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Introduction: The e�ective fusion of text and audio information for categorical and

dimensional speech emotion recognition (SER) remains an open issue, especially

given the vast potential of deep neural networks (DNNs) to provide a tighter

integration of the two.

Methods: In this contribution, we investigate the e�ectiveness of deep fusion

of text and audio features for categorical and dimensional SER. We propose a

novel, multistage fusion method where the two information streams are integrated

in several layers of a DNN, and contrast it with a single-stage one where the

streams are merged in a single point. Both methods depend on extracting summary

linguistic embeddings from a pre-trained BERT model, and conditioning one or

more intermediate representations of a convolutional model operating on log-Mel

spectrograms.

Results: Experiments on the MSP-Podcast and IEMOCAP datasets demonstrate that

the two fusion methods clearly outperform a shallow (late) fusion baseline and their

unimodal constituents, both in terms of quantitative performance and qualitative

behavior.

Discussion: Overall, our multistage fusion shows better quantitative performance,

surpassing alternatives on most of our evaluations. This illustrates the potential of

multistage fusion in better assimilating text and audio information.

KEYWORDS

speech emotion recognition, multimodal fusion, speech processing, natural language

processing, machine learning

1. Introduction

Automatic emotion recognition (AER) is an important component of human-computer

interfaces, with applications in health and wellbeing, multimedia information retrieval, and

dialogue systems. Human emotions are expressed in, and can accordingly be identified from,

different modalities, such as speech, gestures, and facial expressions (Zeng et al., 2008; Calvo

and D’Mello, 2010). A plethora of previous works have thus investigated different ways to

improve AER by combining several information streams: e.g., audio, video, text, gestures, and

physiological signals. Underlying these computational approaches are distinct emotion theories,

with the two most commonly-used ones being discrete (or basic) emotion theories (Ekman, 1992)

and dimensional ones (Russell and Mehrabian, 1977). The former specifies a list of discrete

categories, e.g., “happy” or “sad,” with one or more of them being used to characterize the

emotional state of an individual at any given moment (Ekman, 1992). The latter defines a list

of dimensions over which the emotional state varies; usually, these dimensions are arousal

(emotional intensity), valence (the pleasantness of a stimulus), and dominance (degree of

control) (Russell and Mehrabian, 1977).
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Over the years, different modalities have proven more conducive

to the recognition of different emotional states. For example, video

and text have shown better performance at valence recognition,

whereas acoustic cues are better indicators of arousal (Calvo

and D’Mello, 2010; Schuller, 2018). This has led several prior

works to pursue a fusion of one or several of those to improve

performance. The dominant computational paradigm for fusing

different modalities has been that of shallow fusion (Zeng et al.,

2008; Atrey et al., 2010), where two or more modalities are first

processed independently before being merged at a single point

in the processing chain. This paradigm can be further broken

down to late, decision-level fusion and early, feature-level fusion

approaches (Zeng et al., 2008; Atrey et al., 2010). Late fusion

corresponds to training separate models for each modality and

subsequently combining their independent decisions, whereas early

fusion approaches typically train a single model using input features

derived from different modalities.

Recently, the success of deep learning (DL) has given rise to

deep fusion approaches (Tzirakis et al., 2017), which utilize the

power of deep neural networks (DNNs) to learn better multimodal

representations. Deep fusion is conceptually similar to shallow fusion,

with both jointly processing features from two or more modalities.

However, the term “deep” is used to distinguish from simple,

monolithic architectures which simply accept input features from

two modalities (Atrey et al., 2010) as these fall under the category of

shallow fusion. Instead, deep fusion architectures consists of several

differential modules, some of them unimodal and others multimodal,

which are jointly trained (Tzirakis et al., 2017). Such architectures

have been successfully utilized for several tasks, such as multimodal

AER (Tzirakis et al., 2017; Siriwardhana et al., 2020b).

In the present contribution, we are primarily interested in

speech emotion recognition (SER). Speech, as the primary mode

of human communication, is also a major conduit of emotional

expression (Calvo and D’Mello, 2010). Accordingly, SER has been

a prominent research area in affective computing for several

years (Schuller, 2018). Although it constitutes a single modality, it is

often analyzed as two separate information streams, a linguistic (what

has been said) and a paralinguistic one (how it has been said) (Calvo

and D’Mello, 2010; Schuller, 2018; Atmaja et al., 2022). However, the

two streams are not independent. Previous studies have established

that the interaction between acoustic descriptors and emotional

states depends on the linguistic content of an utterance (Scherer

et al., 1984). Moreover, text information is better suited for valence

and audio for arousal recognition (Calvo and D’Mello, 2010). As a

result, several works have attempted to more tightly integrate the

two streams in an attempt to model their complex interrelationship

and obtain more reliable recognition performance (Zeng et al., 2008;

Calvo and D’Mello, 2010; Atmaja et al., 2022).

Recently, deep fusion architectures have proven very successful

at utilizing linguistic and acoustic cues for SER (Lee et al., 2018;

Chen et al., 2019; Georgiou et al., 2019; Siriwardhana et al.,

2020b). However, most existing such methods are primarily based

on sequential models [e.g., long short-term memorys (LSTMs)]

operating on expert-based acoustic descriptors (Lee et al., 2018; Chen

et al., 2019). Whereas, such methods have a long history in the

field of SER, in recent years convolutional neural networks (CNNs)

operating on raw audio or low-level features have been shown capable

of learning good representations that lead to better performance

(Trigeorgis et al., 2016; Fayek et al., 2017; Neumann and Vu, 2017).

Thus, the combination of multistage fusion with the representation

power of CNNs for auditory processing is a natural next step in the

attempt to closely integrate the acoustic and linguistic information

streams.

Inspired by such works, we propose a novel, CNN-based

multistage fusion architecture where summary linguistic embeddings

extracted from a pre-trained language model are used to condition

multiple intermediate layers of a CNN operating on log-Mel

spectrograms. We contrast it with a single-stage DNN architecture,

where the two information streams are fused at a single point,

and a late fusion method, where unimodal models are trained

independently and their decisions are aggregated. Furthermore, we

complement our experimental results with an in-depth analysis

on two previously underresearched factors that influence model

behavior: the role of the underlying dialogue act, and the difference

between scripted vs. improvised text in an acted emotional dataset.

This analysis helps to elucidate why bimodal fusion is beneficial for

SER, and, in particular, why it benefits some dimensions and classes

more than others.

The rest of this contribution is organized as follows. We begin

by presenting an overview of related works in Section 2, with an

emphasis on single-stage and multistage fusion approaches. We then

describe our architecture and experimental settings in Section 3.

Results and analyzes are reported in Section 4. We end with a

discussion in Section 5 and our conclusion in Section 6.

2. Related work

In this section, we present an overview of related works.We begin

by a brief overview of the state-of-the-art in unimodal, either text- or

acoustic-based, AERmethods.We then present an overview of fusion

methods. For a more in-depth, recent survey on bimodal SER, we

refer the reader to Atmaja et al. (2022).

2.1. Audio-based emotion recognition

The goal of audio-based SER systems is to estimate the target

speaker’s emotion by analysing the non-verbal content of their

voice (Schuller, 2018). This is traditionally handled by extracting a

set of low-level descriptors (LLDs), such as Mel frequency ceptral

coefficients (MFCCs) or pitch, which capture relevant paralinguistic

cues (Schuller et al., 2013). From these, a set of higher-level

descriptors (HLDs) can be derived, such as statistical functionals

of the LLDs like mean or standard deviation, resulting in a vector

of fixed dimensionality which contains aggregated information over

the entire utterance. This fixed-length vector then forms the input

of a machine learning model such as a support vector machine

(SVM) (Schuller et al., 2013) or a fully connected neural network

(FCNN) (Parthasarathy and Busso, 2017).

In recent years, DNN-based methods that exploit the temporal

information inherent in LLDs have come to dominate the

modeling paradigm (Fayek et al., 2017). These fall broadly

under two categories: sequential and convolutional ones. Sequential

models, such as LSTMs, jointly process all available frame-

level LLDs. CNNs, on the other hand, operate on a subset

of LLDs which lend themselves well to the inductive biases

of convolution, typically (log-Mel) spectrograms or MFCCs
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(Fayek et al., 2017; Neumann and Vu, 2017; Zhao et al., 2021). The

recent advances in attention-based models (Vaswani et al., 2017)

have also been utilized for SER, for example by augmenting both

sequential and convolutional models with attention (Zhao et al.,

2021), or using transformer-based architectures (Wagner et al.,

2022). Finally, end-to-end methods that operate on raw audio input

have also shown competitive performance (Trigeorgis et al., 2016).

2.2. Text-based emotion recognition

We begin by noting that there is a rich body of work on

text-based sentiment detection methods. While sentiment serves an

important role in affective computing, it is nevertheless different

from emotion (Munezero et al., 2014). Providing a full definition

of both terms is beyond the scope of this work and we refer

the reader to Scherer (2000) and Munezero et al. (2014) as entry

points on this topic. For our purposes, we settle on a working

definition of sentiment as a specific disposition held toward an

object, topic, or situation (Munezero et al., 2014) and of emotion

as an (episodic) change in the affective state of an individual as a

result of external or internal stimuli (Scherer, 2000). We have thus

intentionally limited our overview to text-based methods addressing

the emotion recognition problem, with an emphasis on methods

operating on spoken, rather than written, corpora. The reader is

referred to Zhang et al. (2018) for a recent survey on text-based

sentiment detection.

Early works on text-based emotion recognition utilized affective

lexica, such as the WordNet-Affect dictionary (Strapparava et al.,

2004), to generate word-level scores, which could then be combined

using expert rules to derive a sentence-level prediction (Perikos and

Hatzilygeroudis, 2013). In recent years, the use of learnt textual

representations, like word2vec (Mikolov et al., 2013), has substituted

these methods. These representations are used as input features for

machine learning (ML) models, such as LSTMs (Tseng et al., 2021),

and the systems are trained on available emotional data.

Moreover, attention-based models (transformers) (Vaswani et al.,

2017) have shown exceptional performance on several natural

language processing (NLP) tasks. These models are usually pre-

trained on large, unlabelled corpora using some proxy task, e.g.,

masked language prediction (Devlin et al., 2019), which enables

them to learn generic text representations. They are then fine-tuned

on available emotional datasets to learn the emotion recognition

task (Siriwardhana et al., 2020b; Acheampong et al., 2021).

2.3. Shallow fusion

Early work in multimodal fusion has primarily followed the

shallow fusion paradigm (Atrey et al., 2010; Poria et al., 2017).

Several early systems depended on hand-crafted features, usually

HLDs, extracted independently for each modality, which were

subsequently processed by a fusion architecture adhering to the

early or late fusion paradigm. Early fusion corresponds to feeding

the HLDs from both information streams as input to a single

classifier. For example, Schuller et al. (2005) used acoustic HLDs and

bag-of-words (BoW) linguistic features as input to an SVM. Late

fusion, on the other hand, is achieved by training unimodal classifiers

independently, and subsequently aggregating their predictions.

The aggregation can consist of simple rules (e.g., averaging the

predictions) or be delegated to a cascade classifier (Steidl et al.,

2009).

2.4. Deep fusion

With the advent of DL, traditional, shallow fusion methods

have been substituted by end-to-end multimodal systems (Tzirakis

et al., 2017) where the different modalities are processed by

jointly-trained modules. We differentiate between single-stage and

multistage fusion.

Single-stage fusion is the natural extension of shallow fusion

methods, where the different modalities are first processed separately

by independent differentiable modules. These modules produce

intermediate unimodal representations which are then merged in

a downstream fusion module. Finally, this fusion stage is followed

by one or more output layers which process the now multimodal

representations to generate a final prediction.

Several works follow this fusion paradigm. For example, Lee

et al. (2018) first process text and audio independently using

unimodal CNNs, before combining both with cross-modal attention

and using another CNN to do the final classification. Chen et al.

(2019) use textual embeddings to attend to acoustic embeddings.

Priyasad et al. (2020) utilize attention to fuse linguistic and acoustic

representations extracted by a bidirectional long short-term memory

(bLSTM) network processing GloVe embeddings, and a SincNet

network processing raw audio, respectively. Finally, Yang et al. (2020)

leverage the power of attention-based architectures and perform

multimodal attention on the learnt representations of a BERT model

(Devlin et al., 2019).

Although thesemethods have consistently outperformed both the

unimodal baselines and shallow fusion alternatives, they nevertheless

build on independently learnt unimodal representations constructed

by modules agnostic to the presence of other modalities. In an

attempt to utilize the power of DL to learn useful representations

after several layers of processing, the community has also pursued

multistage fusion paradigms, where the processing of different

modalities is intertwined in multiple layers of a DNN. Prior

multistage fusion works are primarily based on sequential models.

Tseng et al. (2021) combine text tokens and acoustic embeddings

using a sigmoid gating function, with each gated token being the

input of a multimodal language modeling bLSTM. Georgiou et al.

(2019) extend the previous to incorporate a hierarchical fusion model

and explicitlymodel word and sentence level interactions. Zadeh et al.

(2018) propose a hierarchical, dynamic fusion graph for combining

the intermediate representations of unimodal modules.

The above works all investigate a single fusion paradigm: either

single- or multistage. It is thus not clear how those two mechanisms

fare in comparison to one another. Recently, Siriwardhana et al.

(2020b) explicitly contrast a single-stage fusion of audio and text

representations coming from vq-wav2vec (Baevski et al., 2019) and

RoBERTa (Liu et al., 2019), respectively, with a multistage, attention-

based fusion of these representations, and find that the former,

simpler mechanism gives better performance.

Our proposed multistage fusion mechanism draws inspiration

from several recent approaches in style transfer (Karras et al.,

2019), speech synthesis (van den Oord et al., 2018), denoising
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(Keren et al., 2018; Gfeller et al., 2020), and speaker adaptation

(Triantafyllopoulos et al., 2021). In general, all those approaches

utilize two DNNs: one devoted to the primary task, and a second

providing additional information through some fusion mechanism.

The two networks can be trained independently (van den Oord

et al., 2018) or jointly (Keren et al., 2018; Triantafyllopoulos et al.,

2021). The fusion mechanisms utilized in these works all operate

on the same principle: the embeddings produced by the secondary

network modulate the output of several (usually all) convolution

layers of the primary network either by shifting or a combination

of scaling and shifting. We use shifting as it is simpler and more

stable. This fusion mechanism has the advantage of injecting the

additional information in multiple layers of a model; these layers can

thus specialize on learning the necessary features conditioned on this

additional information, rather than having to learn generic ones.

3. Methods

In this section, we present our proposed multi-stage fusion

architecture and baselines in Section 3.1, as well as our datasets in

Section 3.2 and experimental setup in Section 3.3.

3.1. Architectures

The focus of the current contribution is on tightly integrating

acoustic and linguistic information. This is achieved by proposing a

multistage fusion approach where linguistic embeddings condition

several intermediate layers of a CNN processing audio information.

The overall architecture comprises of two constituent networks: a

(pre-trained) text-based model that provides linguistic embeddings

and an auditory CNN whose intermediate representations are

conditioned on those embeddings.

The two unimodal architectures can obviously be trained

independently for emotion recognition and their predictions can be

aggregated in a straightforward way (e.g., by averaging) to produce

a combined output. This simple setup is used in some of our

experiments as a shallow (late) fusion baseline. Additionally, the two

information streams can be combined in single-stage fashion, with

the linguistic embeddings fused at a single point with the embeddings

generated by the CNN; a setup which forms a deep fusion baseline

with which to compare our method.

As our unimodal text model, we use BERT (Devlin et al.,

2019), a pre-trained model with a strong track-record on several

NLP tasks. The BERT model has an identical architecture with

the transformer encoder originally proposed by Vaswani et al.

(2017). BERT, embeddings of which are employed in our fusion

approaches, consists of twelve transformer blocks. Each of them

contains one self-attention layer with twelves heads and a hidden

size (H) of 768, followed by a 2-layer feed-forward network with

hidden size of 4 · H. Each of these two sub-networks is in turn

followed by layer normalization and has a residual connection around

them. The input embeddings to the BERT model are defined as

the sum of token embeddings, sentence embeddings, and position

embeddings. BERT’s deep contextualized word representations are

pre-trained with self-supervised learning on two pre-training tasks

and a large amount of unlabelled text data. In the first pre-training

task, masked language modeling, masked input tokens are predicted

via the corresponding final output vector which rests upon contextual

information from the other input tokens. The other pre-training

task—next sentence prediction—considers the binarised problem of

whether one sentences comes after another.

As our baseline acoustic model, we use the CNN14 architecture

introduced by Kong et al. (2020), which was found to give good

performance for emotional dimensions (Triantafyllopoulos and

Schuller, 2021). While pre-trained speech transformer models have

shown better performance than CNNs in recent years, they are

unsuitable for our method, as they are only better when pre-

trained on an upstream (e.g., self-supervised) task, and injecting

linguistic information in their earlier layers would break this pre-

training (Wagner et al., 2022). In contrast, CNN models can

be trained from scratch more effectively on (generally limited)

emotional datasets.

CNN14 consists of 12 convolution layers and 2 linear ones,

with mean and max pooling following the last convolution layer to

aggregate its information over the time and frequency axes. CNN14

follows the VGG architecture design. It consists of 6 convolutional

blocks of two convolutional layers each, with each block followed

by max pooling. All convolutional layers are using a 3 × 3 kernel

and a stride of 1 × 1, whereas max pooling layers use a stride of

2 × 2. After the last convolution layer, features are pooled using

both mean and max pooling, and subsequently fed into two linear

layers. Dropout with a probability of 0.2 is applied after every

each convolution block. As features, we use log-Mel spectrograms

computed with 64 Mel bins, a window size of 32ms, and a hop

size of 10ms, similar to the original authors. Our sampling rate

for all experiments is 16 kHz. The network can process an audio

feature sequence of arbitrary length due to its mean and max

pooling mechanism, which is what we do during test time. During

training, we randomly crop all sequences to the same length so

we can process them in batches, as is the common practice in

audio processing (Neumann and Vu, 2017). For our experiments,

we choose 5 s as our constant utterance length during training

time. In principle, our approach can also be combined with recent

advances in handling variable length sequences during training

(Lin and Busso, 2021).

These unimodal networks form the building blocks of our fusion

methods, which are illustrated in Figure 1. Both architectures first

pass the text input through a pre-trained BERT model, and then use

it to condition one or more layers of the CNN14 base architecture.

For the purposes of this work, we chose not to fine-tune the layers of

the pre-trained BERT when using it in the fusion architectures. This

was done because, as also shown by our experiments, BERT is a very

powerful model capable of achieving very high performance on its

own (when fine-tuned on the target task). However, our emphasis is

primarily on investigating the behavior of deep fusion architectures.

Fine-tuning BERT alongside CNN14 might confound our findings

on how these fusion architectures behave. Nevertheless, we expect

that jointly fine-tuning both models would result in even better

performance, as shown by recent works (Siriwardhana et al., 2020b).

Our proposed multistage fusion method, shown in Figure 1A,

relies on fusing linguistic representations in the form of embeddings

extracted from a pre-trained BERTmodel with the intermediate layer

outputs of an acoustics-based CNN model. Linguistic embeddings

are computed by averaging the token-embeddings returned by BERT

for each utterance. Similar to prior works (Keren et al., 2018;

Triantafyllopoulos et al., 2021), we use the averaged embeddings to

shift the intermediate representations of each block. Given an input

XXX ∈ R
Tin×Fin to each convolution block, with T and F being the
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FIGURE 1

Diagrams of the architectures used in this work illustrating the processing of a single utterance. (A) MFCNN14: Multistage fusion architecture. (B)

SFCNN14: Single-stage fusion architecture. The same architecture was used for the baseline CNN14, but without the fusion.

number of time windows and frequency bins, respectively, and the

average BERT embeddings EEEL ∈ R
Ldim , the output, YYY ∈ R

Tout×Fout , is

computed as follows:

HHH1 =ReLU(BN(CONV(XXX))), (1)

HHH2 =ReLU(BN(CONV(HHH1))), (2)

H3H3H3 =MaxPool(HHH2), and (3)

YYY =HHH3 + PROJ(EEEL), (4)

Where ReLU stands for the rectified linear unit activation

function (Nair and Hinton, 2010), BN for batch normalization (Ioffe

and Szegedy, 2015), and CONV for 2D convolutions. The projection

(PROJ) is implemented as a trainable linear layer which projects

the input embeddings EEEL to a vector, EEEP ∈ R
Fout , with the same

dimensionality as the output feature maps:

EEEP =WWW × EEEL + bbb, (5)

Where WWW and bbb are the trainable weight and bias terms,

respectively. Thus, this conditioning mechanism is tantamount to

adding a unique bias term to each output feature map of each

convolution block.

The single-stage fusion architecture integrates acoustics and

linguistics at a single point: immediately after the output of the

last CNN14 convolution layer. The linguistic embeddings are first

projected to the appropriate dimension, and then added to the

acoustic representations produced by the convolution network. The

shallow fusion architecture is shown in Figure 1B.

3.2. Datasets

3.2.1. IEMOCAP
We use the Interactive Emotional Dyadic Motion Capture

(IEMOCAP) dataset (Busso et al., 2008), a multimodal emotion

recognition dataset collected from 5 pairs of actors, each acting a

set of scripted and improvised conversations, resulting in a total

of 10, 039 utterances. It has been annotated for the emotional

dimensions of arousal, valence, and dominance on a 5-point Likert

scale, with individual ratings averaged over all annotators to

produce the gold standard. It has also been annotated for the

emotion categories of neutral, excited, surprised, happy, frustrated,

sad, angry, afraid, and disgusted. The dataset additionally contains

gold standard transcriptions, which we use in our experiments. As

IEMOCAP does not contain official train/dev/test splits, we follow

the established convention of evaluating using leave-one-speaker-out

(LOSO) cross-validation (CV) (Poria et al., 2018; Latif et al., 2020;

Priyasad et al., 2020; Tseng et al., 2021), where we use all utterances

of each speaker once as the test set, each time using the utterances of

their pair as the validation set, resulting in a total of 10 folds.

3.2.2. MSP-Podcast
MSP-Podcast (Lotfian and Busso, 2019) is a recently-introduced

data set for SER. The dataset is constantly growing and new

releases are made every year; we used version v1.7, which was

the latest one available to us for our experiments. It is split into
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speaker independent partitions, with a training set consisting of

38, 179 segments, a development set of 7, 538 segments, collected

from 44 speakers (22 male–22 female), and a 12, 902 segment test

set, consisting of 60 speakers (30 male–30 female). The dataset

has been annotated for the emotional dimensions of arousal,

valence, dominance, as well as for the emotion categories of angry,

contemptful, disgusted, afraid, happy, neutral, sad, and surprised. The

emotional dimensions have been annotated on a 7-point Likert scale

on the utterance level, and scores by individual annotators have been

averaged to obtain a consensus vote. All experiments onMSP-Podcast

are performed on the official train/dev/test splits.

As we have no ground truth transcriptions for MSP-Podcast, we

generated them automatically using an open-source implementation

of DeepSpeech2 (Amodei et al., 2016).1 Whereas, other works have

used more advanced, proprietary models (Pepino et al., 2020), we

opted for a widely-used open-source alternative for reproducibility.

However, this model achieves a worse automatic speech recognition

(ASR) performance than that of proprietary models. As it has been

shown by several previous works that the performance of text-based

and fusion approaches improves with better ASR models (Yoon

et al., 2018; Sahu et al., 2019), we also expect our method to yield

correspondingly better results, and do not consider this a critical

limitation of our work.

3.3. Experimental procedure

As discussed in Section 1, we considered both a categorical and

a dimensional model of emotion. For discrete emotion recognition,

most works on the two datasets considered here pursue a 4-class

classification problem, utilizing the emotion classes of {angry, happy,

neutral, sad}, while further fusing the emotion class of excited

with that of happy for IEMOCAP (Atmaja et al., 2022). To make

our results comparable, we followed this formulation as well. For

these experiments, we report unweighted average recall (UAR) (%),

the standard evaluation metric for this task which also accounts

for class imbalance, and additionally show confusion matrices. To

mitigate the effect of class imbalance, which, as seen in Figure 2,

is particularly pronounced for MSP-Podcast, we used a weighted

variant of cross-entropy, where the loss for each sample is weighted

by the inverse frequency of the class it belongs to. For dimensional

SER, where we have continuous values for the dimensions of arousal,

valence and dominance, we formulated our problem as a standard

regression task and evaluated based on concordance correlation

coefficient (CCC)—the standard evaluation metric for dimensional

emotion (Parthasarathy and Busso, 2017; Li et al., 2021)—and

also trained with the CCC loss, which is averaged over the 3

dimensions (Parthasarathy and Busso, 2017; Li et al., 2021).

However, multi-tasking potentially entangles the three

dimensions and therefore complicates our analysis. Moreover,

whereas the CCC loss is widely used for emotional dimension

modeling, it is not the standard loss for regression tasks. Thus, we

begin by considering single-task models trained with the standard

mean squared error (MSE) loss.

We performed our experiments by separately training on

IEMOCAP and MSP-Podcast. As mentioned, we performed 10-fold

1 https://github.com/mozilla/DeepSpeech

LOSO CV for the first and use the official train/dev/test partitions

for the latter. We also report cross-domain results. Cross-domain

results were obtained by evaluating models trained with one dataset

on the other. For MSP-Podcast, where a single model was trained, we

evaluated it on the entire IEMOCAP dataset. For IEMOCAP, where

10 models were trained for each experiment, we evaluated all 10

of them on the test set of MSP-Podcast, and computed the average

performance metric for each task. As the emotional dimensions of

the two datasets are annotated with different scales (5-point scale for

IEMOCAP and 7-point scale for MSP-Podcast), we evaluated cross-

corpus performance using Pearson correlation coefficient (PCC)

instead of CCC, as the former is unaffected by differences in the scale.

For each dataset and task, we thus always perform the

following experiments:

• CNN14: the unimodal, acoustics-only baseline,

• SFCNN14: our single-stage fusion architecture,

• MFCNN14: our multistage fusion architecture.

All models were trained for 60 epochs with a learning rate of 0.01

and a batch size of 64 using stochastic gradient descent (SGD) with a

Nesterov momentum of 0.9. We selected the model that performed

best on each respective validation set. In order to avoid statistical

fluctuations due to random seeds, we ran each experiment 5 times

and report mean and standard deviation.

Additionally, for some configurations, we fine-tuned the pre-

trained BERT model, a practice which has recently emerged as the

standard linguistic baseline showing strong performance on several

NLP tasks. As pre-trained model, we selected bert-base-uncased

distributed by Huggingface2 with a final linear layer. As in the other

experiments, we use the weighted cross-entropy loss for classification,

the MSE loss for single task regression, the MSE loss for single-

task experiments, and the mean CCC loss averaged over all targets

for multitask regression. For all conditions, the maximum token

length was set to 128, and the batch size to 32. For fine-tuning,

we chose the Adam optimiser with fixed weight decay (learning

rate: 2e–5, betas: 0.9 and 0.999, epsilon: 1e–06, weight decay: 0.0,

no bias correction), and a linear schedule with 1, 000 total and 100

warmup steps. We trained for 4 epochs with early stopping based on

a UAR or CCC decrease on the development set for classification and

regression, respectively.

4. Results

In this section, we begin by presenting our results on emotional

categories in Section 4.1 and dimensions in Section 4.2, followed

by our analysis on dialogue acts in Section 4.3 and on scripted vs.

improvised conversations in IEMOCAP in Section 4.4.

4.1. Emotional categories

We begin by considering the 4-class emotion classification

problem discussed in Section 3. Table 1 presents in- and cross-

domain results on MSP-Podcast and IEMOCAP for both unimodal

baselines and both fusion methods. Interestingly, CNN14 performs

2 https://huggingface.co/bert-base-uncased
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FIGURE 2

Distribution of emotion categories for MSP-Podcast (left) and IEMOCAP (right) for the herein considered 4-class classification problem using the {angry,

happy, neutral, sad} categories. For IEMOCAP, “excited” samples are fused with “happy” ones.

TABLE 1 UAR(%) in- and cross-domain results for 4-class emotion

recognition (chance level: 25%).

Train MSP-Podcast IEMOCAP

Test MSP-
Podcast

IEMOCAP IEMOCAP MSP-
Podcast

UAR UAR UAR UAR

BERT 48.9 (0.4) 45.0 (0.7) 71.1 (0.2) 40.5 (0.1)

CNN14 48.3 (0.6) 41.3 (2.9) 55.8 (1.0) 31.5 (1.9)

SFCNN14 56.0 (1.3)∗† 46.4 (3.9) 64.1 (0.7)∗† 33.3 (1.8)∗†

MFCNN14 54.2 (0.8)∗† 46.4 (2.0)∗ 72.6 (0.7)∗† 35.6 (2.1)∗†

MSP-Podcast in-domain results computed on the official test set, whereas IEMOCAP in-domain

results correspond to leave-one-speaker-out cross-validation, where data from each speaker is

used once as the test set and the other speaker in their session is used as the development set.

Cross-domain results are reported on the official test set for MSP-Podcast and the entire dataset

for IEMOCAP. Average (and standard deviation) results computed over 5 runs. Fusion results

(SFCNN14 andMFCNN14) that are significantly different than the unimodal baselines (CNN14

and BERT) as determined by two-sided independent t-tests (p < 0.05) are marked by ∗ and †,

respectively. Bold values specify the best-performing model in each (sub-)table and column.

worse than BERT on both MSP-Podcast, with a UAR of 48.3 vs.

48.9%, and on IEMOCAP (55.8 vs. 71.1%), while also achieving

the best cross-corpus performance when training on IEMOCAP and

evaluating on MSP-Podcast. This shows that linguistics carry more

emotional information on both datasets, but more so for IEMOCAP.

On the one hand, this could be due to the noisy transcriptions

used for MSP-Podcast. On the other hand, this dataset is more

naturalistic than IEMOCAP, where actors could have relied more on

text for conveying their emotions, especially in the case of scripted

conversations.

Bimodal fusion leads to consistently higher performance

compared to CNN14. Both architectures perform significantly

better than the unimodal audio baseline for both datasets,

with SFCNN14 performing slightly better on MSP-Podcast,

and MFCNN14 considerably outperforming it on IEMOCAP.

Moreover, in the case of IEMOCAP, only MFCNN14 is better

than BERT, whereas SFCNN14 is significantly worse than it.

In terms of cross-corpus results, the two fusion models yield

the same performance when trained on MSP-Podcast and

tested on IEMOCAP, with MFCNN14 being better on the

reverse setup. In both cases, performance is severely degraded,

which illustrates once more the challenges associated with

cross-corpus AER.

With respect to the state-of-the-art, Pepino et al. (2020)

outperforms our best result (59.1 vs. 56.0%). We attribute this

performance difference to the fact that they obtained their

transcriptions with Google ASR, which has better performance than

the open-source DeepSpeech2, and thus led to better performance

on the linguistics. This is further corroborated by differences in the

case of IEMOCAP as well, where our BERT model obtains better

performance than their unimodal text model(71.1 vs. 55.2%), albeit

with the caveats on scripted conversations raised by Pepino et al.

(2020) and discussed further in Section 4.4. Thus, we expect both

our BERT and fusion models to yield even better performance as the

quality of transcriptions improves, in line with previous works (Yoon

et al., 2018; Sahu et al., 2019; Amiriparian et al., 2021).

Priyasad et al. (2020), on the other hand, is showing overall

stronger performance for IEMOCAP. However, their unimodal audio

model is already substantially better than ours (69.9 vs. 55.8%),

indicating that our fusion approach could further improve when

combined with a stronger unimodal baseline. Therefore, we conclude

that while our performance does not surpass what is reported by

other works, it still fares competitively well, and would benefit from

improvements (e.g., better unimodal baselines or ASR) introduced in

those works.

Figure 3 additionally shows the confusion matrices for the best

performing models (based on the validation set) on the MSP-Podcast

test set. For both CNN14 and BERT, we observe poor performance,

with large off-diagonal entries. Notably, BERT is better at recognizing

happy and neutral while CNN14 is better for angry and sad. For

CNN14, the most frequent misclassifications occur when happy is

misclassified into angry and neutral into sad. The latter is particularly

problematic as more neutral samples are classified as sad (1, 596) than

neutral (1, 216).

These problems are largely mitigated through the use of

multimodal architectures. The improvements introduced by both

SFCNN14 and MFCNN14 are mostly concentrated on the happy

and neutral classes, where the true positive rate (TPR) improves by

+33/39 and +47/27%, respectively. However, the two architectures

exhibit a different behavior on their off-diagonal entries. MFCNN14

substantially worsens the false positives on the happy class, with a

large increase on the amount of angry (+35%), neutral (+84%), and

sad (+122%) samples misclassified as happy. In contrast, SFCNN14

exhibits only a minor deterioration (+13%) on neutral to happy

misclassifations. This illustrates that, although the UAR of both

models, as shown in Table 1, is comparable for MSP-Podcast, the
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FIGURE 3

Confusion matrices for the 4-class emotion classification task on MSP-Podcast. For each approach, we show results for the best performing seed. For the

two fusion models, we additionally show % change with respect to CNN14 for easier comparison. (A) BERT, (B) CNN14, (C) SFCNN14, and (D) MFCNN14.

more granular view provided by the confusion matrices clearly

positions SFCNN14 as the winning architecture for this experiment.

Overall, our results clearly demonstrate that the proposed deep

fusion methods can lead to substantial gains compared to their

baseline, unimodal counterparts. MFCNN14 shows a more robust

behavior with respect to the different datasets, whereas SFCNN14

shows more desirable properties in terms of confusion matrices.

4.2. Emotional dimensions

After evaluating ourmethods on categorical emotion recognition,

we proceed with modeling emotional dimensions. As discussed

in Section 3, we begin with single-task models trained with an

MSE loss in Section 4.2.1, which allows us to study the effects of

fusion independently for each dimension. Then, in Section 4.2.2, we

investigate the combination of our methods with multi-task training

and a CCC loss, which, in line with previous works, enables us to

obtain better performance.

4.2.1. Single-task models
Our first experiments are performed on the emotional

dimensions of MSP-Podcast and IEMOCAP. In Table 2, we

report CCC and PCC results for in-domain and cross-domain

performance, respectively. The performance of both fusion models

is compared to that of the baseline CNN14 using two-sided

independent sample t-tests.

The best performance on valence, both in- and cross-domain is

achieved by MFCNN14, which reaches a mean CCC of 0.407 on

MSP-Podcast and 0.664 on IEMOCAP. This is significantly higher

than CNN14 and considerably outperforms SFCNN14, showing that

multistage fusion can better utilize the textual information in this

case. Cross-domain performance is severely degraded when training

on IEMOCAP and testing on MSP-Podcast, while not so much when

doing the opposite. This illustrates how training on large, naturalistic

corpora leads to better generalization for SER systems, both unimodal

and bimodal ones.

In the case of arousal, CNN14 performs better on MSP-Podcast

with an average CCC of 0.664 (vs. 0.620 and 0.627 for SFCNN14

and MFCNN14), but this difference is not statistically significant.

On IEMOCAP, MFCNN14 shows a marginally better performance

than CNN14, while SFCNN14 is significantly worse than its unimodal

baseline. This curious case shows how additional information can

also hamper the training process. We hypothesize that this is because

textual information is not conducive to arousal modeling, and leads it

to perform worse on this task. This is corroborated by BERT models

trained to jointly predict arousal/valence/dominance presented in
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TABLE 2 CCC/PCC in-/cross-domain results for emotional dimension prediction using single-task models trained with an MSE loss.

Train MSP-Podcast

Test MSP-Podcast IEMOCAP

Arousal Valence Dominance Arousal Valence Dominance

CCC CCC CCC PCC PCC PCC

CNN14 0.664 (0.036) 0.217 (0.010) 0.583 (0.022) 0.593 (0.009) 0.323 (0.018) 0.471 (0.019)

SFCNN14 0.620 (0.025) 0.367 (0.018)∗ 0.523 (0.019)∗ 0.543 (0.019)∗ 0.328 (0.026) 0.417 (0.014)∗

MFCNN14 0.627 (0.010) 0.407 (0.009)∗ 0.539 (0.011)∗ 0.558 (0.015)∗ 0.381 (0.017)∗ 0.470 (0.017)

Train IEMOCAP

Test IEMOCAP MSP-Podcast

Arousal Valence Dominance Arousal Valence Dominance

CCC CCC CCC PCC PCC PCC

CNN14 0.618 (0.010) 0.385 (0.015) 0.424 (0.020) 0.418 (0.008) 0.087 (0.010) 0.438 (0.007)

SFCNN14 0.551 (0.019)∗ 0.622 (0.007)∗ 0.438 (0.013) 0.271 (0.017)∗ 0.212 (0.004)∗ 0.210 (0.024)∗

MFCNN14 0.628 (0.005) 0.664 (0.005)∗ 0.503 (0.006)∗ 0.432 (0.006)∗ 0.219 (0.005)∗ 0.365 (0.008)∗

MSP-Podcast in- and cross-domain results computed on the test set, whereas IEMOCAP in-domain results correspond to leave-one-speaker-out cross-validation and cross-domain results reported

on the entire dataset. Average (and standard deviation) results computed over 5 runs. Fusion results (SFCNN14 and MFCNN14) that are significantly different than the unimodal baseline (CNN14)

as determined by two-sided independent sample t-tests (p < 0.05) are marked by ∗ . Bold values specify the best-performing model in each (sub-)table and column.

Section 4.2.2. As mentioned in Section 3, we did not train BERT

models for each dimension in isolation to reduce the computational

load of our experiments; thus, we return to this point in Section 4.2.2.

Finally, we note that cross-domain performance for arousal, while

also lower than in-domain performance, is not as low as valence,

especially for CNN14. Interestingly, PCC on IEMOCAP for CNN14

models trained on MSP-Podcast is now significantly higher than the

PCC obtained by either SFCNN14 or MFCNN14 (0.593 vs. 0.543 and

0.558, respectively). On the contrary, MFCNN14 shows significantly

better performance on the opposite setup (0.432 vs. 0.418 PCC) than

CNN14, while SFCNN14 remains significantly worse. This illustrates

once more that the paralinguistic information stream carries more

information on arousal than the linguistic one, and models trained

on that can generalize better across different datasets.

Results on dominance follow the trends exhibited by arousal.

CNN14 is significantly better than SFCNN14 and MFCNN14 on

in-domain MSP-Podcast results (0.583 vs. 0.523 and 0.539), but,

in the case of MFCNN14, this large in-domain difference does

not translate to better cross-domain generalization, as both models

are nearly equivalent on IEMOCAP PCC performance (0.471 vs.

0.470). This tendency is reversed on IEMOCAP; there MFCNN14

achieves significantly better in-domain results (0.503 vs. 0.424), but

shows evidence of overfitting by performing significantly worse cross-

domain (0.365 vs. 0.438).

Overall, our results show that bimodal fusion significantly

improves performance on the valence dimension both in- and cross-

domain for both datasets, with MFCNN14 achieving consistently

superior performance to SFCNN14. For the case of MSP-Podcast,

the other two dimensions fail to improve, while for IEMOCAP

they improve only in-domain, and only for MFCNN14, while

SFCNN14 performs consistently worse than CNN14. As we discuss

in Section 4.2.2, this is because BERT is not good at modeling

arousal and dominance, and this propagates to the fusion models.

It thus appears that linguistic information, which by itself is not

adequate to learn the tasks, hampers the training process and results

TABLE 3 CCC results for emotional dimension prediction using multi-task

models on MSP-Podcast trained with a CCC loss.

Architecture Arousal Valence Dominance

CCC CCC CCC

BERT 0.232 (0.006) 0.503 (0.003) 0.214 (0.008)

CNN14 0.660 (0.012) 0.291 (0.029) 0.578 (0.011)

SFCNN14 0.665 (0.008)† 0.497 (0.013)∗† 0.598 (0.025)†

MFCNN14 0.678 (0.005)∗† 0.521 (0.004)∗† 0.604 (0.001)∗†

Models trained to jointly optimize the CCC for all dimensions. Average (and standard

deviation) results reported over 5 runs. Fusion results (SFCNN14 and MFCNN14) that are

significantly different than the unimodal baselines for each dimension as determined by two-

sided independent sample t-tests (p < 0.05) are marked by ∗ (for CNN14) and † (for BERT).

Bold values specify the best-performing model in each (sub-)table and column.

in worse fusion models as well. This undesirable property seems to

affect SFCNN14 more strongly than MFCNN14, which is able to

circumvent it, and, in some cases, benefit from linguistic information.

Thus, in the case of dimensional emotion recognition, MFCNN14 so

far shows a better behavior than SFCNN14.

4.2.2. Multi-task models
We end our section on emotional dimensions by considering a

multi-task problem with a CCC loss. This is motivated by several

recent works who have gotten better performance by switching to

this formulation (Parthasarathy and Busso, 2017; Li et al., 2021).

To reduce the footprint of our experiments, we only evaluate this

approach on MSP-Podcast. CCC results for 5 runs are shown in

Table 3. As previously discussed, Table 3 additionally includes results

with a fine-tuned BERT model. As expected, we observe that BERT

performs much better than CNN14 on valence prediction (0.503

vs. 0.291), but lacks far behind on arousal (0.232 vs. 0.660) and

dominance (0.214 vs. 0.578). This clearly illustrates how the two
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FIGURE 4

Error residual plots for arousal (left), valence (middle), and dominance (right). Linear curves fitted on error residuals (en = ynt − ynp ) for each architecture

and dimension and plotted against the gold standard (ynt ). With the exception of SFCNN14 on arousal, all models show higher errors toward the edges of

their scale. Plots best viewed in color.

streams, acoustics and linguistics, carry complementary information

for emotion recognition.

Both fusion methods improve on all dimensions compared to

CNN14. In particular, MFCNN14 is significantly better on all three

dimensions (0.678 vs. 0.660, 0.521 vs. 0.291, and 0.604 vs. 0.578),

whereas SFCNN14 is significantly better only for valence (0.497

vs. 0.291) but not for arousal (0.665 vs. 0.660) and dominance

(0.598 vs. 0.578). Moreover, of the two fusion methods, only

MFCNN14 significantly improves on valence performance compared

to BERT (0.521 vs. 0.503), while SFCNN14 performs marginally

(but significantly) worse (0.497). This demonstrates once more that

multistage fusion can better utilize the information coming from the

two streams.

Finally, we are interested in whether the models show a

heteroscedastic behavior by examining their error residuals. To this

end, we pick the best models on the validation set and examine their

residuals. Figure 4 shows fitted linear curves on the error residuals for

each model and task. We use fitted curves for illustration purposes as

superimposing the scatterplots for each model would make our plots

uninterpretable. The curves are least-squares estimates over all error

residuals. Our analysis reveals that most models show non-uniform

errors, with their deviation from the ground truth increasing as we

move away from the middle of the scale. This ‘regression toward the

mean’ phenomenon is highly undesirable, especially for real-world

applications where users would observe a higher deviation from their

own perception of a target emotion for more intense manifestations

of it.

SFCNN14 is the only model which escapes this undesirable

fate, primarily for arousal and dominance. BERT, in contrast,

shows the worst behavior for those two dimensions, but is

comparable to SFCNN14 for valence. CNN14 and MFCNN14

show improved a much behavior compared to BERT, but

some bias still appears, with the late fusion baseline naturally

falling in the middle between BERT and CNN14. For valence,

SFCNN14 and MFCNN14 both closely follow BERT in

showing a low, but nevertheless existent bias, while CNN14

performs worse.

Interestingly, the residuals are also showing an asymmetric

behavior. For valence, in particular, CNN14 is showing higher

errors than the other models for the upper end of the scales,

but is comparable to them for the lower end. Conversely,

BERT shows higher errors for the lower end of arousal and

dominance. This indicates that models struggle more with the

scales. Naturally, this is partly explained by the sparseness

of data for the more extreme values, as naturalistic datasets

tend to be highly imbalanced toward neutral. Nevertheless,

this continues to pose a serious operationalisation problem for

AER systems.

4.3. Dialogue act analysis

We continue our analysis with an investigation of the interactions

between dialogue acts and model performance. This gives us

another lens with which to analyze model behavior w.r.t.the added

linguistic knowledge.

Previous studies in psychology have established that the

interaction between acoustic descriptors and emotional states

depends on the linguistic content of an utterance. In addition to

the case of questions discussed in Section 1 (Scherer et al., 1984),

the frequency code hypothesis postulated by Ohala (1994), if applied

to dialogue acts, predicts low or falling F0 in dialogue acts with

inherently higher dominance (e.g., statements expressing a stance).

For low-dominance dialogue acts in contrast (e.g., yes/no questions

when expressing a request to the interlocutor), the hypothesis

predicts high or rising F0. Such characteristic prosodic properties,

which are utilized in dialogue act classification models (Shriberg

et al., 1998), constrain the range of the unmarked dialogue act

acoustics. To this end, linguistic information can establish reference

points, with paralinguistics impacting speech acoustics relative to

those. For example, in many languages statements are characterized

by a falling F0. A rising F0 in such statements can thus work

as a paralinguistic signal indicating increased insecurity and low

dominance. Conversely, in many languages F0 in yes/no questions

is usually rising. A falling F0 in these questions would then serve as a

paralinguistic signal indicating impatience and high dominance.

This means that for certain emotional categorisations, acoustic

information alone is not sufficient. This raises the question

whether the benefits in performance obtained by adding linguistic

information are exclusively attributable to the predictive power of

BERT embeddings, which have been shown to contain information

relevant for several natural language understanding (NLU) tasks
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FIGURE 5

Box plots showing the distribution of error residuals (ē =
∑N

1 en =
∑N

1 ynt − ynp ) for emotional dimension prediction on IEMOCAP for (left to right) CNN14,

BERT, LF, SFCNN14, and MFCNN14. Error residuals show if models are consistently under- (en > 0) or over-predicting (en < 0) the respective dimension

for specific dialogue acts. Dialogue act taxonomy comprises of: acknowledgment (a), agreement (ag), answer (ans), apology (ap), backchanneling (b),

command (c), disagreement (d), greeting (g), opinion (o), question (q), statement (non-opinion) (s), and other (oth).

(Wang et al., 2018), or if information about the linguistic structure

of the utterance is important as well.

One particular facet of the linguistic structure that is known to

impact acoustics are dialogue acts. Dialogue acts can be predicted

both by prosodic and lexical cues, with the latter being more

effective (Shriberg et al., 1998; Stolcke et al., 2000). Moreover, (Saha

et al., 2020) recently investigated the relationship between dialogue

acts and text-based emotion recognition using two emotional

datasets, one of them IEMOCAP, and found that jointly modeling

both can improve emotion recognition performance. They released

their dialogue act annotations,3 thus opening a new avenue of

exploration for the interaction between the underlying linguistic

content and model performance. In total, the following dialogue acts

have been annotated: acknowledgment, agreement, answer, apology,

back-channeling, command, disagreement, greeting, opinion, question,

statement (non-opinion), and other.

We use this additional information to investigate hidden biases

in our dimensional models, and investigate how the proposed fusion

methods deal with them. Specifically, we are interested in whether

model performance changes w.r.t.the dialogue act. This is measured

by looking at the error residual of each sample in the dataset:

en = ynt − ynp , (6)

Where ynt and ynp are the label and prediction for sample

n, respectively. A negative error means that the model is

over-predicting, whereas a positive one is an indication

of under-prediction.

What we are interested in is whether a given model is consistently

over-/under-predicting for specific dialogue acts. In particular, the

presence of bias for the acoustics-only CNN14, and its subsequent

alleviation by the introduction of linguistic information, would

be indicative of more complex interactions between acoustics and

linguistics, rather than the linguistic information being merely used

for its predictive power. As an example, consider the case discussed

by Scherer et al. (1984). An acoustic model that was confronted

by two different ways to express ‘positivity’ (i.e., , valence), namely

both rising and falling F0 contours for different types of questions,

3 https://github.com/sahatulika15/EMOTyDA

would struggle to learn this complex relationship, which would

require some understanding of the underlying linguistic context of

an utterance. Failing to do that, it might revert to learning just one

of those contradictory patterns, e.g., the one for which more data is

available. Linguistic information would resolve this issue by helping

to differentiate between wh- and yes/no questions; this would inform

the bimodal model to treat the two question types differently and

learn the correct acoustic pattern for each one.

To evaluate this, we investigate the best-performing IEMOCAP

models (based on overall CV performance) introduced in

Section 4.2.1. In addition, we train a single BERT model (using

LOSO CV) for each dimension of IEMOCAP, and furthermore

compute late fusion (LF) results by averaging the predictions of

BERT and CNN14; this forms our simple, shallow fusion baseline.

Figure 5 shows the distribution of residuals for each dialogue act.

For a systematic evaluation of bias, we also performed two-sided one-

sample t-tests for a sample mean of 0 of the error residuals. Rejecting

the null hypothesis means the model shows a biased prediction for a

particular dialogue act. We use a significance level of 0.05. P-values

are shown in Table 4.

We begin our discussion by considering each dimension

separately, starting with arousal. CNN14 and LF are generally

over-predicting for most dialogue acts. In contrast, BERT is only

moderately over-predicting for answers (p = 0.005) and opinions

(p = 0.002). SFCNN14 improves on that by only (slightly)

over-predicting on answers (p = 0.043). On the contrary,

MFCNN14 is showing a highly biased behavior and follows an

over-prediction trend.

For valence, CNN14 and LF again show a biased behavior

for all acts except agreement (p = 0.627) and question

(p = 0.104). Here, however, the biases are more inconsistent;

for instance, acknowledgments and greetings are under-predicted,

whereas apologies and disagreements are over-predicted. BERT is

oncemore showing a balanced behavior; this time, the null hypothesis

is only rejected for backchanneling (p = 0.027). This is nowmirrored

by both SFCNN14 and MFCNN14, for which the null hypothesis is

rejected only for agreement (p = 0.037) and backchanneling (p =

0.021), respectively.

Dominance is the only dimension for which CNN14 and LF show

a balanced behavior. BERT is once again stable, with the exception
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TABLE 4 P-values from a two-sided t-test for 0-mean error residuals for emotional dimension prediction on IEMOCAP stratified for the di�erent dialogue

acts.

Arousal Valence Dominance

CNN14 BERT LF SF MF CNN14 BERT LF SF MF CNN14 BERT LF SF MF

a 0.005 0.961 0.079 0.706 0.031 0.001 0.396 0.007 0.242 0.631 0.644 0.517 0.907 0.773 0.206

ag 0.000 0.402 0.000 0.928 0.002 0.627 0.585 0.545 0.037 0.422 0.000 0.330 0.000 0.320 0.000

ans 0.000 0.005 0.000 0.043 0.000 0.000 0.836 0.017 0.544 0.603 0.000 0.000 0.000 0.000 0.000

ap 0.000 0.971 0.060 0.897 0.520 0.000 0.909 0.003 0.540 0.896 0.000 0.464 0.012 0.082 0.002

b 0.000 0.290 0.000 0.081 0.000 0.001 0.027 0.001 0.185 0.021 0.000 0.363 0.000 0.556 0.143

c 0.000 0.789 0.001 0.604 0.000 0.000 0.477 0.000 0.915 0.869 0.197 0.217 0.965 0.016 0.000

dag 0.000 0.571 0.000 0.068 0.000 0.000 0.929 0.000 0.423 0.578 0.281 0.056 0.628 0.163 0.000

g 0.915 0.590 0.715 0.728 0.621 0.005 0.316 0.318 0.440 0.665 0.147 0.148 0.125 0.120 0.014

o 0.000 0.002 0.000 0.879 0.000 0.000 0.507 0.000 0.661 0.313 0.000 0.001 0.384 0.000 0.000

oth 0.148 0.407 0.203 0.378 0.011 0.018 0.927 0.094 0.932 0.246 0.000 0.469 0.016 0.597 0.082

q 0.000 0.059 0.000 0.826 0.000 0.104 0.696 0.208 0.271 0.274 0.000 0.034 0.000 0.002 0.000

s 0.000 0.996 0.003 0.172 0.011 0.000 0.777 0.000 0.352 0.132 0.085 0.279 0.129 0.002 0.000

Dialogue act taxonomy comprises of: acknowledgment (a), agreement (ag), answer (ans), apology (ap), back-channeling (b), command (c), disagreement (dag), greeting (g), opinion (o), question (q),

statement (non-opinion) (s), and other (oth). Results are presented for CNN14, BERT, their late fusion (LF), SFCNN14 (SF), and MFCNN14 (MF).

of answers (p < 0.001), opinions (p = 0.001), and questions

(p = 0.034). The same acts show up as biased for SFCNN14 with

the addition of commands (p = 0.016) and statements (p =

0.002). In contrast, the null hypothesis is rejected for all acts except

acknowledgment (p = 0.206), backchanneling (p = 0.143), and other

(p = 0.082) for MFCNN14.

We now attempt to aggregate these disparate observations

and form a more coherent picture. It is evident that CNN14 is

highly inconsistent and shows a biased (over-/under-predicting)

behavior for most dialogue acts. This also occurs for the tasks

of arousal and dominance, where it is showing an overall high

performance. Especially for valence, its behavior is more erratic;

it is severely over-predicting for some dialogue acts while under-

predicting for others. On the contrary, BERT is showing an overall

balanced behavior across all dialogue acts for all dimensions.

Interestingly, the late fusion model seems to closely follow the

behavior of CNN14 for all dimensions. This makes sense as

we are combining a biased (CNN14) with an unbiased (BERT)

estimator. On the other hand, the deep fusion methods, and in

particular SFCNN14, seem to strike a better balance between BERT

and CNN14. Especially for valence, to which linguistic features

are more suited, we observe an unbiased behavior for almost

all acts.

Turning back to the original question of whether linguistic

information primarily helps because of its raw predictive power,

or whether it provides additional information w.r.t.the underlying

linguistic content, the evidence is mixed. On the one hand, BERT

is by itself performing strongly on all emotional dimensions and

shows a low bias on all of them. Thus, any benefits could be

attributable to its absolute predictive power, rather than information

on the utterance type; the fusion models merely utilize this

information to improve their predictions on some samples for

which BERT does well, and thus appear to have a lower bias.

However, even on the cases of arousal and dominance, where adding

linguistic information does not improve performance compared

to the audio-only baseline, deep fusion methods become more

unbiased—SFCNN14 more so than MFCNN14. Moreover, the

late fusion baseline does not benefit from the debiasing effects

of BERT, even though it achieves the lowest MSE on all three

dimensions. Therefore, although we cannot definitively conclude

that deep fusion methods indirectly benefit from information on

the underlying linguistic content, there are nevertheless intriguing

findings pointing to this direction which warrant a closer

investigation in future work.

4.4. IEMOCAP: Scripted vs. improvised

We conclude our investigation by discussing an important point

raised in Pepino et al. (2020). Asmentioned in Section 3.2, IEMOCAP

consists of both improvised and scripted conversations. When doing

LOSO CV, the same scripts can find themselves in both the training

and the testing partition. This introduces an amount of information

leakage that benefits the linguistic models, who could exploit this

spurious correlation and obtain better performance.

Rather than modifying the standard 10 LOSO folds as Pepino

et al. (2020) did, we decided to investigate the effect of scripted

conversations post-hoc. We do this by performing a stratified

evaluation for the best performing IEMOCAP models examined in

Sections 4.1, 4.2.

The results of this evaluation are shown in Table 5. The first

column shows UAR (%) on emotion categories. As Pepino et al.

(2020) hypothesized, BERT is indeed showing substantially better

performance for scripted conversations. However, we note that

information leakage is not the only reason why this is expected. As

discussed in Section 3, BERT was pretrained on written text data

and not on spontaneous speech transcriptions; thus, we expect it

to perform better on scripted conversations which resemble written

text more. Additionally, the scripted elicitations in IEMOCAP

were selected to facilitate the emergence of the target emotions in

text (Busso et al., 2008); therefore it is expected that text-basedmodels

perform better there.

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1072479
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Triantafyllopoulos et al. 10.3389/fcomp.2023.1072479

TABLE 5 UAR (%) and CCC results for the best performing dimensional and

categorical emotion models on IEMOCAP.

Architecture Emotion
[S/I]

Arousal
[S/I]

Valence
[S/I]

Dominance
[S/I]

UAR [%] CCC CCC CCC

BERT 73.5/59.8 0.444/0.404 0.757/0.593 0.482/0.308

CNN14 49.5/60.9 0.661/0.637 0.333/0.433 0.504/0.455

SFCNN14 58.3/69.0 0.609/0.571 0.698/0.557 0.536/0.386

MFCNN14 71.9/73.1 0.639/0.636 0.714/0.625 0.575/0.461

Results are computed separately for the scripted (S) and improvised (I) utterances of IEMOCAP

(reported as S/I). For each model and task, we highlight the type of utterances that perform best.

Bold values specify the best-performing model in each (sub-)table and column.

TABLE 6 F1 scores for di�erent categorical emotions for the scripted (S) vs.

improvised (I) utterances of IEMOCAP (reported as S/I).

Architecture Angry Happy Neutral Sad

F1 F1 F1 F1

BERT 82.5/47.7 79.2/67.0 56.5/65.4 74.6/61.2

CNN14 69.2/51.4 32.7/55.2 32.5/53.6 48.5/63.9

SFCNN14 72.3/60.7 54.8/68.5 39.9/66.9 56.7/71.0

MFCNN14 83.0/62.2 74.1/73.9 52.6/70.5 72.0/79.1

For each model and emotion, we highlight the type of utterances that perform best. Bold values

specify the best-performing model in each (sub-)table and column.

In contrast, CNN14 shows the opposite trend, with much

higher performance on improvised conversations. This is in line

with previous research showing that acoustic models do better

for improvised speech (Neumann and Vu, 2017). SFCNN14 and

MFCNN14 follow CNN14 and show better performance for this

type of speech as well. Notably, MFCNN14 shows a more balanced

behavior and performs almost equally well for both types of speech.

However, a different story emerges for the three emotional

dimensions, shown in the last three columns of Table 5. Surprisingly,

we observe that all models perform better on the scripted

conversations for all dimensions. The only exception is CNN14

for the valence task. This is unexpected because acoustic models

should remain unaffected by scripted conversations, and shows that

information leakage does not tell the whole story.

We further investigate the effects of scripted speech on categorical

emotions by inspecting the performance of each model in terms of

individual emotions. To this end, we compute the F1 score, which is

the harmonic mean between precision and recall. Results are shown

in Table 6.

Several interesting patterns emerge. All models are better at

identifying angry samples from scripted conversations, and all of

them are also better at identifying neutral samples from improvised

conversations. For happy and sad samples, BERT clearly fares better

on scripted conversations. In contrast, all other models perform

better on improvised conversations for sad, with CNN14 and

SFCNN14 additionally performing better for happy samples, as well.

MFCNN14 shows almost identical behavior for happy samples in

both speech types.

For the acoustic and fusion models, these findings are in line

with those reported by Neumann and Vu (2017), who found angry

samples to be best identified from scripted conversations, sad ones

to be better predicted from improvised ones, and neutral to have

an overall low accuracy. For BERT, these findings illustrate that

information leakage, although an important issue, does not equally

affect performance on all emotions.

We end our discussion on scripted vs. improvised speech by

inspecting the distributions of categories and dimensions for these

types of speech. In Figure 6, we show the distribution of categorical

samples across the two categories, followed by the distribution of

the three emotional dimensions within each category. We observe

that anger is more highly represented in scripted conversations;

this could explain the higher performance for it in this stratum. As

expected, improvised conversations show more extreme (perceived)

values on the associated dimensions. Anger is expressed with a higher

arousal and happiness with a higher valence. However, as discussed

in Section 4.2.2, all models struggle with the more extreme values

of the dimensional scales. This could explain the lower performance

of dimensional models for improvised conversations. Thus, our

main takeaway is that (textual) information leakage from scripted

conversations is not the only factor leading to over-optimistic

performance, but also a) an increased prominence of some categories

in scripted data, and b) the fact that improvised conversations

show more extreme emotions on the dimensional scales, with which

models were found to be struggling.

5. Discussion

In this section, we summarize our findings. Overall, our

experiments have shown that deep fusion can significantly improve

performance for emotion recognition. In the case of emotional

categories (Section 4.1), SFCNN14 and MFCNN14 were consistently

better than the audio-based CNN14.MFCNN14 was also consistently

better than BERT, whereas SFCNN14 was only better for MSP-

Podcast, where the linguistic model seemed to struggle with the lower

quality transcriptions.

Interestingly, inspecting model performance on scripted vs.

improvised dialogues revealed that BERT performed better on

scripted conversations, whereas CNN14 and the fusion models

performed better for improvised ones. Rather than attributing this

purely to information leakage from the presence of the same scripts

in training and test partitions, the breakdown of performance per

emotion showed that this behavior is partly influenced by data

imbalance. For example, a lot more angry samples appear for scripted

dialogues than improvised ones (see Figure 6), leading all models to

perform better for that sub-population. Moreover, BERT was pre-

trained on written text and is thus expected to perform better for

scripted conversations, rather than improvised ones which mostly

resemble naturalistic speech; a fact which also accounts for its

higher performance on that data. Notably, MFCNN14 showed an

overall more balanced behavior which, combined with its higher

quantitative performance for that database, showed that this fusion

method has great potential to combine the benefits from its two input

information streams.

MFCNN14 was additionally better than SFCNN14 and the late

fusion baseline in terms of quantitative performance on emotional

dimension prediction. The largest gains over CNN14 appeared on

the valence dimension, which is expected as this dimension is better

predicted by linguistic information. Surprisingly, when training

single-task models for each dimension separately, performance
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FIGURE 6

Comparison of scripted (left) vs. improvised (right) sessions of IEMOCAP. A countplot for the 4-class classification problem used here is shown on the

left. The three plots on the right illustrate the distribution of arousal (left), valence (middle), and dominance (right) gold standard annotations for scripted

vs. improvised sessions.

sometimes deteriorated for both SFCNN14 and MFCNN14, showing

that adding linguistic information can also hamper the training

process. This impacted the late fusion baseline as well. However, this

was mitigated by multi-task training, where MFCNN14 positioned

itself as the clear winner, leading to statistically significant benefits

over both CNN14 and BERT for all emotional dimensions.

Our qualitative evaluations with respect to error residuals

(Figure 4) and the influence of dialogue acts (Section 4.3) add

more nuance to our analysis. MFCNN14 and SFCNN14 showed a

less biased behavior than CNN14 w.r.t.the different dialogue acts,

a trait not shared by the late fusion baseline. This demonstrates

how deep fusion can lead to a tighter integration of the linguistic

and paralinguistic streams and facilitate a better utilization of

extra information. Additionally, SFCNN14 showed more uniform

residuals, especially for arousal and dominance, which is a desirable

property for real life application systems.

In comparison to the recent state-of-the-art, our proposed

approach fares competitively, though not always better. Rather than

a limitation of our proposed fusion method, we attribute this to

experimental factors such as the choice of the ASR system (Pepino

et al., 2020), the strength of the unimodal constituents (Priyasad et al.,

2020; Siriwardhana et al., 2020b), and pre-training the acoustic model

as well (Siriwardhana et al., 2020b; Li et al., 2021). Moreover, we

chose not to jointly fine-tune the BERT model during fusion, so as

to better isolate the benefits from adding linguistic information, but

this has been shown to lead to additional benefits (Siriwardhana et al.,

2020a,b). Thus, all these factors could be improved and lead to better

performance for our method as well.

In conclusion, we find that single- and multistage fusion are both

very competitive forms of fusion that outperform their constituent

unimodal architectures and a shallow, late fusion baseline. In terms

of absolute performance, multistage is consistently better than single-

stage. These results are obtained for the specific domains of MSP-

Podcast (naturalistic podcasts) and IEMOCAP (acted conversations).

While MSP-Podcast is a large dataset by SER standards, our claims

are nevertheless only valid for these particular domains. They are

furthermore constrained to the English language and to overall high-

quality recording conditions. Testing their generalization in a more

diverse set is a necessary follow-up.

6. Conclusion

In the present contribution, we investigated the performance

of deep fusion methods for emotion recognition. We introduced

a novel method for combining linguistic and acoustic information

for AER, relying on deep, multistage fusion of summary linguistic

features with the intermediate layers of a CNN operating on log-

Mel spectrograms, and contrasted it with a simpler, single-stage

fusion one where information is only combined at a single point. We

demonstrated both methods’ superiority over unimodal and shallow,

decision-level fusion baselines. In terms of quantitative evaluations,

multistage fusion fares better than the single-stage baseline, thus

illustrating how a tighter coupling of acoustics and linguistics inside

CNNs can lead to a better integration of the two streams. This can

be combined with recent advances on the use of attention (Zhao

et al., 2021) and self-supervised pre-training (Li et al., 2021) to yield

state-of-the-art performance on SER.
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