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Deep learning models perform remarkably well for the same task under the

assumption that data is always coming from the same distribution. However,

this is generally violated in practice, mainly due to the di�erences in data

acquisition techniques and the lack of information about the underlying source

of new data. Domain generalization targets the ability to generalize to test

data of an unseen domain; while this problem is well-studied for images, such

studies are significantly lacking in spatiotemporal visual content—videos and

GIFs. This is due to (1) the challenging nature of misalignment of temporal

features and the varying appearance/motion of actors and actions in di�erent

domains, and (2) spatiotemporal datasets being laborious to collect and

annotate for multiple domains. We collect and present the first synthetic video

dataset of Animated GIFs for domain generalization, Ani-GIFs, that is used to

study the domain gap of videos vs. GIFs, and animated vs. real GIFs, for the

task of action recognition. We provide a training and testing setting for Ani-

GIFs, and extend two domain generalization baseline approaches, based on

data augmentation and explainability, to the spatiotemporal domain to catalyze

research in this direction.

KEYWORDS

domain generalization, domain adaptation, video action recognition, GIFs, transfer

learning, explainability

1. Introduction

Deep neural networks allow us to learn representations for a variety of computer

vision tasks when large amounts of labeled data are available, but are susceptible to a

domain shift, when applied to unseen data of new domains at test time. Solutions such as

further fine-tuning the network on new data, are not always efficient or trivial, and data

collection and annotation are expensive and time-consuming processes, setting obstacles

to the application and generalization of the existing models to other domains.

Domain adaptation attempts to address these shortcomings, by training a network

on labeled data from a single (Pan et al., 2010; Baktashmotlagh et al., 2016; Long et al.,

2016) or multiple (Duan et al., 2012; Jhuo et al., 2012; Yang and Hospedales, 2014; Liu

et al., 2016; Xu et al., 2018) source domains, and on a related but different target domain,

to learn more transferable representations. Since labeled data are often limited and hard
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to obtain, unsupervised domain adaptation (Long et al., 2015,

2018; Ganin et al., 2016; Sun and Saenko, 2016; Wilson and

Cook, 2020) is of most interest, aiming to leverage the few or

no labeled samples. A more complex problem is deep domain

generalization (Muandet et al., 2013; Ghifary et al., 2015; Li et al.,

2017, 2018b), in which the model is completely unaware of the

target domain, and does not see any samples from the target

distribution during training. These methods have been widely

explored for images, but the scarcity of work and applications in

videos serves as a motivation for our current approach.

Our paper comes to address the crucial need to build

high-quality benchmark video datasets, in multiple domains, to

objectively measure the performance of these techniques. This is

because well-defined, rich in features, labeled datasets allow for a

universal evaluation of the different methods (Ponce et al., 2006;

Torralba and Efros, 2011; Russakovsky et al., 2015; Beery et al.,

2018; Recht et al., 2019). Given the arduity of real-world data

collection and labeling, synthetic data have grown in popularity,

as they can be generated in abundance, introducing a substantial

domain gap when compared to other domains (Ros et al., 2016;

Rössler et al., 2018; Cruz et al., 2020; Kong et al., 2020; Scheck

et al., 2020).

Our focus is on videos, and, more specifically, on Animated

GIFs (Eppink, 2014), in which this gap is identified in both

space and time (unlike in images, which suffer only from

spatial domain shift). Temporal features can be misaligned

between domains, which makes the problem more challenging,

and significantly under-explored. GIFs are videos that are

short in duration, designed to repeat (or re-play), and do not

include audio. They typically illustrate a certain action, and

have the ability to express a broad spectrum of emotions,

aiming at performance of affect and conveyance of cultural

knowledge (Miltner and Highfield, 2017). GIFs are created

by sampling frames from a video and are extensively used

nowadays on the internet, especially in social networks and

online communication (Tolins and Samermit, 2016; Jiang et al.,

2018). Animated GIFs are synthetically generated and tend to

exaggerate or emphasize action motion. In this work, we aim

to answer the following questions: How large is the domain gap

between (1) videos and GIFs, and (2) animated and real GIFs?

We propose the first synthetic domain generalization

Animated GIFs dataset,Ani-GIFs, designed for the task of action

recognition in videos. To our knowledge, no other synthetic

GIFs dataset exists designed explicitly for spatiotemporal

domain generalization, as depicted in Table 1. Figure 1 presents

sample examples from Ani-GIFs, and contrasts it with GIFs of

the real domain from the Kinetics GIFs dataset. We evaluate

domain generalization baselines on Ani-GIFs using an I3D

action recognition model (Carreira and Zisserman, 2018).

In order to verify the model robustness on our benchmark

and the suitability of the dataset for testing domain adaptation

and domain generalization methods, we employ the data

augmentation approach proposed by Volpi and Murino (2019)

TABLE 1 Comparing our proposed benchmark to existing ones for

spatiotemporal action recognition.

Dataset Domain Dataset size Number of

classes

Kinetics-600 Real videos 70,901 600

HMDB-51 Real videos 6,849 51

Ani-GIFs Synthetic GIFs 17,095 536

(animated, cartoon, graphics)

Dataset size represents the number of samples, videos or GIFs, in each dataset. Ani-

GIFs is the first synthetic GIFs dataset to our knowledge designed explicitly to study the

domain gap between videos vs. GIFs, and animated vs. real GIFs for the task of domain

generalization.

for images and extend it to GIF (video) frames.We define a series

of content-preserving frame transformations (e.g., contrast

enhancement, sharpness/color adjustment), which do not alter

the content of the frames, but only the way it is presented.

Starting with the identity transformation, we apply a set of

concatenated data transformations, given as tuples of a specific

size, to the training data, in an alternating process of augmenting

the samples with a uniformly selected tuple from the set, and

training the model to choose the one among those applied which

maximizes the model loss, using a random-search algorithm for

selection, so as to strengthen our model.

We also extend an explainability-based domain

generalization technique initially proposed for images (Zunino

et al., 2020) to the spatiotemporal domain. Explainability,

i.e., using the correct evidence for prediction, is utilized to

bridge the gap between the real and the synthetic domains.

The black-box nature of deep neural network models creates

highly non-linear feature representations that make it difficult

to understand what causes models to make certain classification

decisions. We use the extended saliency-based explainability

approach to identify regions in the image that contribute

the most to the model’s predictions. We leverage these

spatiotemporal saliency tubes to guide the model in focusing

on image regions, where a particular action is being performed,

as opposed to focusing on domain-specific details, that do not

necessarily generalize across domains.

To summarize, our contributions are: providing (1) a

spatiotemporal dataset, (2) a training and testing setting,

(3) a spatiotemporal baseline, (4) an augmentation-based

spatiotemporal training strategy, and (5) an explainability-based

spatiotemporal training strategy, to enable research addressing

the challenging domain generalization problem.

Our paper is organized as follows: First, we discuss

the related work on GIF and video datasets, state-of-the-

art methods for domain generalization, domain adaptation,

data augmentation (Section 2), and explainability. Second,

we describe our dataset and the processes of collection and

annotation (Section 3). We then analyze the selected baseline
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FIGURE 1

This figure highlights the spatiotemporal domain gap between

Ani-GIFs, our proposed benchmark dataset, and GIFs of the real

domain—from the Kinetics dataset (Kay et al., 2017)—for three

classes: Bench Pressing, Brushing Teeth, and Break Dancing.

This illustrates the domain gap between real vs. animated

frames.

methods for the task of action recognition (Section 4) and

evaluate the performance presenting the experimental results of

our approach (Section 5), before concluding our work (Section

6). Our dataset and baseline implementations will be made

publicly available upon acceptance.

2. Related work

2.1. Domain adaptation

Domain adaptation tackles the problem of domain shift

between one or more source domains to a different but

related target domain. The case where unlabeled data from the

target are available for training is addressed by Unsupervised

Domain Adaptation (UDA). UDA methods can be categorized

into: divergence-based (Long et al., 2017; Saito et al.,

2018), adversarial-based (Ganin et al., 2016; Tzeng et al.,

2017; Liu et al., 2021), and reconsrtuction-based (image-level

translation) methods (Hoffman et al., 2018; Murez et al., 2018).

Divergence-based methods focus on minimizing a divergence

criterion between the source and target distributions, like the

Maximum Mean Discrepancy (MMD) (Long et al., 2017).

Adversarial-based approaches focus on making features from

different domains indistinguishable. Semi-Supervised Domain

Adaptation (SSDA) addresses the other case where a few target

labels are provided. In addition, other image domain adaptation

methods can be applied to cross-domain tasks, like domain

generalization, UDA, and SSDA (Nam et al., 2021).

2.2. Video domain adaptation

The problem of domain adaptation in video action

recognition is still under-explored, despite the extensive work

in this area for image classification and object recognition.

Two approaches are introduced by Jamal et al. (2018), Action

Modeling on Latent Subspace (AMLS), which models the

videos as points or sequences of points in a latent space, and

uses adaptive kernels to learn from source domain points to

target domain point sequences, and Deep Adversarial Action

Adaptation (DAAA), an adversarial learning framework built

to minimize the domain shift. In a most recent work, Chen

et al. (2019), a variety of alignment and learning techniques

are proposed or extended to minimize domain discrepancy

in videos along the spatial and temporal directions. In Chen

et al. (2020), the authors propose a generative adversarial

network, VideoGAN, which uses an X-shape generator to

preserve the intra-video consistency during translation of video

data across different domains, and a color-based loss, to tune

the color distribution of each translated frame and bridge the

domain gap.

2.3. Domain generalization

In domain generalization methods, a relaxed approach

is adopted in learning distributions of source domains to

generalize to unseen domains, without prior knowledge of the

target distribution. Common DG methods can be categorized

into: domain agnostic/invariant model learning (Muandet et al.,

2013; Ghifary et al., 2015; Dou et al., 2019), self-supervision

based (Kim et al., 2021), data-augmentation based (Volpi et al.,

2018; Yao et al., 2019), and feature-augmentation based DG

methods (Li et al., 2021).

2.4. Video domain generalization

Several techniques have been introduced to solve this

problem with deep models (Muandet et al., 2013; Li et al.,

2017, 2018a; Motiian et al., 2017), and with important

results for a variety of datasets and data types, but the

area is significantly under-explored with respect to video

datasets, due to the complexity of entangling spatial and

temporal domain shifts. In Yao et al. (2019, 2021), the only

recent prominent work in this area, the authors present
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the Adversarial Pyramid Network (APN), a network

capturing the videos’ local-, global-, and multi-layer cross-

relation features. They also extend an adversarial data

augmentation method in Volpi et al. (2018), ADA, to

videos. Their improved approach, namely Robust Adaptive

Data Augmentation (RADA), uses robust regularization

to improve the robustness of APN to various adversarial

perturbations derived from the relational features at multiple

levels. Given the reliability of RADA on those relational

features, it is intimately coupled with the proposed APN

architecture and does not perform as well on other non-

hierarchical models, contrary to other model-agnostic domain

generalization approaches.

2.5. Video domain
adaptation/generalization datasets

Several existing datasets built for Video analysis tasks

are or could be extended to solve the problem of domain

shift in action videos, but few new video datasets have been

introduced exclusively for the task of domain adaptation or

generalization for video action recognition, and are all depicting

real actions. The Gameplay dataset (Chen et al., 2019) is

a collection of videos of length 1–10 s in 91 categories

from two video games. Selecting 30 overlapping categories

between Gameplay and Kinetics (Kay et al., 2017; Carreira

et al., 2018), the authors create the Kinetics-Gameplay dataset,

observing a significant domain shift in the distributions of

virtual and real data. In the same work, all relevant and

overlapping categories between existing video datasets UCF101

(Soomro et al., 2012) and HMDB51 (Kuehne et al., 2011)

are combined in UCF-HMDBfull, a large-scale collection of

videos of length 1–33 s in 12 classes, used in evaluating several

state-of-the-art video domain adaptation methods (Ganin and

Lempitsky, 2014; Long et al., 2017; Li et al., 2018c; Saito

et al., 2018). For domain generalization, Yao et al. (2019,

2021) propose four video domain generalization benchmarks,

UCF-HMDB, Something-Something, PKU-MMD, and NTU,

built from existing action recognition videos, in which they

divide the source and target domains according to different

datasets, consequences of actions, and camera views, to test

their method’s performance. In parallel, datasets with a focus

on more specific tasks such as autonomous driving (Yu et al.,

2018) and medical diagnosis (Cheplygina et al., 2017) have been

introduced, allowing for domain adaptation evaluation in a

variety of sub-domains.

2.6. GIF datasets and analysis techniques

There is an abundance of GIF datasets collected and

available in the literature. TGIF (Li et al., 2016) is a dataset

of 100K animated GIFs from Tumblr and 120K natural

language descriptions obtained via crowdsourcing, serving as

a benchmark for the task of visual content captioning, namely

in the generation of natural language descriptions for animated

GIFs or video clips. In Vid2GIF (Gygli et al., 2016), a robust

framework, RankNet, is proposed, to learn the content in

videos most frequently selected for creating popular animated

GIFs, and produce a ranked list of segments according to their

suitability, generalizing this ability to other tasks such as video

highlight detection. To this purpose, a dataset of 120K user-

generated animatedGIFs with their corresponding video sources

is collected, that is one to two orders of magnitude larger

than existing datasets in video highlight detection. GIF Super-

Resolution (Wang et al.) is an approach proposed to tackle the

problem of slow download speed of GIFs, by using the first

and last high-resolution frames of a GIF and a low-resolution

representation of it, to reconstruct a GIF easier to process.

To this purpose, the authors create GIFSR, a dataset of 1,000

GIFs in 5 categories: Emotion, Action, Scene, Animation, and

Animal. In GIFGIF+ (Chen et al., 2017), an emotions GIF

dataset is introduced, consisting of 23,544 GIFs over 17 emotion

categories, as the authors propose a novel method for animated

GIFs collection, to explore the problem of automatic analysis

of emotions in GIFs. Similarly, in Jou et al. (2014), 4,000 GIFs

are collected, with scores for 17 discrete emotions, and are

used in a computational analysis and evaluation of emotion

prediction on animated GIFs. However, all these datasets were

designed to be used for tasks other than domain adaptation

or generalization.

2.7. Data augmentation

Data augmentation is widely used as a model domain

generalization improvement technique in computer vision, to

obtain more information from the training dataset, and reduce

the gap between this and the unseen validation set, preventing

the model from performing poorly in evaluation (Shorten

and Khoshgoftaar, 2019). When applied on image datasets,

data augmentation techniques exploit the spatial properties

of the data, and can range from image manipulations, such

as geometric or color transformations, rotation, or blurring

(Ciregan et al., 2012; Wan et al., 2013; Sato et al., 2015),

to feature space augmentation (DeVries and Taylor, 2017),

adversarial training techniques (Moosavi-Dezfooli et al., 2016;

Volpi et al., 2018; Zajac et al., 2019), and GAN-based

approaches (Bowles et al., 2018). Expanding the objective to

videos, the proposed methods augment the dataset in both

spatial and temporal dimensions, in domain generalization

approaches for tasks such as semantic segmentation (Budvytis

et al., 2017) and video action recognition (Yao et al., 2019,

2021).
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2.8. Explainability

Explainability techniques were initially developed as a

diagnostic tool to visualize and explain a model’s behavior.

GradCAM (Selvaraju et al., 2017) is a gradient-based approach

that uses gradients flowing into a target layer to compute coarse

localization maps at that layer. In recent work on explainability,

Zunino et al. (2020) use an explainability-based training strategy

on images to boost model performance. We extend this to

the spatiotemporal domain by computing saliency tubes using

GradCAM (Selvaraju et al., 2017) in space and time.

3. Our dataset: Ani-GIFs

In this section, we introduce our benchmark dataset together

with conducted collection and filtration procedures. Our dataset

focuses on actions occurring in Animated GIFs, in mirror classes

of the Kinetics-600 dataset.

We propose Ani-GIFs as a domain generalization

benchmark, acting as the target domain in a domain

generalization approach from a real source domain of

actions performed by human characters, to a synthetic target

domain of actions performed by animated/cartoon/graphical

characters. As the real domain dataset, we are using the GIFs

from the existing Kinetics dataset (Kay et al., 2017), and we

collect the GIFs in the synthetic domain, forming the proposed

dataset, Ani-GIFs.

3.1. Data collection

We created the Ani-GIFs dataset by collecting animated

GIFs using the Bing search engine. For each action class in

the Kinetics-600 dataset, we set up an automated script to

search and download datapoints. Three search keywords were

used, the first being “animated” or “cartoon” or “graphics”,

the second being the action class, and the third being “GIF”.

For example, for the action class “Applauding”, we performed

three separate searches: “animated Applauding gif”, “cartoon

Applauding gif”, and “graphics Applauding gif”. The keywords

“animated”, “graphics”, and “cartoon” were used synonymously

as means of maximizing the number of retrievals from the search

engine.We then collected GIFs from each separately. Each of the

three collection processes, for all 600 classes, took approximately

100 h to complete.

3.2. Filtration and annotation

After collecting the animated GIFs, we performed extensive

filtering. The first stage of filtering was combining search results

of animated, cartoons, and graphics and removing duplicates.

FIGURE 2

In this figure, we can see that first GIFs, in Blowing out candles

and Bending metal classes, were rejected as the actions are not

performed by any character. We also rejected GIFs in the

Shopping class, as the action was not relevant to the class

(i.e., no shopping action was observed).

The second stage was performed manually by four graduate

students. This stage involved ensuring a downloaded video was

indeed: (1) a GIF, (2) performed by an animated, cartoon or

graphics character, and (3) depicting the exact class action in

Kinetics-600. Annotation was performed based on the action

classes only, and not on the type of synthetic domain. Figure 2

provides examples of collected animated GIFs which were

rejected or accepted during the filtering process.

3.3. Correspondence with Kinetics-600

Ani-GIFs is designed to have one-to-one correspondence

with the classes of Kinetics-600, to act as a domain generalization

benchmark. 60 classes from Kinetics-600 did not have

corresponding animated GIFs after filtration. Examples for such

classes that do not typically have associated animated GIFs,

are: Arranging Flowers, Changing Oil, Curling Hair, Feeding

Goats, Making Jewellery, Sharpening Knives, Putting On Sari.

Therefore, the resulting Ani-GIFs dataset has 536 classes, and
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FIGURE 3

The 40 most frequent classes after filtration of the Ani-GIFs dataset. Classes that have the highest frequency belong to actions with a large

number of associated GIFs, e.g., common actions and emotions. We choose these forty classes as a subset for GIFs domain adaptation.

17,095 animated GIFs in total, all intersecting with Kinetics-

600. Figure 3 shows the number of GIF samples per class in the

Ani-GIFs dataset for the forty top-frequency classes.

3.4. Subset for domain adaptation

While our dataset is designed for the task of GIF domain

generalization, we identify a subset of Ani-GIFs for the task

of GIF domain adaptation for action recognition. The subset

consists of the forty classes having the highest frequency. This

would allow for standard testing of domain adaptation, i.e., from

Real to Animated GIFs and vice versa.

4. Spatiotemporal domain
generalization

In this work we address the challenging problem of single-

source domain generalization for spatiotemporal GIFs. At

training time, we only have access to a single source domain,

and at test time we have access to a different target domain that

is unseen at training time. We focus on the real videos/GIFs

source domain and the animated GIFs target domain. While the

problem of attributing an action to an animated spatiotemporal

progression is trivial for humans, it is a significantly challenging

task for machine learning models that have only been trained

on real video data. The gap between the two domains in this

problem setting is large. The two domains exhibit significant

variations in color templates, as animated GIFs tend to only

have a few colors in all frames, while real videos or GIFs have

a significantly richer color template. Moreover, animated GIFs

tend to have a smaller level of detail, in contrast to real videos

or GIFs. At the same time, animated GIFs exhibit a faster speed

for actions than real videos or GIFs, i.e., while the difference in

motion between subsequent frames in real videos is usually small

even after sub-sampling, the difference between subsequent

frames in GIFs is significantly larger. We demonstrate how large

this domain gap is experimentally in Section 5.

To reduce this huge domain gap, we use a GIF version of

the Kinetics dataset—Kinetics GIFs (Kay et al., 2017)—as the

source domain in our data augmentation baseline experiments.

Samples in Kinetics GIFs are GIFs produced from original

Kinetics videos, which have a fixed length of 40 frames and a

significantly smaller resolution, typically of 400 by 400 pixels.

After training the model on Kinetics GIFs we evaluate it on Ani-

GIFs to obtain a baseline performance, that is then compared to

applying domain generalization techniques.

We also use the AVA-Kinetics Localized Human Actions

Video Dataset (Li et al., 2020) to extend the explainable training

strategy of Zunino et al. (2020) on images to the spatiotemporal

domain to achieve better evidence for domain generalization.

The dataset is an extension of the Kinetics dataset with AVA-style

bounding boxes and atomic actions, which makes it suitable as a

train set in our explainability-based approach. AVA-Kinetics has

more than 230k clips labeled with one of 80 AVA action classes,

which are manually mapped to their corresponding top related

Kinetics classes.

4.1. Data augmentation approach

We extend the work of Volpi and Murino (2019) on images

and develop a spatiotemporal data augmentation approach

for animated GIFs. Data augmentation is a very powerful
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FIGURE 4

This figure presents frames sampled equally from a video in

class “Yoga”. The first set of frames belongs to the Kinetics GIFs

dataset, and is followed by the frames after Batch Normalization

is applied. The subsequent set of images depicts the frames after

tuples of transformations, chosen by the random search

approach, are applied to them.

technique to create additional representations and increase the

generalization ability of a model to domains that are unseen

at training time. We artificially inflate the dataset by applying

transformations in space and time. Following Volpi and Murino

(2019), we apply a set of image transformations T from the

Python library Pillow, to compute the augmented versions

of each GIF. We consider transformation tuples of length

four, i.e., four transformations are applied concurrently to

a GIF of the training set for every augmentation. The pool

of transformations is (intensity in parenthesis): auto-contrast

(20), sharpness (20), brightness (20), color (20), contrast (20),

gray scale conversion (1), R-channel enhancer (30), G-channel

enhancer (30), B-channel enhancer (30), solarize (20).

Starting with a model pre-trained on the Kinetics-600

dataset, and the transformations set T containing only

identity transformations, we perform a fine-tuning process

to identify the tuple of transformations that the model is

most vulnerable to. Vulnerability of the model is defined

to be the tuple of transformations that leads to the highest

value of cross-entropy loss when applied to the input batches.

At every iteration of the training process, we randomly

sample a tuple from our set of vulnerable transformations

T , and apply those to our training batches with their

associated intensity values. We train our model using Stochastic

Gradient Descent to minimize the cross-entropy loss. The

transformations set is updated every 200 training iterations,

using random search.

The identification process targets adding one tuple of

transformations to the set of known vulnerable transformations

T using a random search approach. At every iteration

of the random search, four transformations are randomly

sampled with repetition, from the pool of transformations at

random intensity values to create a tuple. While extending

the augmentation approach to account for temporal shifts,

all four transformations of the tuple are applied to all

frames of the input batches. This ensures that the same

transformation is performed on all frames of the video

to obtain a single augmented instance. The vulnerability

of the model to this tuple of transformation is then

determined by evaluating the cross-entropy loss. At the

end of 50 iterations of the searching process, the tuple of

transformations that led to the highest cross-entropy loss is

identified and added to our set of vulnerable transformations

T , along with its intensity value. In subsequent iterations

of the standard training process, this identified tuple of

transformations is available to be randomly sampled from

our set T and applied to the training batches for training

with the Adam optimizer. In Figure 4, we show images after

different tuples of transformations applied to frames that were

equally sampled from a video in class “Yoga” taken from

the Kinetics GIFs dataset. Transformations are applied after

Batch Normalization.

4.2. Explainability approach

We extend and apply a saliency-based spatiotemporal

explainability approach (Zunino et al., 2020) on our dataset.

At training time, saliency maps for the ground-truth class are

periodically computed as saliency tubes in space and time.

As training progresses, we have access to these regions as

bounding box co-ordinates for the input batch. Saliency maps

are computed using the GradCAM (Selvaraju et al., 2017)

algorithm after the last block of the feature extactor layer l of

the model. We estimate saliency on the last spatial layer as it

models higher level spatial patterns, that are most correlated

with the target label. If the peak saliency does not fall within the

ground-truth region, we enforce that by utilizing amultiplicative

binary 3D-mask (saliency tube) that is applied to the forward

activations of layer l. This mask contains a value of 1 for

pixels that lie within the spatiotemporal region of interest and

0 otherwise. We run the saliency estimation periodically every

200 batches, and train using the Adam optimizer.
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TABLE 2 Study 1 results. Top-1 and top-5 test accuracies of our baseline algorithm are given, from various training on di�erent testing domains.

Source (train)

domain

Target (test)

domain

Spatiotemporal

augmentation

Test accuracy (%)

Top-1 Top-5

Kinetics Kinetics ✘ 71.70 90.40

Kinetics Kinetics GIFs ✘ 21.12 40.86

Kinetics GIFs Kinetics GIFs ✘ 23.10 46.28

Kinetics GIFs Ani-GIFs ✘ 1.95 6.09

Kinetics GIFs Ani-GIFs ✔ 2.91 8.44

The difference in the reported accuracies between rows 1 and 2 demonstrates the existing domain gap from Kinetics to Kinetics GIFs, and in rows 3 and 4 the domain shift between Kinetics

GIFs and Ani-GIFs, with the latter dataset used in its entirety for measuring accuracy while testing. The increase from row 4 to 5 shows the gain in accuracy yielded by extending and

applying the spatiotemporal data augmentation algorithm for domain generalization on the training dataset, Kinetics GIFs.

TABLE 3 Study 2 results. Top-1 and top-5 test accuracies of our baseline algorithms are given, from fine tuning on 12 classes of the AVA-Kinetics

dataset, on the Ani-GIFs dataset, the testing domain.

Source (train)

domain

Target (test)

domain

Approach Test accuracy (%)

Top-1 Top-5

AVA-Kinetics Ani-GIFs Random Augmentation 8.56 34.47

AVA-Kinetics Ani-GIFs Spatiotemporal Augmentation 11.88 42.74

AVA-Kinetics Ani-GIFs RADA 12.55 34.63

AVA-Kinetics Ani-GIFs Explainability 17.31 58.78

The difference in the reported accuracies between rows 1 and 2 shows that our spatiotemporal augmentation approach outperforms random augmentation on the training dataset,

AVA-Kinetics. Row 3 shows that spatiotemporal augmentation outperforms Robust Adaptive Data Augmentation (RADA) in the top-5 test accuracy. Furthermore, we show that our

explainability approach in row 4 outperforms all reported augmentation baselines, verifying the effectiveness of explainability for domain generalization.

5. Experiments

In this section, we start by experimentally demonstrating

the huge domain gap between real videos vs. GIFs of the

same videos, and real videos vs. animated GIFs. We then

demonstrate how spatiotemporal domain generalization

can reduce the gap in the latter scenario. Results of

this first study are shown in Table 2. Furthermore, we

conduct a second study to emphasize the effectiveness of

our spatiotemporal and explainability-based approaches

over baseline domain generalization and report results

in Table 3.

5.1. Datasets

In the domain gap study, which we call Study 1 (Table 2),

we use the Kinetics-600 dataset as the source domain for

both training and fine-tuning, and the (real) Kinetics GIFs vs.

Ani-GIFs datasets as target domains. As for the second study

(Table 3), we use AVA-Kinetics as the source domain to fine-

tune a baseline model pre-trained on Kinetics-600 using our

spatiotemporal domain generalization algorithms. We then use

Ani-GIFs as the target domain to compare the performance of

our algorithms with baseline domain generalization approaches.

5.2. Experimental setup

We choose the I3D model architecture (Carreira and

Zisserman, 2018) as the first baseline for the spatiotemporal

training and testing of our videos and animated GIFs, because

of its increased transferability and its ability to capture

a fine-grained temporal structure of actions. This model

builds upon state-of-the-art image classification architectures,

expanding their filters and pooling kernels (and optionally their

parameters) into 3D, hence learning seamless spatiotemporal

features from videos while leveraging successful ImageNet

architecture designs and their parameters. More specifically,

starting from a 2D architecture, all the filters and pooling kernels

are inflated with an additional temporal dimension. The model

is trained on 64-frame video snippets at 25 frames per second,

processing all video frames at test time, and learning high

temporal resolution features.

While training, we perform certain preprocessing on the

input frames that aims to improve quality by suppressing

unwanted noise in the frames, and enhancing important

features. Animated GIFs are preprocessed frame-wise—each

frame was rescaled such that its shorter side has length of 224

pixels. Realignment was followed by center cropping, resulting

in a frame of size 224 by 224. Hence, during training, each

training sample has a fixed size of (40, 224, 224, 3). The

number of frames in Ani-GIFs samples may though vary, so we
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upsampled frames for animated GIFs that had less than 9 frames,

and subsampled frames of animated GIFs that had more than 60

frames, such that the chosen frames have equal spacing in time.

All values were rescaled to the [-1, 1] interval.

The models were trained on four Nvidia TITAN V GPUs

for 60 epochs with a batch size of 32 samples. We start with an

I3D model that is pre-trained on Kinetics videos (Piergiovanni,

2018).

In Study 1, we start with the model trained on Kinetics GIFs

using the I3D model architecture, and fine-tune it further with

the random search approach and Adam optimizer (Diederik

P. Kingma, 2014). The fine-tuning process was performed on

three Nvidia TITAN V GPUs, in batches of eight animated GIFs.

The model was tuned for 600 random search iterations. We

used the same upsampling and subsampling criteria as in the

training process, which resulted in every animated GIF having

a fixed shape of (40, 224, 224, 3). Every frame was similarly

preprocessed with realignment, center cropping and rescaling.

In order to augment the animated GIFs, we made sure the same

transformations are applied to the entire batch of input GIFs,

resulting in a batch with a shape of (8*40, 224, 224, 3).

The second study uses AVA-Kinetics for fine-tuning, to

compare our spatiotemporal augmentation and explainability

algorithms against a baseline with random data augmentations

and Yao et al. (2021)’s Robust Adaptive Data Augmentation

(RADA). While incorporating the saliency-based approach for

our training, we start with a model that is pre-trained on the

Kinetics dataset. This pre-trained model uses the same I3D

architecture as in Study 1 and is further tuned on the AVA

Kinetics dataset using the GradCAM saliency algorithm. We

filter the AVA Kinetics dataset and use only 12 classes that

are a one-to-one mapping to classes in Ani-GIFs. To ensure a

balanced training setting, we sample data from these 12 classes

such that every class contains 2000 training datapoints. The

fine-tuning process was performed on three Nvidia TITAN V

GPUs, in batches of 8 videos. We run the saliency estimation

every 200 batches. We also apply RADA (Yao et al., 2021) at

the same iteration frequency to ensure a fair comparison, and

follow the authors’ implementation which is available online.We

maintain the same data preprocessing as in our augmentation

experiment and make sure that the entire batch undergoes

the same preprocessing which results in batches with the

shape (8*40,224,224,3). All models were trained and fine-tuned

using the Adam optimizer with the following hyperparameters:

learning rate = 10−4, β1 = 0.9, and β2 = 0.999.

5.3. Experimental results

The results of our two studies are presented in Tables 2,

3. In Table 2, we begin with two experiments demonstrating

the domain gap within videos, and also between videos and

GIFs, both from the same (real) domain. The first row of the

table reports the results of training and testing processes on

Kinetics-600 real videos (Kay et al., 2017), with a 71.7% top-

1 accuracy, and the second row reports the outcome of testing

the same model on the GIFs version of the Kinetics-600 dataset

(Gituma, 2019), similarly in the real domain.

We mark the significant accuracy drop, to a 21.12% top-1

accuracy, which we can attribute to the frame sampling process

in GIFs, or the difference in GIF frames’ speed, in comparison

to videos, between the source and target domains, in the second

variation of the model application. We then train a model on

the Kinetics GIFs dataset (Gituma, 2019) and test on GIFs from

the same dataset and, hence, domain. This, as we can observe,

increases the model performance to a higher top-1 accuracy

of 23.1%, compared to the previous experiment, as expected

when training and testing within the same domain. This result

is given in row 3 of Table 2, while rows 4 and 5 show how our

domain generalization baseline performs, when trained on the

Kinetics GIFs dataset and tested on the Ani-GIFs dataset, with

and without data augmentation. We can see how our proposed

data augmentation approach gives an absolute improvement of

0.96% in the top-1 accuracy and 2.35% in the top-5 accuracy and

can serve as an initial baseline for Ani-GIFs.

We further compare our spatiotemporal augmentation

approach against random and adversarial data augmentation

and demonstrate the results in Table 3. We use the same I3D

model architecture as in Study 1, pre-trained on Kinetics-600

and fine-tuned on AVA-Kinetics using the same fine tuning

process as earlier. We show in rows 1 and 2 of Table 3 that our

spatiotemporal approach outperforms random augmentation by

3.32% and 8.27% in the top-1 and top-5 accuracies respectively.

In rows 2 and 3, while RADA (Yao et al., 2021) gets a slight top-1

accuracy improvement of less than 1% over our approach, we

show that the latter none-the-less outperforms it by 8.11% in

the top-5 accuracy. Furthermore, our proposed explainability-

based approach outperforms all three augmentation baselines

in both the top-1 and top-5 accuracies, which emphasizes the

effectiveness of explainability in domain generalization.

5.4. Explainability for spatiotemporal
domain generalization

We utilize explainability as a visualization tool for

evaluating the generalization capability of models for domain

generalization on spatiotemporal data. We show that a model is

able to generalize an action across various domains, in our case

real vs. animated GIFs for the task of action recognition.

Typically, classification accuracy is reported to summarize

the recognition capability of models on classification datasets.

However, it alone is not indicative as to whether the models

have learnt to generalize an action across the source and target

domains. For example, it may be that the model is correctly

classifying a sample based on the wrong cues. Figure 5 illustrates

examples of poor generalization ability of the baseline model
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FIGURE 5

This figure presents the visualizations of predictions of four

di�erent GIFs from the AniGIFs dataset (GIF frames equally

sampled) demonstrating evidence of the baseline model without

domain generalization and the model trained with the

explainability-based domain generalization approach (Section

4.2). The top two examples show that for some GIFs the

explainability approach boosts both the model accuracy and

generalization ability. And the bottom two examples show that

even when making a correct prediction, the baseline model

does not use discriminative cues to make that prediction. In

contrast, the model trained with the explainability-based

domain generalization approach accurately highlights the

correct action-specific cues.

from the source, AVA-Kinetics, to the target domain, Ani-GIFs,

compared against the saliency model trained with domain

adaptation using the explainability approach. We use GradCAM

to visualize saliency on different GIFs from theAni-GIFs dataset.

In addition, we report evaluation results in Table 3 of our

explainability approach on the Ani-GIFs dataset, for an I3D

model pre-trained on Kinetics and fine-tuned on 12 classes

of AVA-Kinetics using saliency. The results show how using

explainability for domain generalization outperforms all three

augmentation baselines by a maximum of 8.75% in the top-1

accuracy and 24.31% in the top-5 accuracy.

6. Conclusion

We introduce the first domain generalization GIFs

Dataset, Ani-GIFs, designed for the task of video action

recognition in a synthetic domain, which consists of 536

classes, mirroring the classes in the real domain of the Kinetics

GIFs dataset. We discuss the collection and filtration process,

provide the results of evaluating a domain generalization

baseline, trained on Kinetics GIFs, and an explainability-based

domain generalization model, trained on the AVA-Kinetics

Localized Human Actions Video Dataset, and also evaluate

the baselines after extending and applying an existing image

data augmentation technique. Our results show that it is

evident that the domain gap in the temporal space is a

great challenge. Current domain generalization techniques for

images, when extended to Videos/GIFs, showcase a performance

improvement, although small enough to highlight the need for

better methods tailored toward the temporal dimension. Our

dataset serves as a benchmark to catalyze the development and

testing of state-of-the-art domain generalization techniques

tailored for videos and animated GIFs, and as a motivation for

further exploration and enrichment of the existing GIF datasets,

to span different domains for the tasks of domain adaptation

and domain generalization.
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