:' frontiers ‘ Frontiers in Computer Science

‘ @ Check for updates

OPEN ACCESS

Ali Shoker,
King Abdullah University of Science and
Technology, Saudi Arabia

Fernando Alves,

Vortex-Colab, Portugal

Savio Sciancalepore,

Eindhovenx University of Technology,
Netherlands

Jorrit Olthuis,

Eindhoven University of Technology,
Netherlands, in collaboration with reviewer SS

Federico Lucchetti
federico.lucchetti@uni.lu

This article was submitted to
Computer Security,

a section of the journal
Frontiers in Computer Science

15 December 2022
14 March 2023
11 April 2023

Lucchetti F, Graczyk R and Volp M (2023)
Toward resilient autonomous driving—An
experience report on integrating resilience
mechanisms into the Apollo autonomous
driving software stack.

Front. Comput. Sci. 5:1125055.

doi: 10.3389/fcomp.2023.1125055

© 2023 Lucchetti, Graczyk and Volp. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Frontiersin Computer Science

Methods
11 April 2023
10.3389/fcomp.2023.1125055

Toward resilient autonomous
driving—An experience report on
Integrating resilience mechanisms
into the Apollo autonomous
driving software stack

Federico Lucchetti*, Rafal Graczyk and Marcus Volp

Critical and Extreme Security and Dependability Group (CritiX), Interdisciplinary Centre for Security
Reliability and Trust, University of Luxembourg, Luxembourg, Luxembourg

Autonomous driver assistance systems (ADAS) have been progressively pushed
to extremes. Today, increasingly sophisticated algorithms, such as deep neural
networks, assume responsibility for critical driving functionality, including
operating the vehicle at various levels of autonomy. Elaborate obstacle detection,
classification, and prediction algorithms, mostly vision-based, trajectory planning,
and smooth control algorithms, take over what humans learn until they are
permitted to control vehicles and beyond. And even if humans remain in the loop
(e.g., to intervene in case of error, as required by autonomy levels 3 and 4), it
remains questionable whether distracted human drivers will react appropriately,
given the high speed at which vehicles drive and the complex traffic situations
they have to cope with. A further pitfall is trusting the whole autonomous driving
stack not to fail due to accidental causes and to be robust against cyberattacks
of increasing sophistication. In this experience report, we share our findings in
retrofitting application-agnostic resilience mechanisms into an existing hardware-
/software-stack for autonomous driving—Apollo—as well as where application
knowledge helps improve existing resilience algorithms. Our goal is to ultimately
decrease the vulnerability of autonomously driving vehicles to accidental faults
and attacks, allowing them to absorb and tolerate both, as well as to come out
of them at least as secure as before the attack has happened. We demonstrate
replication and rejuvenation on the driving stack’'s Control module and indicate
how this resilience can be extended both downwards to the hardware level, as
well as upwards to the prediction and planning modules.

autonomous driving, resilience, fault and intrusion tolerance, Apollo, SVL simulator

1. Introduction

Over the years, autonomously driving vehicles (ADVs) have been progressively
equipped with increasingly elaborate features to enhance driving experience and autonomy,
ranging from high-resolution sensors to deep neural networks. Today, this increasing
sophistication forms the backbone of indispensable computer vision algorithms, enabling
precise obstacle perception, optimized trajectory planners, and smooth control algorithms,
and has effectively been successful to asymptotically poke the level of driving automation to
a higher standard. On the contrary, increasing complexity goes hand in hand with increasing
vulnerability in any cyber-physical system (CPS). New pathways for malicious intrusions are
opened up and the appearance of new faults becomes more probable, consequently resulting
in dangerous and sometimes fatal outcomes.

01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1125055
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1125055&domain=pdf&date_stamp=2023-04-11
mailto:federico.lucchetti@uni.lu
https://doi.org/10.3389/fcomp.2023.1125055
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1125055/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al.

Unfortunately, over the last 20 years, there has been no shortage
of bad outcomes involving ADVs, many of which have been
caused by unintended accelerations (UA) which killed 89 people
(cbs, 2010). Erroneous behaviors such as UAs that are related
specifically to the components that enable the autonomy of ADV's
and independent from the human driver can potentially have two
origins, either accidental due to an internal fault and/or absent fail-
safe mechanism or provoked due to the presence of a malicious
attacker (Lima et al., 2016).

Only by convincing the human driver of its trustworthiness can
automation take over. In this regard, resilience of ADVs has to play
a crucial role in triggering an effective adoption of ADVs by the
general public at scale. In other words, because we expect that faults
at any level will occur inevitably, infusing ADV's with mechanisms
that enable tolerating those faults is of utmost importance. In the
presence of faults, the notion of a responsibility gap arises naturally.
This gap is characterized by situations in which it is unclear who
can justifiably be held responsible for an unintended catastrophic
outcome. The width of this gray zone is even more amplified
by the over-reliance of modern-day ADVs modules on artificial
neural networks (NN). Not only are the safety and reliability
of these modules rarely studied in cooperation with the whole
ADV software stack (Peng et al., 2020) but they also inherited the
connectionist bug of non-explainability.

In addition to their black-box nature, NNs are subject to usual
faults which can reside in software or due to hardware issues
(Torres-Huitzil and Girau, 2017). In the former, NNs can be
reprogrammed (Elsayed et al., 2018), evaded (Eykholt et al., 2018),
and data-poisoned (Aghakhani et al., 2021) by malicious intruders
during the inference and/or the training phase, not to forget that
NN are subject to faults originating at the hardware level. Either
transitory or permanent faults, such as stuck-at or bit-flip types,
can alter the parameter space of the NN or lead to an erroneous
computation of the hidden layer activation function (Arad and
El-Amawy, 1997).

Similarly, sensors are not spared from attacks. Bad actors can
modify the lane-keeping system by installing dirty road patches
and ultimately causing the ADV to drift away from its lane (Sato
etal, 2021). Jamming the cameras’ modules (Panoff et al., 2021) or
LIDAR spoofing attacks (Zhou et al., 2021) to inject false obstacle
depth lead to false sensor data and hence causes the ADV data
processing chain to compute erroneous control commands. In
these cases, the health of the sensors is not compromised hence
remain undetected by traditional fault detection schemes.

Common ADV software stacks, like Apollo Baidu (2017),
are typically composed of a chain of interlocked modules that
process information starting from the perception module down
to the control algorithms, where the planned trajectory is
transformed into ECU instructions. Because of this downstream
interdependence and where the computation and safe execution
of control commands are all causally interlinked, failure of an
intermediary module can propagate through this information
processing chain and lead to unexpected behaviors.

Efforts have been made to overcome the existence of single
point of failures where, for example, perception information is
rendered redundant by gathering raw data from independent
modalities (RGB cameras, LIDAR, and RADAR) and fused to

Frontiersin Computer Science

10.3389/fcomp.2023.1125055

dilute the presence of a possible faulty device (Darms et al., 2008).
However, redundancy implies that additional computational cost
and certain modules that comprise GPU-resource greedy NNs
cannot cheaply be replicated. Geng and Liu (2020) have focused
their efforts on designing a model adaptive control algorithm
for robust path tracking control and equipped the sensor fusion
module with fault detection capabilities to enhance the overall fault
tolerance of the ADV. Validating ADV software in a real physical
environment is costly and does not scale sufficiently to cover
all possible driving scenarios. Moreover, deploying ADV software
directly on-road can be dangerous. Hence, interfacing physics
simulators, such as SVL (Rong et al., 2020), with ADV software
stacks is of fundamental importance to guarantee quality assurance
in the automotive sector, as required by the evolving standard ISO
21448: Safety of the Intended functionality (Iso, 2019). Relevant to
the study presented herein, Ebadi et al. (2021) have stress tested the
autopilot enabled by the Apollo ADV software stack inside the SVL
simulation environment by generating a set of edge cases where
the Perception module was unable to detect pedestrians. Similarly,
Seymour et al. (2021) created 576 test cases in the SVL simulator
to assess the safety of the Apollo ADV software stack and observed
that the perception modules failed to detect pedestrians in 10 % of
the total number of scenarios tested.

1.1. Related work

Darms et al. (2008) studied fault tolerance when fusing different
sensor modalities to mask eventual faulty sensor outputs. Geng and
Liu (2020) designed a model adaptive control algorithm for robust
path tracking control and equipped the sensor fusion module with
fault detection capabilities to enhance the overall fault tolerance of
the ADV. Ebadi et al. (2021) tested the Apollo ADV software stack
in conjunction with SVL and generated a set of driving scenarios
where the Perception module was unable to detect pedestrians.
Seymour et al. (2021) created test cases in the SVL simulator
where the Perception modules failed to detect pedestrian. Abad
et al. (2016) studied the set of sufficient conditions under which
recovery of software-faulty modules in cyber-physical systems can
be deemed safes. Abdi et al. (2018) leverage the fact that due to
the inertia of certain cyber-physical systems, an intruder cannot
destabilize the physical system hence they were able to implement
a safe and fast system-wide restart. Chu and Wah (1990) applied
redundancy in trained NNs on individual neurons. Khunasaraphan
et al. (1994) developed a NN weight-shifting technique which
after fault detection restores weights and subsequently recovers the
entire NN in a short amount of time.

This study documents our work in designing fault and
intrusion tolerant (FIT) mechanisms applied to ADVs where we
demonstrate the feasibility of applying those mechanisms into the
sub-components of the Apollo ADV software stack and testing
them in different driving scenarios generated by the SVL simulator.
In particular, we give a qualitative description of a novel recovery
scheme which enables the ADV, in the presence of a detected fault
at the sensor level, to maintain a stable trajectory by leveraging
the availability of predicted future sensor values which upon

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al.

verification are fed back to the Prediction module while the
Perception module is rebooting.

The recovery scheme proposed herein positions itself in the
class of shallow recovery, which entails methods that repair
compromised sub-component of a CPS with minimal or no
operation on the system states. For example, Abad et al. (2016)
developed a technique that restarts a failed component and
substitutes it with a healthy one, whereas Shin et al. (2018) propose
to leverage redundancy to fuse the output of multiple replicas where
upon attack detection isolate and restart the origin of the faulty
contribution. Much more reminiscent of the recovery method
described in this work has been evaluated by Kong et al. (2018)
where a checkpointing scheme is put in place to store historical
state data and its correctness is verified before restoring it for the
recovery of compromised sensors.

1.2. Organization of this article

e Welay out the system architecture of a popular ADV software
stack and give a description of how to embed it in a simulated
physics environment using SVL.

e We highlight some vulnerabilities of Apollo and describe the
threat model.

e We describe the FIT mechanisms that we implemented in
three Apollo modules.

e We showcase and validate two of these mechanisms by
interfacing the Apollo ADV software stack with the SVL
simulation environment.

2. Apollo ADV software stack
architecture

2.1. Description

Apollo is an industrial intelligent-ADV open-source software
stack maintained by Baidu (2017) and is currently deployed in
autonomous taxi services in different cities around the world.
The code architecture follows a standard logic found in other
ADV software stacks, in which various software and hardware
components are integrated together following a complex logic.
The architecture (see Figure 1) of Apollo can be simplified as
a hierarchical processing chain of information starting from the
perception module and trickling down to the CANbus as follows:

e Perception contains the different sensor drivers and the
trained machine-learning tools for sensor fusion and obstacle
detection.

e Prediction receives the recognized obstacles from the
Perception module and predicts, via a collection of trained
ML sub-modules, their probable trajectory with a prediction
horizon of 8 s.

e Planning, upon gathering localization information from the
localization system, routing information and the predicted
obstacle trajectories from the Prediction module, computes
the safest and shortest trajectory to be taken by the ego car.

Frontiersin Computer Science

10.3389/fcomp.2023.1125055

e Control translates via path tracking control algorithms
the received spatio-temporal trajectory coordinates of the
Planning module into steering, braking, and throttling
commands.

e CAN (or
communicates the control commands from the Control

similar field busses or in-car networks)

module to the relevant ECUs and the actuators they control.

The Perception module is scheduled recurringly with a fixed period.
Prediction, Planning, and Control are event-triggered as new data
frames come in.

2.2. Simulator

The SVL simulator is a multi-robot simulator for ADVs
maintained by LG Electronics America R&D Lab (Rong et al,
2020). SVL is able to generate a whole range of different
maps and obstacles, such as road vehicles and pedestrians.
It allows customizing driving scenarios and publishing them
to an ADV software stack, such as Apollo, via the CyberRT
bridge connection.

2.3. Implementation

Apollo leverages containers to isolate and protect its
components. Containers offer a restricted execution environment
with container-to-container communication possibilities and
are hosted in Apollo on top of a Linux-based operating system.
We assume for a deployed system that the containers of
critical components (such as control) will be hosted directly
on top of a real-time operating system (RTOS) that is capable
of offering the required isolation. Of course, the RTOS in
such architectures forms a single point of failure, which must
be addressed in future [e.g., as demonstrated in the Midir
architecture (Gouveia et al., 2022)].

For the above-mentioned reason, we implemented the
resilience mechanisms discussed in this study at container-level,
replicating, and restarting containers to tolerate faults and to
rejuvenate replicas, but also to isolate voters and the trusted storage
system. However, this leaves, when it comes to communicating
agreed-upon trajectories, the underlying driver infrastructure as a
single point of failure, which we address next.

2.4. Vulnerabilities

A first-order analysis of the ADV architecture (see Figure 1)
reveals that every module is a single point of failure. That is, a
fault, triggering an error in any one module along the information
processing chain can either produce an erroneous computation of
subsequent modules or impede the latter from receiving timely
information, which disrupts the generation of correct and timely
control commands to the ECU. We address this lack of redundancy
in the following sections and demonstrate how FIT designs can
mitigate the risks of component failures.

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al.

10.3389/fcomp.2023.1125055

Apollo

Perception - Prediction

Planning

>

Control

CANbus

FIGURE 1
Apollo software architecture and bridge connection with SVL.

3. FIT and resilience mechanisms for
autonomous vehicles

3.1. Threat model

In this work, we are primarily concerned about mitigating
negative effects from accidental faults and cyberattacks on
autonomous vehicle driving functions. As such, our fault model
concentrates on the interior components. We consider sensor-
level attacks as well as model extraction and adversarial machine-
learning attacks.

We follow the fault model introduced by Sousa et al. (2009).
That is, during any time window of length T4, most f components
may fail for accidental or malicious reasons. T4 thereby considers
the time adversaries require to overcome the fault threshold f
of simultaneous faults that the system should tolerate. In case of
accidental faulty components, T, includes as well the time needed
to adjust to these accidental faults for exploiting them in their
attack.

As Sousa identified, rejuvenating all n replicas faster than T
(i.e., with a rejuvenation time [ﬂ . Tr < Ta, where k replicas are
rejuvenated simultaneously) maintains the healthy majority over
extended periods of time.

As usual, we assume replicated components to be properly
isolated and sufficiently diverse (e.g., through obfuscation) so
that they can be assumed to fail independently with high
coverage. Indeed, we cannot avoid equivocation between replicated
components that read from the same input buffer, we can
nevertheless mitigate equivocation by letting them copy out
the original input and comparing this input together with the
respective processed outputs through a trusted voting mechanism
Alternatively, a trusted operating system (which we assume is in
place and establishes containers as fault containment domains)
copies the proposed value to all replicas, avoiding equivocation in
the process.

Our design is a hybrid architecture. That is, we differentiate the
fault model of our trusted components: state storage and voters (see
next section). While normal components can fail in an arbitrary

Frontiersin Computer Science

TABLE 1 Resource consumption per Apollo module in terms of a RAM
and video RAM.

Module RAM [GiB] VRAM [GiB]
Perception <0.1 6.71
Prediction <0.1 3.21
Planning 0.40 None
Control 0.07 None

Byzantine manner, state storage and voters must not fail, which
we justify through their simplicity in terms of the number of lines
of code (<100) and are implemented as trivial state machines. In
particular, for state storage, we assume that techniques such as ECC
and scrubbing are in place to correct the effects of accidental faults
in the stored data.

3.2. Control module replication

For deciding which module could benefit from a state machine
replication scheme, we monitored the resource consumption
during a test drive of every Apollo module in terms of memory
(RAM and video VRAM) with the use of the system-monitor
process viewers HTOP and NVTOP. We report the maximal
amount of resource consumption in Table 1. Since the Control
module is the lightest in terms of resource consumption, it lends
itself optimally well for N-fold state machine replication. Control
receives trajectories from planning, validates them, and forwards
control commands to the ECU, by sending commands over the in-
car networks. Since ECUs are, in general, not aware of the replicated
nature of control, a trusted voting mechanism suggests itself to
consolidate the control outputs of the individual replicas to a single
command stream, masking up to f faults behind a f 4 1 majority
of correct outputs (see Figure 2). For a given vote, we only consider
control commands that are timestamped inside the same temporal

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al.

10.3389/fcomp.2023.1125055

Planning | 4+——>| Control | +———>» CANbus
Control
Planning __) contol @) CANbus
Control
FIGURE 2
Triple control module replication with voter module.

window of size 5 ms. If no majority is reached, the time window
is skipped.

3.3. Perception module rejuvenation

In this FIT scheme, we consider sensor-level attacks that are
detected by Apollo leading to a shutdown of the Perception module.
The complex comprised of the Prediction, and the Perception
forms the most GPU-resource intensive component (see Table 1)
as it heavily relies on NN-powered functions during the feed-
forward stage. Therefore, a module replication would be too costly.
A different route to implement an intrusion tolerant mechanism
is to repair the Perception module and reboot it fast enough
to remove adversaries and ensure that the Planning module is
supplied with timely obstacle predictions to compute a safe ego-
car trajectory. Indeed, the large NN matrices that need to be loaded
into GPU memory, leading to boot-up times of up to 4 s in Apollo,
make the prospects for a fast and safe Perception module reboot
impossible. While the failed Perception module is restarting, it
is effectively non-operational and therefore unable to supply the
Prediction module with fresh processed sensor data. The Prediction
module estimates the future trajectory of every detected obstacle,
hence a one-time instance of the batch of future spatio-temporal
trajectory coordinates can be used to temporarily substitute missing
Perception output frames. This can be achieved by designing a
State Storage module (see Figure 3) acting as a buffer to record and
save the predicted obstacle trajectories and make them available to
the Prediction module whenever the Perception module is non-
responsive.

The temporal logic of this mechanism is illustrated in Figure 4.
We denote h; as the data frame produced by the Perception module
,hjN is the batch of predicted obstacle
trajectories produced at time instance j, referred to as states. One

at time i hj = hjo, ... Bjjs ...

Frontiersin Computer Science

batch is composed of N samples where one sample ; ; is the spatio-
temporal trajectory coordinate corresponding to the future instance
attime t; = i- At and hjp = hj. We save h; in the State Storage
module. We denote by £ the onset time of the Perception module
reboot. At time tp + t; we restore hp; = h; and continue until
the Perception module reboots and starts supplying the Prediction
module with fresh data.

Moreover, not all states can be deemed safe for restoration,
because of the two following scenarios:

1. A possible misbehavior in the Perception module leading to
wrong output either due to a sensor sampling error, jamming
and spoofing attack, or a processing error at the level of the
neural net modules.

2. Saved states contain future-detected obstacle trajectories that
have been predicted based on past events (before ¢r). It would be
dangerous to restore states that have been stored when the ego-
car, at time 5, transitions from a relatively predictable situation
(highway with little traffic) to a chaotic unpredictable situation
(intersection crossing with pedestrians).

The first concern can be mitigated by recognizing that a missing
or spoofed time frame should be, to some degree, detectable by
a lack of continuity in the recorded data stream. This can be
mathematically formulated by means of a continuity check based
on the Lipschitz’ A-continuity definition applied to a sequence of
past recorded Perception module outputs. That is, if there exists
a function f, which admits a finite A € R such that ||f(hjo) —
Sf(hi1.0)ll < Alhjo — hjr10ll Vi = 0,..., F then all hjo are deemed
continuous.

The second concern can be avoided by adding a constraint to
state restoration by estimating the entropy or the temperature of
the predicted scene and setting a threshold under which a state is
deemed safe to be restored. Intuitively, these statistical measures
are directly related to the notion of predictability. For instance, a

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al.

10.3389/fcomp.2023.1125055

Perception
to

Prediction

Planning

State
Storage

[

Perception

Prediction

Planning

State
Storage

[

t: + kAt

Perception

Prediction

hy

Planning

State
Storage

| A

tF == TRB

Perception

FIGURE 3

_ﬁ

Prediction

Planning

State
Storage

nnn

Perception module recovery. Parameters tr and Trg denote the onset of the reboot and reboot time of the prediction module, respectively. hy is the
stored state corresponding to the future time instance k and At is the sampling period of the prediction module output.

Frontiersin Computer Science

06

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al.

10.3389/fcomp.2023.1125055

Perception feErs
hO h1 h2 hi+1 hi+2
\
A R [A
Prediction
hg h, h, h3 h2,4 ha,i hiy,
State E l E
Storage ‘
— —) =l o e |
Planning
FIGURE 4

Temporal logic schematic of Perception module rejuvenation

proximal fast-moving truck is considered to be a greater concern
than a distant slow-moving pedestrian. Hence, we can intuitively
sketch the general trend for such a measure. Predictability H(¢)
should:

e decrease as a function of the prediction time,

e decrease with the ego-car speed because in a fast varying
environment, new obstacles enter and/or leave the detection
range,

e decrease with the relative speed of the ego-car with respect to
the detected obstacles as the latter are more likely to pose a
collision threat,

e increases with the relative distance between the ego-car and
the detected obstacles, as the likelihood of a collision, is

reduced.

Finally, the design of a fault recovery scheme that
repairs a compromised Perception module and allows
the ADV to continue to operate seemingly in the

presence of an intrusion is bounded by the inequalities

(Trg < NAY) & Trp < max | arg{H(t) < H,h}>), where
t

Hy, is the threshold value which controls how many potentially
unsafe states are tolerated for restoration. That is, the prediction
horizon needs to be long enough to give the Perception module
enough margin to recover but at the same time the latter has to
reboot faster than the last and sufficiently predict internal state
to avoid feeding back samples to the Prediction module with low
confidence scores.

Frontiersin Computer Science

3.4. Toward device-driver replication

In addition to protecting the high-level components of the
software stack (perception, prediction, and control), we must also
address faults at lower-level software components, which interact
with ECUs (e.g., by sending messages over the CAN bus) or which
otherwise interact with hardware.

Operating-system code interacts with devices through
memory-mapped registers (MMIO) and interrupts, triggered by
the device on a CPU. Writes to certain device registers may have
side effects, such as the sending of a packet over the network.
Therefore, to interact with devices in a fault-tolerant manner, we
ultimately need to systematically forward interrupts to all replicas
for interrupt handling and vote on all critical register writes.
OS-to-device

replicating the SPI driver, leveraging Linux’s user-level driver

We approach consensual interaction by
support, which in our setup communicates with the CAN-bus
controllers on the PICAN Raspberry-PI hat. That is, before
commands are sent to the CAN hat, consensus must be reached
and all direct MMIO writes be redirected through voters.

Of course, this is only a partial solution, since some devices may
have side effects on reads and delicate timing requirements in their
interface, which need a more elaborate investigation of the voter
interface, which interposes device access. We will investigate such
interfaces as part of our future work.

In a pure simulation environment without the necessary
hardware, it is impossible to validate the behavior of a
CANbus replication. We can nevertheless put forward a few
ways on how this could be practically implemented. Indeed a

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al.

10.3389/fcomp.2023.1125055

A
/ Control |7 | CANbus \
Planning Control CANbus / . Voter
\ Control | T~ CANbus
B
/ Control CANbus \
Planning Control | Voter D/) CANbus 7 Voter D
\ Control \ CANbus
C
/ Control CANbus \
Planning e CANDUS 7 Voter >
\ Control |4 CANbus
FIGURE 5
(A—C) Three different CANbus replication schemes in conjunction with a Control module replication.

TABLE 2 CANDbus replication FIT properties.

Scheme Np,..4s Scalability Fault tolerance

A 2 O(n) CANbus i state depends
on control i state

B 3 O(n) All nodes can fail
independently

C 3 On?) All nodes can fail

independently

CANBbus replication could feasibly be integrated inside the Apollo
software stack architecture in conjunction with a Control module
replication. Three obvious schemes are depicted on Figure 5, each
varying by number of communication rounds Ngy,,4s» scalability
of the number of exchanged messages, and their capacity to tolerate
faults summarized in Table 2.

4. Evaluations
4.1. Setup

We evaluate the FIT schemes by running simulations on a
desktop PC with the following specification:

Frontiersin Computer Science

Ubuntu 20.04

AMD Ryzen 7 3700X 8-Core Processor @ 3.6GHz X 16

62,7 GiB of RAM

NVIDIA GeForce RTX3090

Baidu Apollo 6.0

SVL simulator 2021.1 interfaced with Apollo via CyberRT
bridge

Cuda 11.4, Nvidia Docker 20.10.8

4.2. Control replication

We duplicated the original Control module resulting in three
instances and monitored the three main control commands;
steering angle, brake, and throttling intensities. We simulated a
worst-case instance of one faulty replica by adding white noise to
its output stretching over the whole range of values that each of
the control commands can take. Each of the replicas published
the computed control commands to the Voter Control module
via the CyberRT channel which were subsequently submitted
to a vote if they belonged to the same temporal window (5
ms). Whenever a majority of 2 was reached, the result of the

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al.

10.3389/fcomp.2023.1125055

FIGURE 6

Top: High predictability, low risk for accident scenario. Bottom: Low predictability high risk for accident scenario.

voting was published back to the SVL simulator for actuation,
otherwise the vote was skipped. We simulated in SVL a 2-min
driving scenario involving crossing 10 intersections with high
traffic and pedestrians. We report a stable trajectory execution
despite the presence of one faulty Control module replica, with
an overhead of 70 MiB RAM per additional replica, 16 Mib
RAM for the added Voter module, and an added 2 ms latency.
Less than 0.05 % of votes have been skipped due to a delayed
replica response. We measured the relative error between the
output of a healthy replica and the output of the voter. We
observed an error rate of less than 0.1% for the three monitored
control commands.

4.3. Perception module rejuvenation

We deployed the Perception module rejuvenation scheme
in multiple simulation runs, in which we triggered a reboot
of the Perception module. The prediction horizon for every
obstacle was 8 s, the reboot time was consistently 3.7+ 0.1 s.
In a high predictability scenario (see the top part of Figure 6),
during the reboot phase, the State Storage module could reliably
supply the Prediction module with enough verified stored internal
states before depletion (8 s) and we observed no disruption
in the ego-car planning behavior. We evaluated the internal
state verification procedure laid out in Section 3.4 by creating a

Frontiersin Computer Science

driving scenario in SVL where the ego car Perception module
is rebooted 1 s before arriving at a busy intersection crossing
(see the bottom part of Figure 6). Through its state verification
feature, the State Storage was able to predict the high entropy
(low predictability) of the situations. Through fine-tuning the Hy,
value to a relatively conservative level, the ego car effectively
avoided replaying invalid internal states to the Prediction module
hence bringing the car to a complete stop before waiting for a
fresh instance of the Perception module to reboot and continue
its course.

5. Discussion

In this study, we reported on the results and findings of
a case study, retrofitting an autonomous driving software stack
with fault and intrusion tolerance mechanisms. We laid out
a powerful methodology to design, test, and validate those
mechanisms in interaction with the complex logic of the Apollo
ADV software stack, which we embedded inside the SVL
simulator. We were able to not only study the feasibility of
the developed schemes but could also showcase their efficacy by
measuring relevant metrics. We hereby stretch the importance
of validation through simulation which is fundamental to prove
quality assurance before deploying software in conventional on-
road testing.

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al.

In Apollo, we already found a rudimentary preparation
for retrofitting resilience, by encapsulating large subsystems in
containers. This way, some of the resilience mechanisms could
be provided in an application agnostic manner, at container
level, whereas others (in particular, for perception and planning)
required considering application-specific knowledge. Ideal designs
should allow for flexible, fine-grain decomposition of components,
with clear interfaces and the possibility to isolate components
individually, if necessary, and to combine them into a single fault-
containment domain, if not.

5.1. Limitations and future work

Our Control module replication scheme inherits the same
limitation as the generic state machine replication technique. First,
creating n exact copies of the original Apollo Control module,
calls for enhancing diversity and the implied costs to generate this
diversity, e.g., initially through n-version programming and over
time through obfuscation. Second, for a total of f faulty replicas,
maintaining FIT properties comes at a 2f 4+ 1-replication cost which
is exacerbated by our reliance on containers for isolation combined
with our dependency on the OS.

Regarding the Perception module recovery scheme, we did
not perform a thorough evaluation. Nevertheless, we were able
to retrofit it into Apollo and demonstrate it qualitatively inside a
simplistic simulation environment. Given the current design, we
can only trigger a full perception recovery in relatively predictable
driving scenarios such as straight lanes with low traffic and high
visibility. Future work would include investigating the effect of
different threshold predictability values Hy, on the recovery of the
ADV in diverse unpredictable and more complex driving scenarios.

Additional resilience mechanisms could be envisioned for
the other Apollo modules such as the Prediction and Planning
modules. As for the latter, we could easily and economically apply
the same state machine replication technique as it is relatively
low overhead. Being succeeded by an already replicated Control
module, planning outputs should be consolidated by the same
voting scheme that we discussed for the Control-Canbus complex
where the same trade-offs apply among scalability, communication
rounds, and capacity to tolerate faults.

Due to its high GPU resource requirement, the Prediction
module could benefit from a similar recovery scheme as the
Perception module. Less obvious, however, the Planning module
requires the full batch of Prediction outputs to compute a safe
trajectory, i.e., buying time by buffering prediction outputs and
supplying them one-by-one to the the Planning module while the
Prediction module is restarting is bound to fail.

A better scheme would involve triggering a fail-safe mechanism
that upon detecting a failed Prediction module would trigger a
separate and much simpler Planning module. The purpose of the
latter would be to compute a pull-over trajectory steering the car
into a proximal safe spot where a fresh Prediction module can be
re-instantiated.

Frontiersin Computer Science

10.3389/fcomp.2023.1125055

Going further, through the advent of cooperative autonomous
driving, the pull-over scenario could be triggered by a nearby
trusted car or a group of cars acting as external replicas. By relying
on a distributed communication protocol, these replicas would
compute and vote on a safe pull-over trajectory in a consensual
fashion and communicate it to the failed car for execution.
Simulating this scenario would entail running multiple Apollo
instances in parallel, where an additional custom Apollo network
module would ensure the vehicle-to-vehicle communication.

In addition, we plan to investigate more application-specific
solutions to secure autonomous driving against accidental faults
and cyberattacks to eliminate further single points of failures
(like the RTOS and complex drivers). Finally, another direction
of future work includes reducing the dependency on learning-
based components and in turn mitigate the attack vectors they are
exposed to.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

FL, RG, and MV contributed to conception, design of the study,
and wrote sections of the manuscript. FL wrote the first draft of the
manuscript. All authors contributed to manuscript revision, read,
and approved the submitted version.

Funding

This research was part of a partnership project funded by
Huawei Technologies Co., Ltd.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al.

References

Abad, F. A. T, Mancuso, R, Bak, S, Dantsker, O., and Caccamo, M.
(2016). “Reset-based recovery for real-time cyber-physical systems with temporal
safety constraints,” in 2016 IEEE 2Ist International Conference on Emerging
Technologies and Factory Automation (ETFA) (IEEE) 1-8. doi: 10.1109/ETFA.2016.773
3561

Abdi, F., Chen, C.-Y., Hasan, M., Liu, S., Mohan, S., and Caccamo, M. (2018).
“Guaranteed physical security with restart-based design for cyber-physical systems,”
in 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)
(IEEE) 10-21. doi: 10.1109/ICCPS.2018.00010

Aghakhani, H., Meng, D., Wang, Y.-X,, Kruegel, C., and Vigna, G. (2021). “Bullseye
polytope: A scalable clean-label poisoning attack with improved transferability,” in 2021
IEEE European Symposium on Security and Privacy (EuroS and P) (IEEE) 159-178.
doi: 10.1109/EuroSP51992.2021.00021

Arad, B. S., and El-Amawy, A. (1997). On fault tolerant training of feedforward
neural networks. Neur. Netw. 10, 539-553. doi: 10.1016/S0893-6080(96)00089-5

Baidu (2017). Apollo: Open source autonomous driving.
CBS. (2010). Toyota “unintended acceleration” has killed. 89.

Chu, L.-C,, and Wah, B. W. (1990). “Fault tolerant neural networks with hybrid
redundancy;” in 1990 IJCNN International Joint Conference on Neural Networks (IEEE)
639-649. doi: 10.1109/]JCNN.1990.137773

Darms, M., Rybski, P., and Urmson, C. (2008). “Classification and tracking
of dynamic objects with multiple sensors for autonomous driving in urban
environments,” in 2008 IEEE Intelligent Vehicles Symposium (IEEE) 1197-1202.
doi: 10.1109/IVS.2008.4621259

Ebadi, H., Moghadam, M. H., Borg, M., Gay, G., Fontes, A.,, and Socha,
K. (2021). “Efficient and effective generation of test cases for pedestrian
detection-search-based software testing of baidu apollo in svl” in 2021 IEEE
International Conference on Artificial Intelligence Testing (AITest) (IEEE) 103-110.
doi: 10.1109/AITEST52744.2021.00030

Elsayed, G. F., Goodfellow, I, and Sohl-Dickstein, J. (2018). Adversarial
reprogramming of neural networks. arXiv preprint arXiv:1806.11146.

Eykholt, K., Evtimov, I, Fernandes, E., Li, B., Rahmati, A., Xiao, C,, et al. (2018).
“Robust physical-world attacks on deep learning visual classification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition 1625-1634.
doi: 10.1109/CVPR.2018.00175

Geng, K., and Liu, S. (2020). Robust path tracking control for autonomous vehicle
based on a novel fault tolerant adaptive model predictive control algorithm. Appl. Sci.
10, 6249. doi: 10.3390/app10186249

Gouveia, I. P, Volp, M., and Esteves-Verissimo, P. (2022). Behind the last
line of defense: Surviving soc faults and intrusions. Comput. Secur. 123, 102920.
doi: 10.1016/j.cose.2022.102920

Frontiersin Computer Science

11

10.3389/fcomp.2023.1125055

Iso, I. (2019). “Pas 21448-road vehicles-safety of the intended functionality,” in
International Organization for Standardization.

Khunasaraphan, C., Tanprasert, T., and Lursinsap, C. (1994). “Recovering faulty
self-organizing neural networks: By weight shifting technique,” in Proceedings of 1994
IEEE International Conference on Neural Networks (ICNN’94) (IEEE) 1513-1518.

Kong, F., Xu, M., Weimer, J., Sokolsky, O., and Lee, I. (2018). “Cyber-physical
system checkpointing and recovery,” in 2018 ACM/IEEE 9th International Conference
on Cyber-Physical Systems (ICCPS) (IEEE) 22-31. doi: 10.1109/ICCPS.2018.00011

Lima, A., Rocha, F., Vélp, M., and Esteves-Verissimo, P. (2016). “Towards
safe and secure autonomous and cooperative vehicle ecosystems,” in Proceedings
of the 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy 59-70.
doi: 10.1145/2994487.2994489

Panoff, M., Dutta, R. G., Hu, Y., Yang, K., and Jin, Y. (2021). On sensor security in
the era of iot and cps. SN Comput. Sci. 2, 1-14. doi: 10.1007/s42979-020-00423-5

Peng, Z., Yang, J., Chen, T.-H. P., and Ma, L. (2020). “A first look at the
integration of machine learning models in complex autonomous driving systems,”
in Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering 1240-1250.
doi: 10.1145/3368089.3417063

Rong, G., Shin, B. H., Tabatabaee, H., Lu, Q., Lemke, S., Mozeiko, M., et al.
(2020). SVL simulator: a high fidelity simulator for autonomous driving. arXiv e-prints,
arXiv:2005.03778. doi: 10.1109/1TSC45102.2020.9294422

Sato, T., Shen, J., Wang, N,, Jia, Y., Lin, X,, and Chen, Q. A. (2021). “Dirty road can
attack: Security of deep learning based automated lane centering under $Physical —
World$ attack,” in 30th USENIX Security Symposium (USENIX Security 21) 3309-3326.
doi: 10.14722/autosec.2021.23026

Seymour, J., Ho, D.-T.-C,, and Luu, Q.-H. (2021). “An empirical testing
of autonomous vehicle simulator system for urban driving” in 2021 IEEE

International Conference on Artificial Intelligence Testing (AITest) (IEEE), 111-117.
doi: 10.1109/AITEST52744.2021.00031

Shin, J., Baek, Y., Lee, J., and Lee, S. (2018). Cyber-physical attack detection
and recovery based on rnn in automotive brake systems. Appl. Sci. 9, 82.
doi: 10.3390/app9010082

Sousa, P., Bessani, A. N., Correia, M., Neves, N. F., and Verissimo, P. (2009).
Highly available intrusion-tolerant services with proactive-reactive recovery. IEEE
Trans. Parallel Distrib. Syst. 21, 452-465. doi: 10.1109/TPDS.2009.83

Torres-Huitzil, C., and Girau, B. (2017). Fault and error tolerance in neural
networks: A review. IEEE Access 5, 17322-17341. doi: 10.1109/ACCESS.2017.2742698

Zhou, C., Yan, Q., Shi, Y., and Sun, L. (2021). Doublestar: Long-range attack towards
depth estimation based obstacle avoidance in autonomous systems. arXiv preprint
arXiv:2110.03154.

frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://doi.org/10.1109/ETFA.2016.7733561
https://doi.org/10.1109/ICCPS.2018.00010
https://doi.org/10.1109/EuroSP51992.2021.00021
https://doi.org/10.1016/S0893-6080(96)00089-5
https://doi.org/10.1109/IJCNN.1990.137773
https://doi.org/10.1109/IVS.2008.4621259
https://doi.org/10.1109/AITEST52744.2021.00030
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.3390/app10186249
https://doi.org/10.1016/j.cose.2022.102920
https://doi.org/10.1109/ICCPS.2018.00011
https://doi.org/10.1145/2994487.2994489
https://doi.org/10.1007/s42979-020-00423-5
https://doi.org/10.1145/3368089.3417063
https://doi.org/10.1109/ITSC45102.2020.9294422
https://doi.org/10.14722/autosec.2021.23026
https://doi.org/10.1109/AITEST52744.2021.00031
https://doi.org/10.3390/app9010082
https://doi.org/10.1109/TPDS.2009.83
https://doi.org/10.1109/ACCESS.2017.2742698
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Toward resilient autonomous driving—An experience report on integrating resilience mechanisms into the Apollo autonomous driving software stack
	1. Introduction
	1.1. Related work
	1.2. Organization of this article

	2. Apollo ADV software stack architecture
	2.1. Description
	2.2. Simulator
	2.3. Implementation
	2.4. Vulnerabilities

	3. FIT and resilience mechanisms for autonomous vehicles
	3.1. Threat model
	3.2. Control module replication
	3.3. Perception module rejuvenation
	3.4. Toward device-driver replication

	4. Evaluations
	4.1. Setup
	4.2. Control replication
	4.3. Perception module rejuvenation

	5. Discussion
	5.1. Limitations and future work

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

