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We present a novel intelligent garment design approach for body posture/gesture

detection in the form of a loose-fitting blazer prototype, “the MoCaBlazer.” The design is

realized by leveraging conductive textile antennas with the capacitive sensing modality,

supported by an open-source electronic theremin system (OpenTheremin). The use

of soft textile antennas as the sensing element allows flexible garment design and

seamless tech-garment integration for the specific structure of different clothes. Our

novel approach is evaluated through two experiments involving defined movements (20

arm/torso gestures and eight dance movements). In cross-validation, the classification

model yields up to 97.18% average accuracy and 92% f1-score, respectively. We have

also explored real-time inference enabled by a radio frequency identification (RFID)

synchronization method, yielding an f1-score of 82%. Our approach opens a new

paradigm for designing motion-aware smart garments with soft conductive textiles

beyond traditional approaches that rely on tight-fitting flexible sensors or rigid motion

sensor accessories.

Keywords: loose garment sensing, theremin, capacitive sensing, activity recognition, posture detection, gesture

detection, real-time recognition, RFID

1. INTRODUCTION

Human activity recognition (HAR) is an umbrella term that gives shelter to various specific
applications to understand human behavior. An essential piece of HAR is body postures and
gestures (BPG) recognition. The popularity of BPG recognition is well earned due to the ability
to describe human activities by a sequence of changing postures or by detecting specific gestures
(Ding et al., 2020). BPG detection could lead to the generation of emotion and personality profiles
(Noroozi et al., 2018; Junior et al., 2019), to understand implicit social interactions (Gaschler et al.,
2012; Guedjou et al., 2016), to aid in sign language communication (Enikeev and Mustafina, 2020),
and to predict people’s intentions (Sanghvi et al., 2011).

Many wearables sensing applications have found their purpose in BPG, delivering highly
developed solutions such as commercial motion capture systems (Schepers et al., 2018). The
commercial and research markets for BPG recognition are mainly dominated by inertial
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measurement units (IMU) wearable-based techniques (Harms
et al., 2008; Sarangi et al., 2015; Butt et al., 2019), and on the textile
side by stretch or pressure sensors (Chander et al., 2020).

Most of the current solutions for BPG recognition have
a common baseline requirement: the sensors need to be
firmly attached to the body using tight garments or dedicated
accessories, such as bracelets and straps. Therefore, we could
argue that a reliable method for BPG recognition with loose
garments remains a largely open problem. The present study
explores further the simple and novel method for BPG detection
in Bello et al. (2021), which proposes a loose garment solution
based on non-contact capacitive sensing with off-the-shelf
components. In addition to our previous study in Bello et al.
(2021), a set of dance movements is evaluated to demonstrate the
potential use case of our design as a sophisticated/elegant game
controller. The inspiration came from the NintendoWii Rayman
Raving Rabbids R©: TV Party- ShakeTV (Wii, 2009).

The main component of our system is a modified electronic
musical instrument, the theremin (Skeldon et al., 1998) for BPG
recognition. The well-knownmusical instrument usually consists
of one or two long metal rod/loop antennas emitting sub-MHz
frequencies. As the thereminist moves inside the antennas’ range,
volume and pitch can be controlled by their hand’s position. The
theremin antennas are metallic, but any conductive wire/textile
can be used as an antenna due to its intrinsic capacitive sensing.
We substituted the metal rod with soft wires and integrated them
inside a loose-fitting garment.

Our experiment design validates our system within two

discrete gesture dictionaries: 20 generic/typical upper-body
postures and gestures and a second dictionary with eight
dance movements. A distinct aspect of our approach is that
the theremin’s antennas move with the wearer’s body motion,
changing the signals. Our main contribution is to expand
our wearable and loose-fitting solution for BPG recognition
in Bello et al. (2021). The prototype is based on off-the-
shelf components, such as a modified electronic musical
instrument, the “OpenTheremin” (Gaudenz, 2016), which in
conjunction with textile antennas, is embedded into a loose
men’s jacket. The system shows accuracy above 90% with an
evaluation based on several deep neural network models. In
this extended study, the “MoCaBlazer” was fused with Radio
Frequency Identification (RFID) synchronization for a real-time
and wireless recognition for one participant and six classes of
a dance movements dictionary, obtaining an f1-score = 82%.
Hence, our “MoCaBlazer” could be a promising alternative for
an elegant/sophisticated game controller.

Our article structure is as follows; Section 2 introduces
related study in the areas of loose-fitting wearables for BPG
and capacitive sensing-based solutions. Next, Section 3 provides
a detailed description of the electronic prototype, including
details about the data collection options. Then, Section 4
describes the experimental design to evaluate our system.
Subsequent, Section 5 illustrates the strategy for the evaluation
of the system within the two experiment scenarios; a general
gestures dictionary and a dance movements dictionary. Next,
Sections 6, 7 present the results and discussion of the deep
learning models used to verify the feasibility of our method.

Finally, in Section 8, we conclude our study and discuss
further ideas.

2. RELATED STUDY

2.1. Loose Fitting Wearables for BPG
Inertial measurement units (IMU) distributed in clothing or
accessories for BPG recognition is a widely used technique
(Harms et al., 2008; Sarangi et al., 2015; Butt et al., 2019). Another
relevant approach for BPG analysis is called kinesiological
electromyography (EMG) (Clarys and Cabri, 1993; Zhang et al.,
2019). Such approaches are reliable and robust solutions with
accuracy above 90%. One of the limitations they share is
the need for stable sensor positions to avoid the effect of
noise and motion artifacts on the signals. Furthermore, the
placement of discrete and rigid sensors around the joints could
be uncomfortable for the user. In Loke et al. (2021), the authors
employed 100 microchips with memory and temperature sensors
interconnected in a flexible fiber on a T-shirt, which is a solution
to increase the flexibility and comfort of the user while wearing
discrete sensors, a promising idea to explore in the future.

On the other hand, stretchable garments with strain-based or
pressure sensing methods have been studied by many researchers
(Boyali et al., 2012; Jung et al., 2015; Zhou et al., 2017; Skach
et al., 2018; Mokhlespour Esfahani and Nussbaum, 2019; Lin
et al., 2020; Ramalingame et al., 2021; Shin et al., 2021), which
demonstrate their value in textile based BPG recognition. Fiber
optic embedded in a jacket and pants was proposed in a limited
study (one person) (Koyama et al., 2018); the transmitted light
changes with the wearer’s movements, creating a time series
pattern due to the bending of the fiber optics. Wearable optical
technology is growing rapidly with multiple hardware designs
being proposed by Koyama et al. (2016), Abro et al. (2018),
Koyama et al. (2018), Zeng et al. (2018), Leal-Junior et al. (2020),
Swaminathan et al. (2020), and Li et al. (2021). A fabric-based
triboelectric sleeve is proposed in Kiaghadi et al. (2018). Four
Radio Frequency Identification (RFID) tags were proposed on
the back, chest, and feet over the persons’ clothes and shoes by
Wang et al. (2016) to recognize a total of eight activities (standing,
sitting, walking, along with others). The piezoelectric effect was
employed in Cha et al. (2018), where four flexible piezoelectric
sensors were placed on the knee and the hip in slack pants to
detect walking, standing, and sitting activities.

Table 1 shows a detailed comparison of state-of-the-art
sensing on the garment for activity recognition solutions. At
the bottom of the table, our system shows a quick and easy
option to integrate e-textile components in loose-fitting garments
such as the “MoCaBlazer.” The “MoCaBlazer” uses commercial
conductive textile parts as the antennas of the modified off-the-
shelf theremin (OpenTheremin) based on capacitive sensing.

2.2. Capacitive Sensing
Capacitive sensing is a well-developed technology, available in
our everyday life since the invention of the first cellphone with a
touch screen (Johnson, 1965). In the cellphone touch screen case,
capacitive technology estimates touch or deformation caused by
fingers. A capacitance measurement quantifies the electric charge
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TABLE 1 | Comparison with state-of-the-art non-camera based sensing on garment methods for human activity recognition.

Studies Device Activities Classification method Accuracy (%) Persons

SMASH:Long sleeve shirt

(Harms et al., 2008)

Three accelerometers (3D) Twelve arm movements: Idle, shoulder

abduction 40 and 90◦, shoulder flexion 90◦,

shoulder elevation 170◦, shoulder abduction

15◦, shoulder abduction 90◦, shoulder rotation

90◦ in and out, elbow flexion 90 and 130◦,

neck-grip, skirt-grip

Nearest Centroid

Classifier; window = 1 s

95.00%* 8

Shirt:Digital Electronic (Loke

et al., 2021)

Flexible fiber: 100

microchips with temperature

sensing

4 motor activities: Sit, Stand, Walk, and Run CNN; window = 12 s 96.40* 1

Jacket and pant (Koyama

et al., 2018)

Hetero-core fiber optics 8 motor activities: Standing, sitting, walking,

descending stairs, climbing stairs, lying, eating,

and drinking

SVM; window = 4.83 s 98.70* 1

Sleeve (Kiaghadi et al.,

2018)

Fabric-based triboelectric

joint sensing

4 daily activities: Brushing, eating, walking,

idle

SVM; window=∗ ∗ ∗ 91.30* 14

RFID system (Wang et al.,

2016)

4 antennas; back, chest,

and feet

5 motor + 3 cleaning activities: Sitting,

standing, walking, cleaning window, cleaning

table, vacuuming, riding bike, going

up/downstairs

SVM; window = 5 s 93.60* 4

Sweat jacket (Lin et al.,

2020)

Optical-strain sensor 5 motor activities: Standing, sitting, lying,

walking, running

CNN-LSTM; window =

4 s

90.90* 12

Elastic sport band (Zhou

et al., 2017)

Textile pressure matrix

(TPM)

4 gym exercises + 3 non-exercises: Cross

trainer, leg press. Seated leg curl. Leg

extension. And adjusting machines, pause, and

walking as one class

ConfAdaBoost; window

= 8 s

93.30* 6

Loose Pants (Cha et al.,

2018)

Flexible piezoelectric 5 motor activities + 8 transitions: Walking,

standing, sitting, supine, sitting knee extension

and 8 transitions between those

Rule-based algorithm

(Cha et al., 2017)

93.00* 10

Trousers (3 sizes) (Skach

et al., 2018)

Textile pressure sensors 19 Sitting postures/gestures: Sitting

postures/gestures: Standing up, sitting down,

sitting straight, leaning back, leaning forward,

slouching, etc

Random Forest; window

= ∗ ∗ ∗

99.18* 6

Air bladder band (Jung

et al., 2015)

Air pressure sensors 6 hand gestures: Flexion and extension of the

wrist, flexion, and extension of the fingers, and

redial and ulnar deviation of the wrist

Custom Fuzzy Logic 90.00*** 6

Stretchable textile tape

(Ramalingame et al., 2021)

8 nanocomposite pressure

sensors

10 American sign language numbers:

numerical gestures (0–9)

ELM; window = ∗ ∗ ∗ 93.00* 10

Glove (Shin et al., 2021) EGaIn-Silicone Soft: React

to pressure or stretch

12 Static hand gestures: rest, hand close,

and numerical gestures (0–9)

Random Forest; window

= 200 ms

97.30* 15

Armband, commercial

(Zhang et al., 2019)

Surface EMG 5 hand gestures: Double tap, wave in and

out, fingers spread and fist

ANN; window = 400 ms 98.70* 12

Leg/chest band, insole

(Haescher et al., 2015)

Capacitive 5 motor activities: Sneaking, walking, fast

walking, jogging and walking with weight

Bayesian Classifiers;

window = 17 s

88.97** 10

Our approach- General

Dictionary

Capacitive 20 posture/gestures (Figure 2) Conv2D; complete

instance ∼ 4 s

97.18*, 86.25** 14

Our approach- Dance

Dictionary

Capacitive 8 dance movements (Figure 3) 1DConv; complete

instance ∼ 4 s

92.00* 3

*User dependent solution; **User independent solution; ***Information no available.

storage between two or more conductors, called electrodes. The
electrodes are conductive plates that form a chamber, and when
they are at different electric potentials (voltages), an electric field
is generated. The ratio between the charge (Q) and the differential
electric potential is called capacitance. Although the electrodes
are usually made of metal, any two plates of conductive material
like inks, foils, indium tin oxide (ITO), plastics, textiles, and
even the human body can be used to build a capacitor (Grosse-
Puppendahl et al., 2017). Capacitance is measured by frequency
or duty cycle, which fluctuates when external electrodes disturb

the status quo. Another method is by quantifying the charge
balance, or with rising or falling time measurements (Perme,
2007).

In wearable and ubiquitous computing for HAR,
capacitive sensing has extensively proven its importance
(Braun et al., 2015b; Ye et al., 2020). The applications
extend from capacitive furniture (Wimmer et al., 2007;
Braun et al., 2015a,b; Liu et al., 2019), to capacitive
wristbands (Cohn et al., 2012a; Pouryazdan et al., 2016;
Bian et al., 2019a,b), rings (Wilhelm et al., 2015), clothes
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(Holleis et al., 2008; Singh et al., 2015), collars (Cheng et al.,
2010, 2013) and prosthesis (Zheng and Wang, 2016) up to an
entire wall painted as a capacitive array (Zhang et al., 2018) for
posture gesture detection.

A textile design was evaluated as an on-body capacitance
system by Cheng et al. (2010). The authors validated the
technology for eating, head inclination, and arm/leg movements;
sensors were placed on the neck, wrist, upper leg, and forearm,
though not a loose-fitting solution. In Singh et al. (2015), a
flexible textile capacitive matrix was placed on the volunteer’s
upper leg. The goal was to recognize swipe and hover gestures of
paralysis patients. In Cohn et al. (2012b), a capacitive backpack
was worn by eight volunteers for posture recognition. The bag
works as a receiver of electromagnetic (EM) noise from the power
lines and electronic devices inside a room. By measuring the
disturbances on the EM field caused by the wearer’s movements,
the system achieved 93% accuracy for 12 gestures.

The above sensing studies (Cheng et al., 2010; Cohn et al.,
2012b; Singh et al., 2015; Zhang et al., 2018) mainly employed
tightly coupled or stationary electrodes. In this study, we
proposed to use textile theremin antennas in a loose-fitting
garment, the “MoCaBlazer” for BPG.

3. ELECTRONICS AND GARMENT
PROTOTYPE

The principal component in our electronic garment prototype
is an off-the-shelf electronic musical instrument, “The
OpenTheremin V3” (Gaudenz, 2016)1. The theremin produces
musical notes based on the frequency fluctuation of its antennas
caused by the proximity of a person’s hands. In a theremin,
we could find two antennas, one for volume (loop antenna)
and another for pitch control (rod antenna) (Skeldon et al.,
1998). Capacitive sensing is the physical principle governing
the behavior of the theremin. The human body could be
modeled as a capacitor plate virtually connected to the earth
and, in conjunction with the theremin’s antennas (second
plate), completes a capacitor (Singh et al., 2015). Thus, human
proximity changes the effective capacitance of the Clapp LC
oscillator in Figure 1D, affecting its frequency. Therefore, we
could infer that relative differences between body parts and
theremin’s antennas could be used to distinguish body postures.
In the present study, the pitch and volume antennas were
embedded in a tailored garment (men’s blazer); thus, the person’s
body moves with the theremin and “makes music” with different
postures and gestures (frequency profiles).

To test our approach, we designed a prototype, the
“MoCaBlazer,” as shown in Figure 1. We employed a Tom
Tailor R©L/52 size blazer (best suited for 184 cm tall persons). In
Figures 1A,C, the positions and patterns of our four antennas
are depicted. The antennas cover the chest, a small part of the
shoulders, the arms, and the back, as seen in Figure 1A. This
setting was appropriate for detecting upper-body postures and

1The OpenTheremin V3 has been updated to OpenTheremin V4: https://www.

gaudi.ch/OpenTheremin/.

gestures without altering the tailored garment’s main structure or
hindering the wearer’s motion.

The back antennas (standard 28 AWG cables) (AMPHENOL,
2015) in Figure 1A (Arm-Left, Arm-Right) start from the side
pockets and, following a curving pattern (simulating a volume
antenna), pass over the latissimus dorsi muscles toward the
deltoids; they then turn sharply to go along the outer sleeve
lines and terminate before the cuff buttons. The front antennas
(TWC24004B textile cables) (Wear, 2021) in Figure 1C (Collar-
Left, Collar-Right) were sewn inside the lining without modifying
the structural design of the blazer (refer to Figure 1B)2. The
Collar-Left and Collar-Right antennas were arranged to simulate
a theremin’s pitch antenna as close as possible. Thus, they
begin on the side pockets and go to the front-top button, then
turn to align with the inner crease of the lapels and reach the
notch; consecutively lead out of the crease and climb around the
shoulder to the back, and end at the middle edge of the shoulder
pad. The antennas’ lengths are 80 cm (front) and 100 cm (back)
for this particular blazer size (L/52).

Two “OpenTheremin” boards were inside the side pockets of
the “MoCaBlazer” (refer to Figure 1) to handle four channels.
The channel frequencies weremodified by changing the capacitor
(C2) in the clap-oscillator circuit to minimize cross-talk between
them, as depicted in Figure 1D. Then, the channels were sampled
(frequency-count; Stoffregen, 2014) at 100Hz by the Teensy R©4.1
(Stoffregen, 2020) development board.

Two options are available for the data collection: a UART
serial (115,200 Baud rate) as a wired option and a Bluetooth
serial (9,600 baud rate) as a wireless option. In the case of the
wired alternative, the data is received by the serial port (USB) in
a computer. The computer runs a python script with a graphical
user interface (GUI) developed using Tkinter (Lundh, 1999), as
depicted in Figure 1E upper element. For the wireless option,
the data of the four channels is sent using the Huzzah-ESP32
Bluetooth serial protocol (Fried, 2022) (in the upper pocket)
to a smartphone. The smartphone runs an android application,
developed using the Flutter framework (Napoli, 2019), as shown
in Figure 1E lower element.

4. EXPERIMENT DESIGN

Two experiments were conducted with our garment prototype,
the “MoCaBlazer.” The experiments were carried out in an office
without user calibration, i.e., without tuning the antennas’ base
frequencies to reduce the impact of different body capacitances.
Inside the office, there were few metal objects nearby, which
are known to affect capacitive sensing (Osoinach, 2007). All
participants signed an agreement following the policies of the
university’s committee for the protection of human subjects and
in accordance with the Declaration of Helsinki. The experiment
was video recorded for further confidential analysis. The
observer and participant followed an ethical/hygienic protocol
following the mandatory public health guidelines at the date of
the experiment.

2TWC24004B textile cables are deprecated, for an alternative option: Interactive

Wear http://www.interactive-wear.com/.
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FIGURE 1 | Electronic garment design “the MoCaBlazer,” (A) is the back part of the blazer, (B) is the textile cables sewn inside the garment, (C) is the front part of the

blazer, (D) is the circuit simplification design of the Clapp oscillator with the antennas, (E) are the two options for collecting data coming from the blazer; with and

UART-wired option, and a Bluetooth based android application (Flutter framework) as the wireless option.

The first experiment scenario was based on a general
dictionary of posture and gestures in Figure 2. The second one
was inspired by dance movements from the Rayman Raving
Rabbids: TV Party-Nintendo Wii R©as depicted in Figure 3.

4.1. General Dictionary Experiment
To study the flexibility of our system to adapt to an abroad type of
gestures, a general dictionary of 20 upper-body postures/gestures
was defined (see Figure 2). Fourteen participants mimicked
the postures defined in the dictionary in a random sequence
per session while wearing the unbuttoned “MoCaBlazer.” The
“MoCaBlazer” is based on a size L/52 blazer (Tom Tailor R©),
a recommended size for 184 cm tall persons. All participants
performed five sessions. One session consisted of four random
appearances of each gesture inside the dictionary, giving 400
instances per volunteer. The starting and ending point of a
gesture was marked by the null position (standing position).
On average, the volunteer’s resting period was at least 20
min (without wearing the blazer) in between sessions. For
some volunteers, the experiment was completed in 2 days. The
volunteers were seven women, 24–64 years old and 157–183 cm
in height; seven men, 25–34 years old, and 178–183 cm in height.

4.2. Dance Movements Experiment
As an application-specific experiment, a dance movements
dictionary containing the eight postures depicted in Figure 3was
defined. It is essential to highlight that the data transmission from
the “MoCaBlazer” for this experiment was wireless. Therefore,
the capacitive channels were floating (not connected to the
ground). The dance movements were selected from the game
Rayman Raving Rabbids: TV Party-Nintendo Wii R©in order to
test the feasibility of using the system as a sophisticated game
controller. Three volunteers were asked to imitate the eight
movements using the buttoned “MoCaBlazer.” Three sessions

were recorded per volunteer; each session contained five random
appearances per gesture inside the dictionary for a total of 120
instances per participant. The volunteers were asked to rest
(without wearing the blazer) for at least 10 min in between
sessions. The participants were two men and one woman, 26–30
years old and 160–183 cm in height.

5. EVALUATION

As shown in Figure 1, the Clapp oscillators generated four
data channels. The wearer’s movements alter the channels’
fundamental frequency. The channels’ data is processed as a
time sequence. The granularity of the evaluation was a complete
gesture/instance. An instance was completed when it included
a change from the standing position (starting point) and a
return to the standing position (ending point). Furthermore, the
impact of common and subtle disturbances on the four capacitive
channels was reduced by normalizing the gesture/posture. The
digital signal processing was slightly different for the two types
of experiments. The videos of both experiments were used as
ground truth in a manual labeling procedure.

5.1. General Dictionary Experiment
Evaluation
The fundamental frequencies of the channels could be seen as
a bias difference between the four channels. A normalization
procedure was performed to remove these biases and reduce
the capacitive sensing modality reliance on the ground. The
normalization consisted of subtracting the average of the gesture’s
first (starting point) and last values (ending point). Then, the
normalized four channels’ time sequences of each posture/gesture
were fed to a fourth-order Butterworth band-pass filter with
pass frequencies between 1 and 10 Hz. The duration of gestures
performed was not constant, which led to variations in the
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FIGURE 2 | Twenty general upper-body gestures/postures dictionary with example signals. x = (0,400) time steps, y:norm.

FIGURE 3 | (A–H) Eight dance movements dictionary with example signals. x = (0,400) time steps, y:norm(0,1).

number of samples per instance. The average duration of a
gesture was around 2 s (200 samples at 100 Hz). A window
of 4 s (400 samples at 100 Hz) was selected to guarantee
the activity’s capture. The signals were dilated or contracted
depending on whether the gesture contained less or more

than 400 samples. Due to the dynamic nature of the applied

resampling procedure (dilation or contraction), this is called

time-warping (Goldenstein and Gomes, 1999). The signals

dynamically resampled (upsampled or downsampled) to 400-

time steps provided a fixed size input for the neural network.
The time-warping process was based on the Fourier method

(Laird et al., 2004) implemented in the SciPy library (Virtanen
et al., 2020). The normalization procedure forced the gesture to
start and end circa the same value. Hence, the Fourier method
was employed without a window function, which is a method
customarily used to avoid ringing artifacts.

A total data of 5,600 gestures/instances of the dictionary in
Figure 2 (14 participants) were processed.

5.1.1. Deep Learning Model
Deep learning models such as 1D-LeNet5 (LeCun et al., 1998;
Sornam et al., 2017), DeepConvLSTM (Ordóñez and Roggen,

TABLE 2 | Comparison results for the general 20 body postures and gestures

dictionary (in %) with various models.

Method Accuracy (LRO) Accuracy (LPO) Parameters Training time

1D-LeNet5 96.86 ± 0.46 85.34 ± 7.83 152,880 1.00x

DeepConvLSTM 94.11 ± 0.82 85.42 ± 5.84 440,852 2.32x

Conv2D 97.18 ± 0.70 86.25 ± 8.09 584,800 0.86x

aLRO, leave recording out; LPO, leave person out.
bThe accuracy numbers are represented as mean ± std, the standard deviation is from

within each complete cross-validation.
c1.00x Training time of 50 minutes as baseline of complete LRO on NVidia RTX A6000

with the Tensorflow framework.

2016), and Conv2D (Khan et al., 2018; Shiranthika et al.,
2020) were evaluated. The best trade-off between performance,
parameters, and training time was obtained from a modified 1D-
LeNet5 model (refer to Table 2). The modified 1D-LeNet5 was
defined as a convolution (conv)—max pooling (maxpool)-conv-
maxpool-conv—fully connected (fc)-fc-softmax layers with batch
normalization (Ioffe and Szegedy, 2015) and dropout (Srivastava
et al., 2014) on the convolution layers.

Leave-recording out (LRO) and Leave-person out (LPO)
schemes were used as depicted in Figure 4A. The LRO paradigm
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FIGURE 4 | Data partition scheme to train and test the deep learning models. (A) Shows the Leave-recording out (LRO) and Leave-person out (LPO) paradigms used

for the data of the 20 general postures. (B) Shows the Leave-recording out (LRO) scheme employed for the data of the eight dance movements.

studies the method’s performance for a known group of people,
while LPO evaluates the model’s performance in the case of
unknown persons. We ran all the person’s permutations or
recordings combinations within each run and summarized the
confusion matrix together. That means a complete run of LRO
has 5 and LPO has 14 × 13 train-valid-test cycles. The number
of epochs used was 500, stopping when there were signs of
overfitting. The three convolution layers are used with a kernel
size of 41 and the activation function of ReLU. For max pooling,
the pool size was (40, 40) for the first convolution (400, 40) and
(4, 40) for the second convolution (40, 40). The third convolution
was of size (4, 40) without pooling. A flattening layer of 160 was
followed by a fully connected layer of 100. The twenty outputs
for the different activities in Figure 2 are then converted into
probabilities by a fully connected layer and softmax function.
The categorical cross-entropy loss function and Adam optimizer
(Kingma and Ba, 2017) were used in the optimization of the
neural network.

5.2. Dance Movements Experiment
Evaluation
In this experiment, the time sequences of the four channels
were resampled/time-warped to 400-time steps using the same
methodology described above in Section 5.1. The signals were

normalized between 0 and 1, as xnorm =
x−min(X)

max(X)−min(X)
. Where

x is a one-time step, X is a sequence of 400-time steps, and xnorm
is the normalized time step.

In total four deep learning models were generated3. Three
individual models per volunteer were trained; two sessions from
the same person were used as training, and the third session was

3The deep learning framework was TensorFlow version 2.8.0 (Abadi et al., 2015,

2016) and Keras version 2.8.0 (Chollet and Others, 2015) in Google Colab

environment (Bisong, 2019).

for testing. Moreover, a fourth model was developed using two
sessions from each participant (three in total) as training and the
third session for testing as shown in Figure 4B. A total data of
360 gestures of the dictionary in Figure 3 (three participants)
were fed into a one-dimension convolutional neural network
as shown in Figure 5. The neural network’s input layer was a
time series of 400 samples per four channels/antennas (400,4,1).
Two convolutional layers followed this with a max-pooling of 10,
batch normalization, and dropout of 20%. A third convolutional
layer was added but without max pooling. Next, a flattening
layer of 160 was followed by a fully connected layer of 100.
The eight outputs from the different activities in Figure 3 were
converted to probabilities using a fully connected layer and a
softmax function. The training consisted of 500 epochs for all
the models. The optimization of the neural network used the
categorical cross-entropy loss function and stochastic gradient
descent (SGD) (Ruder, 2016) optimizer with learning-rate =

0.005 and momentum= 0.001.

5.2.1. Real-Time Recognition With RFID

Synchronization
Following the training and testing paradigms in Figure 4B

a group model was built for the three participants in the
dance experiment. The resulted model considered an entire
gesture when the person follows the sequence; standing-gesture-
standing. Thus, this sequence needs to be matched to do a
real-time evaluation. We proposed to use Radio Frequency
Identification (RFID) as a synchronization technique to signal
the starting and ending point of the gesture. The RFID
synchronization was employed in the calibration of atmospheric
pressure sensors to estimate the vertical position of the hand in
Bello et al. (2019). The RFID system comprehends two parts;
the reader and the tag. The most commonly used extension of
RFID is the near field communication (NFC), which is available
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FIGURE 5 | Structure of the 1DConv neural network model used for the data of the eight dance movements. Input shape (time-steps, channels, 1) = (400,4,1) and

output shape = 8 classes.
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in most smartphones to make over-the-air payments. In Bello
et al. (2019), the reader was on the wrist, and the tag was around
the pocket to simulate the NFC systems.

It should be noted that there is already an NFC system in our
smartphones and that the pocket is a common position to carry
our phone. In addition, RFID stickers are nowadays a commonly
used solution for tracking merchandize in stores in a ubiquitous
and unobstructed manner. Hence, we propose a setting for the
real-time evaluation as the one shown in Figure 6A. The wrist
was the selected position for the reader, and the side pocket of
the “MoCaBlazer” was the position for the RFID tag (Mifare
Classic 13.56 MHz). Figure 6B shows a volunteer wearing the
synchronization system. The RFID signal and the “MoCaBlazer”
four-channel outputs were sent using Bluetooth serial (wireless)
to a python script running the TensorFlow model. The python
script follows the flow diagram in Figure 6C. The real-time
evaluation was performed with participant number two of the
three participants pool. The participant was asked to do five
repetitions per dance gesture (40 motions).

It is worth mentioning that the real-time recognition with
RFID synchronization did not include any pre-training stage with
the RFID signal. The model used here was generated from the
offline data without RFID. The input data to the offlinemodel was
manually labeled with a granularity of 50 fps (recorded video).

6. RESULTS

6.1. General Dictionary Experiment Results
In Table 2, the results for the three models; 1D-LeNet5,
DeepConvLSTM, and Conv2D are compared. There is not a
remarkable variation across the models. The confusion matrices
using Conv2D for the Leave-recording out (LRO) and Leave-
person out (LPO) are depicted in Figure 7. The results confirmed
a robust recognition of the 20 postures/gestures dictionary.
The LRO or user-dependent case gave an average accuracy of
95%, refer to Figure 7A. There was a decrease of around 10%
for the LPO or user-independent case, shown in Figure 7B.
Furthermore, we achieved an average accuracy of 86.25%, with
nine classes out of the 20 returning above 95% accuracy. Hence,
we could conclude that these results are good enough to consider
that our model will perform well for the stranger case; people not
included in its training phase.

6.2. Dance Movements Experiment Results
Four models were generated using the neural network structure
in Figure 5. The results for the three individual models are shown
in the confusion matrices in Figure 8. Figure 8A presents the
recognition for the first model trained (2 sessions) and tested
(1 session) with the data from volunteer number one. The first
participant obtained the lowest performance, f1-score = 93%.
Figure 8B is the result for Leave-one recording out (LRO) of the
second volunteer, showing an f1-score = 100%. For the third
participant, the results are only 5% less than the perfect f1-score.
With this performance, our design successfully recognized the
gesture dictionary in Figure 8.

The data partition (train and test) of the fourth model is
in Figure 4B, and the result is illustrated in Figure 9A with

an f1-score = 92%. The fourth model was tested in real-time
in conjunction with RFID synchronization and gave an f1-
score = 82% as shown in Figure 9B for six classes. In the
confusion matrix in Figure 9B, the classes 4-5 and the classes
6-7 were merged, which gives a total of six classes. In the case
of merged classes 4–5, the fourth class was completely confused,
with half of its instances being recognized in class number 1
and the other half in class number 5. Moreover, in the case
of the merged classes 6–7, the seventh class was recognized
consistently as class number 6. The above indicates that the
dance movements 4 and 7 in Figure 3 could not be recognized
correctly with the combination of the fourth deep learning model
(offline) and the RFID synchronization (online). Despite the
negative cases of classes 4 and 7, the real-time recognition with
RFID synchronization shows decent performance for the merged
classes (six classes in total).

7. DISCUSSION

7.1. General Dictionary Experiment
Discussion
To discuss our results, the confusion matrices in Figure 7 and
the 20 gesture/posture dictionary in Figure 7 will be referenced
as a duo. In the case of the Leave-recording out results in
Figure 7A, the accuracy was above 90% for the 20 classes. On
the other hand, in Figure 7B, the result for the Leave-person
out scheme is depicted, and we could observe several pairs of
false recognition. For the pairs of arms-up (Gesture 12)/open-
arms (10) and forearms-block (9)/frame-picture (19), the arm
motions and directions are physically similar. For the case of
lean-forward (1)/frame-picture (19), the similarity is seen in the
signals in Figure 2; we believe it is a negative effect of participants
of different body shapes wearing the same size blazer L/52, which
leads to misclassification of 11%. Nonetheless, for forearms-
block (9)/hands-on-head(11) pair with similar signal patterns
and elbow flexion, the misclassification is only 5%. It is worth
noticing that the activities with shoulder motion, such as shrug
(7), forearms-block (9), hands-on head (11), arms-up(12), and
frame-picture(19), have a reduction in accuracy in the Leave-
person out (LPO) result compared to the Leave-recording out
(LRO) case. The confusion could be due to the lack of antennas
to cover the shoulders of the “MoCaBlazer” and that all fourteen
volunteers (of different body shapes) were wearing the same
one-size blazer.

7.2. Dance Movements Experiment
Discussion
The result of the individual model of participant number one
shows some misclassification (refer to Figure 8A). For the
classes/dance movements 1 and 4, 20% of the gestures are
confused; these two gestures have in common that the armsmove
to the same side of the body trunk but at a different height. The
same happens to participant number three as seen in Figure 8C.
The similarity between these two participants is that they are
both men and have a difference in height of 8 cm. In the triplet
consisting of dance movements 5, 6, and 7, the seventh and
fifth gestures were falsely identified as number six for the case
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FIGURE 6 | Real-time recognition system. (A) “MoCaBlazer” with the RFID Reader-tag pair positions. (B) Volunteer wearing the “MoCaBlazer” with the RFID

synchronization system. (C) Flow-diagram of the real-time recognition python script.

FIGURE 7 | Confusion matrices for the data of the 20 general gesture dictionary. (A) Result of the Leave-recording out (LRO) scheme. (B) Result of the Leave-person

out (LPO) scheme.
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FIGURE 8 | Individual models confusion matrices for the data of the eight dance movements dictionary. (A) Result of the Leave-recording out (LRO) scheme for

participant one. (B) Result of the Leave-recording out (LRO) scheme for participant two. (C) Result of the Leave-recording out (LRO) scheme for participant three.

FIGURE 9 | Group model evaluation results. (A) Confusion matrix for the offline test results with Leave-recording out (LRO) for three participants. (B) Confusion matrix

for the online results using the RFID synchronization method for one volunteer.

of participant number one. In the case of the third participant,
movement number seven has 20% of its instances confused with
the fifth movement. Such gestures include moving both arms in
between the legs. A significant difference in the activities is how
the legs move; left/right leg in the air or both feet on the ground
with the knee bent, and how the shoulders move. The lack of
antennas on the shoulder blades and not antennas on the lower
part of the body could be the sources of the misclassification. For
the second participant, an f1-score = 100% was achieved. This
volunteer is a woman with a height of 160 cm. The “MoCaBlazer”
was looser for the second participant, which indicates the blazer
has more flexibility and could be interpreted as more wrinkles on
the garment while doing the movements.

The fourth model was developed using the LRO scheme
depicted in Figure 4B. With this model, two tests were

performed; LRO-Offline with the three participants and
confusion matrix in Figure 9A, and the second test was a real-
time (online) with RFID synchronization which performance is
in Figure 9B.

For the first test of the fourth model (offline), the highest
recognition error was observed for two pairs of classes, 4/1
and 3/0, with 13% of the instances being wrongly recognized.
These two pairs of classes consisted of both arms moving
from the standing position (starting point) to the right/left,
with the main difference in how much height the arms reach,
including a visually distinctive shoulder movement. As seen in
the individual models in Figure 8, the classes number 5, 6, and 7
are confused between each other, which also occurs in the group-
model/fourth-model, so it was a foreseen situation. An f1-score =
92% for the recognition of the gestures in the dance movements
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dictionary makes our system a good solution for a sophisticated
and elegant dance game controller.

The second test result, the real-time with RFID
synchronization in Figure 9B, shows perfect recognition for the
dance movements 0, 1, and 2. This is not the case for movement
number 3, with 40% of its instances being confused with the
merged class 6–7. The merged-class 6–7 could be considered as
activity number 6 in Figure 3G, due to the consistent recognition
of dance movement number 7 as dance movement number 6.
Therefore, the comparison between dance gesture number 3
in Figure 3D and gesture number 6 in Figure 3G applies. We
suspect two reasons for the 40% wrongly recognized instances;
the first could be the slight height difference in the arms’
positions and the non-presence of antennas on the shoulders
or around the legs. Second, it is essential to remark that this
confusion is not present in the offline results, which concludes
that our solution depends highly on excellent labeling to mark
the gesture’s starting point and ending point.

The offline results were obtained using labeling/marking
the starting point and ending point with high accuracy in 50
fps/camera. The RFID labeling/marking of the starting point and
ending point has an intrinsic error of a slight hand movement
(location of RFID reader) to get close enough and detect the
RFID tag (on the side pocket). In addition, the RFID solution
has a granularity of seconds instead of milliseconds (video based
labeling /offline-case).

The merged-class 4–5 has a 33% misclassification with class
number 1, and this confusion can also be observed in the offline
result of the three volunteers model. Despite the far from perfect
RFID synchronization to signal a gesture sequence “standing-
gesture-standing” in comparison with the offline version (in
the order of milliseconds), we could consider it a promising
technique for real-time recognition. A solution to improve the
RFID fusion results could be to train the model with data
synchronized through the RFID in-situ labeling.

8. CONCLUSION AND OUTLOOK

This article has explored a method for posture and body
gesture recognition based on a commercially available electronic
theremin, the “OpenTheremin,” which, together with conductive
textile antennas, was embedded in a loose-fitting garment, the
“MoCaBlazer.” Our solution can be deployed and integrated in a
fashion and fast manner into loose garments. The “MoCaBlazer”
was evaluated with fourteen participants (gender-balanced)
mimicking a general dictionary of 20 upper-body movements.
Additionally, as an application-specific evaluation, a pool of three
volunteers participated in mimicking an eight dance movements
dictionary inspired by the Rayman Raving Rabbids: TV Party-
Nintendo Wii R© game.

For the 20 gestures dictionary, different deep learning
models were selected, such as 1D-LeNet5, DeepConvLSTM,
and Conv2D. For the case of the eight dance movements
dictionary, a one-dimension convolutional neural network was
selected. In both evaluations, the system has offered competitive
performance compared to state of the art in loose garments for

BPG detection. In the experiment design, a repeated wearing of
the “MoCaBlazer” was enforced (per session) to make the results
robust against disturbances of re-wearing.

With our chosen sensing modality, the non-contact capacitive
method, we use the advantages of being independent of muscular
strength/pressure and, therefore, no need for tight or elastic
garments. In addition, it is relatively not sensitive to sweat or skin
dryness (Zheng and Wang, 2016). A limitation of the capacitive
sensing modality is that it is sensitive to conductors, which
includes persons/objects in close range with different dielectric
properties compared to the antennas (Osoinach, 2007). To avoid
the effect of environmental disturbances as much as possible,
we normalized our data per gesture window, removing the
dependency on absolute values, and built our system upon the
relative differences between capacitive channels.

The “MoCaBlazer” data collection for the dance gesture
experiment was wirelessly transmitted to an android phone
application. With an f1-score = 92% for eight classes with
wirelessly collected data, our design demonstrated robustness
against capacitive channel drifting values due to floating ground
conditions (typical case in wearables). Moreover, a real-time test
with RFID synchronization was done (wireless-online) for one
volunteer with an f1-score= 82% for six classes.

Our “MoCaBlazer” evaluation has shown promising results
in loose garments as a body posture detection method. Hence,
we would continue developing elaborated garment integration;
with miniaturized sensing modules, more channels, stretchable
antennas, and different antenna pattern designs. In the future,
the fusion with other sensors such as IMU for continuous
posture detection will be an exciting field to explore, in
addition to real-time system deployment/evaluation at the edge
(embedded devices).
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