
TYPE Original Research

PUBLISHED 10 October 2022

DOI 10.3389/fcomp.2022.914330

OPEN ACCESS

EDITED BY

Katia Vega,

University of California, Davis,

United States

REVIEWED BY

Xiaojun Chang,

University of Technology Sydney,

Australia

Yu Guan,

University of Warwick, United Kingdom

*CORRESPONDENCE

Lloyd Pellatt

lp349@sussex.ac.uk

SPECIALTY SECTION

This article was submitted to

Mobile and Ubiquitous Computing,

a section of the journal

Frontiers in Computer Science

RECEIVED 06 April 2022

ACCEPTED 15 September 2022

PUBLISHED 10 October 2022

CITATION

Pellatt L and Roggen D (2022)

Speeding up deep neural architecture

search for wearable activity

recognition with early prediction of

converged performance.

Front. Comput. Sci. 4:914330.

doi: 10.3389/fcomp.2022.914330

COPYRIGHT

© 2022 Pellatt and Roggen. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Speeding up deep neural
architecture search for wearable
activity recognition with early
prediction of converged
performance

Lloyd Pellatt* and Daniel Roggen

Wearable Technologies Lab, University of Sussex, Brighton, United Kingdom

Neural architecture search (NAS) has the potential to uncovermore performant

networks for human activity recognition from wearable sensor data. However,

a naive evaluation of the search space is computationally expensive.

We introduce neural regression methods for predicting the converged

performance of a deep neural network (DNN) using validation performance

in early epochs and topological and computational statistics. Our approach

shows a significant improvement in predicting converged testing performance

over a naive approach taking the ranking of the DNNs at an early epoch

as an indication of their ranking on convergence. We apply this to the

optimization of the convolutional feature extractor of an LSTM recurrent

network using NAS with deep Q-learning, optimizing the kernel size, number

of kernels, number of layers, and the connections between layers, allowing

for arbitrary skip connections and dimensionality reduction with pooling

layers. We find architectures which achieve up to 4% better F1 score on the

recognition of gestures in the Opportunity dataset than our implementation

of DeepConvLSTM and 0.8% better F1 score than our implementation of

state-of-the-art model Attend and Discriminate, while reducing the search

time by more than 90% over a random search. This opens the way to

rapidly search for well-performing dataset-specific architectures. We describe

the computational implementation of the system (software frameworks,

computing resources) to enable replication of this work. Finally, we lay out

several future research directions for NAS which the community may pursue to

address ongoing challenges in human activity recognition, such as optimizing

architectures to minimize power, minimize sensor usage, or minimize training

data needs.

KEYWORDS

human activity recognition, neural architecture search, deep learning, Wearable

Computing, wearable sensors, reinforcement learning

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.914330
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.914330&domain=pdf&date_stamp=2022-10-10
mailto:lp349@sussex.ac.uk
https://doi.org/10.3389/fcomp.2022.914330
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2022.914330/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

1. Introduction

Designing a deep neural network (DNN) for human

activity recognition (HAR) (Wang et al., 2019) requires making

decisions about many architectural hyperparameters, including

layer types, sizes, numbers of, and connections between layers.

Due to the extremely large space of neural architectures (in this

work we operate with a search space of 1016 unique network

topologies), these decisions are often made based on prior

experience and limited systematic explorations.

Neural architecture search (NAS) has been introduced in

other fields, including computer vision and natural language

processing, to perform a guided exploration of the search space

rather than an exhaustive or random one (Elsken et al., 2019b),

using reinforcement learning (RL) (Zhong et al., 2017; Zoph and

Le, 2017; Liu et al., 2018a; Pham et al., 2018; Xia and Ding,

2020), genetic algorithms (Miikkulainen et al., 2017; Elsken

et al., 2019a), or gradient descent (Liu et al., 2018b; Li et al.,

2020). Each has produced results comparable to, or better than,

state-of-the-art models (Elsken et al., 2019b).

Neural architecture search has not yet been applied to HAR

from wearable sensors (see section 2). Convolutional input

layers in HAR owe their success as feature extractors to their

ability to match sensor signal patterns to activities (Zeng et al.,

2014). This requires the convolutional layers and activities

to be well-matched (for example, the kernel size should be

comparable to the typical length of the activity), which is not a

trivial proposition given the amount of variance in the duration

of relevant patterns and in sample rates (Malekzadeh et al.,

2021) across different activities and datasets. While recurrent

and LSTM networks can be employed to exploit temporal

relationships, they tend to perform better when applied after

convolutional feature extractors (Ordóñez and Roggen, 2016).

Neural architecture search has the potential to automatically

tailor convolutional feature extractors to specific datasets, while

remaining dataset-agnostic in principle. In this paper, we

propose a NAS method using RL and performance prediction

from early training epochs. The key contributions of this study

of the application of NAS to wearable HAR, are:

• A demonstration of the principles of deep RL-based NAS

applied to wearable HAR for the first time. We evaluate

our method on the Opportunity dataset of activities of daily

living (Roggen et al., 2010), and find that our NAS method

can generate network architectures which outperform the

state of the art.

• A comparative study of five techniques for predicting

performance of classifier models during the early training

epochs, in order to reduce the computational complexity of

the NAS algorithm.

• A discussion of the limitations of the method and

of the most important areas where further research

is needed.

• A description of the technical implementation details of

the method, including software and hardware used and

computation time for each experiment.

• An exploration and roadmap of possible future extensions

of this work, including usingmulti-objective RL to optimize

architectures for minimal power usage, sensor usage, and

training data requirements.

The purpose of this study is to demonstrate that NAS is

a viable method for discovering performant neural network

architectures for wearable activity recognition, and to encourage

the community to take advantage of these techniques which have

so far been confined to other fields. The potential impact of the

work is to automate the design of network architectures for new

datasets and free up many hours of work for researchers to focus

on other areas.

This work has previously been presented at the International

Symposium on Wearable Computing 2021 (Pellatt and Roggen,

2021). In addition to the material presented in the original

version, this extended version of the article includes:

• An expanded discussion of related works.

• A much more detailed explanation of the algorithm,

including pseudocode.

• Additional comparison with state-of-the-art model Attend

and Discriminate (Abedin et al., 2020).

• A discussion of the computational implementation of the

system.

• A roadmap for future research into NAS for wearable HAR.

• Numerous new figures and tables to aid comprehension of

the text.

2. Related work

2.1. Deep learning for human activity
recognition

Table 1 highlights key network processing layers included

in deep networks for HAR, and illustrates the variety of

architectures suggested so far. Convolutional units are a favorite

to act as feature extractors, though auto-encoders (AE) have

also been employed. Temporal dynamics are often captured with

long short term memory (LSTM) architectures, although vanilla

recurrent neural networks (RNN) and bidirectional RNNs

have also been suggested, and some networks did not include

temporal processing at all. Some recent studies have included

attention and self-attention mechanisms in the network

architecture. While most of the networks in the literature are

trained with supervised learning, self-supervised, and semi-

supervised learning algorithms have also been proposed in

recent years to reduce the amount of data needed for training.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

TABLE 1 A summary of deep learning approaches to HAR from the past 7 years, including sensor modalities and architecture components used, the

number of layers, and the total number of parameters (if disclosed)—selected to give a representative sample of architecture decisions in the

literature.

Reference Modalities Dataset Components NL NP

Attend and Discriminate

(Abedin et al., 2020)

IMU Skoda (Zappi et al., 2008), Opportunity

(Chavarriaga et al., 2013), PAMAP2

(Reiss and Stricker, 2012), Hospital

HAR (Yao et al., 2018)

CNN, Pool, GRU, CIE, AGE 8 –

Semisupervised attention

(Chen et al., 2020a)

IMU PAMAP2 (Reiss and Stricker, 2012),

UCI HAR (Anguita et al., 2013),

MHealth (Banos et al., 2014a), Own

(Multimodal)

CNN, LSTM, Ensemble, Attention 5 –

METIER (Chen et al., 2020b) IMU SBHAR (Reyes-Ortiz et al., 2016),

UniMiB (Micucci et al., 2016),

REALDISP (Banos et al., 2014b)

CNN, Pool, Bi-LSTM 5 –

TPN (Saeed et al., 2019) IMU, altitude HHAR (Stisen et al., 2015), UniMiB,

UCI HAR, MobiAct (Vavoulas et al.,

2016), WISDM (Weiss et al., 2019),

MSense (Malekzadeh et al., 2019)

CNN, Pool, MLP 5 –

AROMA (Peng et al., 2018) IMU Ubicomp 08 (Huynh et al., 2008),

Opportunity

CNN, LSTM 13 –

DeActive (Hossain et al.,

2018)

Acc, PIR Opportunity, CASAS (Cook et al., 2013),

WISDM, Daphnet (Bachlin et al., 2010)

MLP 1–3 –

Snoopy (Lu et al., 2018) Acc, Gyro Own (Password inference) AE, RNN, Bi-RNN 4 –

Divide and conquer (Cho and

Yoon, 2018)

IMU Opportunity, UCI HAR CNN, Dense 2 – 6 –

LSTM ensembles (Guan and

Plötz, 2017)

IMU, Temp, HR Opportunity, Skoda, PAMAP2 LSTM, Ensemble 2 (x20) –

(Münzner et al., 2017) Acc, Gyro, HR PAMAP2, Own CNN, Dense 4 1–7 M

(Ronao and Cho, 2016) IMU Own (ADL) CNN 1–4 –

DeepConvLSTM (Morales

and Roggen, 2016)

IMU Opportunity, Skoda CNN, LSTM 8 3.97 M

DRNN (Inoue et al., 2016) Acc, Gyro HASC (Kawaguchi et al., 2011), UCI

HAR

LSTM 1–4 –

DCNN (Jiang and Yin, 2015) Acc UCI HAR, USC (Zhang and Sawchuk,

2012), SHO (Shoaib et al., 2014)

CNN 1–5 –

CNN (Yang et al., 2015) IMU Opportunity, hand gesture (Bulling

et al., 2014)

CNN, Pool 3 –

NL , no. of layers; NP , no. of parameters; Acc, accelerometer; Gyro, gyroscope; IMU, inertial measurement unit; CNN, convolutional layer; Pool, max or average pooling layer; GRU, gated

recurrent unit; CIE, channel interaction encoder; AGE, attentional GRU encoder; LSTM, long short term memory layer; Bi-LSTM, bidirectional LSTM; MLP, multi-layer perceptron; AE,

auto encoder.

There is a large range of architecture depths represented

in the table, from 2 to 10 layers. Only two of the works

surveyed reported the total number of trainable parameters,

though some of the others can be inferred from the published

code. The number of parameters also depends on the dataset

to which the model is applied. For example DeepConvLSTM

(Ordóñez and Roggen, 2016), when applied to the Opportunity

dataset, contains 3.97M trainable parameters split across the

convolutional and LSTM parts of the network. The distribution

of parameters over each layer of the network is given in Table 2.

In Münzner et al. (2017) the authors explore several variants

of convolutional networks, with a range of convolutional kernel

sizes and with total parameters ranging from 1 to 7 M.

For the vast majority of the networks reported in Table 1, any

disclosed search strategy used to determine the topology of the

DNN was limited to a grid search over a few different numbers

of layers or units per layer. Hammerla et al. (2016b) is a counter-

example, but their systematic exploration is still limited to ≈

1,500 configurations while we sample 20,000 per search from a

space of 1016 unique topologies.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

TABLE 2 This table shows the number of parameters which need to be

trained in order to apply DeepConvLSTM to the Opportunity dataset.

Layer Parameter name Size

Conv 1 Kernel weights 64× 5 = 320

Conv 1 Bias 64

Conv 2 Kernel weights 64× 64× 5 = 20, 480

Conv 2 Bias 64

Conv 3 Kernel weights 64× 64× 5 = 20, 480

Conv 3 Bias 64

Conv 4 Kernel weights 64× 64× 5 = 20, 480

Conv 4 Bias 64

LSTM 1 Input-hidden weights 4× 128× 7, 232 = 3, 702, 784

LSTM 1 Hidden-hidden weights 4× 128× 128 = 65, 536

LSTM 1 Input-hidden bias 4× 128 = 512

LSTM 1 Hidden-hidden bias 4× 128 = 512

LSTM 2 Input-hidden weights 4× 128× 128 = 65, 536

LSTM 2 Hidden-hidden weights 4× 128× 128 = 65, 536

LSTM 2 Input-hidden bias 4× 128 = 512

LSTM 2 Hidden-hidden bias 4× 128 = 512

Softmax Hidden-output weights 18× 128 = 2, 304

Softmax Hidden-output Bias 18

Total – 3, 965, 778

Each convolutional layer contains 64 kernels of width 5, plus a bias for each kernel, which

are applied to the 113 sensor channels in the dataset. The first convolutional layer has

64 × 5 + 64 parameters, and each subsequent convolutional layer has 64 × 64 × 5 + 64

parameters as each kernel is applied over all of the outputs from the previous layer. The

input to the first LSTM layer is then the whole feature map from the previous layer at

each timestep, so that each of the 128 recurrent units contain 64× 64× 5× 113 = 7, 232

trainable weights connected to the each of the four gates of the LSTM (Hochreiter and

Schmidhuber, 1997). The softmax output layer contains 128×18 weights and 18 biases to

map the features extracted from the LSTM onto the 18 classes in the Opportunity dataset.

Each of these network architectures perform well on their

respective datasets, but it is not clear whether they represent the

best possible architectures, and which architectural parameters

have the largest impact on this performance. An effective NAS

method for wearable HAR should therefore be able to explore

a search space which at least encompasses the majority of these

networks, as well as novel architectures.

2.2. Neural architecture search

So far, most successful NAS algorithms can be divided into

three categories—RL (Zhong et al., 2017; Zoph and Le, 2017; Liu

et al., 2018a; Pham et al., 2018; Xia and Ding, 2020), evolutionary

algorithms (Miikkulainen et al., 2017; Elsken et al., 2019a),

and differentiable approaches characterized by a continuous

relaxation of structural parameters, which are then optimized by

gradient descent (Baker et al., 2017; Zhong et al., 2017; Elsken

et al., 2019b). The first two strategies operate on a discrete

search space of architectures, and as a consequence both have

a very high level of computational complexity (Ren et al., 2020).

The latter approach avoids the complexity of a discrete search

space, but at the cost of constraining the search space due to the

fixed number of nodes. The differentiable approach proposed in

DARTS (Liu et al., 2018b) of computing every possible operation

during the forward pass of the network in the search phase also

leads to very high memory requirements, further constraining

the search space on most hardware.

Bayesian Optimization (BO) has also been applied to

searching network architectures (Kandasamy et al., 2018; Elsken

et al., 2019b), generally using either a Gaussian Process (Ru et al.,

2020) or Graph Neural Network (White et al., 2021) to predict

the performance of the searched models. BO based algorithms

generally are very computationally expensive, but place a greater

focus on selecting the best architecture to evaluate at each step

(for example, to give the greatest expected improvement) in

order to reduce the total number of sampled architectures.

Under the RL paradigm for NAS, introduced in Zoph and

Le (2017), a controller network (typically an RNN) is trained to

generate suitable classifier architectures, which are then trained

and evaluated on a target dataset to give feedback used to

train the controller to generate better classifiers (see section 3.1).

This method was used to generate competitive convolutional

models for image recognition on CIFAR-10. To reduce the

computational burden of training many network architectures

in a discrete search space, strategies have been proposed to

predict converged performance from early validation epochs

(Baker et al., 2017; Zhong et al., 2017; Elsken et al., 2019b).

The approach used in this paper is closely related to BlockQNN

(Zhong et al., 2017).

Recently, NAS methods have also been applied to image-

based and skeleton-based activity recognition (Popescu et al.,

2020; Zhang et al., 2020), as well as domain-agnostic time-

series classification (Rakhshani et al., 2020), with promising

results. This work represents the first exploration of NAS with

performance prediction for wearable sensor-based HAR.

3. Methodology and experimental
setup

3.1. Deep Q learning for NAS

Under the RL paradigm for NAS, a feature extractor is

incrementally built by a series of actions chosen at each

time step by a controller network. Each action corresponds to

adding a layer chosen from 241 options, including convolutional

layers (with kernel size in {1,2,3,5,8} and number of kernels

in {32,64,128,256}), max pooling layers (with pooling size in

{2,3,5}), concatenation of any two previous layers (channel-wise,

where mismatched sequence lengths are padded with zeros), and

the terminal layer. The terminal layer is an action which can

be selected by the controller to indicate that no further layers

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

TABLE 3 Each layer type, parameter, and interconnection is represented by a vector of six elements including the layer ID corresponding to the

timestep, and the five elements indicated in the table.

Name Type Kernel size Pred1 Pred2 No. of kernels

Convolutional 1 1,2,3,5,8 0,1,...,8 – 32,64,128,256

Max pooling 2 2,3,5 0,1,...,8 – –

Concatenation 3 – 0,1,...,8 0,1,...,8 –

Terminal 4 – – – –

Some combinations of values can be invalid (i.e., connections going backwards). This encoding is closely related to the NSC (network structure code) introduced in Zhong et al. (2017).

should be added to the feature extractor. The complete set of

actions is indicated in Table 3.

This sequential decision making process is an example of a

Markov decision problem (MDP), where the state space is the

set of possible network architectures N, the action space is the

set of layers L which can be generated at each timestep, and

the reward R is a measure of the performance of the classifier

network on the target dataset. We refer to the generation and

evaluation of one full network architecture as an episode. The

reward R can only be obtained after the network has been fully

generated, i.e., after the last timestep in each episode. In order

to assign rewards to the preceding timesteps, we assume that

each layer contributes equally to the final reward (this may

not be true—future work may consider assessing how much

each layer contributes and weighting the rewards based on this

metric).

The goal of this MDP is to find, at each step of the

controller network, the layer which maximizes the performance

of the complete network—given that all the following layers are

selected according to the same policy. We can assign a value

to each state-action pair which represents this expected future

reward, which we call the Q-value, defined as:

q(n, l) = E[

T
∑

i=t+1

Ri|Nt = n, Lt = l], (1)

where q(n, l) is the Q-value of the layer l appended to network n,

t, and T are the current and maximum timestep, and Nt , Lt ,Rt

the state, action and reward at timestep t. This equation is

recursive:

q(n, l) = E[Rt+1 +

T
∑

i=t+2

Ri|Nt = n, Lt = l] (2)

q(n, l) = E[Rt+1 + q(Nt+1, Lt+1)|Nt = n, Lt = l], (3)

and we can use this property to derive an update rule which

allows us to update the Q-value of each chosen action after

every episode:

Q(Nt , Lt) = Q(Nt , Lt)+α{Rt+1+max
l
[Q(Nt+1, l)]−Q(Nt , Lt)},

(4)

where α is a scaling factor or learning rate which controls

the step size of the updates. With deep Q-learning (Mnih

et al., 2015), we use a controller DNN to approximate this Q-

function by optimizing a loss function which approximates the

Q-learning update rule, described in Equation (5). We refer to

the term Rt+1 +maxl [Q(Nt+1, l)]
1 as the target value.

3.1.1. Search spaces

We define two search spaces, one general search space

where a pooling or convolutional layer may be connected

to any previously generated layer, allowing for arbitrary skip

connections and branches (1.06 × 1016 architectures), and a

restricted feedforward space which only allows for feedforward

networks (8.17 × 1010 architectures), with no concatenations.

Many networks of Table 1 can be represented within these

search spaces - for example, see Table 4 for the vector encoding

of DeepConvLSTM.

The authors of Hammerla et al. (2016b) use the fANOVA

hyperparameter optimization technique to explore a search

space of feedforward CNNs with 1–3 layers, where each layer

has 16–128 convolutional filters, and the width of the kernels

is between 3 and 9 samples. They also use a max pooling layer

with kernels of width 2 in all of the networks, and the output of

the convolutional layers is processed by a single fully connected

layer with 64–2,048 units. These structural hyperparameters

are optimized alongside several learning and regularization

hyperparameters including the learning rate and the dropout

fraction. In total, they sample only 256 network architectures

from this search space.

3.1.2. Controller network architecture

The controller network is made up of two RNN layers with

64 units and a linear output layer with 241 units to learn the

correlations between layer choices at each timestep and the

complete classifier performance (in terms of weighted F1 score),

with deep Q learning (Mnih et al., 2015). The value of each

output unit is trained to approximate the expected classifier

performance when its associated layer is chosen, using the loss

1 Nt here represents the network state, including both the internal

dynamics of the RNN which encodes information about the previous

layers chosen, as well as the explicit input to the RNN which is the index

of the current layer.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

function described in section 3.1.3. As such, the number of

output units is determined by the number of layers which can

be generated in the search space. The input to the controller

network is the index of the layer which should be generated,

so that the layer chosen is a result of the combination of this

knowledge of the position of the layer in the network and

the internal dynamics of the RNN, which are informed by the

preceding layer choices in the current and previous episodes.

Although we have not performed extensive experiments to

determine the structure of the DQN, it is probable that this

structure has inherent biases which may influence the results.

Future work should seek to optimize the controller network

architecture.

3.1.3. Training the DQN with experience replay

We train the DQN by sampling batches of 64 past

experiences. An experience corresponds to an individual layer

generated in a past episode2. We train the DQN according

to the mean over the batch of the smooth L1 loss (Fu et al.,

2019), using the Adam optimizer (Kingma and Ba, 2014). We

learn the Q-function using two copies of the Deep Q Network

(DQN)—a target DQN with parameters θT and a local DQN

with parameters θL, in order to reduce correlations between the

action values and the target values which can cause instability in

learning (Mnih et al., 2015). The loss function is given by:

Loss =







0.5(x− y)2, if |x− y| < 1

|x− y| − 0.5, otherwise
(5)

where x is the action value predicted by the local net given by

x = maxlt [Q(Nt , lt , θ
L)], and y is the target value given by

y = α(Rt+1 + maxlt+1 [Q(Nt+1, lt+1, θ
T)])—the combination

of the immediate reward and the prediction of the target net

at the next timestep, thereby approximating the Q-learning

update rule given in Equation (4). The loss is minimized using

the Adam optimizer (Kingma and Ba, 2014), a method for

stochastic gradient descent which uses the moving average of the

gradient and squared gradient of the loss function to compute

individual adaptive learning rates for each set of parameters,

thereby regulating the step size of the updates. After updating

the weights of the local net by backpropagation, we do a “soft

update” of the weights of the target net controlled by a parameter

τ such that θT = (1− τ)θT + τθL, where we set τ to 10−3. This

is done every four episodes to improve the stability of training.

2 Technically, the experiences consist of the state (layer index), action

(selected layer), reward (F1 score of the completed classifier), and next

state (the next index), as shown in Algorithm 1. This is everything needed

to compute the loss and perform one training step of the controller

network.

Require: Dataset: The target dataset on which the

classifiers will be evaluated.

Require: Buffer: A memory buffer store and sample

experiences.

Require: Optimizer: Learning algorithm to update the

parameters of the controller network.

Require: Predictor: Performance predictor to

extrapolate converged performance from early

training epochs.

Require: NetworkState: The state of the classifier

network built with RL.

Require: BatchSize ← 64: Number of experiences used in

each batch to train the controller network.

Require: ǫ ← 1: Threshold for determining whether

to generate layer randomly or using DQN.

Require: EpsilonSchedule: Schedule for updating ǫ.

while ep < num_eps do

Index← 0

while Index <= MaxIndex do

ActionValues← Q(it , l, θ
L)

RandomNum ← RNG(0, 1) {Generate random number

between 0 and 1.}

if RandomNum > ǫ then

Layer ← maxl(ActionValues) {Select best layer

using local network.}

else

Layer ← RandomChoice(ActionValues) {Select random

network.}

end if

if Layer is valid. then

Append Layer to NetworkState

if Layer is terminal or Index == MaxIndex then

Classifier ← BuildClassifier(NetworkState) {Build

classifier from NetworkState.}

RT ← Evaluate(Classifier,Dataset, Predictor) {Evaluate

classifier, predict performance.}

for Layer in NetworkState do

R ← RT/T {Apportion the reward between

all valid layers.}

Experience← (Index, Layer,Reward, Index+ 1)

Append Experience to Buffer

end for

Index← Index+ 1

else

Index← Index+ 1

end if

else

Reward Ri ←−1

Experience← (Index, Layer,Reward, Index+ 1)

Append Experience to Buffer

end if

end while

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

if length(Buffer) > BatchSize then

Batch ← Sample(Buffer) {Sample a batch of 64

experiences from the Buffer.}

for Experience in Batch do

it , l,Rt+1, it+1 ← Experience

ActionValues← Q(it , l, θ
L)

TargetValues← Rt+1 + Q(it+1, l, θ
T)

end for

Loss ← SmoothL1Loss(ActionValues,TargetValues) {See

Equation (5).}

θL ← Optimizer(θL , Loss) {Update parameters of local

network.}

θT ← (1 − τ)θT + τθL {Update parameters of target

network.}

end if

Ep← Ep+ 1

ǫ ← EpsilonSchedule(Ep)

end while

Algorithm 1. Deep neural architecture search with early prediction of

converged performance.

3.1.4. Search policy

In order to avoid choosing actions based on low-confidence

initial estimates of theQ-values we use an ǫ-greedy policy which

chooses the layer with the largest Q-value at each timestep with

probability 1 − ǫ and a random layer with probability ǫ, which

we decay linearly during the training of the controller network

from ǫ = 1 to ǫ = 0.01 after 20,000 episodes. This allows us

to balance exploration with exploitation of learned knowledge

and avoid introducing selection bias into our estimates of the

Q-values.

3.1.5. Building the feature extractor

At each RNN timestep t, we sample layers from the search

space by feeding the DQN the layer index it and choosing a layer

according to the ǫ-greedy policy as shown in Figure 1. If the

layer chosen is valid3, we increment i and choose another layer,

repeating until i = 8, or until the DQN chooses a layer called

the terminal layer which indicates that the controller network

has decided to stop adding additional layers to the convolutional

feature extractor—it has decided that making the classifier

network any deeper is likely to degrade the performance.

3 A “valid” layer is a layer which can be connected to its inputs. An invalid

layer would be, for example, the first layer wanting to be connected to the

second layer (recurrent connection).

TABLE 4 Vector encoding of DeepConvLSTM (Ordóñez and Roggen,

2016).

Index Type Kernel size Pred1 Pred2 No of kernels

0 0 (Input) 0 0 0 0

1 1 (Conv) 5 0 0 64

2 1 (Conv) 5 1 0 64

3 1 (Conv) 5 2 0 64

4 1 (Conv) 5 3 0 64

5 4 (Terminal) 0 0 0 0

3.2. Dataset

We train and validate the classifiers on the Opportunity

dataset (Roggen et al., 2010), which consists of 6 annotated runs

from 4 subjects performing 17 sporadic gestures such as drinking

water and opening doors, plus a null class for 18 total activity

classes. The activity classes and distribution are explained in

Table 5. We use all 113 sensor channels. We split the dataset

into a training set and a validation set, consisting of one run

from user 1, and we hold out two runs from users 2 and 3 for

testing (as in theOpportunity challenge Chavarriaga et al., 2013).

In total the training dataset consists of approximately 525,000

samples, while the validation set contains around 32,000 samples

and the testing set contains around 119,000 samples.

3.3. Evaluation of classifiers

To evaluate the feature extractor, we combine it with a two

layer LSTM recurrent network with 128 units per layer and a

single linear classification layer with softmax output. This is

almost identical to the output structure of DeepConvLSTM (we

do not use dropout). We use a sliding window size of 500 ms

(16 samples, twice the maximum kernel length), where the state

of the LSTM is reset after each window. The network output is

compared to the ground truth at the last sample of each window.

The learning rate of each classifier network is set at 1×10−3, and

we use a batch size of 100, the same as DeepConvLSTM.

We take the F1 score achieved on the validation set as the

reward RT for each episode, where T is the number of layers

in the feature extractor. We allocate this reward evenly over

each valid layer, setting the reward for each valid layer i to be

Ri =
RT
T . If the controller network tries to generate a layer with a

connection to a network which does not exist, this layer receives

a reward of−1. Note that the total reward Ri can only be positive

as it is constructed by considering only valid layers.

3.3.1. Testing on unseen data

Testing is performed on selected networks after the search to

prevent overfitting to the test set—we show only the validation

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

FIGURE 1

Block diagram which describes how we construct the classifier networks using the DQN. Part (A) shows the actions taken by the DQN to insert

layers into the feature extractor. Here, actions are selected with a greedy policy (i.e., ǫ = 0), where the actions with the largest Q-values are

selected at each index (circled in red). The network selects the action (Conv, 1, 32, 0), i.e., a convolutional layer with 32 kernels of size 1

connected to the input layer at i = 0. At i = 1, the DQN generates a pooling layer with a width of three samples connected to the first conv layer,

denoted as (Pool, 3, 1). At i = 3, the DQN inserts another convolutional layer with 128 kernels of size 3 connected to index 1, and then finally the

DQN generates a “terminal” layer at i = 4. This indicates the completion of the feature extractor, which is included in the classifier network as

shown in part (B). Once constructed, the network is trained and tested on the target dataset, to produce a reward which is then used to train the

DQN.

set to classifiers during the search process to get an estimate of

their performance. The best generated models are then trained

to convergence for 300 epochs, or until their validation F1

score has not improved over 30 epochs (this resulted in an

average of around 100–150 epochs to train to convergence). The

performance of the best models on the testing set is shown in

Table 6.

3.4. Converged performance estimation

In order to minimize computation time, we employ neural

regression networks to approximate the true reward after

training the classifier models for only a few epochs. As well as

the training and validation statistics, we incorporate information

about the structure of the classifiers and their computational

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

complexity [approximated by the number of floating point

operations (FLOPs) per inference]. We propose four prediction

methods, illustrated in Figure 2:

• MLP: A three layer perceptron with 64 units per

layer, which takes as input the training loss and the

TABLE 5 Names and distribution of activities in the Opportunity

dataset (Roggen et al., 2010).

Class label Activity name No. of samples

0 Null 486,945

1 Open door 1 11,070

2 Open door 2 11,777

3 Close door 1 10,441

4 Close door 2 11,128

5 Open fridge 13,801

6 Close fridge 12,095

7 Open dishwasher 9,178

8 Close dishwasher 8,525

9 Open drawer 1 6,284

10 Close drawer 1 5,501

11 Open drawer 2 6,015

12 Close drawer 2 5,284

13 Open drawer 3 7,599

14 Close drawer 3 7,475

15 Clean table 12,028

16 Drink from cup 42,768

17 Toggle switch 8,799

Total 676,713

validation loss, accuracy, class weighted F1 score, and

mean F1 score at every training epoch, as well as the

density (number of connections between layers divided by

number of layers) and number of FLOPs of the subject.

See Figure 2A.

• CNN: A branched convolutional network with a

core structure the same as above, and an additional

convolutional input layer with 64 kernels of size three

which takes the training and validation statistics as a time-

series input, and incorporates the density and number of

FLOPs at the second layer. See Figure 2B.

• MLP (struct): A variant of theMLPwhich additionally takes

the vector representation of the network structure as an

input. See Figure 2C.

• CNN (struct): A variant of the CNN which takes a vector

representation of the network structure as an additional

input. See Figure 2D.

We compare these methods against a baselinemethod which

simply uses the mean validation F1 score over the five last

training epochs (i.e., epochs 5–10 if training for 10 epochs) as

the reward.

We generated, trained to convergence and tested 5,000

randomly sampled networks from each of the general and

feedforward search spaces, collecting training and validation

statistics to produce two databases of models. The generation

of these two databases took approximately 120 h each. The

distribution of scores within each model database are shown

in Figure 3. We trained the predictors to minimize the MSE

loss between predicted and actual testing F1 score, and

we weighted the loss function according to the testing F1

score since we are chiefly interested in the best performing

FIGURE 2

The structures of the tested regression networks, with input data depicted. (A) Multi-layer perceptron (MLP) model. (B) Convolutional neural

network (CNN) model. (C) MLP model with additional structural information. (D) CNN model with additional structural information.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

FIGURE 3

Density plot of testing F1 scores from 5,000 randomly generated

networks within the general and feedforward search space,

annotated with F1 scores from benchmark models. The y-axis

represents the number of models in each bin (where each bin is

0.01% F1 score). Blue or green text indicates that these models

are contained within the general or feedforward search space,

respectively. “NAS (x,y)” refers to the best model found by NAS,

when using x epochs and y method to predict scores. Other

vertical lines represent models which we have implemented,

trained, and tested using the protocol described in sections 3.3

and 3.3. as references, including DeepConvLSTM (Ordóñez and

Roggen, 2016) and Attend and Discriminate (Abedin et al., 2020).

models. To assess the performance of the predictors, we

performed a 10-fold cross-validation experiment on each

database of models.

4. Results

4.1. Performance prediction

To analyze the results, we split the database of models

from the general search space into five bins based on their

testing F1 scores. The rank correlations achieved by each

predictive model on each partition of data are shown in

the top part of Figure 4. All of our prediction methods

achieve better overall correlations than the baseline, and

in addition they all achieve significantly better correlations

in the high performance group (top 20% of networks),

indicating that they are able to identify and distinguish between

high performing networks in early training epochs much

better than the baseline. The best performing predictor at

five epochs is the MLP, with a correlation of 0.54 on the

top 20% of models compared to a baseline correlation of

0.17.

From the bottom sections of Figure 4, we can see

that there is a significant positive correlation between the

testing performance of the classifiers we looked at and their

computational complexity (the top 20% have over double the

average FLOPs of the bottom 20%) and number of layers (from

≈ 4 to ≈ 6). We also observe a more modest increase in the

node density and inference time of high performing classifiers,

indicating deep networks with a few branches perform the best.

4.2. Neural architecture search

We performed four explorations of the search space, using

the MLP and baseline prediction methods, and training the

classifier models for 5 and 10 epochs. Table 6 shows the

weighted F1 score, mean F1 score and accuracy of the best

models found in each search run, as well as the inference

time, number of FLOPs, and time taken to search. Alongside

these, we also present the same metrics for four benchmark

models DeepConvLSTM, Attend and Discriminate, MaxFF, and

MaxWide, trained and tested under the same conditions as the

NAS-generated architectures.

DeepConvLSTM refers to an implementation of the feature

extractor part of DeepConvLSTM (Ordóñez and Roggen,

2016). Attend and Discriminate is a state of the art model

iterating on the architecture of DeepConvLSTM, which uses

an attentional gated recurrent unit (GRU) instead of LSTM

recurrent section, uses center-loss to maximize the distance

between class centers in the feature space (Wen et al., 2016),

and also implements a novel self-attention layer, a channel

interaction encoder (CIE) to take advantage of correlations

between channels in the output of the feature extractor (Abedin

et al., 2020). The structure of the convolutional feature extractor

is otherwise the same as DeepConvLSTM. MaxFF refers to a

feedforward model with eight convolutional layers, each with

256 kernels of size 5, while MaxWide refers to a model with

eight parallel convolutional layers with 256 kernels of size

5, thereby representing the deepest and widest limits of the

search space.

From Table 6, the NAS-generated models outperform the

benchmark models on this task in all cases. The best feature

extractor, shown in Figure 5 and in vector form in Table 7,

was found using NAS with the MLP predictor, using 10

epochs of validation data. The best feature extractor has a

large variety of convolutional kernel sizes, does not include

any pooling layers, and uses a branched structure. The NAS

generated models also have lower complexity than the two

“Max” benchmark models, but significantly higher complexity

than DeepConvLSTM and Attend and Discriminate. Attend

and Discriminate performs much better than DeepConvLSTM

and has a far lower inference time than any of the other

models, as well as significantly lower FLOPs. This may be

attributed to the GRU recurrent section, which has 1/4 of the

parameters of the LSTM, and the CIE self-attention layer which

effectively compresses the output of the convolutional feature

extractor.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

FIGURE 4

Fold-averaged (10-fold) spearman rank correlation coe�cient with the converged F1 score achieved by various performance prediction

methods on the general database when using data up to epoch 5, 25, and 45, split into groups by testing performance (from worst 20% of

models on the left to best 20% on the right). The error bars represent the standard deviation over the folds, and the overall correlation at each

epoch is indicated by a horizontal line. The bottom two subplots show the average depth, complexity, graph density, and inference time for

each group of models within the general database.

We have used the class-weighted F1 score to draw our

major conclusions in this study, for consistency and ease of

comparison with previous publications (Ordóñez and Roggen,

2016). In the Opportunity dataset, where around 70% of the

samples are of the null class, this metric will be biased toward

the null class. To support our results, we also report the mean

F1 score and accuracy of each model in Table 6. The mean F1

score tends to be lower than the weighted F1 score, with a

range of around 56–63%, compared to 86–90% for the latter.

This suggests that the null class is easier to classify than the

other classes in the dataset. In terms of mean F1 score, the

same model performs the best overall (the NAS with MLP

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

TABLE 6 Weighted F1 score, mean F1 score, and accuracy score achieved by various architectures.

Model Weighted F1 (%) Mean F1 (%) Accuracy (%) NF Ti (s) Ts (h)

DeepConvLSTM 86.0± 0.5 56.0± 2.0 84.3± 0.6 5.3 M 0.94± 0.00 –

Attend and Discriminate 89.2± 0.5 59.5± 0.9 89.1± 0.4 3.0M 0.24 ± 0.02 –

MaxFF 88.8± 0.3 60.4± 1.2 88.2± 0.5 44.4 M 1.89± 0.00 –

MaxWide 87.3± 0.2 57.8± 0.5 85.9± 0.3 38.6 M 1.85± 0.01 –

NAS (Baseline, 5) 89.7± 0.1 62.7± 0.6 89.4± 0.2 19.4 M 1.36± 0.05 ≈ 5

NAS (Baseline, 10) 89.9± 0.2 61.9± 0.2 89.7 ± 0.2 22.5 M 1.34± 0.03 ≈ 10

NAS (MLP, 5) 89.8± 0.4 62.7± 1.1 89.7 ± 0.4 34.6 M 1.50± 0.03 ≈ 5

NAS (MLP, 10) 90.0 ± 0.1 62.8 ± 0.6 89.7 ± 0.6 47.2 M 1.67± 0.00 ≈ 10

RS (FeedForward) 89.6± 0.2 61.7± 0.7 89.5± 0.3 21.9 M 1.30± 0.00 ≈ 120

RS (General) 89.4± 0.3 61.1± 1.6 89.3± 0.2 17.0 M 1.25± 0.00 ≈ 120

Also given are the number of FLOPs NF per batch, inference time Ti , and search time Ts (here the inference time is measured as the time taken to classify the whole testing set of 14,838

windows). All results obtained on a single RTX 2080 GPU. Performance obtained by training the model to convergence five times—the table shows mean ± standard deviation. The

reference models DeepConvLSTM (Morales and Roggen, 2016) and Attend and Discriminate (Abedin et al., 2020) were trained from scratch and evaluated according to our protocol

outlined in sections 3.3 and 3.3.1. NAS (x, y) refers to the best model found during the search process using predictor x for y epochs. RS (Random Search) models represent the best models

found generating two databases of 5,000 random models. The best values observed for each metric are shown in bold.

FIGURE 5

The network architecture of the best feature extractor generated by NAS with MLP performance predictor. C, x, y denotes a convolutional layer

with y kernels of size x.

predictor and 10 training epochs), while the baseline NAS with

only five training epochs performs better than the 10 epoch

version, within 0.1% F1 score of the best model. While the mean

F1 score may better represent the performance of the network

on the more difficult activity classes, it also generally has a

much larger standard deviation, making comparisons between

different models more difficult.

5. Discussion

While we have only applied our methods to one dataset,

in principle the NAS and performance prediction methods

are completely transferable to other datasets—it would simply

be necessary to swap out the dataset in Figure 6, and adapt

the kernel and pooling sizes in the search space to suit the

new dataset. The performance prediction algorithm we have

proposed would also need to be re-trained on the new dataset. In

order to validate the results obtained in this study, future work

should include applying the algorithm to a variety of additional

datasets. We chose to evaluate our method on the Opportunity

TABLE 7 Vector encoding of the best model found by our NAS

algorithm using the MLP predictor and training each subject model for

10 epochs, after 20k sampled models.

Index Type Kernel size Pred1 Pred2 No of kernels

0 0 (Input) 0 0 0 0

1 1 (Conv) 1 0 0 128

2 1 (Conv) 8 0 0 32

3 1 (Conv) 5 1 0 256

4 1 (Conv) 8 3 0 256

5 1 (Conv) 8 3 0 256

6 1 (Conv) 8 3 0 256

7 3 (Concat) 0 1 4 256

8 1 (Conv) 3 4 0 256

9 4 (Terminal) 0 0 0 0

dataset because it contains sporadic, short duration activities

which are very hard to correctly classify, and therefore represents

a challenging application for a NAS algorithm. Other datasets

may be more suited for determining the generalization ability of

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

FIGURE 6

The network architectures of the two identical DQNs used as local and target networks. Both consist of two recurrent layers with 64 units

followed by a linear output layer mapping the output of the recurrent cells onto the number of possible layers in the action space to produce

Q-values for each possible action. The local network predicts the q-values at the current timestep t and these values are used to select a layer to

generate. The target network predicts the q-values at the next timestep t+ 1, given the layer selected by the local network. These values are

summed with the immediate reward Rt+1 to give the target values which the DQN is trained toward (illustrated in Equation 4). θL and θT

represent the parameters of the local and target networks, respectively.

the networks, since the Opportunity dataset contains only four

subjects.

Although we find that our NAS method can generate better

architectures than a random search in considerably less time,

and that both produce networks which perform better than

our implementations of DeepConvLSTM (Ordóñez and Roggen,

2016) and Attend and Discriminate (Abedin et al., 2020), these

implementations performed significantly worse than reported in

the literature (Hammerla et al., 2016a; Ordóñez and Roggen,

2016; Guan and Plötz, 2017; Abedin et al., 2020), and thus we

were not able to show an improvement over the state-of-the-

art F1 score—this is likely due to differences in the training and

testing protocols used. Further, we only apply our Q learning

method to the optimization of the structural hyperparameters of

the network, leaving out several parameters which may also have

a large impact on the performance of the network, including

the batch size and learning rate. For these hyperparameters,

we chose to use the same values (given in section 3.3) as

DeepConvLSTM used on the Opportunity dataset, for a fair

comparison against the state of the art. This highlights a problem

also discussed in Elsken et al. (2019b), namely that there are

more factors than the architecture of a network which affect it’s

performance. This indicates a need for a common benchmark

for NAS on HAR datasets, following the examples of Dong

and Yang (2020) for computer vision and Klyuchnikov et al.

(2020) for natural language processing, which would allow us

to test NAS methods on a search space of pre-trained and

pre-evaluated models.

Although our performance estimators achieve much better

rank correlations than the baseline when predicting converged

performance (see Figure 4), this translated to only a marginally

better searched feature extractor. This indicates that more work

is needed to find better predictors which further improve the

NAS results. While the performance estimators enabled the

NAS algorithm to be run much more quickly, generation of

the random databases of models themselves took ≈ 120 h,

comparable to the total time taken by the random search.

Fortunately, once trained, the performance estimators can be

re-used multiple times, saving a lot of compute in the long run.

The performance estimators were trained to map the

performance of a given classifier model on the validation set to

its performance on the test set. In the real world, the distribution

of test data is often very different from the distribution of

available training data. This is a problem encountered by all

machine learning methods for HAR. The best way to solve

this problem is to increase the diversity of the training data—

however, the performance predictors could also be extended to

predict the generalization of a model to other subjects.

The state of the art model Attend and Discriminate achieved

performance close to that of the NAS generated models with

significantly lower complexity in terms of the number of FLOPs,

andmuch faster inference. This indicates that future NAS studies

could benefit from including GRU recurrent units and CIE

self-attention mechanisms in the search space.

Another approach to reducing the complexity of the search

would be to modify the algorithm to operate on a continuous

search space of network architectures, for example using

unsupervised representation learning to encode the search space

into a continuous latent space, which can then be sampled from

by the NAS algorithm (Yan et al., 2020).

In this study, we have chosen to search for the convolutional

feature extractor part of a DeepConvLSTM-like network, in

order to keep the size of the search space manageable for

an initial characterization. The method could in theory be

applied to other search spaces including searching for recurrent

cell structures. This study represents the first time any NAS

algorithm has been applied to HAR from wearable sensors.

Future work should consider evaluating other NAS algorithms

including Bayesian Optimization and Genetic Algorithms.

5.1. Implementation details

All of the experiments reported in this paper were performed

using a single Nvidia RTX-2080 GPU. All of the code for

the generation of DNNs was implemented using PyTorch

and the RL logic was implemented in a custom OpenAI

gym environment. To avoid performing the computationally

expensive evaluation of the same classifier network many times

over, we stored the results from each evaluated network. Once

the same network had been evaluated three times, we took the

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

average of the three scores and used this as the reward if the same

network were to be generated again.

Although an exhaustive search of the space of possible

networks appears out of reach using desktop equipment (our

random search of 5,000 models took over 100 h, see Table 6),

our work shows that using performance estimators to predict the

converged performance in early training epochs can significantly

reduce the technical requirements, reducing the search time to

less than 10 h while maintaining the quality of the results.

6. Conclusions

We have proposed a NAS method for designing

convolutional feature extractors for deep recurrent neural

networks using Deep Q Learning, and shown that our NAS-

guided search was able to find feature extractor algorithms

which beat our implementation of DeepConvLSTM by up

to 4% F1 score and the state-of-the-art model Attend and

Discriminate by 0.8% on the Opportunity dataset, and which

beat the naive maximum complexity algorithms we propose by

1–3% F1 score. We also achieved 0.4% better F1 score than the

best model found in a random search, while reducing the search

time by more than 90% through the use of a neural regression

based performance estimator.

This work represents a significant step in demonstrating the

viability of NAS methods for designing more powerful DNN

architectures for wearable HAR applications. While the use of

a RL agent to construct DNN architectures has been proposed

previously for image recognition applications (Zoph and Le,

2017), it has not previously been applied to HAR from wearable

sensors. Many modifications were made to the algorithm to

adapt it to the wearable HAR domain. As well as implementing

a custom search space containing convolutional and pooling

layers chosen with reference to state of the art models, we

also combine the NAS-generated convolutional networks with

a fixed-architecture LSTM network inspired by previous works

(Inoue et al., 2016; Morales and Roggen, 2016; Guan and

Plötz, 2017; Abedin et al., 2020) to further tailor the generated

networks to the wearable HAR domain.

We found that our NAS-generated models were consistently

larger and more complex than state-of-the-art models,

indicating a need for future research focusing on reducing the

complexity of solutions.

6.1. Future work

One promising approach to reducing the complexity of the

searched architectures would be multi-objective reinforcement

learning (MORL), either using a scalarization function

(Miettinen and Mäkelä, 2002) to combine multiple rewards

into a single scalar reward, or using a multi-policy algorithm to

search for a set of optimal solutions in each run (Barrett and

Narayanan, 2008). An example would be to take the F1 score

of the models as one reward function RF1 and the number

of FLOPs RFLOPs as another, then combine the two with a

scalarization function (for example constructing a combined

reward R = RF1 − RFLOPs). This technique could be applied

with other metrics such as the inference time or the size of the

model in memory in order to find network architectures which

can perform real-time inference on embedded systems while

maintaining high performance.

The complexity of the search and of the final models could

further be reduced by considering architectures for each sensor

or each sensor modality in a dataset. This could be achieved

by including the sensor position or sensor modality in the

state which is given to the DQN each timestep, making the

choice of layer dependent on the sensor modality and position.

This could be an effective approach for applications where

there are multiple sensor modalities with different sample rates,

since these would likely have different optimal architectures.

These sensor-specific architectures could be combined into

ensemble classifiers or into larger DNNs containing multiple

branches. It would also be interesting to investigate whether the

sensor modality specific architectures would be more effective

at generalizing to other datasets using the same modalities.

Going further, it has been shown that the individual axes of

a tri-axial accelerometer can each contribute more or less to

the recognition of specific activities (Javed et al., 2020), which

could be exploited by searching for channel-specific network

architectures.

Validation of this and similar methods on a larger variety of

target HAR datasets should also be a priority, and future work

could also include development of cross-dataset performance

estimators taking into account factors such as sample rate and

activity duration/periodicity to identify network blocks and

architectures which are broadly applicable over many similar

applications. For example, it can be assumed that a CNN will

perform best when the length of the convolutional kernels is

equal to or larger than the length of the activities in the target

dataset. A general performance estimator should therefore be

able to learn and apply this and subtler correlations to quickly

predict the converged performance of a DNN. Research in this

direction is very important to reduce the technical barrier of

entry for future NAS methods.

Going forward, the search space should also be expanded

both to optimize the recurrent section of the network

and to consider recent advances such as self-attention

mechanisms (Abedin et al., 2020). Additionally, unsupervised

representation learning of network architectures should

be considered as a viable way to improve the accuracy

of performance prediction methods and potentially

to encode a large discrete search space of network

architectures into a continuous latent space (Yan et al.,

2020).

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

Data availability statement

The raw data supporting the conclusions of this article

will be made available by the authors, without undue

reservation.

Author contributions

LP designed and carried out the experiments reported in

the article and wrote the manuscript. DR provided supervision

and guidance during the experimental phase of the research and

extensive editing of the manuscript.

Acknowledgments

This work was partially funded by the EU H2020-ICT-2019-

3 project HumanEAI Net (project number 952026). The content

of this manuscript has been presented in part at the International

Symposium on Wearable Computing 2021 (Pellatt and Roggen,

2021).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Abedin, A., Ehsanpour, M., Shi, Q., Rezatofighi, H., and Ranasinghe,
D. C. (2020). Attend and discriminate: beyond the state-of-the-art for
human activity recognition using wearable sensors. arXiv:2007.07172..
doi: 10.48550/arXiv.2007.07172

Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-Ortiz, J. L. (2013). “A
public domain dataset for human activity recognition using smartphones,” in 21st
European Symposium on Artificial Neural Networks, Computational Intelligence
And Machine Learning, Vol. 3 (Bruges).

Bachlin, M., Plotnik, M., Roggen, D., Maidan, I., Hausdorff, J. M., Giladi,
N., et al. (2010). Wearable assistant for Parkinson’s disease patients with the
freezing of gait symptom. IEEE Trans. Inform. Technol. Biomed. 14, 436–446.
doi: 10.1109/TITB.2009.2036165

Baker, B., Gupta, O., Raskar, R., and Naik, N. (2017). Accelerating
neural architecture search using performance prediction. arXiv:1705.10823v2.
doi: 10.48550/arXiv.1705.10823

Banos, O., Garcia, R., Holgado-Terriza, J. A., Damas, M., Pomares, H., Rojas,
I., et al. (2014a). “mhealthdroid: A novel framework for agile development
of mobile health applications,” in International Workshop on Ambient Assisted
Living, eds L. Pecchia, L. L. Chen, C. Nugent, J. Bravo (Cham: Springer), 91–98.
doi: 10.1007/978-3-319-13105-4_14

Banos, O., Toth, M. A., Damas, M., Pomares, H., and Rojas, I. (2014b). Dealing
with the effects of sensor displacement in wearable activity recognition. Sensors 14,
9995–10023. doi: 10.3390/s140609995

Barrett, L., and Narayanan, S. (2008). “Learning all optimal policies with
multiple criteria,” in Proceedings of the 25th International Conference on Machine
Learning, ICML ’08 (New York, NY: Association for Computing Machinery),
41–47. doi: 10.1145/1390156.1390162

Bulling, A., Blanke, U., and Schiele, B. (2014). A tutorial on human activity
recognition using body-worn inertial sensors. ACM Comput. Surv. 46, 1–33.
doi: 10.1145/2499621

Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S. T., Tröster,
G., Millán, J. d. R., et al. (2013). The opportunity challenge: a
benchmark database for on-body sensor-based activity recognition.
Pattern Recognit. Lett. 34, 2033–2042. doi: 10.1016/j.patrec.2012.
12.014

Chen, K., Yao, L., Zhang, D., Wang, X., Chang, X., and Nie, F.
(2020a). A semisupervised recurrent convolutional attention model for human
activity recognition. IEEE Trans. Neural Netw. Learn. Syst. 31, 1747–1756.
doi: 10.1109/TNNLS.2019.2927224

Chen, L., Zhang, Y., and Peng, L. (2020b). METIER: a deep multi-task
learning based activity and user recognition model using wearable sensors. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 1–18. doi: 10.1145/338
1012

Cho, H., and Yoon, S. M. (2018). Divide and conquer-based 1D CNN
human activity recognition using test data sharpening. Sensors 18:1055.
doi: 10.3390/s18041055

Cook, D. J., Crandall, A. S., Thomas, B. L., and Krishnan, N. C. (2013). Casas: a
smart home in a box. Computer 46, 62–69. doi: 10.1109/MC.2012.328

Dong, X., and Yang, Y. (2020). Nas-bench-201: extending the scope
of reproducible neural architecture search. arXiv preprint arXiv:2001.00326.
doi: 10.48550/arXiv.2001.00326

Elsken, T., Metzen, J. H., and Hutter, F. (2019a). Efficient multi-
objective neural architecture search via lamarckian evolution. arXiv:1804.09081.
doi: 10.48550/arXiv.1804.09081

Elsken, T., Metzen, J. H., Hutter, F., et al. (2019b). Neural architecture search: a
survey. J. Mach. Learn. Res. 20, 1–21. doi: 10.1007/978-3-030-05318-5_11

Fu, C., Shvets, M., and Berg, A. C. (2019). Retinamask: learning to predict
masks improves state-of-the-art single-shot detection for free. arXiv preprint.
arXiv:1901.03353. doi: 10.48550/arXiv.1901.03353

Guan, Y., and Plötz, T. (2017). Ensembles of deep lstm learners
for activity recognition using wearables. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 1, 1–28. doi: 10.1145/30
90076

Hammerla, N. Y., Halloran, S., and Ploetz, T. (2016a). Deep, convolutional,
and recurrent models for human activity recognition using wearables.
arXiv:1604.08880. doi: 10.48550/arXiv.1604.08880

Hammerla, N. Y., Halloran, S., and Plötz, T. (2016b). “Deep, convolutional, and
recurrent models for human activity recognition using wearables,” in Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence (New
York, NY), 1533–1540.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput., 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Hossain, H. M. S., Al Haiz Khan, M. A., and Roy, N. (2018). Deactive: scaling
activity recognition with active deep learning. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 2, 1–23. doi: 10.1145/3214269

Huynh, T., Fritz, M., and Schiele, B. (2008). “Discovery of activity
patterns using topic models,” in Proceedings of the 10th International

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://doi.org/10.48550/arXiv.2007.07172
https://doi.org/10.1109/TITB.2009.2036165
https://doi.org/10.48550/arXiv.1705.10823
https://doi.org/10.1007/978-3-319-13105-4_14
https://doi.org/10.3390/s140609995
https://doi.org/10.1145/1390156.1390162
https://doi.org/10.1145/2499621
https://doi.org/10.1016/j.patrec.2012.12.014
https://doi.org/10.1109/TNNLS.2019.2927224
https://doi.org/10.1145/3381012
https://doi.org/10.3390/s18041055
https://doi.org/10.1109/MC.2012.328
https://doi.org/10.48550/arXiv.2001.00326
https://doi.org/10.48550/arXiv.1804.09081
https://doi.org/10.1007/978-3-030-05318-5_11
https://doi.org/10.48550/arXiv.1901.03353
https://doi.org/10.1145/3090076
https://doi.org/10.48550/arXiv.1604.08880
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3214269
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

Conference on Ubiquitous Computing (Seoul), 10–19. doi: 10.1145/1409635.14
09638

Inoue, M., Inoue, S., and Nishida, T. (2016). Deep recurrent neural network
for mobile human activity recognition with high throughput. arXiv:1611.03607.
doi: 10.48550/arXiv.1611.03607

Javed, A. R., Sarwar, M. U., Khan, S., Iwendi, C., Mittal, M., and Kumar,
N. (2020). Analyzing the effectiveness and contribution of each axis of tri-
axial accelerometer sensor for accurate activity recognition. Sensors 20:2216.
doi: 10.3390/s20082216

Jiang, W., and Yin, Z. (2015). “Human activity recognition using wearable
sensors by deep convolutional neural networks,” in Proceedings of the 23rd ACM
International Conference on Multimedia, MM ’15 (New York, NY: ACM), 1307–
1310.

Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., and Xing, E. P. (2018).
“Neural architecture search with bayesian optimisation and optimal transport,”
in 32nd Conference on Neural Information Processing Systems (NeurIPS 2018)
(Montreal), 2016–2025.

Kawaguchi, N., Ogawa, N., Iwasaki, Y., Kaji, K., Terada, T., Murao, K., et
al. (2011). “Hasc challenge: gathering large scale human activity corpus for the
real-world activity understandings,” in AH ’11: Proceedings of the 2nd Augmented
Human International Conference (Tokyo), 1–5. doi: 10.1145/1959826.1959853

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization.
arXiv preprint arXiv:1412.6980. doi: 10.48550/arXiv.1412.6980

Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov,
M., and Burnaev, E. (2020). Nas-bench-nlp: neural architecture search
benchmark for natural language processing. IEEE Access. 10, 45736–45747.
doi: 10.1109/access.2022.3169897

Li, L., Khodak, M., Balcan, M.-F., and Talwalkar, A. (2020). Geometry-
aware gradient algorithms for neural architecture search. arXiv:2004.07802v5.
doi: 10.48550/arXiv.2004.07802

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., et
al. (2018a). “Progressive neural architecture search,” in Proceedings of the
European Conference on Computer Vision (ECCV), Vol. 11205, eds V.
Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss (Cham: Springer), 19–34.
doi: 10.1007/978-3-030-01246-5_2

Liu, H., Simonyan, K., and Yang, Y. (2018b). DARTS: differentiable architecture
search. arXiv:1806.09055. doi: 10.48550/arXiv.1806.09055

Lu, C. X., Du, B., Wen, H., Wang, S., Markham, A., Martinovic, I., et al. (2018).
Snoopy: sniffing your smartwatch passwords via deep sequence learning. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 1–29. doi: 10.1145/3161196

Malekzadeh, M., Clegg, R. G., Cavallaro, A., and Haddadi, H.
(2019). “Mobile sensor data anonymization,” in Proceedings of the
International Conference on Internet of Things Design and Implementation,
IoTDI ’19 (New York, NY: ACM), 49–58. doi: 10.1145/3123021.
3123046

Malekzadeh, M., Clegg, R. G., Cavallaro, A., and Haddadi, H. (2021).
Dana: dimension-adaptive neural architecture for multivariate sensor data.
arXiv:2008.02397v4. doi: 10.1145/3478074

Micucci, D., Mobilio, M., and Napoletano, P. (2016). Unimib SHAR: a new
dataset for human activity recognition using acceleration data from smartphones.
arXiv:1611.07688. doi: 10.48550/arXiv.1611.07688

Miettinen, K., and Mäkelä, M. M. (2002). On scalarizing
functions -0-in multiobjective optimization. OR Spectr. 24, 193–213.
doi: 10.1007/s00291-001-0092-9

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., et al.
(2017). arXiv:1703.00548v2. doi: 10.48550/arXiv.1703.00548

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et
al. (2015). Human-level control through deep reinforcement learning. Nature 518,
529–533. doi: 10.1038/nature14236

Morales, F. J. O., and Roggen, D. (2016). “Deep convolutional feature
transfer across mobile activity recognition domains, sensor modalities and
locations,” in Proceedings of the 2016 ACM International Symposium on Wearable
Computers, ISWC ’16 (New York, NY: Association for Computing Machinery),
92–99.

Münzner, S., Schmidt, P., Reiss, A., Hanselmann, M., Stiefelhagen, R., and
Dürichen, R. (2017). “CNN-based sensor fusion techniques for multimodal human
activity recognition,” in Proceedings of the 2017 ACM International Symposium
on Wearable Computers, ISWC ’17 (New York, NY: Association for Computing
Machinery), 158–165.

Ordóñez, F. J., and Roggen, D. (2016). Deep convolutional and LSTM recurrent
neural networks for multimodal wearable activity recognition. Sensors 16:115.
doi: 10.3390/s16010115

Pellatt, L., and Roggen, D. (2021). “Fast deep neural architecture search for
wearable activity recognition by early prediction of converged performance,”
in 2021 International Symposium on Wearable Computers, (New York, NY:
Association for Computing Machinery), 1–6. doi: 10.1145/3460421.3478813

Peng, L., Chen, L., Ye, Z., and Zhang, Y. (2018). Aroma: a deep multi-task
learning based simple and complex human activity recognition method using
wearable sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1–16.
doi: 10.1145/3214277

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018).
Efficient neural architecture search via pa=rameter sharing. arXiv:1802.03268v2.
doi: 10.48550/arXiv.1802.03268

Popescu, A.-C., Mocanu, I., and Cramariuc, B. (2020). Fusion mechanisms for
human activity recognition using automated machine learning. IEEE Access. 8,
143996–144014. doi: 10.1109/ACCESS.2020.3013406

Rakhshani, H., Ismail Fawaz, H., Idoumghar, L., Forestier, G., Lepagnot, J.,
Weber, J., et al. (2020). “Neural architecture search for time series classification,” in
2020 International Joint Conference on Neural Networks (IJCNN) (Glasgow, UK).

Reiss, A., and Stricker, D. (2012). “Introducing a new benchmarked dataset
for activity monitoring,” in 2012 16th International Symposium on Wearable
Computers, IEEE (Newcastle, UK), 108–109.

Ren, P., Xiao, Y., Chang, X., Huang, P., Li, Z., Chen, X., et al. (2020). A
comprehensive survey of neural architecture search: challenges and solutions.
arXiv:2006.02903v3. doi: 10.48550/arXiv.2006.02903

Reyes-Ortiz, J.-L., Oneto, L., Samà, A., Parra, X., and Anguita, D. (2016).
Transition-aware human activity recognition using smartphones.Neurocomputing
171, 754–767. doi: 10.1016/j.neucom.2015.07.085

Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster, K., Tröster,
G., et al. (2010). “Collecting complex activity datasets in highly rich
networked sensor environments,” in 2010 Seventh International Conference
on Networked Sensing Systems (INSS) (Kassel), 233–240. doi: 10.1109/INSS.2010.
5573462

Ronao, C. A., and Cho, S.-B. (2016). Human activity recognition with
smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59,
235–244. doi: 10.1016/j.eswa.2016.04.032

Ru, B., Wan, X., Dong, X., and Osborne, M. (2020). Neural architecture search
using bayesian optimisation with Weisfeiler-Lehman kernel. arXiv:2006.07556v2.
doi: 10.48550/arXiv.2006.07556

Saeed, A., Ozcelebi, T., and Lukkien, J. (2019). Multi-task self-supervised
learning for human activity detection. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 3, 1–30. doi: 10.1145/3328932

Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., and Havinga, P. J. (2014).
Fusion of smartphone motion sensors for physical activity recognition. Sensors 14,
10146–10176. doi: 10.3390/s140610146

Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjærgaard, M. B.,
Dey, A., et al. (2015). “Smart devices are different: assessing and mitigating
mobile sensing heterogeneities for activity recognition,” in Proceedings of the
13th ACM Conference on Embedded Networked Sensor Systems (Seoul), 127–140.
doi: 10.1145/2809695.2809718

Vavoulas, G., Chatzaki, C., Malliotakis, T., Pediaditis, M., and Tsiknakis,
M. (2016). “The mobiact dataset: Recognition of activities of daily living using
smartphones,” in Proceedings of the International Conference on Information and
Communication Technologies for Ageing Well and e-Health (ICT4AWE 2016)
(Rome), 143–51. doi: 10.5220/0005792401430151

Wang, J., Chen, Y., Hao, S., Peng, X., and Hu, L. (2019). Deep learning
for sensor-based activity recognition: a survey. Pattern Recogn. Lett., 119, 3–11.
doi: 10.1016/j.patrec.2018.02.010

Weiss, G. M., Yoneda, K., and Hayajneh, T. (2019). Smartphone and
smartwatch-based biometrics using activities of daily living. IEEE Access. 7,
133190–133202. doi: 10.1109/ACCESS.2019.2940729

Wen, Y., Zhang, K., Li, Z., and Qiao, Y. (2016). “A discriminative feature
learning approach for deep face recognition,” in European Conference on Computer
Vision 2016–ECCV 2016. Lecture Notes in Computer Science, Vol. 9911, eds
B. Leibe, J. Matas, N. Sebe, and M. Welling (Cham: Springer), 499–515.
doi: 10.1007/978-3-319-46478-7_31

White, C., Neiswanger, W., and Savani, Y. (2021). “Bananas: Bayesian
optimization with neural architectures for neural architecture search,” in
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35 (Palo Alto,
CA: AAAI Press), 10293–10301. doi: 10.1609/aaai.v35i12.17233

Xia, X., and Ding, W. (2020). HNAS: Hierarchical neural architecture search on
mobile devices. ArXiv: abs/2005.07564. doi: 10.48550/arXiv.2005.07564

Yan, S., Zheng, Y., Ao, W., Zeng, X., and Zhang, M. (2020). “Does unsupervised
architecture representation learning help neural architecture search?,” in

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://doi.org/10.1145/1409635.1409638
https://doi.org/10.48550/arXiv.1611.03607
https://doi.org/10.3390/s20082216
https://doi.org/10.1145/1959826.1959853
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/access.2022.3169897
https://doi.org/10.48550/arXiv.2004.07802
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.48550/arXiv.1806.09055
https://doi.org/10.1145/3161196
https://doi.org/10.1145/3123021.3123046
https://doi.org/10.1145/3478074
https://doi.org/10.48550/arXiv.1611.07688
https://doi.org/10.1007/s00291-001-0092-9
https://doi.org/10.48550/arXiv.1703.00548
https://doi.org/10.1038/nature14236
https://doi.org/10.3390/s16010115
https://doi.org/10.1145/3460421.3478813
https://doi.org/10.1145/3214277
https://doi.org/10.48550/arXiv.1802.03268
https://doi.org/10.1109/ACCESS.2020.3013406
https://doi.org/10.48550/arXiv.2006.02903
https://doi.org/10.1016/j.neucom.2015.07.085
https://doi.org/10.1109/INSS.2010.5573462
https://doi.org/10.1016/j.eswa.2016.04.032
https://doi.org/10.48550/arXiv.2006.07556
https://doi.org/10.1145/3328932
https://doi.org/10.3390/s140610146
https://doi.org/10.1145/2809695.2809718
https://doi.org/10.5220/0005792401430151
https://doi.org/10.1016/j.patrec.2018.02.010
https://doi.org/10.1109/ACCESS.2019.2940729
https://doi.org/10.1007/978-3-319-46478-7_31
https://doi.org/10.1609/aaai.v35i12.17233
https://doi.org/10.48550/arXiv.2005.07564
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pellatt and Roggen 10.3389/fcomp.2022.914330

Advances in Neural Information Processing Systems 33 (NeurIPS 2020) (Virtual
Conference).

Yang, J., Nguyen, M. N., San, P. P., Li, X. L., and Krishnaswamy, S. (2015). “Deep
convolutional neural networks on multichannel time series for human activity
recognition,” in Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence (Buenos Aires).

Yao, R., Lin, G., Shi, Q., and Ranasinghe, D. C. (2018). Efficient dense labelling
of human activity sequences from wearables using fully convolutional networks.
Pattern Recogn. 78, 252–266. doi: 10.1016/j.patcog.2017.12.024

Zappi, P., Lombriser, C., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., et
al. (2008). “Activity recognition from on-body sensors: accuracy-power trade-off
by dynamic sensor selection,” in Wireless Sensor Networks, ed R. Verdone (Berlin;
Heidelberg: Springer), 17–33.

Zeng, M., Nguyen, L. T., Yu, B., Mengshoel, O. J., Zhu, J., Wu, P., et al. (2014).
“Convolutional neural networks for human activity recognition using mobile

sensors,” in 6th International Conference on Mobile Computing, Applications and
Services (Austin, TX), 197–205.

Zhang, H., Hou, Y., Wang, P., Guo, Z., and Li, W. (2020). Sar-
nas: Skeleton-based action recognition via neural architecture searching.
J. Vis. Commun. Image Represent. 73:102942. doi: 10.1016/j.jvcir.2020.10
2942

Zhang, M., and Sawchuk, A. A. (2012). “USC-HAD: a daily
activity dataset for ubiquitous activity recognition using wearable
sensors,” in Proceedings of the 2012 ACM Conference on Ubiquitous
Computing (Pittsburgh, PA), 1036–1043. doi: 10.1145/2370216.23
70438

Zhong, Z., Yan, J., and Liu, C. (2017). Practical network blocks design with
q-learning. arXiv:1708.05552v3. doi: 10.48550/arXiv.1708.05552

Zoph, B., and Le, Q. V. (2017). Neural architecture search with reinforcement
learning. arXiv:1611.01578. doi: 10.48550/arXiv.1611.01578

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2022.914330
https://doi.org/10.1016/j.patcog.2017.12.024
https://doi.org/10.1016/j.jvcir.2020.102942
https://doi.org/10.1145/2370216.2370438
https://doi.org/10.48550/arXiv.1708.05552
https://doi.org/10.48550/arXiv.1611.01578
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Speeding up deep neural architecture search for wearable activity recognition with early prediction of converged performance
	1. Introduction
	2. Related work
	2.1. Deep learning for human activity recognition
	2.2. Neural architecture search

	3. Methodology and experimental setup
	3.1. Deep Q learning for NAS
	3.1.1. Search spaces
	3.1.2. Controller network architecture
	3.1.3. Training the DQN with experience replay
	3.1.4. Search policy
	3.1.5. Building the feature extractor

	3.2. Dataset
	3.3. Evaluation of classifiers
	3.3.1. Testing on unseen data

	3.4. Converged performance estimation

	4. Results
	4.1. Performance prediction
	4.2. Neural architecture search

	5. Discussion
	5.1. Implementation details

	6. Conclusions
	6.1. Future work

	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

