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Recently, engagement has emerged as a key variable explaining the success of

conversation. In the perspective of human-machine interaction, an automatic

assessment of engagement becomes crucial to better understand the dynamics of

an interaction and to design socially-aware robots. This paper presents a predictive

model of the level of engagement in conversations. It shows in particular the

interest of using a rich multimodal set of features, outperforming the existing

models in this domain. In terms of methodology, study is based on two audio-

visual corpora of naturalistic face-to-face interactions. These resources have been

enriched with various annotations of verbal and nonverbal behaviors, such as

smiles, head nods, and feedbacks. In addition, we manually annotated gestures

intensity. Based on a review of previous works in psychology and human-

machine interaction, we propose a new definition of the notion of engagement,

adequate for the description of this phenomenon both in natural and mediated

environments. This definition have been implemented in our annotation scheme.

In our work, engagement is studied at the turn level, known to be crucial for the

organization of the conversation. Even though there is still a lack of consensus

around their precise definition, we have developed a turn detection tool. A

multimodal characterization of engagement is performed using a multi-level

classification of turns. We claim a set of multimodal cues, involving prosodic,

mimo-gestural and morpho-syntactic information, is relevant to characterize

the level of engagement of speakers in conversation. Our results significantly

outperform the baseline and reach state-of-the-art level (0.76 weighted F-score).

The most contributing modalities are identified by testing the performance of a

two-layer perceptronwhen trained on unimodal feature sets and on combinations

of two to four modalities. These results support our claim about multimodality:

combining features related to the speech fundamental frequency and energy with

mimo-gestural features leads to the best performance.

KEYWORDS

engagement model, multimodality, conversational skills, conversational agents,

engagement classification, annotated corpora

1. Introduction

The notion of engagement has gained increasing attention over the recent years,

especially from research focusing on human-agent interactions (Oertel et al., 2020). This

trend is fueled by the need to design artificial agents capable of adapting their actions

according to users’ behavior. Many works have stressed the necessity to evaluate artificial

social agent’s performances beyond their ability to produce linguistically appropriate
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responses, but also by taking users’ experience into account (Dybala

et al., 2009; Bickmore et al., 2010). The notion of engagement

is then of great importance, in particular because of its direct

impact to the length and the success of an interaction (Sidner

et al., 2004, 2005; Khatri et al., 2018; Venkatesh, 2018; Oertel

et al., 2020). In spite of their important role, neither conversation

length nor agents’ success at influencing users constitute the only

metrics for the success of an interaction. Rendering possible and

efficient a conversation lies in building a shared knowledge (called

common ground) by participants (Clark, 1996): the viability of any

verbal interaction is built upon a certain level of collaboration

between the participants which is implemented through various

acts of grounding. A whole array of behaviors necessary for the

interaction to go smoothly (e.g., feedbacks, gestures) requires a

certain level of cognitive investment, in addition to those necessary

for production and comprehension. Evaluating engagement is then

a way to explain agents’ ability to achieve such goals (Novielli et al.,

2010; Anzalone et al., 2015). In this perspective, engagement can

be viewed as a variable regulating the level of collaboration and

more generally the interaction dynamics, beyond its initiation and

its duration.

While a substantial research effort has been done to

automatically estimate engagement in the context of human-agent

interactions (Oertel et al., 2020) only few studies have looked at

variation in the degree of engagement during casual human-human

interactions. Technically, most of the latter are based on visual

features, such as facial Action Units activation, intensity and gaze

direction (Dermouche and Pelachaud, 2019), facial landmarks and

texture-based features (Huang et al., 2016), gestures (Dermouche

and Pelachaud, 2018), etc. However, the use of Action Units (AUs)

and complex face-related features can make the interpretation of

the results difficult because involving many different parameters,

rendering them often difficult to categorize. It is then necessary to

identify a subset of AU relevant in the case of engagement. This calls

for attempting to classify engagement level on the basis of more

readily interpretable features. Moreover, multimodality has been

little explored in human-human conversation except in Fedotov

et al. (2018), proposing a binary engagement-disengagement

classification. Although valuable, suchmodels remain limited in the

sense that variation in engagement level is more subtle than what is

implied by a binary scale.

We propose to model engagement in human-human

conversations by using (1) a multimodal set of interpretable

features and (2) a detailed multiclass scale. To this end, we have

created a new resource, based on a 4.5 hours conversational corpus

enriched with the level of engagement on a 5-level scale. Morpho-

syntactic, prosodic, mimo-gestural features and engagement have

been annotated at the turn level. To the best of our knowledge, the

only approach performing an automatic estimation of engagement

at the turn level (applied to a corpus of conversations between

students and a virtual tutoring agent) has been presented in

Forbes-Riley et al. (2012). In our work, we propose to apply a

comparable approach to human-human conversations. This choice

is motivated by the fact that turns represent one of the relevant

units for accounting the structural organization of conversations

(Sacks et al., 1974). We also propose to use a more detailed scale

than the one used by Forbes-Riley et al. (2012) who restricted

their classification task to a binary problem (engagement vs.

disengagement). Finally, another originality is that our work aims

at classifying engagement level when participants are holding

the turn, thus avoiding to segment more or less arbitrarily the

input signal as it is the case with many other works that do not

distinguish between the participant’s role (speaker or listener).

This is possible thanks to the manual annotation of feedbacks

performed previously (Boudin et al., 2021).

We present in this paper a new annotated resource for studying

engagement in interaction, together with tools and methods

offering a way to address this question in the more general

case: unrestricted conversations. Engagement being not really well

defined in the literature, we propose in the second section a large

survey of this question both in human-machine and human-human

environments. Section 3 presents dataset and features selection.

Results are described and discussed in Sections 4 and 5.

2. Defining engagement

In spite of the fact that engagement is broadly used in the

literature, this notion still relies on imprecise and often informal

definitions. We propose in this section to give an overview of

this question, highlighting its main features in the perspective

of elaborating a definition based on explicit and quantifiable

characteristics.

2.1. Engagement in the literature

One of the most influential definitions of engagement has

been presented in Sidner and Dzikovska (2002) who characterize

engagement as “the process by which two (or more) participants

establish, maintain, and end their perceived connection to each

other during an interaction.” This definition, elaborated in a

human-machine interaction context, aims at identifying the most

important factors by which an embodied conversational agent

(ECA) can make the conversation efficient. Several works are

based on this definition either to annotate engagement (Yu et al.,

2004; Hsiao et al., 2012; Leite et al., 2015) or to automatically

detect it (Ooko et al., 2011; Huang et al., 2016; Foster et al.,

2017; Ben-Youssef et al., 2019). However, this definition raises

three limitations. First, engagement is considered as a process

and rendering difficult to propose a measure for estimating

its level varying along the interaction. It is also limited by a

too global scope. Three major goals are presented: initiating,

maintaining or ending an interaction, excluding subtle variations of

engagement such as showing interest or affiliation. This approach

resumes then engagement as a binary process with two states:

engagement or disengagement. Second, this definition excludes the

idea that engagement involves both interlocutors. The level of

each interlocutor is considered independently from the other. But

conversations are contextual phenomena, where the interlocutors

have a mutual influence and adapt their behaviors according to

their partner. From this point of view, looking for a global level of

engagement including both participant adjustment seems difficult.

Third, identifying engagement with the unfolding of the interaction

itself and not as a variable influencing this unfolding makes unclear

why the notion of engagement should be mentioned at all. Overall,
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the different works relying on the definition proposed in Sidner

and Dzikovska (2002) end up in considering engagement as a state,

taken globally (Ooko et al., 2011). This seems to be too general,

without leaving place to a more fine-grained description, based on

the identification of different features characterizing this notion.

On its side, Poggi (2007) defines engagement as the value that a

participant in an interaction attributes to the goal of being together

with the other participant(s) and continuing the interaction. This

state-based definition has two main interests. First, engagement

is considered as an individual property and at the same time

offers the possibility to include both participants by evaluating

possible discrepancies between their levels of engagement. Second,

it allows to consider that engagement fluctuates over time and

can hold different levels. Moreover, in contrast with Sidner and

Dzikovska (2002), the work presented in Poggi (2007) takes into

consideration the mutual intention of participants to collaborate,

making successful the interactional goals achievement. Engagement

is here an attitude in which both the context and the content

of the conversation interact. Nonetheless, no specific interactional

behaviors are pointed out, making unclear the relative importance

of particular actions or cues by which engagement is implemented.

Peters et al. (2005a) proposes to define engagement as “an

emotional state linked to the participant’ goal of receiving and

elaborating new and potentially useful knowledge”. This definition

includes an emotional dimension, which is absent from Sidner

and Dzikovska (2002) and only implicit in Poggi (2007). The

common ground (denoted as knowledge) is put in relation with

engagement and information flow, interacting as a common goal

of the participants. This makes Peters et al. (2005a) definition

truly specific to the conversational context. Moreover, it allows to

understand that being engaged is not only about attributing a high

value to interlocutor’s engagement or to what is being discussed,

but also about the wish to contribute to the conversation. In other

words, as underlined previously, engagement is correlated with the

willingness to invest effort in the interaction. A limitation to this

conceptualization however is that speakers can be strongly engaged

while not necessarily elaborating new knowledge, as it is for

example the case when two people have a heated argument and keep

repeating the same information. Since participants’ goals can go

beyond informativeness it seemsmore appropriate to conceptualize

engagement as a function of participants’ goals in general.

Finally, in a human-machine interaction perspective, the notion

of engagement is used to improving agents’ conversational abilities.

Several works have focused on designing systems able to recognize

users’ intention to initiate an interaction (Bohus and Horvitz, 2009;

Foster et al., 2017) or to detect when the user is likely to step

away from the interaction (Nakano and Ishii, 2010). Generally

speaking, even though the notion of engagement is widely used in

the context of human-machine interaction (typically for embodied

conversational agents), an explicit definition is still lacking or

imprecise in most of these works (Mower et al., 2007; Bednarik

et al., 2012; Bonin et al., 2012; Leite et al., 2013; Baker et al., 2014).

In some works, engagement refers to the influence of an agent on

the user (Novielli, 2009), for some others to the spatial distance

between the virtual agent and the user (Michalowski et al., 2006).

Overall, these definitions highlight two main components of

engagement: attention and emotion. Attention to the interlocutor

or to interaction-relevant objects is often put forward as a

constitutive characteristics (Sidner et al., 2004; Yu et al., 2004).

Inattention can indeed be considered as a sign of reduced

investment in contributing to the dynamics of the conversation. On

the opposite, sustained attention to different stimuli at appropriate

times is also a prerequisite for an affective involvement (Peters

et al., 2009). The relationship between emotion and attention is

bidirectional since emotionally relevant stimuli capture attention

(Peters et al., 2009). Therefore attention can be viewed as a minimal

form of engagement. The role played by emotions in engagement

can be inferred from Poggi (2007) definition as the value attributed

to interacting with one’s interlocutor is likely of emotional nature.

As a result, none of these definitions cannot be taken beyond

its specific context and completely fulfill the goal of estimating an

engagement level during an interaction. Cumulative elaboration

on the concept of engagement makes necessary the elaboration

of a global definition, gathering the different characteristics of

the existing ones and offering solution for the elaboration of a

computational model.

2.2. Concepts and notions in relation with
engagement

One way to thoroughly flesh out the concept of engagement is

to look at how it differs from related notions. This endeavor is also

necessary to justify the very use of this concept.

A notion sometimes equated with engagement is interest (Yu

et al., 2004). This reduction makes sense under the light of (Poggi,

2007) definition of engagement in terms of value. Other authors

highlight the role played by preferences in shaping the emotional

relevance of conversation topics (Glas and Pelachaud, 2015a). The

main issue with identifying engagement to interest is that the

latter does not specify any attitude toward the unfolding of the

interaction. It is even possible to imagine situations in which

interest co-occurs with disengagement.

Another notion close to that of engagement is rapport, defined

as a mix of “mutual attentiveness, positivity and coordination”

(Tickle-Degnen and Rosenthal, 1990). Both notions point to the

collaborative aspect of conversation. Rapport however is something

that is built up in the long term, while engagement rather relates

to the short term. Moreover, a crucial difference relates to the

emotional dimension. While rapport is partly defined by affects

valence, the affective aspect of engagement solely relates to the

arousal dimension. Experiencing rapport implies a positive attitude

toward the interlocutor, whereas being engaged can result from

being mad or distressed.

Finally, the concept of involvement is often used

interchangeably with engagement. Some works explicitly advocate

for abandoning any distinction between the two (Skarbez

et al., 2017). In this way, Bickmore et al. (2010) conceptualize

engagement as “The degree of involvement a user chooses to have

with a system over time.” This is not surprising given the notorious

characterization of involvement as the “consequence of focusing

one’s energy and attention on a coherent set of stimuli” (Witmer and

Singer, 1998). Both notions relate to the investment of efforts into
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a specific activity. When applied to social interactions the concept

of involvement is arguably very close to that of engagement.

2.3. Ground rules for a proper definition of
engagement

An adequate definition of engagement in the perspective of

a modeling must satisfy different requirements. First, it must

be valid to both human-agent and human-human interactions.

This prohibits using the term “user” in the definition itself,

even though one can mention it when the context allows it

(Glas and Pelachaud, 2015b). This also incites not to consider

engagement only on the basis of having the interaction with

an ECA going on for as long as possible (Oertel et al., 2020).

Second, it must allow studying heterogeneity and co-influence

of participants’ degree of engagement. Therefore, engagement

must be defined at the individual level (which does not mean

not taking into account both participants, as explained above).

Third, the definition must take into account the importance

of participants’ goals in the interactional context. Indeed, the

notion of engagement is motivated by the need to explain why

a conversation can be successful or not. As already pointed out,

the success of a conversation is partly defined by participants’

respective goals as well as by the value they place on these goals.

Of course, interlocutor’s degree of engagement might favor the

ability to achieve one’s goals, but this should not be considered as

something that defines engagement. Fourth, the definition must be

specific enough to avoid encompassing other types of engagement.

Conversational engagement has to be distinguished from task

engagement for example (Oertel et al., 2020). Last, but not least,

any proper definition of engagement must highlight its two core

components, namely attention and emotion.

2.4. Features and methods for
characterizing engagement

This section presents the different features used for engagement

classification and prediction. Both tasks are described in human-

agent and human-human interactions, even if greater attention

is paid to the latter. Moreover, we focus on intra-conversation

variation in the degree of engagement. We do not consider here

studies related to the recognition of intentions to engage in

conversation, to the analysis of artificial agents’ conversational

performance or to conversational system design.

Facial expressions are by far the most exploited features in the

literature by taking facial Action Units intensity and activation

as input (Dhamija and Boult, 2017; Liu and Kappas, 2018; Ben-

Youssef et al., 2019; Dermouche and Pelachaud, 2019). Smiles

are also informative about the level of engagement (Allwood and

Cerrato, 2003; Castellano et al., 2009; Leite et al., 2015). Supplying

raw facial images to a convolutional neural network has also been

shown to yield excellent results (0.92 F-score) (Huang et al., 2016).

Gaze is another common feature used for automatic

engagement estimation. A variety of gaze-related features have

been used, such as the time spent at looking at a robot (Castellano

et al., 2009), gaze transition 3-gram sequences (Ishii et al., 2013)

or number, duration and amplitude of saccades (Bednarik et al.,

2012). Looking at the interlocutor is hypothesized to be a cue of

engagement, and looking around to be a cue of disengagement

(Sidner et al., 2004). However, looking at conversation-relevant

objects is considered as indicative of engagement, especially when

the current interaction involves a collaborative task (Sidner et al.,

2004). From the listener’s perspective gaze is also thought to

be a way to provide feedbacks, signaling interlocutor’s level of

engagement (Peters et al., 2005b).

Engagement classification has also been performed on the basis

of prosodic features. In general, this information is represented

by vectors of low-level features (f0, MFCCs, log-energy, etc.)

extracted from the speech signal within sliding windows. Functions

are applied to these to produce mid-level vectors summarizing

speech prosodic characteristics (Yu et al., 2004; Hsiao et al., 2012).

Speech prosody is considered as cue speakers’ level of arousal (Yu

et al., 2004). The use of such features is consistent with emotional

investment being at the core of the concept of engagement.

Other verbal features (e.g., syntactic complexity) are rarely

involved in the models, especially in tandem with nonverbal

features. Such features were used by (Forbes-Riley et al., 2012).

However, they are too study-specific (e.g., student’s response

incorrectness, use of a remediation question by the artificial agent)

to be used in other works.

Exploiting multimodality is arguably advantageous when

working on conversational engagement. Indeed, both facial

expressions, gestures and prosody can convey information about

the participant’s emotional state. Gaze and gestures may also cue

investment in grounding information. Combining features from

different modalities improves classification performance. Fedotov

et al. (2018) reports improvement when combining auditory and

visual (e.g., lips movements, gaze) features. Likewise, with a LTSM

model, Dermouche and Pelachaud (2019) obtain better results

when taking gaze, head position, AUs activation and intensity as

input compared to when being trained on each feature separately.

The performance of users’ engagement breakdown detection is

also improved when using multimodal features (Ben-Youssef et al.,

2019).

Few studies have assessed the relative importance of different

modalities when classifying or predicting the level of engagement.

Huang et al. (2016) have found that training SVMs on facial

texture features, facial landmarks and head pose yielded better

results than training them with acoustic features. Even better

results were obtained by simply feeding raw facial images to a

convolutional neural network. The importance of facial expressions

have been established by other studies. The LTSM model for

engagement prediction proposed in Dermouche and Pelachaud

(2019) performs better when trained on Action Units intensity

and activation than when trained on gaze direction and head

pose respectively. Combining both sets of features leads to only

marginally better results compared to AUs alone. Fedotov et al.

(2018) evaluate modalities contributions by looking at their model’s

performance for all combinations of two to four features. Lips-

based and acoustic features were found to be the most informative

modalities. Contrasting with the aforementioned studies, facial

expressions contributed only slightly to classification. The limited

number of works investigating modalities relative contributions
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as well as the presence of inconsistent findings calls for further

exploration of this issue. This endeavor represents a critical step

toward a proper characterization of engagement.

In general, most human-agent studies focus on discriminating

engagement from disengagement, with the further goal of

improving systems’ ability to quickly detect and counteracting

engagement breakdown (Liu and Kappas, 2018; Ben-Youssef et al.,

2019). On the contrary, human-human studies tend to work with

a more detailed engagement scale made of five levels. Despite

the greater number of classes they manage to achieve very

high classification scores, reaching 0.99 F-score (Dermouche and

Pelachaud, 2019).

2.5. Definition of engagement used in this
study

Based on the above review of engagement definitions,

we propose to define this concept as a state of attentional

and emotional investment in contributing to the conversation

by processing partner’s multimodal behaviors and grounding

new information.

Engagement takes into account the value participants attribute

to their goals, and is subject to variations over the course

of the interaction (as participants’ goals and expectations may

shift according to topic changes, the introduction of new

information, etc.).

This paper focuses on the first part of this definition by

proposing a predictive model of engagement at the turn level.

This information is necessary before addressing the two next

questions, namely engagement variations and adequacy with the

speaker’s goals.

3. Modeling engagement

We present in this section an experiment based on an

original dataset for modeling engagement. We first describe a

specific methodology for annotating manually the ground truth by

proposing an original segmentation (based on turns) and the tools

for extracting the multimodal features to be involved in the model.

We then apply different machine learning methods for building a

predictive model of the engagement level.

3.1. Dataset

The dataset is built from the corpus Paco-Cheese (Amoyal

et al., 2020; Priego-Valverde et al., 2020), containing audio-

video recordings of natural dyadic face-to-face interactions

between native French speakers. The corpus is made of 31

conversations, lasting between 15 and 20 mns. Participants were

instructed to read a short humorous story before engaging in

an unconstrained conversation. The corpus is fully transcribed

and enriched with various annotations. Interpausal units (IPUs),

tokens, laughter and pauses were semi-automatically transcribed

and aligned onto the audio signal thanks to the SPPAS software

(Bigi, 2012). Our annotation procedure involves segmenting the

audio-visual recordings according to the conversation status

(speaker/interlocutor) of each participant. As explained below, the

segmentation is based on IPUs and feedbacks time boundaries. The

annotation of feedbacks time location and type has been previously

performed on 14 dyads (Boudin et al., 2021). This subset of the

Paco-Cheese corpus will constitute our dataset, which includes

approximately 8 h of recordings.

3.2. Engagement annotation

The originality of our work is twofold: (1) segmenting the

input into turns instead of arbitrary segments and (2) annotating

engagement level into a 5-levels scale instead of a binary one. We

present in this section our proposals addressing these aspects.

3.2.1. Turns detection
In the literature, the degree of engagement is usually

indicated on annotator-defined segments: annotators determine

segments boundaries within which engagement level is considered

homogeneous. A new segment is defined when this level changes.

We adopt a more generic and regular segmentation by annotating

the degree of engagement at the turn-level. This choice is first

motivated by the fact that turns correspond to a basic unit with a

certain semantic, lexical and syntactic coherence. They also form

the backbone of the interactional structure. We hypothesized that

they can define time intervals within which engagement level

can be uniform. Moreover, this choice also facilitates the use of

a multimodal set of features, by assuming that interaction and

synchronization between the cues from different modalities can be

done at this level.

Restricting classification to moments when the participant

is holding the turn renders possible to combine mimo-gestural

and prosodic features, which is more problematic when using

annotator-defined segments (such segments might contain both

moments when the participant is speaking or listening, making

prosodic data not always available). This may be one of the

reasons why the feature set remains unimodal in many studies.

Distinguishing intervals on which the participant is either speaker

or listener is also a way to accurately pinpoint features importance.

For example, Fedotov et al. (2018) found that lips movement are

of high relevance, but authors also note that this result may be due

to the fact that annotators perceive participants as more engaged

when they are speaking. This problem of interpretation is alleviated

by taking separately intervals when the participant is speaking

or listening. Finally, another important aspect is that features

relevance for engagement classification may differ as a function

of the participant’s conversational role. Some studies have taken

this into account by adding a binary variable indicating whether

the participant is speaking or not in their model (Dermouche and

Pelachaud, 2018). But this does not allow contrasting models of

speaker’s and listener’s engagement. Our study is limited to the

automatic estimation of engagement level when participants are

holding the turn.

Technically, turns boundaries were automatically detected

using a Python module (PyElan) that connects the ELAN

annotation software with Python script especially designed for

this study. This module allows parsing, modifying and creating
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ELAN files. It includes other functionalities such as extraction of

speech activity or feedbacks time boundaries. Turn detection is

based on the IPUs (defined as block of speech bounded by silent

pauses of 200 ms), excluding IPUs composed by feedbacks only.

The detection procedure is as follows: whenever the participant

produces an IPU, the turn is attributed to her unless the IPU

corresponds to a feedback. This restriction is motivated by the

fact that feedback production is by definition an activity of the

listener. In simple (but not so trivial) words, the participant

holds the turn for as long as her interlocutor does not take it.

Consistent with the approach adopted by several studies among

them (Gravano and Hirschberg, 2011), IPUs are collapsed all

together until the next speaker change. The turns identified by

the algorithm correspond to sequences of alternating IPUs and

pauses, the latter being considered as akin to Transition Relevance

Places (Sacks et al., 1974). A turn ends when the main speaker

is pausing while her interlocutor takes the turn (as defined

above). However, the turn does not end if the main speaker is

still speaking: in this case of overlap, the turn is allocated to

both participants.

Turns shorter than one second were discarded because of

the difficulty of annotating them as well as the risk of extracting

unreliable features on such short intervals. The number of turns

shorter than 1 s in the whole dataset amounts to 1,040. Overall, a

total of 1,200 turns has been kept.

3.2.2. Annotation procedure
The degree of engagement was manually annotated by two

experts. The dataset being already existing, it has not be possible

to ask the speakers for a self-reporting. However, this type of

annotation is interesting if we think important to take into account

the goals and values of the speaker, which is less relevant in the type

of interaction (narration) we are working on.

At this stage, we decided to annotate engagement for the

speaker’s production only, not the listener’s one, which is limited

to feedback. Of course, the number and the type of feedback

produced by the listener may have a consequence on the speaker’s

production. We chose to focus on speakers only for two main

reasons. First, a preliminary analysis of the corpus have shown a

regular feedback production across the different listeners (Boudin

et al., 2021). Second, and more importantly, it is not possible

to assess a direct engagement value to a feedback, which are

complex objects with different functions. At the annotation level,

we therefore decided to only annotate each turn, independently

from the rest of the interaction. This choice does not have any

impact on the interpretation of the results, in particular the analysis

of a potential correlation between the engagement levels of the

participants along the interaction.

Following previous studies on engagement in human-human

conversations (Yu et al., 2004; Huang et al., 2016; Dhamija and

Boult, 2017; Dermouche and Pelachaud, 2019), we define a 5 levels

scale for annotating engagement which outperform the standard

binary classification. For each turn, annotators had to select one

label among:

• Level 1: strongly disengaged.

• Level 2: disengaged.

• Level 3: neutral.

• Level 4: engaged.

• Level 5: strongly engaged.

Annotations weremade using ELAN software. For each speaker

in the corpus, an ELAN file was created with the segments

corresponding to the speaking turns, which means that annotators

visualize this information in the corresponding Elan layer. For each

segment, the annotators had to select an engagement value between

1 and 5 (as detailed above). Even though annotators were experts,

we decided to keep generic instructions and the assignment of the

engagement value a holistic manner. A final adjudication has been

done between them to decide in case of conflict.

Note that we decided to chose a classical 5-level scale in order to

obtainmore information in comparisonwith a binary classification.

This granularity seems to us relevant, in particular because it allows

to compare different granularities by merging different classes.

We present in the experiment the results comparing 3-level to

5-level classifications.

In terms of annotation, here are the guidelines given to the

annotators in order to assess the engagement level:

• How willing is the participant to contribute to the progress of

the conversation?

• How invested is the participant in what she is saying?

• How interested is she in the conversation?

These questions were designed so as to be the most coherent

with our definition of engagement without being too theoretically

sophisticated. As it is usually the case with this type of instructions,

they stay at a general level, but also partially redundant. In our

procedure, we proposed to distinguish between different types of

information: the actions of the participants in the quality and the

success of the interaction, the intensity of his/her actions (in terms

of investment) and the quality of his/her reactions, showing an

interest. In the annotators’ instructions, we voluntarily do not to

point out specific behaviors (e.g., smiling) in order to avoid a

possible bias in the modeling by inflating their relevance when

automatically estimating engagement. Before performing the task,

annotators were presented with short videos of both strongly

disengaged and strongly engaged turns in order to make them

aware of the whole range of variation of engagement level. They

were also asked to leave out any turn for which annotating was

too troublesome because of short duration or because of the

presence of too many overlaps, rendering the participant’s speech

hardly audible.

3.3. Feature extraction

Our model relies on a limited set of features from verbal

and non-verbal modalities: acoustic, mimogestural and

morpho-syntactic cues. Note that some features have been

annotated manually (gesture intensity and feedbacks) and that all
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annotations have been manually corrected. At this stage, this is of

course a limitation when trying to implement the level assessment

automatically. However, these restrictions are due in the first case

to constraint coming from the quality and the framing of the

video and in the second case to the absence of automatic tool for

efficiently recognizing a feedback. We are working on these two

aspects by acquiring new datasets and developing new tools.

3.3.1. Prosodic features
The values of the fundamental frequency (f0) over the course of

the interaction were extracted using Praat (Boersma and Weenink,

1996). The time series of f0 values was segmented according to

turns. Values belonging to particular turn were concatenated into

a single vector. Functionals (max, min, mean, standard deviation,

and inter-quartile range) were then applied, producing a vector of

length 5 summarizing f0-related information. On its side, energy

was directly extracted from the audio signal. For all non-silent

regions of a turn, energy was computed within overlapping 40

ms windows, with a stride value set to 20 ms. Following works

exploiting prosodic information (Hsiao et al., 2012; Ben-Youssef

et al., 2019), energy values were log-transformed. Information

contained in the resulting vectors was finally summarized in the

same way as for the f0. Features related to the root mean square

deviation (RMSE) were extracted following the same procedure.

For some turns it was not possible to obtain a value of the f0 due

to their short duration. These turns were removed when classifying

engagement level. Based on previous works (Oertel et al., 2011)

our hypothesis was that higher pitch and speech signal energy are

positively associated with engagement.

Features related to aspects of speech duration are also included

in the model. For each turn, the turn-taking delay is extracted.

It corresponds to the elapsed time before the participant starts

speaking once her interlocutor has effectively released the turn,

and the fraction of time the speaker was pausing during a given

turn. The articulation rate, based on the annotation of syllable

boundaries automatically detected with SPPAS, is computed by

dividing the number of syllables by the total time spent to produce

these syllables (thus excluding silent pauses). We hypothesize that

articulation rate cues a higher level of engagement. Our second

hypothesis is that turn-taking delay and pauses are negatively

associated with engagement, in accordance with the turn taking

system based on the minimization of too long delay between turns

and too long pauses or gaps (Sacks et al., 1974; Levinson and

Torreira, 2015).

To summarize, and according to the literature, speaking more

rapidly, with a higher pitch and energy, and taking the turn rapidly

could be cues for a higher engagement level.

3.3.2. Mimo-gestural features
Gestures and expression have been shown to play a central role

in the analysis of participants behaviors. In the case of our study,

we have decided to focus on two types of such elements: smiles and

head nods. We do not, at this stage, take into account action units

first because think important to limit the number of features to

those directly in connection with the type of phenomenon we want

to study and second for a purely technical reason. The positions

of the participants in the video do not make it possible to extract

automatically in a precise manner the main action units. The same

restriction applies to gaze. A manual annotation of AUs should

then have been necessary. Taking into account the time and budget

constraints of this research, in spite of their potential role in the

engagement modeling (in particular gaze directions), we decided

then not to add AU in the model and to limit mimo-gestural

features to smiles and nods.

Semi-automatic annotation is carried out using SMAD

(Amoyal and Priego-Valverde, 2019; Rauzy and Amoyal, 2020;

Boudin et al., 2021). Annotations provide information about both

smiles duration and intensity, from S0 (no smile) to S4 (laughing

smile). For each turn, the relative duration of level of smile intensity

was computed, yielding a vector of length 5.

Nods frequency is calculated by dividing the number of head

nods by the turn duration. Moreover, arms and hands gestures are

included in the model. These annotations has been restricted to

manually indicating whether gestures intensity was low, medium

or high. Gestures intensity is understood as comprising both the

quantity of arms-hands movements and their amplitude. Two

expert annotators carried out this task. They were instructed to

annotate the intensity level only by taking into account frequency

and amplitude into the turn, with respect to the rest of the

interaction. As for action units, technical video limitation of our

corpus did not allow an automatic estimation of this information.

An adjudication has been done in the case of conflict by annotators.

Our third hypothesis is that the greater smiles, nods and gestures

intensity, the higher the degree of engagement.

3.3.3. Morpho-syntactic features
Lemmas and Part-of-Speech were extracted from tokens

transcription thanks to the MarsaTag analyser (Rauzy et al., 2014).

The fourth hypothesis is that a greater level of engagement would

be associated with an increased discourse structure complexity. The

syntactic richness of each turn is approximated by the frequency

of conjunctions and modifiers (i.e., adverbs and adjectives). This

approximation is based on the fact that modifiers introduce richer

and more complex information by introducing new embedded

constituents. This measure has been first proposed in Blache et al.

(2020).

Note that other type of morpho-synactic cues have not been

considered for this model, in particular turn length. The reason is

that the type of the interaction (narrative-like) intrinsically favors

longer turns, without being an indication of any engagement.

3.4. Features selection

In order to reduce feature space dimensionality, a subset of

features is kept when performing classification. Features were

selected based on the strength of their correlation with the degree

of engagement, as measured by Pearson correlation coefficient (see

Table 1). Note that feature selection has been applied to the entire

dataset, instead of the training subset because of using nested cross-

validation, which limits the risks of over-fitting (see next section).

Only features for which the absolute value of the coefficients was
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TABLE 1 The coe�cient of correlation ρ (Pearson) between the degree of

engagement and the various features proposed in our analysis.

Feature ρ Feature ρ

Turn duration 0.09 f0 (max) 0.16

No smile (S0) −0.26 f0 (mean) 0.22

Closed mouth smile (S1) 0.08 f0 (inter-quartile

range)

0.24

Open mouth smile (S2) 0.01 Log-energy (min) 0.18

Wide open mouth smile (S3) 0.16 Log-energy (max) 0.34

Laughing smile (S4) 0.28 Log-energy (mean) 0.28

Head nods frequency 0.13 Log-energy (std) 0.04

Gestures intensity 0.30 Log-energy

(inter-quartile range)

−0.001

Conjunctions frequency −0.001 RMSE (min) 0.19

Modifiers frequency −0.09 RMSE (max) 0.39

Turn-taking delay −0.16 RMSE (mean) 0.39

Pauses −0.08 RMSE (std) 0.41

f0 (min) −0.02 RMSE (inter-quartile

range)

0.38

higher than 0.1 were retained. Since we are interested in the

potential relation between engagement and syntactic richness we

decided to include modifiers and conjunctions frequency in our

model even though the Pearson coefficient was small for both.

Similarly, the fraction of time the speaker pauses during the turn

was included in the feature set despite a coefficient equal to −0.08

(see Table 1).

3.5. Algorithms performance evaluation

We compare the performances of 7 different classifiers:

Logistic Regression, Support Vector Machines, K-Nearest Neighbors,

AdaBoost, Naïve Bayes, Random Forest and Multilayer Perceptron.

Stratified 10-fold cross-validation is used to compute performance

metrics for each algorithm. When relevant, hyperparameters

are optimized following the nested cross-validation procedure

(Scheffer, 1999). For each train-test fold, the training set is further

divided between a training and a validation set used to estimate

model performance for different combinations of parameters.

The set of hyperparameters yielding the best results on the

validation set was kept when evaluating the algorithm performance

within the outer cross-validation loop. Hyperparameters taken into

consideration for each classifier are indicated in Table 2. Regarding

the Multilayer perceptron, the small size of our dataset encourages

us to limit in practice the number of parameters. The architecture is

therefore reduced to two hidden layers, the first with 64 nodes and

the second with 32 nodes. Only the learning rate and the batch size

were optimized using the nested cross-validation procedure. The

number of epochs was set to 50.

Taking into account the fact that this study does not have direct

equivalent in the literature (measuring engagement in naturalistic

human-human conversation at the turn level in a 5-level scale), we

TABLE 2 Hyperparameters that were optimized using the nested

cross-validation procedure for each classifier.

Model Optimized hyperparameters

Logistic regression None

SVM Kernel: linear, polynomial, radial basis function

Regularization: 0.1, 1, 10

K-nearest neighbors Number of neighbors: 3, 5, 7, 9

AdaBoost Number of estimators: 500, 1,000, 2,000

Naïve Bayes None

Random forest Number of estimators: 500, 1,000, 2,000

Maximum depth: 5, 10, None

Multilayer perceptron Learning rate: 0.0001, 0.001, 0.01

Batch size: 16, 32

have decided to experiment the classic models, in order to compare

as directly as possible our results with the state of the art. We also

designed two different baselines:

• Baseline 1: The classifier always predicts the majority class.

• Baseline 2: The classifier randomly selects labels according to

their probabilities of occurrence in the whole dataset.

For each try, classifier permutation paired t-tests were

conducted to assess statistical significance of the improvement over

the baseline.

3.6. Modalities contributions

Given our interest in the importance of multimodality

for engagement level classification, we adopted the procedure

of Fedotov et al. (2018) in order to assess the respective

strengths of modality contributions. Features were divided

between prosodic-acoustic features (log-energy, RMSE, f0),

prosodic-temporal features (articulation rate, turn-taking

delay, pauses), mimo-gestural features (smiles, head nods,

arms and hands gestures) and linguistic features (modifiers

and conjunctions frequency). Classification was performed

with each unimodal set separately as well as with every

possible combination of two to three modalities. This

operation was carried out using the classifier with the best

weighted F-score.

4. Results

4.1. Descriptive statistics

4.1.1. Turns detection
Our 14 dyads corpus contains 1, 486 automatically detected

turns with duration greater than 1 second. Among them a total

of 1, 336 were manually annotated with engagement level, the

remaining 150 turns being left out for three main reasons. First,

moments when participants are not really conversing (e.g., reading
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their short story or talking to experimenters), are sometimes

wrongly identified as conversational turns. Second, even though

turns shorter than 1 s are removed beforehand, some turns are still

perceived as too short to allow any relevant annotation. Finally,

turn boundaries are sometimes incorrectly identified because of a

misalignment between tokens boundaries (as detected by SPPAS)

and the audio signal. Finally, another case of incorrectly segmented

turns, but that were annotated nevertheless, involves turns cut

in two parts because the listener starts producing a short IPU

while the main speaker is pausing without truly releasing the

turn. The break is deemed erroneous insofar as the listener does

not meaningfully take the turn. In this case the two parts were

merged manually.

For a participant, the average number of annotated

conversational turns is equal to 48.6. This number of turns is

highly variable between participants, ranging from 20 to 97. Turn

duration distribution is heavily skewed toward short turns. Most

of them last for less than 5 s, while only a few last for more than

20 s, as shown in Figure 1. Turn duration does not seem to impact

the level of engagement consistently, as demonstrated by the

low Pearson correlation coefficient between turn duration and

engagement level (see Table 1).

4.1.2. Annotation of engagement
As shown Figure 2, speech turns were predominantly labeled

as either neutral (level 3) or engaged (level 4) with 41.6% and

28.2% of turns respectively (in a 5-levels scale). Speakers were rarely

perceived as strongly disengaged. There is no significant difference

in engagement level (Student test of t = 1.49, p = 0.15 on the

mean engagement level) between the situation where participants

know each other vs. first encounter.

4.2. Classification

The different experiments presented here vary in function of

the number of classes. One of our goals in this paper is to see until

what extent a fine-grained classification in 5 classes can be efficient,

most of the works in the literature staying at a binary classification.

We show the classification results obtained by different models.

4.2.1. 2 classes
Taking into account the distribution of the engagement

annotations, we chose for reducing for 5 to 2 classes by merging

levels 1 and 2 (disengaged) and levels 3, 4 and 5 (engaged). As

reported in Table 3, results reach the state of the art with a F-

score value at 0.78. Note that most of works in the literature relies

on human-agent conversations, which is a slightly different task,

features extracted from the agent’s production being standardized.

4.2.2. 3 classes
As aforementioned subsection 4.1.2 strongly disengaged turns

rarely occur in our dataset. This incites merging level 1 and 2 when

classifying engagement degree. Other studies have adopted this

strategy for similar reasons (Huang et al., 2016). Annotators also

sometimes reported difficulty when deciding between attributing

level 4 or level 5. We decided therefore to perform a new

classification task, adopting that time 3 levels of engagement (i.e.,

level 1: strongly disengaged or disengaged, level 2: neutral and level

3: engaged or strongly engaged) rather than 5. Results of the 10-

fold cross validation procedure are displayed in Table 4. The SVM

achieves an F-score of 0.58, almost at the same performance as

Logistic Regression and outperforming both the baseline and closest

models (Multilayer perceptron and KNN) significantly.

4.2.3. 5 classes
Table 5 presents the weighted precision, recall and F-score

obtained with each algorithm when classifying engagement level

on the 5-level scale described above. All classifiers significantly

outperform both baselines (see Section 3.5). The best results are

obtained when using KNN. This classifier achieves a weighted

F-score of 0.49. However performance was not found to be

significantly different from the ones achieved by the Logistic

Regression classifier.

4.3. Modality contribution

We used the best classifier in the 3-class situation for exploring

modality contribution. Note at his stage that we wanted to

explore the effect per modality, not per feature even though

this second type of analyze, at a finer grain, is of course

important. The question there is to try to have a higher-

level type of information, maybe more easily explainable, trying

to answer the specific role of each modality, whatever the

features they cover. Classification performance was computed

for each unimodal feature set (prosodic-acoustic, prosodic-

temporal, mimo-gestural and morphosyntactic) and for each

combination of two or three modalities, evaluating the 3-

level engagement scale introduced Section 4.2.2 with the same

stratified 10-fold cross-validation used above. Each box in Table 6

indicates the mean F-score obtained by training the two-layer

perceptron on the corresponding unimodal or multimodal subset

of features. For multimodal feature sets the statistical significance

of the effect of adding a new modality to the previous set

is indicated.

When training the multilayer perceptron on a single modality,

the best results are obtained by using prosodic-acoustic and

mimo-gestural features. As expected from the Pearson correlation

coefficients, using the linguistic or the prosodic-temporal

modalities alone lead to worse results. Moreover, combining any

modality with linguistic features never leads to any significant

improved performance. On the opposite, incorporating the

prosodic-acoustic modality in the model almost always produces

significantly better results, with the exception of the PA+PT

combination. The mean F-score for the PA+MG is equal to

0.60, against 0.50 for MG only. The mean F-score for the PA+L

combination is equal to 0.50, against 0.36 for linguistic feature set

only. The best result is obtain with the PA+PT+MG combination

(mean F-score = 0.61). Performance is not significantly different
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FIGURE 1

Distribution of turn durations (in seconds) in the dataset.

FIGURE 2

Distribution of engagement levels in the dataset.

from the one achieved with the PA+MG combination however,

and merging all modalities yields similar results.

5. Discussion

All classifiers trained on our multimodal dataset significantly

outperform the baselines in both the 5-class and the 3-class tasks.

The best results were obtained with using logistic regression for the

former, and with the two-layer perceptron for the latter. Limiting

the number of classes to 3 by merging level 1 and 2 as well as level

4 and 5 leads to a small improvement in classification performance.

Results for the 3-class task are comparable to the ones from

previous studies. However it is worth noting that most of themwere

only interested in discriminating engagement from disengagement

(Hsiao et al., 2012; Liu and Kappas, 2018; Ben-Youssef et al., 2019).

5.1. Characterizing engagement

Our results underline the importance of multimodality when

classifying engagement levels. The best results are obtained by

combining the prosodic-acoustic, prosodic-temporal and mimo-

gestural modalities. An analogous performance is achieved

when restricting the feature set to the combination of the

prosodic-acoustic and mimo-gestural modalities. On the other

hand, including morpho-syntactic features does not lead to any

significant improvement in estimation performance. This suggests

that engagement is not characterized by an increased complexity of

the discourse, contrary to our hypothesis.

Our study also highlights the relevance of prosodic features

when classifying engagement in human-human interactions. This

contrasts with other studies conducted in analogous settings where

this modality was either left out (Dermouche and Pelachaud, 2019)

or found to not perform well compared to visual cues (Huang et al.,

2016). On the other hand our results are consistent with findings

from human-agent studies (Yu et al., 2004; Hsiao et al., 2012). Even

though not as crucial as prosodic-acoustic features, mimo-gestural

features were also found to be useful for engagement classification.
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TABLE 3 Results of 2-class engagement level classification (standard deviation in parentheses).

Model Precision Recall F-score RMSE

Baseline 1 0.16 (±0.03) 0.40 (±0.04) 0.23 (±0.04) 0.77 (±0.00)

Baseline 2 0.66 (±0.04) 0.65 (±0.06) 0.66 (±0.05) 0.58 (±0.05)

Random forest 0.77 (±0.08) 0.80 (±0.01) 0.72 (±0.01) 0.44 (±0.01)

Logistic regression 0.77 (±0.03) 0.80 (±0.02) 0.77 (±0.02) 0.43 (±0.02)

SVM 0.63 (±0.004) 0.79 (±0.003) 0.70 (±0.003) 0.45 (±0.003)

K-nearest neighbors 0.74 (±0.03) 0.78 (±0.02) 0.75 (±0.02) 0.45 (±0.02)

AdaBoost 0.74 (±0.02) 0.71 (±0.06) 0.72 (±0.04) 0.52 (±0.06)

Naïve Bayes 0.78 (±0.02) 0.64 (±0.04) 0.67 (±0.03) 0.59 (±0.03)

Multilayer perceptron 0.77 (±0.02) 0.79 (±0.02) 0.78 (±0.02) 0.45 (±0.02)

Best performances are highlighted in bold.

TABLE 4 Results of 3-class engagement level classification (standard deviation in parentheses).

Model Recall Precision F-score RMSE

Baseline 1 0.16 (±0.03) 0.40 (±0.04) 0.23 (±0.04) 0.77 (±0.00)

Baseline 2 0.33 (±0.04) 0.33 (±0.03) 0.33 (±0.04) 1.09 (±0.03)

Random forest 0.61 (±0.08) 0.59 (±0.04) 0.55 (±0.04) 0.71 (±0.03)

Logistic regression 0.59 (±0.05) 0.59 (±0.05) 0.58 (±0.05) 0.73 (±0.05)

SVM 0.61 (±0.04) 0.59 (±0.03) 0.58 (±0.03) 0.70 (±0.05)

K-nearest neighbors 0.58 (±0.05) 0.57 (±0.05) 0.57 (±0.05) 0.73 (±0.06)

AdaBoost 0.54 (±0.03) 0.54 (±0.03) 0.53 (±0.03) 0.76 (±0.03)

Naïve Bayes 0.55 (±0.03) 0.52 (±0.03) 0.52 (±0.03) 0.82 (±0.05)

Multilayer perceptron 0.58 (±0.04) 0.57 (±0.04) 0.57 (±0.04) 0.78 (±0.05)

Best performances are highlighted in bold.

TABLE 5 Results of 5-class engagement level classification (standard deviation in parentheses).

Model Precision Recall F-score RMSE

Baseline 1 0.16 (±0.001) 0.40 (±0.001) 0.23 (±0.001) 0.98 (±0.004)

Baseline 2 0.31 (±0.03) 0.30 (±0.03) 0.30 (±0.03) 1.29 (±0.07)

Random forest 0.55 (±0.08) 0.52 (±0.02) 0.45 (±0.03) 0.81 (±0.03)

Logistic regression 0.49 (±0.02) 0.50 (±0.02) 0.48 (±0.02) 0.85 (±0.04)

SVM 0.48 (±0.06) 0.48 (±0.03) 0.43 (±0.06) 0.84 (±0.04)

K-nearest neighbors 0.50 (±0.03) 0.49 (±0.02) 0.49 (±0.03) 0.88 (±0.08)

AdaBoost 0.35 (±0.04) 0.30 (±0.03) 0.29 (±0.03) 1.29 (±0.07)

Naïve Bayes 0.42 (±0.04) 0.35 (±0.04) 0.37 (±0.04) 1.23 (±0.06)

Multilayer perceptron 0.47 (±0.03) 0.48 (±0.02) 0.47 (±0.03) 0.87 (±0.07)

Best performances are highlighted in bold.

These results support the idea that the emotional dimension

of engagement is expressed both through facial expressions and

through prosody.

A last contribution of our study relates to interpretability.

Indeed, training models with AUs models makes it difficult to

later provide a meaningful characterization of engagement, even

though some authors point out for example the relation between

particular AUs and the expression of happiness (Ben-Youssef

et al., 2019). The major limitation of attempting to characterize

engagement using classifier such as the multilayer perceptron is

that this does not allow assessing the direction of the effect each

variable may have on the level of engagement. Still, inference can

be done on the grounds of descriptive statistics. For example a

greater quantity of laughing smiles (S4) seems to be associated

with a higher degree of engagement, which is consistent with our

initial hypotheses. Likewise, arms and hands gestures intensity,

a feature rarely taken into account (Dermouche and Pelachaud,

2018), seems to be positively correlated with engagement. This

later observation also supports the view of engagement as an

investment in contributing to the conversation since co-speech

gestures represent a physical effort toward making one’s discourse

more comprehensible. Greater gestures intensity could also simply
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TABLE 6 Performance of unimodal and multimodal feature sets when classifying engagement level on a 3-level scale.

One PA T MG V

modality 0.52 (±0.03) 0.41 (±0.05) 0.50 (±0.04) 0.36 (±0.04)

Two PA-T PA-MG PA-V T-MG T-V MG-V

modalities 0.50 (±0.03) 0.60 (±0.02) 0.50 (±0.04) 0.52 (±0.04) 0.42 (±0.04) 0.50 (±0.04)

Three PA-T-MG PA-T-V PA-MG-V T-MG-V

modalities 0.61 (±0.02) 0.51 (±0.03) 0.59 (±0.03) 0.52 (±0.03)

All PA-T-MG-V

modalities 0.60 (±0.03)

For each weighted F-score standard deviation is indicated in parentheses (PA, prosodic-acoustic; T, temporal; MG, mimo-gestural; V, verbal).

signal increased excitation, which relates to the emotional aspect

of engagement.

5.2. Looking at engagement at the turn
level

Annotators’ reports confirm the reliability of our turn detection

algorithm: the small amount of incorrect turns were so because

the participants were either reading the short story or talking with

an experimenter. This supports its application to other corpora in

order to increase the size of our dataset.

In the literature, turn-level engagement has only been

investigated in the context of human-agent interactions (Forbes-

Riley et al., 2012). The researchers achieved a F-score of 0.69 using a

2-level engagement scale. Our results from the 3-class classification

task come close despite the more unconstrained nature of the

interactions in our corpus and our more detailed engagement scale.

The main limitation of such approach originates in the challenge

of annotating heterogeneous turns with respect to engagement.

Mental averaging is likely to have introduced additional noise in

the data. Indeed, turns longer than 10 s, for which difficulties

of annotation were often reported, represent approximately 40%

of our dataset. Another limitation of focusing of turns relates to

comparability, since the majority of studies are based on annotator-

defined segments as already mentioned. It would be interesting to

compare results when annotating engagement this way and when

doing so on the basis of turns using the same dataset.

5.3. Future directions

Gaze direction was not included in our dataset. Given its

central place in the engagement literature (Sidner et al., 2004;

Ishii et al., 2021) it may be fruitful to incorporating it in future

models. Including gaze direction may be far from being a silver

bullet however, as some authors have found that it performs worse

than facial features (Dermouche and Pelachaud, 2019). Head pose

data might also be worthy of investigation given the good results

obtained by Ooko et al. (2011) (0.89mean F-score) when classifying

engagement on a 3-level scale using a combination of head pose

and head rotation. An additional interesting avenue would be to

make use of AUs activation and intensity time series. The issue is

that the framework used in previous studies using these features

(Liu and Kappas, 2018; Ben-Youssef et al., 2019; Dermouche and

Pelachaud, 2019) cannot be straightforwardly applied to our dataset

to the extent that turns are of unequal sizes, which prevents from

using an LSTMmodel with a fixed number of frames for example.

Another area worth of investigation relates to model building.

As aforementioned, annotators have reported intra-turn variability

in engagement level for turns longer than 10 s. In these cases

annotation was carried out by mentally averaging variations in

the level of engagement. One way to address this issue could

be to design a multilevel model. Within each turn classification

would be performed within sliding windows. Low-level predictions

would then be aggregated based on either majority voting or

on the statistical distribution of the predictions. The general

idea is to reproduce the annotation process more accurately,

especially when intra-turn variability is high. This model is actually

being designed.

The aim of this paper was to propose a model for predicting

the engagement level for each turn. The next step will be to analyze

the dynamics of the engagement intra- and inter-participants. This

means to study the engagement variations for each participant and

identifies relative peaks of engagement for each of them. This also

means to analyze the interplay between participants productions,

how one participant behavior influence the other.

Compared to other works focusing on human-human

interactions the size of our dataset (approximatively 1,200 turns

after removing incorrect turns and turns for which feature values

were missing), is fairly small. Increasing it might benefit the

performance of our model. Another corpus of natural dyadic

human-human conversations is currently being annotated. Once

IPUs, feedbacks, smiles and head nodes are annotated, it will

be possible to extract turns and then proceed to engagement

annotation. At a smaller (and technical) scale, another way to

alleviate this issue could be to use data augmentation techniques

such as Smote as done in prior studies of engagement (Fedotov

et al., 2018) in order to address the issue of imbalanced classes.

6. Conclusion

In this study we designed a multimodal model to classify

engagement when participants assume the role of main speaker

in talk-in interaction. For the 3-class case an F-score of 0.60

is reached using a simple two-layer perceptron. This encourages
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exploring other avenues with regards to features extraction and

selection, annotation procedure and model building. Our results

demonstrate the importance of multimodality when automatically

estimating engagement. Combining prosodic-acoustic and mimo-

gestural features significantly improves classification performance

compared to any unimodal feature set. This finding is also

interesting insofar as prosodic information has not been the focal

point of previous works focusing on human-human interactions.

While engagement level classification at the turn level has already

been performed in the context of human-agent interactions, this

study is the first to adopt this approach when looking at human-

human conversations. This method has the benefit of making it

possible to study speaker’s and listener’s degree of engagement

separately. When focusing on the former case, it allows to exploit

a multimodal set of features. But additional challenges come with

adopting this approach that favor a more fine grained analysis

of the conversational structure, insofar as it requires detecting

speech turns based on previous annotations of IPUs and feedbacks

and sometimes makes annotating the level of engagement more

complex. Aside from improving our current model the next step

will consist in working on listeners’ engagement.
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