
TYPE Original Research

PUBLISHED 22 June 2023

DOI 10.3389/fcomp.2023.1032440

OPEN ACCESS

EDITED BY

Yingxu Wang,

University of Calgary, Canada

REVIEWED BY

Rubing Huang,

Macau University of Science and Technology,

Macao SAR, China

Anjali Goyal,

Sharda University, India

*CORRESPONDENCE

Yuki Noyori

akskw-luck@akane.waseda.jp

RECEIVED 30 August 2022

ACCEPTED 09 May 2023

PUBLISHED 22 June 2023

CITATION

Noyori Y, Washizaki H, Fukazawa Y, Ooshima K,

Kanuka H and Nojiri S (2023) Deep learning and

gradient-based extraction of bug report

features related to bug fixing time.

Front. Comput. Sci. 5:1032440.

doi: 10.3389/fcomp.2023.1032440

COPYRIGHT

© 2023 Noyori, Washizaki, Fukazawa, Ooshima,

Kanuka and Nojiri. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Deep learning and gradient-based
extraction of bug report features
related to bug fixing time

Yuki Noyori1,2*, Hironori Washizaki1, Yoshiaki Fukazawa1,

Keishi Ooshima2, Hideyuki Kanuka2 and Shuhei Nojiri2

1Department of Computer Science and Engineering, Waseda University, Tokyo, Japan, 2Research &

Development Group, Hitachi, Ltd., Tokyo, Japan

Bug reports typically contain detailed descriptions of failures, hints at the location

of the corresponding defects, and discussions. Developers usually resolve bugs

using comments in descriptions and discussions. The time to fix a bug varies

greatly. Previous studies have investigated bug reports, but the influence of

comments on bug fixing time is not well understood. This study adopts a

convolutional neural network (CNN) and gradient-based visualization approach

called Grad-cam to elucidate the impact of comments on bug fixing time and

extract features. A feature represents an observed characteristic in a bug report

when processing via deep learning. Specifically, CNN classifies bug reports, and

then Grad-cam visualizes the decision basis of CNN by identifying the top 10 word

sequences used in the prediction. Here, the features are major word sequences

extracted by Grad-cam. In an experiment, the proposed method classified more

than 36,000 actual bug reports from Bugzilla with an accuracy of 75%–80%.

Additionally, the visualization highlighted di�erences in the stack trace and word

abstraction by bug fixing time. Bug reportswith short bug fixing times are concrete,

whereas those with a long bug fixing time are abstract.

KEYWORDS

deep learning, OSS, bug report, Grad-cam, feature extraction

1. Introduction

Bug reports provide details of glitches such as code defects in software. The content

quality varies widely (Zimmermann et al., 2010), and there is not a universal format. Some

reports hint at the location or root cause of the defect (i.e., bug), while others provide

scant information.

Bug reports serve different purposes. Software testers use bug reports to record failures

and bugs, whereas developers reference them to fix bugs. Additionally, Open Source Software

(OSS) projects collect bug reports in repositories to accumulate knowledge.

Even if a bug report is described, it does not guarantee that the corresponding issue will

be resolved. Factors influencing bug fixing time are the attributes of the initial report and

the presence of comments (Panjer, 2007; Zhang et al., 2012). Another factor may be the

description and the discussion in the bug report, but their influences are not well researched.

Previous studies have evaluated efficient bug fixing using bug reports. Some studies have

aimed to predict, assign, and search bug reports (Shokripour et al., 2012; Youm et al., 2015;

Han et al., 2017; Noyori et al., 2018). One study investigated bug localization. Recently, deep

learning has been applied to bug-related activities, including identifying, predicting, and

tracing bug reports (Guo et al., 2017; Li et al., 2017; Palacio et al., 2019). However, the basis

for many deep learning predictions remains a black box.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1032440
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1032440&domain=pdf&date_stamp=2023-06-22
mailto:akskw-luck@akane.waseda.jp
https://doi.org/10.3389/fcomp.2023.1032440
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1032440/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Noyori et al. 10.3389/fcomp.2023.1032440

This study examines the influence of descriptions and

discussions on bug reports. Here, the comments represent the

description and discussion. The objective of this study is to

extract features automatically to support bug reporters and

software developers having better understanding andmaking better

descriptions and discussions in bug reports from the viewpoint of

bug fixing.

To achieve the objective, this study proposes a bug report fixing

time prediction and visualization method, as shown in Figure 2,

with correspondences to the following research questions.1 First,

bug reports are classified into two groups (long and short) based

on fixing time as determined by a convolutional neural network

(CNN). CNN is a common deep learning technique to predict

binary classifications. In this study, the explanatory variable is the

fixing time. Then, Gradient-weighted Class Activation Mapping

(Grad-cam) (Selvaraju et al., 2017) can visualize the decision basis

prediction by CNN as it reveals the word sequence used in the

prediction. Examining the word sequences characterizes bug report

comments by fixing time and reveals differences in the stack traces

and the discussion abstraction level.

This study has two main contributions:

• The CNN-based bug report fixing time prediction method

is proposed to classify bug reports. CNN learns the binary

classification of the bug fixing time (long or short).

• The proposed method is also capable of visualizing the

decision basis prediction by CNN to identify features

that represent an observed characteristic in a bug report

when processing via deep learning. Here, the features are

word sequences extracted by Grad-cam. Specifically, word

sequences are divided into parts of speech, and the distribution

is assessed to determine the decision basis.

• The proposed prediction and visualization system is evaluated

for more than 36,000 actual bug reports from Bugzilla.2

This study confirmed that our proposed method accurately

relates comments in bug reports with fixing time lengths.

Furthermore, this study confirmed that our method can

identify the differences in bug report features by fixing

time categories.

The rest of this study is structured as follows. Section 2 discusses

related studies. Section 3 describes our proposed method. Section

4 presents our experiment. Section 5 identifies threats to validity.

Section 6 lists recommendations to improve bug reports. Finally,

Section 7 provides the conclusion and future directions.

2. Related work

Previous studies have analyzed bug reports using deep learning.

The similarities and differences of our proposed method to existing

studies are presented below.

1 This study substantially extends our preliminary 6-page conference paper

presented at ICAICA 2021 (Noyori et al., 2021b). Explanations of the proposed

method and related works are considerably revised and expanded in a

well-structured paper format.

2 Bugzilla is a trademark of the Mozilla Foundation. https://bugzilla.mozilla.

org/.

2.1. Predicting bug fixing times and severity

The task of bug fixing time prediction can be categorized as

a text classification task. In modern machine learning, a typical

model of text classification is structured as follows: a set of training

text samples that are already labeled with a class is given; then, the

knowledge related to the target class is either manually defined by

human experts or automatically extracted by computer programs;

the knowledge is, then, used to classify new data samples (Kowsari

et al., 2019).

Classical machine learning classification algorithms such as

Naive Bayes, Support Vector Machine (SVM), Hidden Markov

Model (HMM), and Random Forest remain helpful under

certain situations. However, deep learning-based classifiers have

shown better efficiency and effectiveness than most of the

classical machine learning approaches in the background of

big data. There are many deep learning models for text

classification available today, including RNN-based models, CNN-

based models, capsule neural networks, models with attention

mechanisms, and memory-augmented networks (Minaee et al.,

2022).

Both machine learning and deep learning have been employed

to predict bug fixing times (Giger et al., 2010; Marks et al., 2011;

Zhang et al., 2013; Habayeb et al., 2018; Lee et al., 2020; Gomes

et al., 2022, 2023). A summary of studies that conducted mining

on bug management databases to achieve learning models related

to bug fixing times is presented in Table 1, which is an extension of

the research summarization by (Lee et al., 2020), with additions of

the latest studies and our method.

Giger et al. (2010) adoptedDecision Tree analysis to predict and

bin bug reports into two classes by utilizing bug report attributes:

fast and slow. Marks et al. (2011) used a decision tree-based

algorithm, particularly Random Forest, to classify a bug given the

bug report attributes into one of the three classes: fixed in less than

3 months, 1 year, and 3 years. Zhang et al. (2013) utilized k-Nearest

Neighbor (kNN) to predict for a given bug report whether the fix

will be fast (i.e., short time) or slow (i.e., long time) by utilizing bug

report attributes including the severity and priority, which inspired

us to use machine learning methods for predicting bug fixing

time. Habayeb et al. (2018) proposed an approach using Hidden

Markov Models (HMMs) and temporal sequences of developer

activities to identify bug reports with expected bug fixing times. Lee

et al. (2020) proposed an approach for predicting bug fixing times

over time by adopting deep neural networks including Residual

Long Short-Term Memory (RLSTM) and Bi-direction Long Short-

Term Memory (BLSTM) models for analyzing log streams of

bug-related activities and text data retrieved from bug tracking

systems. Gomes et al. (2023) compared various well-known ML

classifiers such as Random Forest and Support Vector Machine

(SVM) on long-lived bug prediction using Bidirectional Encoder

Representations from Transformers (BERT) and Term Frequency–

Inverse Document Frequency (TF-IDF)-based feature extraction.

Furthermore, one study used CNN to predict whether an issue is

security-related (Palacio et al., 2019), while another predicted the

severity of software vulnerability with CNN (Han et al., 2017). As

shown in the table, although it is hard to compare them directly due

to the difference in target datasets, our method can be competitive

in terms of prediction performance with a particular focus on bug

report text.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1032440
https://bugzilla.mozilla.org/
https://bugzilla.mozilla.org/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Noyori et al. 10.3389/fcomp.2023.1032440

TABLE 1 Summary of research on bug fixing time adopted by Lee et al. (2020) with additions of the latest studies and our method.

Paper Problem definition Input data Learning model Metric (%)

Giger et al. (2010) Bug fixing time binary classification Report attributes Decision tree F1 score (66–68)

Marks et al. (2011) Bug fixing time 3-class classification Report attributes Random Forest Accuracy (64–67)

Zhang et al. (2013) Bug fixing time binary classification Report attributes kNN F1 score (68–77)

Habayeb et al. (2018) Bug fixing time binary classification Developer activity features HMM F1 score (74), Accuracy (71)

Lee et al. (2020) Bug fixing time multi-class (from 2-class

to 9-class) classification

Bug-related activities RLSTM and BLSTM Accuracy (66–74)

Gomes et al. (2023) Bug fixing time binary classification Report text SVM (and others) with BERT

and TF-IDF

Accuracy (57–62)

Our method Bug fixing time binary classification Report text CNN with word embedding Accuracy (around 75)

Furthermore, to the best of our knowledge, important words

and characteristics to predict bug fixing time have yet to be

determined. Although there has been a comparison of different text

feature extraction approaches in terms of the accuracy of machine

learning classifiers (Gomes et al., 2022, 2023), important concrete

features have yet to be examined well. The influence of comments

on bug fixing time is not well understood.

Unlike previous reports, this study not only employs CNN

but also analyzes the decision basis for the CNN prediction. The

novelty of the proposed approach lies in the visualization of the

decision basis prediction by CNN to identify features that represent

an observed characteristic in a bug report when processing.

In future, we plan to compare our method directly with

approaches based on other existing state-of-the-art models (such

as BERT), to confirm the model performance by additional

comparative experiments.

2.2. Classifying bug reports and detecting
duplicates

Machine learning and deep learning have been used to classify

bug reports and detect duplicates. Previous research indicates that

these approaches are highly accurate (He et al., 2020; Neysiani

and Morteza, 2020; Ahmed et al., 2021; Isotani et al., 2021) and

can classify requirement documents (Hey et al., 2020). However,

previous studies have yet to fully visualize the classification and

duplicate detection processes. To address this shortcoming, this

study extracts important words related to bug fixing time by

visualizing the decision basis of deep learning-based predictions.

2.3. Evaluating bug reports

Bug report contents have been investigated. Using a

questionnaire, one study identified differences between the

information shared by reporters and useful information according

to developers (Yusop et al., 2016). For example, reporters indicated

that titles and summaries are important, whereas developers felt

that they are unnecessary. Developers want to know the cause of

the issue, but this information is often omitted. A different study

investigated supplementing omitted content using information

from previous bug reports (Zhang et al., 2017). Another study

identified typical patterns in the discussion of bug reports (Noyori

et al., 2021a). Unlike these previous studies, which only evaluated

the presence or lack of content, this study implements deep

learning and visualization to investigate specific descriptions such

as important words in relation to bug fixing times.

2.4. Visualizing self-attention

Few studies have investigated deep learning applications related

to the visualization of bug reporting. One study categorized defect

reports using BERT and denoted essential words in a categorization

by visualizing self-attention (Hirakawa et al., 2020). Although our

method also visualizes important regions using deep learning, this

study analyzes the application results with an emphasis on the

bug fixing time. Moreover, the deep learning model, in this study,

differs from the previous study. In future, these two models should

be compared.

2.5. Determining project-specific terms

Previous studies have applied natural language processing to

identify words specific to a target project or requirement. One study

extracted both a general document corpus and words specific to

the target requirement by focusing on the main words constituting

compound nouns (Gacitua et al., 2010). Unlike the previous

study, this study applies deep learning to identify important words

related to bug fixing time. In future, a study should investigate a

combination of natural language processing and deep learning.

3. Proposed method: deep
learning-based prediction and
visualization

In this section, we first show the motivation of predicting

bug report fixing time prediction and visualization. Based on the

motivation, we present the entire process of our prediction and

visualization method, followed by technical details of each step.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1032440
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Noyori et al. 10.3389/fcomp.2023.1032440

FIGURE 1

Motivating example of a bug report.

3.1. Motivation

The time to fix a bug varies greatly. Previous studies have

investigated bug reports, but the influence of comments on bug

fixing time is not well understood. Figure 1 shows a motivating

example of a bug report with a short fixing time taken from

Bugzilla, a bug tracking system. This example contains a description

of the encountered issue stating “I crash with an unhandled

exception; my stack trace says: [...].” Here, the description seems

to contain general and likely less informative word sequences

such as “I crash with [...]” and somewhat specific, probably more

informative sequences such as “stack trace says [...]” from the

viewpoint of usefulness for bug fixing.

Such influence of comments on bug fixing time should be

understood well to support bug reporters and software developers

having better understanding and making better descriptions and

discussions in bug reports from the viewpoint of bug fixing.

3.2. Overview of the proposed method

To achieve the objective, this study proposes a bug report fixing

time prediction and visualization method, as shown in Figure 2

with correspondences to the following research questions.3 First,

bug reports are classified into two groups (long and short), based

on fixing time as determined by a convolutional neural network

(CNN). CNN is a common deep learning technique to predict

binary classifications. In this study, the explanatory variable is the

fixing time. Then, Gradient-weighted Class Activation Mapping

(Grad-cam) (Selvaraju et al., 2017) can visualize the decision basis

prediction by CNN as it reveals the word sequence used in the

prediction. Examining the word sequences characterizes bug report

comments by fixing time and reveals differences in the stack traces

and the discussion abstraction level.

Here, important words in bug report comments are extracted

using CNN. Our method employs two steps as follows: prediction

and visualization. In step 1, CNN learns the binary classification of

the bug fixing time (long or short). In step 2, Grad-cam compares

the extracted important words.

3 This study substantially extends our preliminary 6-page conference paper

presented at ICAICA 2021 (Noyori et al., 2021b). Explanations of the proposed

method and related studies are considerably revised and expanded in a

well-structured paper format.

3.3. Predicting bug fixing time

Figure 3 shows the prediction process. Deep learning divides

the bug fixing times into binary values of short and long. The

first step to predicting bug fixing time is to divide the bug reports

into two groups according to their actual bug fixing times. Next,

the CNN model is trained using the first half of the bug report

comments to learn the classification by group. The training uses

only the first half of the report because predicting bug fixing time

early in the bug fixing process is more practical. Finally, the trained

CNNmodel classifies new bug reports by fixing time.

CNN was originally designed for computer vision tasks such

as entity recognition (Lawrence et al., 1997). Later, CNN has

been adopted for text classification such as Dynamic CNN (DCNN)

(Kalchbrenner et al., 2014), and a simpler CNN-basedmodel which

applies only one convolutional layer (Zhang and Wallace, 2017).

In recent years, more CNN-based models have proven to perform

well in natural language processing tasks such as text classification.

As former studies show, CNN models could achieve the state-of-

the-art result on bug report analysis tasks. That is why we use the

CNN network as the fundamental building block of our approach.

Figure 4 shows the structure of the CNN model that we

employed. This model comprises multiple layers with the input and

output as follows.

1. Input: The model accepts the text of a bug report and tokenizes

it into a set of words.

2. Embedding layer: The embedding layer converts words into

64-dimensional vector representations.

3. Convolution layer: The convolution layer applies a filter with

its kernel size 3 to the given vectors to create outputs that

summarize the input.

4. Max-pooling layer: The pooling layer downs the sampling inputs

by taking the maximum value from each pool. In our setting, the

layer makes the input size in half.

5. Flattening and fully-connected layers: The flatten layer makes

the multidimensional input one-dimensional, followed by fully-

connected layers (i.e., dense layers) with the ReLU activation

and dropout.

6. Output: Finally, the Softmax function is applied to calculate the

probabilities of short and long fixing times.

3.4. Visualizing the decision basis

Figure 5 shows the visualization process. Our method first

applies Grad-cam to the CNN model to obtain and visualize word

sequences, which are important for prediction. Then, our method

divides word sequences into parts of speech, and the distribution

is assessed to determine the decision basis. Finally, the differences

between the words and parts of speech are compared by fixing

time categories.

As machine learning methods have become more complex in

architecture andmore prevalent in scientific research and industrial

practices, the need to explain and interpret machine learning

models has increased substantially. Grad-cam is a well-accepted

gradient-based visualization approach to determine the basis of

the decision from the created CNN-based model. Specifically,

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1032440
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Noyori et al. 10.3389/fcomp.2023.1032440

FIGURE 2

Overview of the proposed method.

FIGURE 3

Step 1 of the proposed method: prediction.

FIGURE 4

Adopted CNN architecture.

Grad-cam uses the gradient information flowing into the last

convolutional layer of the CNN model to assign important values

to each neuron for a particular decision of interest (Selvaraju et al.,

2017).

In ourmodel, the gradient of the convolution layer can visualize

the attention a word receives. Here, the gradient at the end of the

convolution layer of the CNNmodel is used to extract the basis of a

decision. This study assumes that the top 10 words are important

word sequences for prediction. Then, the word sequences and

parts of speech are extracted. Finally, the features in bug reports

with short bug fixing times are compared with those with long

fixing times.

Figure 6 shows a visualization result of the motivating bug

report, which is the same as that shown in Figure 6 with additional

highlights. Red indicates an important word sequence used as

a decision basis. In this example, three strings are red because

the kernel is 3-gram. Specifically, the sequence in terms of the

stack trace and concrete terms and values such as “const” are

extracted. As highlighted by this example, the description of the

stack trace and concrete terms are features of bug reports with short

fixing time.

4. Experimental evaluation

This study aims to answer three research questions (RQs)

as follows:

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1032440
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Noyori et al. 10.3389/fcomp.2023.1032440

FIGURE 5

Step 2 of the proposed method: visualization.

FIGURE 6

Visualization of a bug report.

RQ1. Does our CNN-based prediction method precisely

classify bug reports by fixing time? This RQ assesses whether

our CNN-based prediction method can classify bug reports.

To evaluate whether our proposed method accurately relates

comments in bug reports with fixing time lengths, the accuracy

of binary classification is determined for more than 36,000

actual bug reports from Bugzilla.

RQ2. What words compose the basis for CNN’s decisions in

bug reports? The features are word sequences extracted by

Grad-cam. Specifically, word sequences are divided into parts

of speech, and the distribution is assessed to determine the

decision basis.

RQ3. Does bug fixing time influence the basis of CNN’s

decision? To identify the differences in bug report features

by fixing time, the differences between the words and parts of

speech are compared by fixing time categories.

The three RQs were evaluated experimentally to clarify the

features of bug reports using CNN.

4.1. Dataset

We constructed and used a dataset of actual bug reports

taken from multiple OSS products. Bugzilla@Mozilla4 deals with

Mozilla-related products and is available to the public. This study

employed unique bug reports with IDs of 1,000 to 50,000 in

Bugzilla. The target dataset includes a range of Mozilla-related

4 Mozilla is a trademark of the Mozilla Foundation.

products, including SeaMonkey5 and Firefox6. Among those 49,001

bug reports from Bugzilla, only 36,274 reports were used in the

experiment because unresolved bug reports were excluded.

In future, we plan to validate the universality of our system by

evaluating the performance using other real-world datasets with

more reports.

4.2. RQ1: Predicting bug fixing time using
CNN

The threshold for a short or long bug fixing time should be

between the average and the median. Here, the average and the

median were 188 and 17 days, respectively. For convenience, the

threshold between a short and long bug fixing time was set to 100

days. Hence, the binary classification indicated that 27,350 reports

had short bug fixing times and 8,924 reports had long ones.

The dataset was randomly divided into training and test data.

CNN used 32,646 reports (90%) as training data, and the remaining

3,628 (10%) as test data. Figure 7 shows the accuracy and loss

function values. The results in the training data are denoted by acc

and loss, while the results in the test data are represented by val

acc and val loss. The x-axis is the epoch number, and the y-axis

indicates the value of accuracy and loss. For learning with an epoch

of 4 or 5, the accuracy in the training data exceeded 99%, with a

validation accuracy between 75 and 80%.

In future, we plan to conduct more experiments to implement

the N-fold cross-validation to avoid overfitting by dividing all

reports into N groups using various N values (such as two-fold and

10-fold) and calculating the average of the results.

RQ1. Does our CNN-based prediction method precisely classify

bug reports by fixing time? Our prediction accuracy based on

CNN is 75–80%.

4.3. RQ2: Words used as a decision basis

According to Grad-cam, bug reports with short fixing times

contained word sequences about concrete items (Figure 8). For

example, the visualization highlighted the software version and the

5 SeaMonkey is a trademark of the Mozilla Foundation.

6 Firefox is a trademark of the Mozilla Foundation.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1032440
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Noyori et al. 10.3389/fcomp.2023.1032440

FIGURE 7

Learning results of CNN (Left: accuracy, right: loss).

FIGURE 8

Visualization of a bug report with a short fixing time.

FIGURE 9

Visualization of a bug report with a long fixing time.

phenomenon such as “19990914.” In contrast, bug reports with

long fixing times visualized abstract terms such as “problem” and

“figure” (Figure 9).

Figure 10 shows the extracted words by parts of speech,

where NN, CD, JJ, IN, DT, RB, VB, VBZ, VBP, and TO indicate

noun, cardinal number, adjective, preposition or subordinating

conjunction, determiner, adverb, verb in the base form, verb in the

third person singular present form, a verb in the non-third person

singular present form, and a preposition or infinitive marker,

respectively. Important words for bug reports with short bug fixing

times were NN followed by CD and JJ. However, those with long

bug fixing times were NN followed by IN and JJ. Additionally, CD

differed significantly by fixing times.

Because CD contents were often from stack trace descriptions,

whether the decision basis included a stack trace was evaluated. A

stack trace gives a report of the active stack frames at a particular

point during program execution. There was a stark difference by

fixing time. For bug reports with short fixing times, 29.6% of all

words in the CNNdecision basis contained stack trace descriptions.

In contrast, only 2.8% of the cases contained stack descriptions for

bug reports with long fixing times. This suggests that the presence

of a stack trace description may be a feature of short bug fixing

times. If a reporter provides the stack trace, the developer tends

to reference it. Since stack trace information in bug reports is a

suitable source for bug localization (Wong et al., 2014), and this

is a reasonable observation.

RQ2. What words compose the basis for CNN’s decisions in

bug reports? Important words of bug reports with short bug

fixing times are NN followed by CD and JJ. Those with long bug

fixing times are NN followed by IN and JJ. There is a significant

difference in CDby fixing time. Bug reports with short bug fixing

times tend to contain stack trace descriptions, whereas those

with long fixing times do not.

4.4. RQ3: Di�erence of important words
according to the part of speech

Important nouns (NN) and verbs (VB) were examined. The

results excluding the stack trace are shown below, where the

number in parentheses represents the frequency of occurrence.

Figures 11, 12 show word clouds of important nouns and

verbs, respectively.

Bug reports with short bug fixing times hadmany nouns related

to the phenomenon. The most frequent word was “line” (23 times),

which referred to the line number description in the stack trace.

This was followed by “html” (14). This denoted the basis for CNN’s

decision in the text related to the bug phenomenon. For example,

“I tried opening other simple HTML files.” It also appeared as part

of the URL. “Menu” (11) indicated bug phenomena such as “after

launching the app select composer under task menu.” Additionally,

“window” (10), “browser” (10), and “file” (9) appeared frequently

as the basis for CNNs decision.

Bug reports with long fixing times contained different nouns.

The most frequent was “bug” (22), which denoted different bug

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1032440
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Noyori et al. 10.3389/fcomp.2023.1032440

FIGURE 10

Percentage of important word by part of speech.

FIGURE 11

Word clouds of nouns in bug reports by fixing time.

reports, reopening, or duplicate bugs. For example, “There is a

JavaScript problem, which I saw in another bug.” The next most

common noun was “document” (16), followed by “problem” (5),

“place” (5), and “contact” (5). Bug denoted the phenomenon of a

bug or the document layer. For example, “This page uses all sorts

of nasty document layers stuff to show hidden layers.” The word

“problem” presented information. For example, “This means the

problem was with their web page.”

Nouns based on content were more prevalent for shorter bug

fixing times. In contrast, abstract nouns were more prevalent for

longer bug fixing times. The results demonstrated that abstraction

level in the comments and bug fixing time was related.

Bug reports with short bug fixing times had verbs related to

describing a story. The most frequent was “is” (28 times) followed

by “using” (6), which appeared when providing information.

For example, “Leak found using beard’s Boehm.GC.” Additionally,

“need” (4), “fixed” (4), and “cause” (4) were related to short bug

fixing times. For example, “I need to implement IMAP save message

to disk for us to fix this bug.”

Bug reports with long bug fixing times had verbs related to

telling. Similar to bug reports with a short fixing time, the most

frequent verb for bug reports with a long fixing time was “is” (33).

However, the next most frequent was “moving” (13), which referred

tomilestones and the phenomenon. For example, “I won’t get to will

refit individual milestones after moving them.” This was followed

by “see” (10) when discussing phenomenon and other bugs and

“works” (7), which provided information such as bug phenomena

and software not working.

The results indicated that the fixing time affected the basis. For

bug reports with short fixing times, more concrete words that tell a

story such as identifying the cause were extracted. In contrast, more

abstract words that did not advance the discussion were extracted

for bug reports with long fixing times. Hence, bug reports with

shorter bug fixing times discussed the bug specifically, whereas

those with longer bug fixing times did not.

RQ3. Does bug fixing time influence the basis of CNN’s decision?

The extracted words depend on fixing time. Concrete words tend

to be extracted for bug reports with shorter fixing times, while

abstract words tend to be extracted for those with long fixing

times.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1032440
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Noyori et al. 10.3389/fcomp.2023.1032440

FIGURE 12

Word clouds of verbs in bug reports by fixing time.

5. Threats to validity

This study used bug report comments to classify bug reports

into two groups by bug fixing time. Other factors such as bug

difficulty and experience were not considered. This is a threat to

internal validity.

Additionally, only closed bug reports were used. Some bug

reports lacked a discussion, while others contained only one or two

comments. This is another threat to internal validity because the

results may change if the model learns using bug reports with a

small number of comments. To address this issue, the influence

of other impact factors such as maturity of the discussions and

comments on feature extraction should be investigated.

The experimental results may be specific to the dataset used

in our study. This is a threat to external validity. In future, other

datasets should be included to clarify if similar results are generated.

6. Recommendations based on the
findings

Reporters and developers should use caution when working

with bug reports. To reduce the burden on developers, reporters

should include details of how the bug occurred such as the stack

trace. Then, developers can reference such information to more

easily fix bugs.

To improve the efficiency when fixing bugs, developers should

consider the level of abstraction in their comments. Abstract

discussions lead to longer bug fixing times. Concrete discussions

are a characteristic of bug reports with short bug fixing times. In

this study, CNN employs words in concrete discussions to predict

bug fixing time. Hence, word specificity should be considered when

discussing a bug report.

7. Conclusion and future work

This research investigated the influence of the description and

the discussion in a bug report on bug fixing time. The CNN model

predicted and classified bug reports with short or long bug fixing

times with a 75%–80% accuracy. The gradient-based visualization

clarified the words that the model used to extract the features

related to bug fixing time. Bug fixing time affected word specificity.

For example, stack traces appear often in bug reports with short

fixing times, whereas they rarely appear for those with long fixing

times. Based on the result, reporters and developers should use

caution when working with bug reports. To reduce the burden

on developers, reporters should include details of how the bug

occurred, such as the stack trace. Furthermore, developers should

consider the level of abstraction in their comments to improve

efficiency when fixing bugs. Abstract discussions lead to longer bug

fixing times.

To enhance the effectiveness of our method and explore

new applications to achieve effective and practical handling of

bug reports, there are multiple directions for future research

roughly classified into four types as follows: an examination of our

method’s design and settings in detail, evaluation of universality

resulting in generalization of our method, comparison with other

existing state-of-the-art approaches and identification of potential

improvements, and incorporation of other factors.

The first is to examine the architecture of our method based on

deep learning and extend it to improve the classification accuracy

as well as the effectiveness of feature identification.

The second is to evaluate the robustness and universality of our

method under various environments. To consider them, we plan

to conduct N-fold cross-validation experiments using different N

values to confirm their impact on the result. Furthermore, it is

necessary to validate the universality of our method by evaluating

the performance using other real-world datasets withmore reports.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1032440
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Noyori et al. 10.3389/fcomp.2023.1032440

The third is to compare our method with approaches based

on other existing state-of-the-art models and identify potential

improvements and extensions of our method.

Finally, we plan to consider other factors, particularly the

complexity of the bug and the maturity of the developer, for

further accurate prediction and a better understanding of the

important features.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

YN has handled conceptualization and methodology.

All authors have contributed to the literature review and

analysis, read, and agreed to the published version of

the manuscript.

Acknowledgments

We thank Prof. Foutse Khomh, Prof. Yann-Gael Gueheneuc,

and Mr. Qicong Liu for their assistance and useful discussions.

Conflict of interest

YN, KO, HK, and SN were employed by Hitachi, Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Ahmed, H. A., Bawany, N. Z., and Shamsi, J. A. (2021). Capbug-a framework
for automatic bug categorization and prioritization using NLP and machine learning
algorithms. IEEE Access 9, 50496–50512. doi: 10.1109/ACCESS.2021.3069248

Gacitua, R., Sawyer, P., and Gervasi, V. (2010). “On the effectiveness of abstraction
identification in requirements engineering," in RE 2010, 18th IEEE International
Requirements Engineering Conference, September 27–October 1, 2010 (Sydney, NSW:
IEEE Computer Society), 5–14. doi: 10.1109/RE.2010.12

Giger, E., Pinzger, M., and Gall, H. C. (2010). “Predicting the fix time of bugs,"
in Proceedings of the 2nd International Workshop on Recommendation Systems for
Software Engineering, RSSE 2010, May 4, 2010, eds R. Holmes, M. P. Robillard,
R. J. Walker, and T. Zimmermann (Cape Town, South Africa: ACM), 52–56.
doi: 10.1145/1808920.1808933

Gomes, L., Cortes, M., and Torres, R. (2022). Bert-based feature extraction
for long-lived bug prediction in floss: a comparative study. SSRN 1–31.
doi: 10.2139/ssrn.4166555

Gomes, L., Cortes, M., and Torres, R. (2023). Bert- and tf-idf-based feature
extraction for long-lived bug prediction in floss: a comparative study. Inf. Softw.
Technol. 160, 1–12. doi: 10.1016/j.infsof.2023.107217

Guo, J., Cheng, J., and Cleland-Huang, J. (2017). “Semantically enhanced
software traceability using deep learning techniques," in Proceedings of the 39th
International Conference on Software Engineering, ICSE 2017, May 20–28, 2017, eds
S. Uchitel, A. Orso, and M. P. Robillard (Buenos Aires, Argentina: IEEE/ACM), 3–14.
doi: 10.1109/ICSE.2017.9

Habayeb, M., Murtaza, S. S., Miranskyy, A. V., and Bener, A. B. (2018). On the use
of hidden markov model to predict the time to fix bugs. IEEE Trans. Software Eng. 44,
1224–1244. doi: 10.1109/TSE.2017.2757480

Han, Z., Li, X., Xing, Z., Liu, H., and Feng, Z. (2017). “Learning to predict
severity of software vulnerability using only vulnerability description," in 2017
IEEE International Conference on Software Maintenance and Evolution, ICSME
2017, September 17–22, 2017 (Shanghai, China: IEEE Computer Society), 125–136.
doi: 10.1109/ICSME.2017.52

He, J., Xu, L., Yan, M., Xia, X., and Lei, Y. (2020). “Duplicate bug report detection
using dual-channel convolutional neural networks," in ICPC ’20: 28th International
Conference on Program Comprehension, July 13–15, 2020 (Seoul, Republic of Korea:
ACM), 117–127. doi: 10.1145/3387904.3389263

Hey, T., Keim, J., Koziolek, A., and Tichy, W. F. (2020). “Norbert: Transfer
learning for requirements classification," in 28th IEEE International Requirements
Engineering Conference, RE 2020, T. D. Breaux, A. Zisman, S. Fricker, and
M. Glinz, August 31–September 4, 2020 (Zurich, Switzerland: IEEE), 169–179.
doi: 10.1109/RE48521.2020.00028

Hirakawa, R., Tominaga, K., and Nakatoh, Y. (2020). “Study on automatic defect
report classification systemwith self attention visualization," in 2020 IEEE International
Conference on Consumer Electronics (ICCE), January 4–6, 2020 (Las Vegas, NV: IEEE),
1–2. doi: 10.1109/ICCE46568.2020.9043062

Isotani, H., Washizaki, H., Fukazawa, Y., Nomoto, T., Ouji, S., Saito, S.,
et al. (2021). “Duplicate bug report detection by using sentence embedding
and fine-tuning," in IEEE International Conference on Software Maintenance and
Evolution, ICSME 2021, September 27–October 1, 2021 (Luxembourg: IEEE), 535–544.
doi: 10.1109/ICSME52107.2021.00054

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). “A convolutional neural
network for modelling sentences," in Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) (Baltimore, MD:
Association for Computational Linguistics),655–665. doi: 10.3115/v1/P14-1062

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., Brown,
D., et al. (2019). Text classification algorithms: a survey. Information 10, 150.
doi: 10.3390/info10040150

Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997). Face recognition:
a convolutional neural-network approach. IEEE Trans. Neural Netw. 8, 98–113.
doi: 10.1109/72.554195

Lee, Y., Lee, S., Lee, C., Yeom, I., and Woo, H. (2020). Continual prediction of
bug-fix time using deep learning-based activity stream embedding. IEEE Access 8,
10503–10515. doi: 10.1109/ACCESS.2020.2965627

Li, J., He, P., Zhu, J., and Lyu, M. R. (2017). “Software defect prediction via
convolutional neural network," in 2017 IEEE International Conference on Software
Quality, Reliability and Security, QRS 2017, July 25–29, 2017 (Prague, Czech Republic:
IEEE), 318–328. doi: 10.1109/QRS.2017.42

Marks, L., Zou, Y., and Hassan, A. E. (2011). “Studying the fix-time for bugs in large
open source projects," in Proceedings of the 7th International Conference on Predictive
Models in Software Engineering, PROMISE 2011, eds T. Menzies, September 20–21,
2011 (Banff, AB: ACM), 11. doi: 10.1145/2020390.2020401

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., Gao, J., et al.
(2022). Deep learning-based text classification: a comprehensive review.ACMComput.
Surv. 54, 62:1–62:40. doi: 10.1145/3439726

Neysiani, B. and Morteza, B. (2020). “Automatic duplicate bug report detection
using information retrieval-based versus machine learning-based approaches," in 2020
6th International Conference on Web Research, ICWR 2020 (Tehran: IEEE), 288–293.
doi: 10.1109/ICWR49608.2020.9122288

Noyori, Y., Washizaki, H., Fukazawa, Y., Kanuka, H., Ooshima, K., Nojiri, S., et al.
(2021a). What are the features of good discussions for shortening bug fixing time?
IEICE Trans. Inf. Syst. 104-D, 106–116. doi: 10.1587/transinf.2020MPP0007

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1032440
https://doi.org/10.1109/ACCESS.2021.3069248
https://doi.org/10.1109/RE.2010.12
https://doi.org/10.1145/1808920.1808933
https://doi.org/10.2139/ssrn.4166555
https://doi.org/10.1016/j.infsof.2023.107217
https://doi.org/10.1109/ICSE.2017.9
https://doi.org/10.1109/TSE.2017.2757480
https://doi.org/10.1109/ICSME.2017.52
https://doi.org/10.1145/3387904.3389263
https://doi.org/10.1109/RE48521.2020.00028
https://doi.org/10.1109/ICCE46568.2020.9043062
https://doi.org/10.1109/ICSME52107.2021.00054
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.3390/info10040150
https://doi.org/10.1109/72.554195
https://doi.org/10.1109/ACCESS.2020.2965627
https://doi.org/10.1109/QRS.2017.42
https://doi.org/10.1145/2020390.2020401
https://doi.org/10.1145/3439726
https://doi.org/10.1109/ICWR49608.2020.9122288
https://doi.org/10.1587/transinf.2020MPP0007
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Noyori et al. 10.3389/fcomp.2023.1032440

Noyori, Y., Washizaki, H., Fukazawa, Y., Kanuka, H., Oshima, K., Tsuchiya, R.,
et al. (2018). “Improved searchability of bug reports using content-based labeling
with machine learning of sentences," in Knowledge-Based Software Engineering: 2018,
Proceedings of the 12th Joint Conference on Knowledge-Based Software Engineering
(JCKBSE 2018), eds M. Virvou, F. Kumeno, and K. Oikonomou (Corfu, Greece:
Springer), 75–85. doi: 10.1007/978-3-319-97679-2_8

Noyori, Y., Washizaki, H., Fukazawa, Y., Ooshima, K., Kanuka, H., Nojiri, S., et al.
(2021b). “Extracting features related to bug fixing time of bug reports by deep learning
and gradient-based visualization," in Proceedings of the IEEE International Conference
on Artificial Intelligence and Computer Applications, ICAICA, Online, June 28–30, 2021
(Dalian: IEEE Computer Society), 402–407. doi: 10.1109/ICAICA52286.2021.9498236

Palacio, D. N., McCrystal, D., and Moran, K. Bernal-Cárdenas, C., Poshyvanyk, D.,
Shenefiel, C. (2019). “Learning to identify security-related issues using convolutional
neural networks," in 2019 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2019, September 29–October 4, 2019 (Cleveland, OH: IEEE),
140–144. doi: 10.1109/ICSME.2019.00024

Panjer, L. D. (2007). “Predicting eclipse bug lifetimes," in Fourth International
Workshop on Mining Software Repositories, MSR 2007 (ICSE Workshop), May 19–20,
2007 (Minneapolis, MN: IEEE Computer Society), 29. doi: 10.1109/MSR.2007.25

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.,
et al. (2017). “Grad-cam: visual explanations from deep networks via gradient-
based localization," in IEEE International Conference on Computer Vision, ICCV
2017, October 22–29, 2017 (Venice, Italy: IEEE Computer Society), 618–626.
doi: 10.1109/ICCV.2017.74

Shokripour, R., Kasirun, Z. M., Zamani, S., and Anvik, J. (2012). “Automatic bug
assignment using information extraction methods," in Proceedings - 2012 International
Conference on Advanced Computer Science Applications and Technologies, ACSAT 2012
(Kuala Lumpur), 144–149. doi: 10.1109/ACSAT.2012.56

Wong, C., Xiong, Y., Zhang, H., Hao, D., Zhang, L., Mei, H., et al. (2014). “Boosting
bug-report-oriented fault localization with segmentation and stack-trace analysis,"
in 30th IEEE International Conference on Software Maintenance and Evolution,
September 29–October 3, 2014 (Victoria, BC: IEEE Computer Society), 181–190.
doi: 10.1109/ICSME.2014.40

Youm, K. C., Ahn, J., Kim, J., and Lee, E. (2015). “Bug localization based on
code change histories and bug reports,” in 2015 Asia-Pacific Software Engineering
Conference, APSEC 2015, eds J. Sun, Y. R. Reddy, A. Bahulkar, and A. Pasala, December
1–4, 2015 (New Delhi, India: IEEE Computer Society), 190–197. doi: 10.1109/APSEC.
2015.23

Yusop, N. S. M., Grundy, J. C., and Vasa, R. (2016). “Reporting usability
defects: do reporters report what software developers need?," in Proceedings
of the 20th International Conference on Evaluation and Assessment in Software
Engineering, EASE 2016, eds S. Beecham, B. A. Kitchenham, and S. G. MacDonell,
June 01–03, 2016 (Limerick, Ireland: ACM), 38:1–38:10. doi: 10.1145/2915970.
2915995

Zhang, F., Khomh, F., Zou, Y., and Hassan, A. E. (2012). “An empirical study on
factors impacting bug fixing time," in 19thWorking Conference on Reverse Engineering,
WCRE 2012, October 15–18, 2012 (Kingston, ON: IEEE Computer Society), 225–234.
doi: 10.1109/WCRE.2012.32

Zhang, H., Gong, L., and Versteeg, S. (2013). “Predicting bug-fixing time: an
empirical study of commercial software projects," in 35th International Conference
on Software Engineering, ICSE ’13, eds D. Notkin, B. H. C. Cheng, and K.
Pohl, May 18–26, 2013 (San Francisco, CA: IEEE Computer Society), 1042–1051.
doi: 10.1109/ICSE.2013.6606654

Zhang, T., Chen, J., Jiang, H., Luo, X., and Xia, X. (2017). “Bug report enrichment
with application of automated fixer recommendation," in Proceedings of the 25th
International Conference on Program Comprehension, ICPC 2017, eds G. Scanniello,
D. Lo, and A. Serebrenik, May 22–23, 2017 (Buenos Aires, Argentina: IEEE Computer
Society), 230–240. doi: 10.1109/ICPC.2017.28

Zhang, Y. and Wallace, B. (2017). “A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification," in Proceedings
of the Eighth International Joint Conference on Natural Language Processing (Volume
1: Long Papers) (Taipei, Taiwan: Asian Federation of Natural Language Processing),
253–263.

Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schröter, A., and Weiss,
C. (2010). What makes a good bug report? IEEE Trans. Softw. Eng. 36, 618–643.
doi: 10.1109/TSE.2010.63

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1032440
https://doi.org/10.1007/978-3-319-97679-2_8
https://doi.org/10.1109/ICAICA52286.2021.9498236
https://doi.org/10.1109/ICSME.2019.00024
https://doi.org/10.1109/MSR.2007.25
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ACSAT.2012.56
https://doi.org/10.1109/ICSME.2014.40
https://doi.org/10.1109/APSEC.2015.23
https://doi.org/10.1145/2915970.2915995
https://doi.org/10.1109/WCRE.2012.32
https://doi.org/10.1109/ICSE.2013.6606654
https://doi.org/10.1109/ICPC.2017.28
https://doi.org/10.1109/TSE.2010.63
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Deep learning and gradient-based extraction of bug report features related to bug fixing time
	1. Introduction
	2. Related work
	2.1. Predicting bug fixing times and severity
	2.2. Classifying bug reports and detecting duplicates
	2.3. Evaluating bug reports
	2.4. Visualizing self-attention
	2.5. Determining project-specific terms

	3. Proposed method: deep learning-based prediction and visualization
	3.1. Motivation
	3.2. Overview of the proposed method
	3.3. Predicting bug fixing time
	3.4. Visualizing the decision basis

	4. Experimental evaluation
	4.1. Dataset
	4.2. RQ1: Predicting bug fixing time using CNN
	4.3. RQ2: Words used as a decision basis
	4.4. RQ3: Difference of important words according to the part of speech

	5. Threats to validity
	6. Recommendations based on the findings
	7. Conclusion and future work
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


