., 2016). The first value

corresponds to the core size of the convolution mask, the

second value is the number of neurons in this layer, /2 indicates

that the image size is reduced by half in both width and height.

Method I

In method I, all available data are passed to the AC-GAN

for training (ref. Table 1). This enabled the network to rebuild

the simple vertebral body structure and to generate unique

features for the individual classes. However, as class 0 contains

significantly more images than the other classes, it may affect

their representation.

Method II

In this method, training is performed on equally large

datasets for each class. That means, larger datasets are reduced

to the size of the smallest dataset. Consequently, in this study, all

classes contained the first 47 vertebrae images (ref. Table 1). This

TABLE 2 Evaluation of the Cohen’s Kappa value from Landis and Koch

(1977).

Kappa Evaluation

κ ≤ 0.1 No match

0.1 < κ ≤ 0.4 Poor match

0.4 < κ ≤ 0.6 Clear match

0.6 < κ ≤ 0.8 Close match

0.8 < κ ≤ 1 Complete match

balances the ratio between classes and reduces the impact of the

largest class.

Method III

The training in method III runs on each class separately (ref.

Table 1). According to the classical approach, this architecture is

then a DCGAN. This allows the AC-GAN to map the specific

characteristics of each class more clearly.

Method IV

In method IV, the generator is first trained on the full dataset

of class 0 (largest class). The weights from this training process

are subsequently used as initial weights for the generator training

on classes 1 and 2. With this approach, the generator first learns

to mimic typical vertebrae structures from the largest dataset.

Then, it can focus on the specific features of classes 1 and 2

during the subsequent training processes, which are based on

smaller amounts of data.

Data classification

In this work, a Residual Neural Network (ResNet) is used

for the classification process (ref. Figure 5). ResNet is a special

network structure of CNNs, which has shortcut connections

within the layers that can be used to handle the vanishing

gradient problem (He et al., 2016).

Here we used a ResNet18, which contains eight

convolutional blocks connected with skip connections. An

image reduction is done every two convolutional blocks. Due

to the small size of the input layer, no image size reduction

is applied in the last two layers. The network ends with a

Global Average layer, which generates a feature map for each

corresponding category of the classification task (Lin et al.,

2014) and then passes it to a Softmax layer to obtain the

network’s predictions on the given classes. The optimization

of the training is done using Adam as an adaptive optimizer

(Duchi et al., 2011).
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FIGURE 6

Generated results of the individual methods. Class 0 = healthy; class 1 = abnormal but not pathological; class 2 = pathological.

The training was divided into different versions according

to the described generation methods of the AC-GAN. For each

version 5 training runs consisting of 18 training steps were

carried out. In the individual training steps, the hyperparameters

Batch Size and Learning Rate vary to cover a wide range of

combinations of these two hyperparameters and to obtain an

optimal training result. The maximum kappa from the 18 runs

was determined. The average kappa for the five training runs

was then determined, followed by calculation of a standard

deviation.

In this work, we used Cohen’s Kappa as an evaluation

criterion for the classification training. Kappa represents the

ratio between the expected label pe and the classified label of the

neural network p0 (ref. Equation 8):

κ =
p0 − pe

1− pe
= 1−

1− p0

1− pe
. (8)

During the training process, the maximum kappa value

from the original data is determined by analyzing the individual

training steps for each training run. The average kappa of all

5 training runs is then used as a measure of classification

performance. In addition, it is evaluated concerning Landis and

Koch’s (1977) categorization for kappa values (ref. Table 2). In

addition to kappa, we used an F1-Score to quantify the balance

between precision and recall. Precision indicates the accuracy of

the model, i.e., the ratio of correctly predicted positives and all

positives (ref. Equation 9).

Precision =
TruePositive

TruePositive+ FalsePositive
(9)

Recall =
TruePositive

TruePositive+ FalseNegative
(10)

F1 = 2 ·
Precision · Recall

Precision+ Recall
(11)

The recall is the proportion of positives that are correctly

identified (ref. Equation 10). If F1 = 0, the score

characterized an absolute imbalance between precision and

recall, while F1 = 1 suggested a perfect balance between them

(ref. Equation 11).

Results

In the following, the generation results of each

method are represented and described. Thereafter,

the generated and the original images were classified

and evaluated.

Figure 6 represented the generation results of each method.

It can be seen from an initial observation that the AC-

GAN in each method was able to reproduce the basic

structure of the vertebrae. When comparing the results, it

appears that images from method I and II have the greatest

similarity due to the original data. In contrast, the images

from methods III and IV show blurred contours of the

vertebrae.

Images from each class, 200 generated and the original

ones, were used as an input for the ResNet18 classification

net. Therefrom, 968 images (527 original and 441 generated)

were submitted to the training. The necessary validation was

performed on 318 images (174 original and 144 generated).

The real-life data performance of the ResNet18 classification

net was subsequently analyzed on 15 original images. As one

result Table 3 presents the average Cohen’s Kappa values of the

individual methods. From this, training on the original data

showed evidence for a clear match according to Landis and

Kochs classification (ref. Table 2). Adding synthetic data resulted

in better classification performance. All methods showed an

increase in the kappa value to a close match, except for

method II.
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TABLE 3 Average kappa value of the individual methods.

Method ∅κ

Original data 0.520± 0.098

Method I 0.620± 0.040

Method II 0.580± 0.075

Method III 0.620± 0.040

Method IV 0.620± 0.040

TABLE 4 Average Cohen’s kappa values and F1 score in each class per

method.

Method Class ∅κ ∅F1 score

Original

0 0.462± 0.079 0.713± 0.050

1 0.435± 0.253 0.787± 0.088

2 0.665± 0.058 0.860± 0.033

I

0 0.527± 0.044 0.756± 0.025

1 0.515± 0.075 0.811± 0.025

2 0.822± 0.069 0.926± 0.027

II

0 0.503± 0.123 0.737± 0.070

1 0.549± 0.096 0.827± 0.033

2 0.707± 0.071 0.877± 0.029

III

0 0.510± 0.032 0.746± 0.027

1 0.590± 0.079 0.837± 0.031

2 0.779± 0.129 0.910± 0.051

IV

0 0.580± 0.069 0.791± 0.041

1 0.566± 0.067 0.829± 0.026

2 0.715± 0.059 0.873± 0.025

Table 4 showed the individual Kappa and F1 scores for each

class and method. The kappa values of the individual classes

across all methods indicate a clear match except for class 2

(pathological). In class 2 even a close match can be achieved. The

F1 score in each class increased compared to the original data.

For class 0 (healthy), method IV showed the strongest increase

of the kappa value, while for class 1 (abnormal but not

pathological) method III was the most suitable. The highest

kappa of class 2 was achieved using method I.

Discussion

All of the presented methods led to an improvement of

classification results for the original data. Only small restrictions

are necessary when using method II. In this method, a small

amount of class 0 and class 2 data was pulled from the entire

dataset. As a result, image data that have specific features of

these classes may not be included in the dataset. The remaining

three methods perform equally well in terms of their average

Cohen’s Kappa value. Therefore, all are suitable for expanding

small datasets. Nevertheless, we suspect that method I may no

longer be able to generate the specific features of each class if

the discrepancy between each class is even larger than in our

dataset. In this case, it is assumed that features of the largest class

may dominate the generating process. Therefore, we should give

priority to methods III and IV. If the smallest class is comparable

to the data used in this work, we would suggest method III.

The generation process in this method is sufficiently good

and ensures that the generated images receive the classification

assigned to them. If the amount of data in one class is even

smaller than in this work, method IV is recommended. The

images generated by this method may contain features of the

healthy class and one other class but are independent of the other

classes.

The present work has some limitations that should be

considered in future studies. First, the dataset consists of

rather general annotations. If these classifications had been

made for specific diseases, one could study the impact of

adding synthetic data in a specific use case, i.e., rare diseases.

Furthermore, the generated images need to be passed to other

classification networks to better evaluate the quality of these. In

addition, it would be interesting to increase the data discrepancy

between classes. This would allow further investigations on

basic requirements for successful data generation and the

corresponding testing.

In the future, the methods presented in this paper will be

improved by image processing of the input images. It will also

be investigated whether and to what extent these methods can

be transferred to other imaging modalities or organs with much

higher complexity. An important step will be the conversion of

2D to 3D images to better answer current questions in medicine

and thus generate 3D organs or anomalies. Subsequently, it will

also be investigated whether the individual methods can be easily

transferred to 3D applications and which limitations exist in

each case for the generation process.

The goal of this work was to enhance small data sets by

generating synthetic medical images with an AC-GAN to make

clinical decision support systems (CDSS) more robust. This was

done to show an approach handling images from rare diseases

in CDSS. The small dataset in this work was comparable to

the amount of available data in most of the scientific studies to

enlarge medical image data with a GAN or AC-GAN (Frid-Adar

et al., 2018; Islam and Zhang, 2020; Sun et al., 2020; Yang et al.,

2020; Toda et al., 2021). In addition, we showed that it is not

necessary to extend the base data by classical data augmentation.

Instead, data generation on a 2D dataset of fewer than 50 images

is possible.

The data basis for many medical computer vision tasks

is usually very small due to data protection or the patient

basis (rare diseases). For visual computer problems, which are

to be solved with machine learning, a larger amount of data

is essential. For this reason, different approaches are used to

increase the small amount of data available. Previous works
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(Frid-Adar et al., 2018; Mikołajczyk and Grochowski, 2018;

Bhagat and Bhaumik, 2019; Deepak and Ameer, 2020; Islam

and Zhang, 2020; Shi et al., 2020) have shown, that generated

data by an AC-GAN, which are added to training of a CNN,

resulted in improved classification results for the original data.

As already confirmed in the literature (Galbusera et al., 2018;

Mahapatra et al., 2019; Islam and Zhang, 2020; Yang et al.,

2020), the data synthesized by a GAN or AC-GAN have a high

similarity to the original image data. In an AC-GAN, a class

annotation is added to this generated data. This can significantly

increase the size of the training dataset for classification without

the need for a large amount of effort. However, there are other

advantages associated with this technique. One main point is,

that the generated and annotated dataset was created from noise.

Therewith this technique no longer allows to draw conclusions

on specific patients. This is crucial for data protection and thus

for sharing data (Madani et al., 2018; Shorten and Khoshgoftaar,

2019; Yi et al., 2019; Goncalves et al., 2020). In conclusion, it

is possible to multiply the dataset of rare diseases resulting in

more sensitive CDSSs to detect them. Among other things, this

may make it possible to detect rare diseases at an early stage and

provide rapid treatment for the patient.
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