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Introduction: This article proposes a secure implementation for consensus using

a dynamic event-triggered control (DETC) scheme for general autonomousmulti-

agent systems (MAS) under asynchronous (distributed) denial of service (DoS)

attacks. The asynchronous DoS attacks can block each communication channel

independently in an unknown pattern. Depending on the impact of DoS on

the communication topology, the attacks are categorized into (i): connectivity-

preserved DoS (CP-DoS), and (ii): connectivity-broken DoS (CB-DoS). In CP-DoS,

the operating communication topology remains connected. On the other hand, in

CB-DoS the adversary breaks the communication graph into isolated sub-graphs.

Methods: The DETC scheme is employed to reduce the control updates for

each agent. To guarantee consensus under both the CP-DoS and CB-DoS, a

linear matrix inequality (LMI) based optimization approach is proposed, which

simultaneously designs all the unknown DETC parameters as well as the state

feedback control gain.

Results: The proposed optimization method prioritizes the minimum inter-event

interval (MIET) between consecutive control updates. The trade-o� between

relevant features of the MAS, namely the consensus convergence rate, intensity

of control updates, and level of resilience to DoS can be handled by the proposed

optimization.

Discussion: Simulation results quantify the e�ectiveness of the proposed

approach, showcasing its ability to maintain secure consensus in MAS under

varying DoS attack scenarios.

KEYWORDS

multi-agent systems, consensus, dynamic event-triggering control, asynchronous DoS,

autonomous systems

1 Introduction

Over the past decade, cooperative control in autonomous multi-agent systems (MASs)

has been a topic of extensive research in different communities. These cooperative

tasks mainly include formation control, leader-following, containment, and consensus.

Consensus has attracted overwhelming attention due to its vast applications in many areas

such as estimation in sensor networks (Meng and Chen, 2014), attitude alignment for

spacecrafts (Ren, 2007), and control of microgrids (Zhang et al., 2019; Amini et al., 2022a), to

name a few. This article studies the consensus problem for general linear MASs under a class

of distributed cyber attacks, namely denial of service, and an advanced class of event-based

control scheme referred to as the dynamic event-triggering control.
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1.1 Literature review

An important subject in cooperative control of autonomous

MASs is to design suitable control schemes which utilize

a reasonable amount of energy and computation resources.

Conventional consensus frameworks are based on continuous-time

update of the control protocol which is energy consuming and

difficult to implement from the actuator point of view. Recently,

event-triggered control (ETC) strategies are employed which

enable the control protocol to be updated only if a pre-designed

condition is satisfied. Several ETC strategies have been proposed

for consensus in MAS (Peng and Li, 2018; Ge et al., 2019). More

recently, dynamic event-triggering control (DETC) schemes (Hu

et al., 2018; Deng et al., 2020; Zhao and Hua, 2021; Yang R. et al.,

2022) have been recognized as one of the most efficient ETC

schemes. Unlike conventional ETC schemes, in DETC an auxiliary

dynamic variable is designed which helps in reducing the amount

of control updates. The advantage of DETC scheme in reducing

the amount of events over other simplified schemes is proved

in Girard (2014). Recently, there has been a surge of considerable

interest on DETC methodologies in different applications as

surveyed in Ge et al. (2019). For instance, Meng et al. (2023)

focused on DETC fault interval estimation for aeroengine sensors,

where to reconstruct sensor fault a DET-based robust augmented

state observer is designed. In (Cao et al., 2023) effects of time-

varying delay on observer-based DETCmechanisms forMASs have

been investigated. Furthermore, design of DETC mechanisms for

distributed bipartite consensus in MASs has been considered in Du

X. et al. (2023). He et al. (2022) surveys different secure control

problems associated with MASs. The intuition behind this survey

is the increased attack surface of MASs due to network-enabled

information sharing as a consequence of expanded connectivity in

practical scenarios. Along a similar path, Wang et al. (2023) targets

surveying recent literature on resilient consensus control forMASs.

Please refer to this work for a complete treatment of state-of-the-

art concerning DoS attacks, spoofing attacks and Byzantine attacks

in MASs, where attack model and mechanisms are introduced

together with associated resilient consensus control structure. As

a final note, when it comes to secure consensus of MASs, Shang

(2022) proposed a median-based consensus strategy for resilient

consensus control of MAS considering a time-varying directed

random network. The proposed approach is superior to Weighted-

Mean-Subsequence-Reduced techniques eliminating the need for

the number of malicious agents in vicinity of each cooperating

agent. In Shang (2021), the problem of resilient coordinated control

inMASs is considered in presence omalicious agents, where agents’

dynamics can be continuous-time or discrete-time. Furthermore,

this work introduces the intriguing concept of heterogeneous

robustness, which facilitates convergence analysis, and aims at

capturing topological structure of the underlying network. Finally,

Shang (2023) focused on resilient tracking consensus with a single

leader considering a time-varying random directed graph, where in

addition to cooperative agents, Byzantine agents are present.

Generally speaking, the DETC schemes often depend on

multiple unknown parameters which should be designed based on

the stability of the closed-loop MAS. The capability of the event-

triggering schemes in reducing the number of control updates

highly depends on the operating values of the design parameters.

Regarding the DETC schemes, it is often the case that some feasible

regions are derived for the design parameters (Hu et al., 2018; Yi

et al., 2018; He et al., 2019; He and Mo, 2022). However, even

when the feasible regions are known, selecting proper operating

values that efficiently reduces the control updates is still inexplicable

and requires trial and error. It is, therefore, desirable to develop a

systematic design framework that computes the exact values of the

unknown parameters and guarantee a substantial reduction for the

control updates. Motivated by Peng and Yang (2013); Abdelrahim

et al. (2014); Amini et al. (2022), where the convex optimization

techniques are utilized to include some performance objectives

(such as H∞ optimization and inter-event interval maximization),

in this article we develop a convex optimized design framework

with a focus on reducing the control updates as much as possible.

Cyber security against malicious attacks is another important

issue, which poses new challenges in performance and stability

guarantees of the MASs. Generally, there exist three types of attacks

targeted at cyber-physical systems, namely replay attacks, false data

injection (FDI), and denial of service (DoS). In DoS (De Persis

and Tesi, 2015; Zhang et al., 2018; Zhang and Feng, 2019; Liu

et al., 2020), the adversary blocks the communication channels,

hence the neighboring agents do not receive the transmitted signals.

It is clear that DoS can significantly impact the behavior of the

agents and, in extreme cases, can destabilize the MAS. In literature,

the occurrence of DoS is often modeled either in a periodic (Hu

et al., 2019; Xu Y. et al., 2019) or unknown pattern (Xu et al.,

2018; Feng and Hu, 2019; Liu et al., 2020). In practice, the periodic

scenario may not be able to fully model the pattern of DoS, as

the adversary can launch the attacks in non-periodic patterns.

A common assumption considered in many related works such

as Xu et al. (2018); Feng and Hu (2019); Xu Y. et al. (2019);

Zha et al. (2019); Amini et al. (2022); Deng and Wen (2020);

Zhang and Ye (2021) is that DoS simultaneously paralyzes all

communication channels. In this scenario, the MAS undergoes

a binary situation based on the DoS being active or inactive. If

DoS is inactive, the MAS operates normally based on the initially

designated network. If DoS is active, the communication network

is fully paralyzed and all agents are open-loop. In a more complex

and more general DoS, which is referred to as the asynchronous

(distributed) DoS (Lu and Yang, 2018; Xu W. et al., 2019; Yang Y.

et al., 2020; Liu and Wang, 2021; Yang and Ye, 2022), the adversary

attacks any arbitrary channel at different instants. Dealing with the

asynchronous DoS is more challenging as the MAS may confront

numerous connected or disconnected topologies depending on the

status of each individual channel being healthy or under attack.

Secure event-triggered consensus under asynchronous DoS is an

important and challenging topic which, to date, has not been

studied proportionately. It should be noted that the asynchronous

DoS works (Lu and Yang, 2018; Xu W. et al., 2019; Yang Y. et al.,

2020; Liu and Wang, 2021; Yang and Ye, 2022) have practical

shortcomings which require further improvement. In particular,

Lu and Yang (2018); Yang and Ye (2022); Liu and Wang (2021)

are based on time-triggered or sampled-data control protocols, not

event-triggered. Additionally, the ETC schemes used in Xu W.

et al. (2019); Yang Y. et al. (2020) has lower inter-event interval

compared to the more advanced schemes such as DETC. This
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motivates us to develop a DETC method for consensus under

asynchronous DoS attack.

1.2 Contributions

Motivated by the above discussion and following our previous

work (Amini et al., 2022), this article studies the dynamic event-

triggered control for consensus in general linear MASs under

unknown and asynchronous DoS attacks. The main contributions

of the article are as follows:

• Unlike many existing works (Xu et al., 2018; Feng and Hu,

2019; Xu Y. et al., 2019; Zha et al., 2019; Deng and Wen,

2020; Zhang and Ye, 2021; Amini et al., 2022), where the

DoS attack simply blocks all the communication channels at

the same time (referred to as synchronous DoS), we consider

a more general and realistic scenario where the adversary

attacks any arbitrary channel at different time instants (hence

called asynchronous DoS). The problem formulation for

asynchronous DoS is fundamentally different from that of the

synchronous DoS. In addition, we should point out that by

stating asynchronous (distributed) attack in the context of this

work, we eliminate imposition of any patterns on the DOS. In

other words, each of the distributed agents can face a different

DoS pattern.

• To the best of our knowledge, this is the first instance where a

DETC protocol is formulated for consensus under unknown

and asynchronous DoS attacks. Compared to Lu and Yang

(2018); Xu W. et al. (2019); Yang Y. et al. (2020); Yang

and Ye (2022); Liu and Wang (2021), the implementation of

the DETC protocol under asynchronous DoS is novel and

significantly reduces the burden of control updates.

• Unlike existing works related to DETC schemes (He et al.,

2019; He and Mo, 2022), the design procedure in this article

is based on a co-design optimization and simultaneously

computes all required event-triggering parameters as well as

the control gain. The optimization increases the minimum

inter-event interval for a guaranteed level of resilience to

asynchronous DoS attacks.

The remaining article is organized as follows. Section 2 introduces

notation and discusses the problem to be studied. Section 3

formulates the consensus problem under DoS. Section 4 presents

the main results and sufficient conditions to guarantee consensus.

Simulation examples are included in Section 5. Finally, Section 6

concludes the paper.

2 Preliminaries and problem
statement

Throughout the article, vectors are denoted in bold font while

matrices and scalars are represented by normal font. The following

notation is used. N: set of natural numbers; N0 =N ∪ 0; R: set

of real numbers; ‖.‖: L2 norm; M> 0: symmetric positive definite

matrix M; M−1: inverse of matrix M; ⊗: Kronecker product; (.)T :

transpose of a matrix or vector argument. For two sets A and B,

notation A\B returns the elements which belong to set A but

not to set B. The asterisk ∗ in the lower triangle of symmetric

matrices represents the transpose of the corresponding block from

the upper triangle. The communication network of a MAS at time t

is modeled by graph G(t)= (V, E(t),A(t)), where V={1, 2, ...,N}

is the set of agents. The pair (i, j), (1≤ j, i≤N), is included in

the edge set E(t) iff agent j is connected to agent i at time t.

Matrix A(t)={ai,j} ∈R
N×N is the weighted adjacency matrix at

time t, where ai,i = 0, ai,j 6= 0 if (i, j)∈ E(t), and ai,j = 0 if (i, j) /∈ E(t).

The neighboring set for agent i at time t is defined by Ni(t).

Laplacian matrices are defined by letter L with different subscripts

(depending on the associated graph). We refer to the second

smallest eigenvalue of L, denoted by λ2(L), as the Fiedler value. The

largest eigenvalue is denoted by λN(L). It is worth noting that, in

our derivations, we need a symmetric Laplacian matrix where all

its eigenvalues are real-valued. This is quite common practice in

the LMI context. The main challenge here is that when Laplacian

matrix is not symmetric, eigenvalues will be complex numbers

rendering application of LMI infeasible.

Proposition 1. For a undirected graph G and λ2(L) as its Fiedler

value, it holds that λ2(L)= 0 if and only if G is disconnected. The

number of connected components of G is equal to the multiplicity

of 0 in the eigenvalues of Laplacian (Newman, 2001, Thm. 1.3.4).

Consider the following general linear MAS

ẋi(t) = Axi(t)+ Bui(t), ∀i∈V, (1)

where xi(t)∈R
n and ui(t)∈R

m are, respectively, the state and

control input for agent i. MatricesA and B are constant and known.

The pair (A,B) is controllable.

Definition 1. MAS Equation (1) is said to achieve state consensus

if for any initial condition xi(0)∈R
n, ∀i∈V, it holds that

limt→∞‖xi(t)− xj(t)‖= 0, ∀i, j∈V.

2.1 Control protocol and dynamic
even-triggering scheme

Each agent measures and transmits its state value xi(t) to its

neighbors through an undirected network. As shown in Figure 1, a

DETC scheme (which will be presented later) is employed to reduce

the amount of control input updates. Only if the DETC condition

is fulfilled an event is triggered and ui(t) is updated. We denote the

sequence {ti
k
}k∈N0

as the triggering times for agent i, where ui(t) is

being updated. Using this notation, xi(t
i
k
) is the state value at the k-

th event for agent i. The inter-event interval for agent i is given by

{ti
k+1

− ti
k
}k∈N0

which shows the time interval between two events

in a row. We denote the following disagreement vector for agent i

qi(t)=
∑

j∈Ni(t)

ai,j
(

xi(t)− xj(t)
)

, ∀i∈V. (2)

Note that the neighboring set Ni(t) is time-varying since the DoS

attack, as will be discussed later, can block the communication

channel between agent i and any of its neighbors. The following

control protocol is used for agent i to achieve consensus

ui(t) = −Kqi(t
i
k), t ∈ [tik, t

i
k+1), ∀i∈V, (3)
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FIGURE 1

Block representation of the dynamic event-triggered consensus

under DoS attack at node i.

where K ∈R
m×n is the control gain to be designed.

Let ei(t)= xi(t
i
k
)− xi(t), ∀i∈V, denote the event-triggering

error. Initialized by ti0 = 0, ∀i∈V, the next event instant is triggered

by the following DETC condition (Yi et al., 2018)

tik+1= inf{t> tik | eTi (t)81ei(t) ≥ qTi (t)82qi(t)+ φ3η
2
i (t) }, (4)

where matrices 81 ≥ 0, 82 ≥ 0 and scalar φ3 ≥ 0 are design

parameters. The auxiliary state ηi(t) follows

η̇i(t)= − φ4 η
2
i (t)+ qTi (t)85qi(t), ∀i∈V, (5)

where ηi(0)> 0. Scalar φ4 ≥ 0 and matrix 85 ≥ 0 are the other

unknown parameters to be designed.

Remark 1. As observed in Equation (5), the updating protocol

for ηi(t) is based on the disagreement vector qi(t) and a negative

quadratic self-feedback. Intuitively, ηi(t) can be regarded as a linear

first-order filtered value of qi(t). Compared to the conventional

ETC strategy ‖ei(t)‖≤αi‖qi(t)‖ used in Hu et al. (2015), the

utilization of the auxiliary variable ηi(t) helps in regulating the

threshold (Equation 4) in a dynamic manner and in a better

relationship with disagreement qi(t). It is also proved in Girard

(2014) that the inter-event interval using DETC (Equation 4)

is larger than the conventional ETC strategy ‖ei(t)‖≤αi‖qi(t)‖,

meaning less event triggering is proved. It is straightforward to

show that the ETC schemes proposed in Qian et al. (2018);Wu et al.

(2018); XuW. et al. (2019); Yi et al. (2019) are all special cases of the

DETC (Equation 4).

Next, we show that parameter ηi(t) remains positive over time.

Proposition 2. If 85>82 and ηi(0) > 0, ∀i ∈ V, parameter

ηi(t) remains positive over time. In particular the following

condition holds

ηi(t) ≥
1

(φ3 + φ4)t +
1

ηi(0)

, ∀i ∈ V. (6)

Proof: Based on Equation (4), it holds that eTi (t)81ei(t)−φ3η
2
i (t) ≤

qTi (t)82qi(t) for t ∈ [ti
k
, ti
k+1

). If 85>82, we get that η̇i(t) ≥

−(φ3+φ4)η
2
i (t)+ eTi (t)81ei(t). Since e

T
i (t)81ei(t) is non-negative,

it then follows that

η̇i(t) ≥ −(φ3 + φ4)η
2
i (t), t ∈ [tik, t). (7)

By solving differential inequality (Equation 7) for t ∈ [ti
k
, t), we

obtain 1
ηi(t)

≤ (φ3 + φ4)(t − ti
k
) + 1

η(ti
k
)
. Considering one event-

triggering interval back, i.e., t ∈ [ti
k−1

, ti
k
), one obtains 1

ηi(t
i
k
)
≤

(φ3 + φ4)(t
i
k
− ti

k−1
) + 1

η(ti
k−1

)
. By successively moving backward

through intervals [ti
k
, t), [ti

k−1
, ti
k
), . . ., [0, ti1) and comparing the

associated inequalities the following is obtained

1

ηi(t)
≤ (φ3 + φ4)(t − 0)+

1

η(0)
. (8)

The proof is complete, noting that Equation (8) is equivalent to

Equation (6).

From the implementation point of view, in an event-triggering

scheme the time interval between two arbitrary event instants

must be strictly positive. Otherwise, the event-detector scheme

would potentially detect an infinite number of events in a finite

interval (He et al., 2019). This undesirable phenomenon is known

as the Zeno-behavior in the context of event-triggering control

schemes. Therefore, it is necessary to exclude the possibility of

Zeno-behavior in the proposed scheme. The exclusion of the Zeno-

behavior is usually accomplished by obtaining a strictly positive

lower-bound between two potential event instants. In other words,

if we guarantee that theminimum inter-event time (MIET) between

two successive event instants in Equation (4) is strictly positive,

then the possibility of detecting infinite number of events in a finite

period is ruled out. To exclude Zeno-behavior in Equation (4),

in what follows we prove that the minimum inter-event interval

(MIET) between any two events is strictly positive.

Proposition 3. The minimum inter-event time (MIET) for agent i,

(∀i ∈ V), is strictly positive and lower-bounded by

tik+1 − tik≥
1

‖A‖
ln

(

1+
‖A‖

8
1
2
1 Fi(t)

√

Hi(t
i
k+1

)
)

, (9)

where

Fi(t)= max
t∈[ti

k
,ti
k+1

)
{ ‖BK‖‖qi(t)‖ + ‖Axi(t

i
k)‖ },

Hi(t)= qTi (t)82qi(t)+
φ3

(

(φ3 + φ4)t +
1

ηi(0)

)2
. (10)

Proof: Consider two consecutive event instants (ti
k
and ti

k+1
)

for agent i. Based on Equation (4), at t= ti
k

it holds that

‖ei(t
i
k
)‖ = 0. For t ≥ ti

k
, the event-triggering error

ei(t) evolves from zero until Equation 4 is satisfied and the

next event is detected. From ei(t)= xi(t
i
k
)−xi(t) we obtain

that ėi(t)=−ẋi(t). From Equations (3) and (1), it holds that

ẋi(t)=Axi(t)−BK qi(t). Combining the last three equations leads

to ėi(t) = Aei(t) − Axi(t
i
k
) + BK qi(t), or ‖ėi(t)‖ ≤ ‖A‖‖ei(t)‖ +
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‖Axi(t
i
k
)‖ + ‖BK‖‖qi(t)‖, t ∈ [ti

k
, ti
k+1

). It, then, follows that

‖ei(t)‖≤‖A‖−1Fi(t) ( e
‖A‖(t−ti

k
)−1) or equivalently

‖ei(t)8
1
2
1 ‖

2 ≤
81F

2
i (t)

‖A‖2
( e‖A‖(t−ti

k
)−1)2, (11)

where Fi(t) is defined in Equation (10). The next

event is detected by Equation (4) at t = ti
k+1

where

‖eTi (t
i
k+1

)8
1
2
1 ‖

2 = qTi (t
i
k+1

)82qi(t
i
k+1

) + φ3η
2
i (t

i
k+1

). Then,

from Equation (6), it follows that ‖eTi (t
i
k+1

)8
1
2
1 ‖

2 ≥

qTi (t
i
k+1

)82qi(t
i
k+1

) +
φ3

((φ3+φ4)t
i
k+1

+ 1
ηi(0)

)2
. By combining the

latter inequality with Equation (11), expression (9) is obtained.

The lower-bound derived in Equation (9) is strictly positive

which implies that ti
k+1

is strictly greater than ti
k
, i.e., ti

k+1
> ti

k
.

Conceptually speaking, it is guaranteed that the next event

instant is always greater than the current one. Therefore, the

possibility of infinite event-triggering in finite time is ruled out and

DETC (Equation 4) does not exhibit Zeno behavior.

Remark 2. In addition to excluding the possibility of the Zeno-

behavior, another important observation can be made from

expression (9). Based on the MIET, i.e., the right hand side

of Equation (9), it can be shown that smaller values for ‖K‖, ‖81‖,

and φ4 increase the value of the MIET (i.e., the intensity of control

updates is reduced). On the other hand, higher values for ‖82‖,

‖83‖ increase the MIET and help in reducing the control updates.

Note that the impact of DETC parameters ‖81‖, ‖82‖ and ‖83‖

on the intensity of events is intuitive from Equation (4) and also

confirmed by Equation (9).We use this observation in the proposed

objective function considered in Theorems 1 and 2.

2.2 Denial of service

As shown in Figure 1, the DoS attacks, when active, target the

communication channels and block the state transmission between

the neighboring agents. Unlike many existing works (Xu et al.,

2018; Feng and Hu, 2019; Xu Y. et al., 2019; Zha et al., 2019;

Deng and Wen, 2020; Zhang and Ye, 2021; Amini et al., 2022),

where it is assumed that the DoS attacks simultaneously block all

communication channels, in this article we consider a more general

and realistic scenario where the adversary attacks any arbitrary link.

Let G0 = (V, E0,A0) denote the initially designed

communication topology. When the adversary is completely

inactive (i.e., none of the communication links are blocked) the

MAS operates based on G0. The associated Laplacian matrix to G0

is defined by L0. Let

D
ij
c = [ d

ij
c , d

ij
c + τ

ij
c ), c∈N0, i < j, (i, j) ∈ E0, (12)

denote the c-th DoS interval on channel (i, j). Parameter d
ij
c is

the time instant when the adversary begins the c-th attack on

channel (i, j) and τ
ij
c is the duration of attack. Since DoS on

channel (i, j) also implies DoS on channel (j, i), condition i < j is

mentioned in Equation (12). Note that the first DoS can occur at

t= 0, i.e., d
ij
0 = 0. Therefore, d

ij
0 does not need to be strictly positive.

TABLE 1 List of important parameters related to the communication

topology under DoS.

Parameter Definition

G0 The initially designed communication graph

G(t) The operating communication graph at time t

GD(t) The graph associated with the communication links blocked

by the DoS attack at time t

L0 The Laplacian graph associated with G0

L(t) The Laplacian graph associated with G(t).

LD(t) The Laplacian graph associated with GD(t)

ϒ The set of all possible communication graphs under DoS

with G0 as the initial graph

3 The set of all Laplacian matrices for graphs in ϒ

ϒD The set of all possible DoS graphs that may attack G0

3D The set of all Laplacian matrices for graphs in ϒD

λ2(.) The second smallest eigenvalue of the argument (Fiedler

value)

λN (.) The largest eigenvalue of the argument

λ The minimum non-zero Fiedler value considering all the

Laplacian matrices in set ϒ .

λ̄D The maximum largest eigenvalue considering all Laplacian

matrices with non-zero Fiedler value in set ϒD .

For channels (i, j) and (j, i), the state of “being under DoS"

or “being healthy" is a binary variable. Hence, there exist 2
|E0 |
2

possible communication topologies labeled by G0,G1, . . . ,Gf ,

where f = 2
|E0 |
2 − 1. Let ϒ and 3, respectively, denote the set

of all possible graphs under DoS attack and their corresponding

Laplacian matrices, i.e.,

ϒ ={G0,G1, . . . ,Gf }, 3={L0, L1, . . . , Lf }. (13)

During consensus iterations, the operating communication

topology at time instant t is denoted by G(t)= (V, E(t),A(t)). It is

clear that G(t) ∈ ϒ , ∀t≥ 0. We refer to E(t) as the set of healthy

edges (i.e., not under attack) at instant t.

The DoS graph is defined by the edges that are blocked by DoS.

The DoS graph at instant t is denoted by GD(t)= (V, ED(t),AD(t)),

where (i, j)∈ ED(t) if and only if the (i, j) communication channel is

blocked by DoS at time t. In other words

(i, j)∈ ED(t) ⇐⇒ ∃ c ∈ N0, t ∈ D
ij
c .

It is straightforward to verify that the “healthy edges E(t)" and

“blocked edges ED(t)" satisfy

E0 = E(t) ∪ ED(t), ∀t ≥ 0.

In a similar fashion to Equation (13), we define the following sets

which include all possible DoS graphs and their corresponding

Laplacian matrices

ϒD ={GD0 ,GD1 , . . . ,GDf
}, 3D ={LD0 , LD1 , . . . , LDf

}.
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A B C D E

FIGURE 2

An illustrative example for di�erent classes of DoS attacks. (A) The initially designed communication topology G0, (B) a connectivity-preserved DoS,

(C) a connectivity-broken DoS, (D) an inactive cycle for DoS, (E) a full DoS.

Now, we classify the DoS attack modes based on their impact on

the initial communication graph G0.

Mode I. Connectivity-preserved DoS (CP-DoS): In this type

of attack, a subset of the initial transmission links are attacked

by DoS. However, the resultant communication topology

remains connected.

Mode II. Connectivity-broken DoS (CB-DoS): In this scenario,

a subset of the initial links are blocked and the resultant

communication topology is disconnected. In the extreme case, all

communication channels between the agents can be blocked which

is referred to as the “full DoS".

Example: Consider a MAS with five nodes as shown in Figure 2.

The initially designed communication topology is labeled with G0

which consists of 6 bidirectional edges. At t= 1, two of the

edges are blocked by DoS. The corresponding DoS graphs are

shown above each rightward arrows. The attack at t= 1 is a CP-

DoS as the resulting graph is still connected. Then, a CB-DoS

occurs at t= 2 which isolates node 4. Note that the DoS graph

is always constructed based on G0, not the previously operating

communication topology. Afterwards, the adversary is inactive at

t= 3, so the MAS can operate based on G0. Finally, a full DoS

is observed at t= 4 which isolates all the nodes. Note that the

cardinality ofϒ is 26 = 64 which implies that there exist 63 different

topologies under DoS for graph G0. For ease of reference, Table 1

lists important parameters used to model the communication

topology of the MAS and DoS attacks.

2.3 Control objectives

The article addresses the following problems:

Problem 1. As observed earlier, the DETC protocol (Equation 4)

and the auxiliary variable ηi(t) which follows Equation (5) depend

on the knowledge of multiple unknown gains. These gains can

significantly impact the consensus features such as the convergence

rate, intensity of the events, and the amount of resilience to DoS.

How to efficiently design these gains in a systematic way is a

challenging matter. Many references such as Hu et al. (2018);

Yi et al. (2018); He et al. (2019) derive some feasible regions

for the DETC gains. However, even when the feasible regions

are known, selecting the actual operating values that efficiently

avoid unnecessary events remains an issue and requires some trial

and error. As a more systematic approach, we propose a convex

optimization to design the exact values of the unknown control

and DETC gains based on an objective function which increases

theminimum inter-event time (MIET). Increasing theMIET avoids

unnecessary control updates.

Problem 2. In the presence of attack, it is important to develop a

secure implementation under all the DoS modes and their different

resulting topologies. While some of the 2
|E0 |
2 variations may be

homomorphic graphs, the exponential growth of the situations

as per the number of edges makes dealing with all the possible

scenarios difficult, especially for large networks. How to design

proper control and DETC gains in response to CP-DoS and CB-

DoS will be investigated. It is clear that if the MAS is subject to

DoS attacks with unlimited duration, the control protocol cannot

receive sufficient amount of information and consensus may not

be achieved. Therefore, it is reasonable to consider an assumption

regarding the finiteness of the attack duration and explicitly obtain

the tolerable amount of resilience to DoS.

3 Problem formulation

In this section, we analyze the closed-loop MAS (Equation 12)

under asynchronous DoS attacks.

3.1 Formulation of asynchronous DoS

The asynchronous DoS given in Equation (12) can lead to both

the CP-DoS and CB-DoS attacks. According to Proposition (1), if

the operating graphG(t) becomes disconnected under DoS, it holds

that λ2(L(t))= 0.

We define the c-th CB-DoS interval as follows

Rm = [rm, rm + vm), m∈N0, (14)

where

rm = inf
(i,j)∈E0 ,
c∈N0

{d
ij
c | d

ij
c > rm−1 + vm−1, λ2(L(d

ij
c ))= 0 },

vm = inf { t | t > rm, λ2(L(t)) > 0 }. (15)
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with r−1 + v−1 = − 1. Conceptually speaking, rm is the earliest

time when DoS on a link (i, j) leads to a disconnected graph [i.e.,

λ2(L(t))= 0]. Also, vm is the duration of Rm, i.e., the earliest time

after rm when the graph becomes connected again [i.e., λ2(L(t)) >

0]. Expression r−1+v−1 = −1 is selected for the initialization of r0
as the first instance where connectivity of the network is broken.

The union of all CB-DoS intervals for t ∈ [t1, t2) is

R(t1, t2)=
⋃

m∈N0

Rm ∩ [t1, t2]. (16)

The complement of Rm is Wm, which represents either healthy or

CP-DoS intervals. More precisely,

Wm = [rm + vm, rm+1), m∈N0. (17)

The union of all healthy or CP-DoS intervals for t ∈ [t1, t2) is

given by

W(t1, t2)=
⋃

m∈N0

Wm ∩ [ t1, t2 ]. (18)

Based on Equations (14)–(19), let |R(t1, t2)| and |W(t1, t2)|,

respectively, denote the accumulative length of corresponding

intervals for t ∈ [t1, t2). Since W(t1, t2) and R(t1, t2) are

complements of each other, one concludes that

|W(t1, t2)| = t2 − t1 − |R(t1, t2)|, t1 ≤ t2. (19)

The following assumption holds for the duration of the DoS attacks.

Assumption 1. There exist positive constants T0, and T1 such that

the following upper-bounds hold (De Persis and Tesi, 2015)

|R(t1, t2) | ≤ T0 +
t2−t1

T1
, ∀ t1, t2 ∈R≥0, t1 ≤ t2. (20)

The DoS attacks considered in Hu et al. (2019); Xu Y. et al.

(2019) are assumed to follow a periodic pattern. Considering a

periodic pattern for DoS may not fully represent the unknown and

malicious nature of the adversary. Our considered asynchronous

attack is more general, where the DoS is assumed to occur with an

unknown pattern. Such a DoS model with unknown pattern can

be characterized only by the energy constraints of the adversary.

Assumption 1, which is widely used for formulation of unknown

DoS attacks, constrains DoS in terms of its average duration. In

other words, the strength of the DoS attacks (in terms of duration)

is scalable with time. Inequality (Equation 21) expresses property

that the DoS intervals satisfy a slow-on-the-average type condition.

It implies that the total duration for DoS, on average, should not

exceed a certain fraction of time, which is scaled by 1/T1. Parameter

T0 is included to allow for consideration of DoS at the start time.

3.2 Closed-loop system

Let x = [xT1 (t), . . . , x
T
N(t)]

T , e =
[

eT1 (t), . . . , e
T
N(t)

]T
, x̃ =

[xT1 (t
1
k
), . . . , xTN(t

N
k
)]T , η = [η1(t), . . . , ηN(t)]

T . From Equations (1)

and (3), the closed-loop MAS under DoS is given below

ẋ(t)=
(

IN⊗A− (L0 − LD(t))⊗BK
)

x(t)− (L0 − LD(t))⊗BK e(t).

(21)

Next, we transform system (21) through the eigenvalue

decomposition of L0. It is straightforward to show that

L0 = V̄0 J̄0V̄
T
0 , ‖V̄0‖= 1,

where J̄0 = diag(0, λ2(L0), . . . , λN(L0)) is a diagonal matrix

consisting the eigenvalues of L0 and matrix V̄ = [v̄i,j] ∈ R
N×N

includes the normalized eigenvectors of L0. We construct

the (N−1)× N dimensional matrix V0 which includes rows 2 to N

of matrix V̄T
0 . In other words, matrix V0 is obtained by removing

the first row of matrix V̄T
0 (the corresponding eigenvector to

eigenvalue zero). With this definition, it holds that L0 =VT
0 J0V0.

Now, consider the following transformation

z(t) = (V0 ⊗ In) x(t). (22)

It is proved in Ge and Han (2017) that consensus is achieved

in Equation (21) iff limt→∞ z(t)= 0. Using Equation 22,

system (21) is converted to

ż(t)=
(

IN−1⊗A− (J0 − JD(t))⊗BK
)

z(t)− (J0V0 −W(t)V0)⊗

BK e(t), (23)

where W(t) = V0V
T
D(t)JD(t)VD(t)V

T
0 and JD(t) =

diag(λ2(LD(t)), . . . , λN(LD(t))). Matrix VD(t) with unity norm

includes the eigenvectors of LD(t).

4 Stability analysis and parameter
design

In this section, we propose a co-design approach to compute

the control and DETC parameters under asynchronous DoS

attacks. For ease of comprehension, the results are presented in

two theorems.

• In Theorem 1, we assume that only CP-DoS occurs.

Considering this situation, we propose an optimization

framework that co-designs all the unknown control and

DETC parameters with a given desired rate for exponential

consensus convergence.

• Theorem 2 extends Theorem 1 by considering both the CB-

DoS and CP-DoS. A desired level of tolerance to asynchronous

DoS can be selected a priori. The trade-offs between the rate of

consensus convergence, intensity of control updates, and the

amount of resilience to DoS can be controlled by Theorem 2.

4.1 Parameter design under
connectivity-preserved DoS

In this section, we propose a theorem that guarantees consensus

under the situation where MAS (Equation 23) is only subjected to

CP-DoS. Section 4.2 extends the framework to both the DoS cases.

Theorem 1. Consider MAS (Equation 23) with the initially

designed communication topology G0 = (V, E0,A0) under CP-DoS

attacks. Given a desired consensus convergence rate ω1, if there
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exist positive definite matrices Pn×n> 0, M1n×n > 0, M2n×n > 0,

M5n×n > 0, free matrix �m×n, positive scalars m3> 0, m4> 0,

ǫ1> 0, and θc> 0, (1≤ c≤ 7), such that the following convex

minimization problem is feasible

min F = θ1 + θ2 + · · · + θ7, (24)

subject to:

91=











ψ1−J0V0⊗B� 0 0

∗ −IN⊗M1 0 λ̄DIN⊗B�

∗ ∗ (φ3−φ4+
ω1
2 )IN 0

∗ ∗ ∗ −ǫ1I











<0, (25)

5=�TBT + B� > 0, (26)

C1=

[

−θ1I M1

∗ −I

]

< 0, C2=

[

θ2I I

∗ M2

]

> 0,

C3=

[

θ3 1

∗ m3

]

> 0, C4=

[

−θ4 m4

∗ −1

]

< 0,

C5=

[

θ5I I

∗ M5

]

> 0, C6=

[

−θ6I �

∗ −I

]

< 0,

C7=

[

θ7I I

∗ P

]

> 0, (27)

where

ψ1 = IN−1⊗(PAT+AP+ω1P)− λIN−1⊗(B�+�TBT)

+ J20⊗(M2+M5)+ ǫ1I, (28)

λ= min
i=0,...,|3|−1

{λ2(Li) | Li ∈ 3, λ2(Li) > 0}, (29)

λ̄D = max
i=0,...,|3D|−1

{λN(LDi ) | LDi ∈3D, λ2(LDi ) > 0}, (30)

then the unknown parameters for control protocol (Equation 2)

and DETC scheme (Equation 4) are designed as follows

K = �P−1, 81 = P−1M1P
−1, 82 =P−1M2P

−1,

φ3 =m3, φ4 =m4, 85 = P−1M5P
−1. (31)

The following bounds are guaranteed for the designed parameters

associated with the convex minimization problem defined through

Equations (24)–(30)

‖K‖≤ θ7
√

θ6, ‖81‖≤
√

θ1θ
2
7 , ‖82‖≥

1

θ2θ
2
7

, φ3 ≥
1

θ3
,

φ4 ≤
√

θ4, ‖85‖≥
1

θ5θ
2
7

. (32)

Using Equation (31), the convergence rate of z(t) satisfies

λmin(P
−1)zT(t) z(t)+ η(t) ≤ µe−ω1t + ω2

1/2, (33)

where µ = λmax(P
−1) zT(0) z(0)+ η(0).

Proof: For the sake of readability, we remove the time argument t

in the proof. Consider the following expression

V̇ + ω1 V < ω2
1/2, (34)

where V = V1 + V2 and

V1 = zT(IN−1⊗P−1) z, V2 = η. (35)

If (34) is guaranteed, condition (33) is satisfied and ω1 determines

the exponential consensus convergence rate. We compute the time

derivative for V1 as follows

V̇1 =zT 4 z − 2zT
(

(J0V0 −WV0)⊗ P−1BK
)

e, (36)

where 4= IN−1 ⊗ (ATP−1 + P−1A) − 2(J0 − JD) ⊗ P−1BK.

Remind that in this theorem we assume that the MAS is either in

healthy intervals or under CP-DoS. In this situation, all the diagonal

elements of J0 − JD are non-zero. Under condition (P−1BK)T +

P−1BK > 0, the following holds

4 ≤ IN−1⊗(ATP−1 + P−1A)− 2λIN−1⊗P−1BK. (37)

We expand V̇2 + ω1V2 based on Equation (5)

V̇2 + ω1V2 = − φ4 η
2 + qTIN ⊗85q+ ω1η

= − φ4 η
2 + xT(L0−LD)

2 ⊗85x+ ω1η, (38)

Since LD ≥ 0, it holds that xT(L0−LD)
2⊗85x ≤ xTL20⊗85 x.

Recalling that L0 =VT
0 J0V0, V0V

T
0 = I, and using

transformation (22), it is straightforward to show

xT(L0−LD)
2⊗85x ≤ xTL20⊗85 x= zT(J20 ⊗85)z. (39)

Considering Equations (38, 39), and inequality ω1η≤ ω1
2 η

2 +
ω2
1
2 ,

we conclude that

V̇2 + ω1V2 ≤ (−φ4 +
ω1

2
) η2 + zT(J20 ⊗85)z +

ω2
1

2
(40)

As for the DETC (Equation 4), it holds that eTi (t)81ei(t) ≤

qTi (t)82qi(t)+ φ3η
2
i (t), t∈[t

i
k
, ti
k+1

). In a collective sense, we obtain

eT(IN ⊗81)e ≤ qT(IN ⊗82)q+ φ3η
T
η. Similar to Equation (39),

we can derive that qT(IN ⊗ 82)q ≤ zT(J20 ⊗ 82)z. Therefore, the

following condition is obtained

eT(IN ⊗81)e ≤ zT(J20 ⊗82)z + φ3η
T
η. (41)

Let ν = [ zT , eT , ηT ]T . Based on Equations (36, 37, 40), and (41), we

re-arrange Equation (34) as follows

V̇ + ω1 V ≤ ν
T9̄1ν + ω2

1/2, (42)

9̄1 =







ψ̄1 (WV0−J0V0)⊗P−1BK 0

∗ −IN ⊗81 0

∗ ∗ (φ3−φ4 +
ω1
2 )IN






,

ψ̄1 = IN−1 ⊗ (ATP−1 + P−1A)− 2λIN−1 ⊗ P−1BK

+ ω1IN−1 ⊗ P−1 + J20 ⊗ (82 +85).

Inequality (Equation 34) is guaranteed if 9̄1 < 0. We pre- and post

multiply 9̄1 by P = diag(IN−1⊗P, IN ⊗ P, IN), which results in

P9̄1P. Denote the following alternative variables

�=KP, M1 = P81P, M2 =P82P,

m3 =φ3, m4 =φ4, M5 =P85P. (43)
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Now, re-arrange P9̄1P as follows

P9̄1P= 9̄2 + STY + YTS < 0, (44)

where

9̄2 =







ψ̄2 −J0V0 ⊗ B� 0

∗ −IN ⊗M1 0

∗ ∗ (φ3−φ4 + ω1)IN






,

S= [ I 0 0 ], Y = [ 0 (WV0⊗In)(IN⊗B�) 0 ],

ψ̄2 = IN−1⊗(PAT+AP+ω1P)− λIN−1⊗(B�+�TBT)

+ J20⊗(M2+M5).

According to Young’s inequality, condition (44) is guaranteed if

there exists a positive scalar ǫ1 such that

9̄2 + ǫ1S
TS+ ǫ−1

1 YTY < 0, (45)

The only non-zero element of YTY is

(IN⊗B�)T(VT
0 W

TWV0⊗In)(IN⊗B�). Now, we consider the

following upper-bound

VT
0 W

TWV0⊗In ≤ λ̄2DINn. (46)

Considering the upper-bound in Equation (46) and using the

Schur complement Lemma with respect to the term ǫ−1
1 YTY ,

inequality (Equation 45) turns into 91 < 0 given in Equation (25).

The condition above (Equation 37) is pre- and post-multiplied by P

and that results in LMI5 < 0 given in Equation (26).

Formulation of the objective function: Similar to Amini et al.

(2022), a weighted-sum approach is employed to decrease/increase

the control gain and DETC parameters according to their impact

onMIET (Equation 9). For decision variables θc> 0, (1≤ c≤ 7), we

consider the following constraints

MT
1 M1 < θ1I, M−1

2 < θ2I, m−1
3 < θ3, m2

4 < θ4,

M−1
5 < θ5I, �T� < θ6I, P−1 < θ7I. (47)

Note that from Equations (43) and (47) one can obtain the bounds

given in Equation (32). According to Equation (32), if one decreases

the values of θc> 0 (1≤ c≤ 7), parameters {‖K‖, ‖81‖,φ4} are

decreased and {‖82‖,φ3, ‖85‖} are increased. This increases

MIET (Equation 9). The objective function F (given in Equation 9)

is constructed based on minimizing the sum of θc, (1≤ c≤ 7). The

constraints given in Equation (24) are not in the form of LMIs. To

make convex constraints, we employ the Schur complement and

LMIs Ci, (1≤ i≤ 7), are obtained from Equation (47). Once the

convex problem (Equation 24) is solved the control gain and DETC

parameters are computed from Equation (31).

Remark 3. In fact, Theorem 1 guarantees consensus based on

the smallest possible Fiedler value (λ) and the maximum largest

eigenvalue for the DoS graph (λ̄D). These eigenvalues correspond

to the strongest possible CP-DoS attacks on G0. As for the

performance trade-offs, a faster desired convergence rate (i.e.,

a larger value for ω1) leads to a faster consensus convergence

according to Equation (33). However, as ω1 is increased the

intensity of the events is increased and less saving in control updates

is expected.

4.2 Extension to connectivity-broken DoS

In the following theorem, we extend Theorem 1 for the

situation where both the CB-DoS and CP-DoS may occur.

Theorem 2. Consider MAS (Equation 23) with the initially

designed communication topology G0 under both the CP-DoS and

CB-DoS attacks. Let ω1 be the desired consensus convergence rate

under only CP-DoS and α < 1 be the desired resilience level to

CB-DoS attacks. If there exist positive definite matrices Pn×n> 0,

M1n×n > 0,M2n×n > 0,M5n×n > 0, freematrix�m×n, positive scalars

m3> 0,m4> 0, ǫ1> 0, ǫ2> 0, and θc> 0, (1≤ c≤ 7), such that the

following convex minimization problem is feasible

min F = θ1 + θ2 + · · · + θ7, (48)

subject to:

91 < 0, (49)

92=











ψ2 −J0V0⊗B� 0 0

∗ −IN⊗M1 0 λ̄IN⊗B�

∗ ∗ (φ3−φ4)IN 0

∗ ∗ ∗ −ǫ2I











< 0, (50)

93 =AP + PAT − ω2P < 0, (51)

5 < 0, C1 > 0, C2 > 0, C3 > 0, C4 < 0,

C5 > 0, C6 < 0, C7 > 0,

where 91, 5, and Ci, (1≤ i≤ 7), are previously defined in

Theorem 1 and

ψ2 = IN−1⊗(PAT+AP−ω2P)− λIN−1⊗(B�+�TBT)

+ J20⊗(M2+M5)+ ǫ2I,

ω2 =
ω1(1−α)

α
, λ̄= max

i=0,...,|3|−1
{λN(Li) | Li ∈ 3}, (52)

then the unknown parameters for control protocol (Equation 2)

and DETC (Equation 4) are designed from the same expressions

given in Equation (31). These parameters guarantee resilient to

CB-DoS attacks satisfying

1

T1
< α.

Additionally, the system trajectories satisfy the following

exponentially bounded stability

λmin(P
−1)zT(t) z(t)+ η(t) ≤ ρ1µ e−ζ t + ρ2, (53)

where

ζ =ω1−
ω1 +ω2

T1
, µ= λmax(P

−1) zT(0)z(0)+ η(0). (54)

Proof: The proof considers three possible situations that the MAS

may undergo: (i) Healthy or CP-DoS, (ii) CB-DoS where there

exists at least one healthy channel, (iii) CB-DoS where all channels

are blocked (full DoS).

(i) Healthy or CP-DoS: From Theorem 1, for healthy or CP-DoS

intervals (t ∈ Wm) it is guaranteed that V̇(t) < −ω1 V(t)+ω
2
1/2 if

91 < 0 and5 < 0. This leads to the following expression

V(t) ≤ e−ω1(t−rm−vm)V(rm+vm)+ ω1/2, t ∈ Wm. (55)
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(ii) CB-DoS where there exists at least one healthy channel: In the

presence of CB-DoS (t ∈Rm), MAS (Equation 23) is disconnected

and the agents may diverge. There exists a positive scalar ω2 that

the divergence rate satisfies

V̇(t) < ω2V(t), t ∈ Rm, (56)

where V =V1 +V2 is given in Equation (35). We expand Equation

(56) as

V̇ − ω2V = (V̇1 + V̇2)− ω2(V1 + V2) < 0. (57)

Since V2 > 0, if condition

(V̇1 + V̇2)−ω2V1 < 0, t ∈ Rm, (58)

is guaranteed, then Equation (57) is also guaranteed. The time

derivatives for V1 and V2 are given in the proof of Theorem 1 and

are re-produced below for ease of reference

V̇1 =zT 4 z − 2zT
(

(J0V0 −WV0)⊗ P−1BK
)

e,

V̇2 = − φ4 η
2 + xT(L0−LD)

2 ⊗85x,

with 4 given below Equation (36). When CB-DoS occurs, there

exists at least one zero diagonal entry in J0 − JD. Hence

4 ≤ IN−1⊗(ATP−1 + P−1A).

For CB-DoS with at least one healthy channel it still holds that

xT(L0−LD)
2x ≤ xTL20 x Therefore, the proof follows similar steps

given in expressions (39) to (46). This results in 92 < 0 given

in Equation (50).

(iii) CB-DoS where all channels are blocked: In the situation

that all communication links are blocked we have LD(t)= L0
and qi(t)= 0, ∀i ∈ V. Expanding Equation (58) for this situation

results in

V̇1 + V̇2 −ω2V1 = zTIN−1⊗(ATP−1+P−1A−ω2P
−1)z − φ4

η
2 < 0, t ∈ Rm. (59)

Condition (59) is guaranteed if ATP−1 + P−1A − ω2P
−1< 0. Pre-

and post multiplying this condition by P results in 93 < 0 given

in Equation (51).

Now, we merge the Lyapunov conditions derived for the Wm

and Rm intervals from expressions (55) and (56). Let us first

expand Equation (56):

V(t) ≤ eω2(t−rm)V(rm), t ∈Rm. (60)

Consecutively using Equations (55) and (60), and assuming t ∈ Rm,

we obtain that

V(t) ≤ eω2(t−rm)V(rm)

≤ eω2(t−rm)
(

e−ω1(rm−rm−1−νm−1)V(rm−1+νm−1)+
ω1

2

)

≤ eω2(t−rm)e−ω1(rm−rm−1−νm−1)eω2νm−1V(rm−1)+
ω1

2
eω2(t−rm)

≤ . . .

≤ e−ω1|H(0,t)|eω2|R(0,t)|V(0)+
ω2
1

2
+ ω1

∑

m∈N0
rm≤t

e−ω1|H(rm+vm ,t)|eω2|R(rm ,t)|.

(61)

From Equations (20) and (21), the first term in the right hand side

of Equation (61) is upper-bounded as follows

e−ω1|H(0,t)|eω2|R(0,t)| ≤ ρ1 e
−ζ t , (62)

ρ1=eT0(ω1+ω2), ρ2=
ω2
1

2
+ω1e

T0(ω1+ω2)
∑

m∈N0
rm≤t

e−ζ (t−rm) (63)

where ρ1 and ζ are defined in Equations (54) and (63).1

From De Persis and Tesi (2015) (Lemma 4) the summation term

in Equation (61) lies within the following upper-bound

∑

m∈N0
rm≤t

e−ω1|H(rm+vm ,t)|eω2|R(rm ,t)| ≤ eT0(ω1+ω2)
∑

m∈N0
rm≤t

e−ζ (t−rm) (64)

Expressions (62) and (64) lead to exponential bounded consensus

given in Equation (53).

Let α=ω1/(ω1 + ω2). If the CB-DoS attacks satisfy 1
T1

<

α, parameter ζ remains positive and system (Equation 1) is

exponentially stable according to Equation (53). Parameter α

represents the level of resilience to CB-DoS attacks. This completes

the proof.

Remark 4. In simple terms, Theorem 2 computes the control

gain and DETC parameters by considering three situations: (i) All

channels are healthy or the MAS is under CP-DoS. LMI 91 <

0 given in Equation (49) represents this situation. (ii) The MAS

is under CB-DoS, however, at least one channel is healthy in

the communication topology. This situation is represented by

LMI 92 < 0 given in Equation (50). (iii) The MAS is under full

CB-DoS and all communication channels are blocked. LMI93 < 0

given in Equation (51) represents this situation. With ω1 as the

rate of consensus convergence for situation (i), ω2 as the rate of

divergence for situations (ii) and (iii), and T1 as the time ratio

of CB-DoS attacks, the condition ζ =ω1−
ω1 +ω2

T1
> 0 decides

whether consensus is guaranteed or not.

Remark 5. Increasing the desired resilience level to CB-DoS α, by

construction, would make the MAS more resilient to CB-DoS, i.e.,

higher overall duration for DoS is tolerable. However, higher values

for α lead to lower values for ω2 which makes LMI 93 < 0 (given

in Equation 51) unlikelier to be satisfied; especially ifA is inherently

unstable. Additionally, a performance drop is expected in the event

savings and consensus convergence when α is increased for the sake

of higher tolerance to DoS. This is the trade-off between the system

performance and its amount of security to DoS.

Remark 6. As observed in Theorem 2, the knowledge of

parameters T0 and T1 is only useful for the consensus convergence

rate (Equation 53). In other words, the implementation of

optimization (Equation 48) does not depend on T0 or T1.

However, for selecting a reasonable value for α and run

optimization (Equation 48), it is helpful if the designer has a priori

estimation of parameter T1 (which roughly represents the average

ratio of CB-DoS duration to total time).

1 It is straightforward to show that Equation (61) also holds if t ∈Wm.
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Remark 7. The computational complexities of solving Theorems

1 and 2 grow at the O
(√

Np|logǫg |
)

, where the problem size

Np = max{dm, nv}, the duality gap denoted by ǫg , dm is “the

highest dimension of the LMIs associated with the optimization

problem", and nv is the “total number of decision variables”

involved (Amini, 2020, Remark 3.11). Both dm and nv are sensitive

to addition of the DETC state η, and will be increased compared to

the scenario without dynamic event-triggering. Consequently, the

computational complexity of solving LMIs in Theorems 1 and 2

slightly grows.

Remark 8. We remind that Theorem 2 guarantees consensus

in the bounded sense with system trajectories satisfying

inequality (Equation 53). The reason that an asymptotic or

exponential rate without a residual cannot be guaranteed

comes from inequality ω1η≤ ω1
2 η

2 +
ω2
1
2 which is used to

make condition 38 quadratic. Intuitively, parameter η may not

converge to zero which creates a bounded consensus error in

the system.

Remark 9. Recently there has been an increasing interest

in the fully distributed consensus control where no global

knowledge of multi-agent system is required. While our proposed

implementation in this article requires the knowledge of the

minimum non-zero Laplacian eigenvalue which is a global

information, we have identified important simplifying assumptions

and practical shortcomings in existing references on fully

distributed consensus approaches compared to our work. For

example, in a vast majority of the proposed approaches such

as Cheng and Li (2019); Li et al. (2020); Xu et al. (2022) an

ideal scenario where no attack is targeted on the network

is considered. Therefore, consensus in these references are

not guaranteed in the presence of DoS attacks. In Wang

et al. (2022); Du S. et al. (2023) a fully distributed event-

triggered consensus under DoS is formulated. However, the

DoS considered in Wang et al. (2022); Du S. et al. (2023) is

synchronous which significantly simplifies the formulation

compared to asynchronous DoS considered in our work. A

fully distributed consensus under DoS attacks represented

by Markov process (which can be regarded as asynchronous

DoS) is proposed in Wang et al. (2022). However, the

communication and control schemes in Wang et al. (2022) is

not event-triggered.

Remark 10. This article considers a continuous-time model

for the agents. Additionally, the dynamic event-triggering

scheme (4) needs continuous-time monitoring of the condition

to detect possible events. We note that it is not challenging

to extend the proposed implementation in this work to a

sampled-data dynamic event-triggering scheme where continuous-

time measurement and event monitoring are relaxed. In fact,

without compromising other novelties of the work one can

adopt the well-known family of LMI-based Lyapunov-Krasovskii

functionals (LKFs) stability method developed in our prior

works [Amini et al., 2021, Equation (26)] and [Amini et al.,

2022b, Equation (45)]. However, in order not to overshadow

the main ideas of this work (i.e, incorporation of dynamic

event triggering control under asynchronous DoS attacks)

under overwhelmed formulation caused by the LKF approach

we have opted to consider the continuous time formulation in

this article.

4.3 Special case: DoS-free situation

The DoS-free situation (where no CP-DoS and no CB-DoS

occur) is a special case of Theorems 1 and 2. The following corollary

shows how the results in Theorem 1 can be reduced to the DoS-

free situation

Corollary 1 (DoS-free situation). Consider MAS (Equation 23)

with communication topology G0 = (V, E0,A0). Given a desired

consensus convergence rate ω1, if there exist positive definite

matrices Pn×n> 0, M1n×n > 0, M2n×n > 0, M5n×n > 0, free

matrix �m×n, positive scalars m3> 0, m4> 0, and θc> 0,

(1≤ c≤ 7), such that the following convex minimization problem

is feasible

min F = θ1 + θ2 + · · · + θ7, (65)

subject to:

9=







ψ−J0V0⊗B� 0

∗ −IN⊗M1 0

∗ ∗ (φ3−φ4+
ω1
2 )IN






<0, (66)

C1 > 0, C2 > 0, C3 > 0, C4 < 0,

C5 > 0, C6 < 0, C7 > 0, (67)

where Ci, (1≤ i≤ 7), are defined in Theorem 1 and

ψ = IN−1⊗(PAT+AP+ω1P)− J0⊗B�−J0⊗(B�)T

+ J20⊗(M2+M5), (68)

then the unknown parameters for control protocol (Equation 2)

and DETC (Equation 4) are designed from the same expressions

given in Equation (31). The bounds given in Equation (32) are

also guaranteed

Proof: The proof of feasibility of the convex minimization problem

defined through Equations (65)–(68) can be followed from proof of

Theorem 1 with LD = 0.

5 Simulation

To evaluate the performance of the proposed theorems, we

conduct two different experiments as detailed below.

Example 1: Consider a MAS comprising of five agents with the

following dynamics (Xu Y. et al., 2019)

A =











0.001 0.001 0 0

0 −0.01 0.001 0

0 0 −0.01 0.001

0.001 0 0 0











, B = 2I4. (69)

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125124
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Amini et al. 10.3389/fcomp.2023.1125124

FIGURE 3

State consensus in MAS (Equation 69). Highlighted areas in “orange” are CP-DoS and in “red” are CB-DoS attack intervals (Equation 71).

The initially designed network topology for Equation (69) is defined

by the following Laplacian matrix

L0 =















2 −1 0 0 −1

−1 3 −1 0 −1

0 −1 2 −1 0

0 0 −1 2 −1

−1 −1 0 −1 3















. (70)

For illustration, we consider an example of a sequence of

distributed attacks with 4 CP-DoS and 4 CB-DoS given below:

CB-DoS 1 : D15
1 =D12

1 =D25
1 = [0.4, 0.7),

CP-DoS 1 : D12
0 =D25

0 = [1, 1.2),

CB-DoS 2 : D34
1 =D45

1 = [2.8, 3.3),

CP-DoS 2 : D15
0 =D34

0 = [3.4, 4),

CP-DoS 3 : D12
2 =D45

0 = [5, 5.4),

CB-DoS 3 : D23
0 =D34

2 = [7, 7.2),

CP-DoS 4 : D12
3 =D45

2 = [7.5, 8),

CB-DoS 4 : D23
1 =D45

3 = [11, 11.3). (71)

We remind that the definition of D
ij
c is given in Equation (12). For

better visualization, the attack sequence (Equation 71) is shown in

Figure 3 where the highlighted areas in “orange” are CP-DoS attack

intervals and in “red" are CB-DoS ones.

It is easy to verify that the above DoS satisfies Assumption 1

with T0 = 0.3 and T1 = 7. The eigenvalues required in Equations

(29), (30), and (52) are computed as λ= 0.38, λ̄= 4.62, and λ̄D = 2.

To compute necessary control and DETC design parameters from

Theorem 2, we select ω1 = 0.2 and α= 0.15. With T1 = 7, it

holds that 1
T1

= 0.1429 < α= 0.15. The following parameters

are obtained by solving optimization (Equation 48) through the

MOSEK solver

K =











0.6475 0.0022 −0.0005 0.0026

0.0022 0.5858 0.0166 0.0014

−0.0005 0.0165 0.6197 0.0006

0.0026 0.0014 0.0006 0.6419











,

81 =











1467.39 9.64 −2.51 12.89

9.64 1202.90 77.31 7.70

−2.51 77.31 1363.58 1.02

12.89 7.70 1.02 1437.09











,

82 =











0.0713 0.0004 −0.0001 0.0006

0.0004 0.0587 0.0041 0.0004

−0.0001 0.0041 0.0673 0

0.0006 0.0004 0 0.0699











,

φ3 = 0.7617, φ4 = 0.8617,

85 =











0.0714 0.0004 −0.0001 0.0006

0.0004 0.0590 0.0045 0.0004

−0.0001 0.0045 0.0687 −0.0001

0.0006 0.0004 −0.0001 0.0699











.

Let xi(0) = [i, −1.5i+6, −i, 2i−2]T and ηi(0)= 1, (1≤ i≤ 5). The

sampling period Ts for simulation is selected as Ts = 0.001s.

Consensus iteration is run until the settling time t⋆

defined below

t⋆= inf{ t | ‖z(t)‖≤ 5× 10−4‖z(0)‖ }.

Conceptually speaking, time t⋆ determines the consensus settling

time within the 0.05% of the initial disagreement z(0). Therefore,

a higher value of t⋆ shows a slower rate of convergence and vice

versa. We introduce t⋆ as an index to compare the settling time

(convergence rate) for consensus. In this example, t⋆= 5.73s. The

states of MAS (Equation 69) are shown in Figure 3, where the

agents reach consensus on respective states, despite the CB-DoS
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FIGURE 4

Event instants (control updates) for the five agents.

FIGURE 5

Trajectories of ηi(t).

and CP-DoS given in Equation (71). In Figure 3, the highlighted

areas in orange color show the CP-DoS and those in red represent

intervals where CB-DoS is activated based on Equation (71).

Controllers for agent 1 to agent 5 are, respectively, updated on

159, 151, 130, 138, and 176 occasions shown in Figure 4. For the

sake of comparison, we introduce two parameters related to the

amount of controller updates: (i) The average number of events

(denoted by AE), and (ii) The average inter-event time (denoted

by AIET). Parameter AE is computed by AE = (total events of all

agents)/(number of agents). Additionally, AIET= t⋆/AE. In fact,

parameter AIET is an index to measure the intensity of events.

For this example, we have AE=150.8 and AIET= 0.038. Figure 5

depicts the trajectories of the dynamic threshold ηi(t), (1≤ i≤ 5).

As observed in Figure 5, variable ηi(t) rises from its initial condition

ηi(0)= 1 and greatly contributes to reducing the number of events.

Next, we investigate how different values for convergence

rate ω1 and resilience level to CB-DoS α influence the designed

parameters and consensus features. To this end, we consider two

simulation scenarios. In the first scenario, α is fixed at 0.15 and

ω1 is incrementally increased in set {0.1, 0.2, 0.3, 0.4}. The purpose

of this scenario is to observe the impact of ω1 while α is fixed.

In the second scenario, ω1 is fixed at 0.2 and α is increased in

set {0.1, 0.2, 0.25, 0.3}. Optimization (Equation 48) is solved for

given values of ω1 and α listed in Table 2. Using the obtained

parameters, a separate consensus is run for Equation (69) with

similar L0, DoS attacks (Equation 71), and the initial conditions

mentioned earlier. According to Table 2, the following design trade-

offs are observed:

• When α is fixed and ω1 is increased, we demand a faster rate

of consensus. As expected, the settling time t⋆ is reduced with

higher values for ω1 and fixed α. This scenario is useful for

applications where a fast rate of convergence is important.

• However, the higher rate of consensus is achieved at the

expense of more intense control updates. Looking at Table 2,

this observation is verified from the reduced values of AIET

with larger ω1. This implies that the average inter-event time

gets smaller and more frequent control update is demanded.

• As another observation, a higher value for α (i.e., demanding

a higher resilience to CB-DoS attacks) a more conservative

solution in terms of the consensus rate is obtained. In other

words, consensus is achieved slower (i.e., higher t⋆) when α

is increased.

These results verify the efficiency of the proposed method

for a structured design based on the trade-off between consensus

convergence rate, intensity of events, and resilience to DoS.

Example 2: In this section, we compare our work with He and Mo

(2022) where another DETC scheme is formulated for consensus.

The goals of this comparison are twofold: (i) Compare the essence

of the parameter design approaches, and (ii) Compare the amount

of savings in control updates. He and Mo (2022) studies consensus

under a type of adversary known as the scaling attack. In order to

focus only on the efficiency of the two event-triggering schemes and

the basics of the design stages, we consider an attack-free situation.

Consider the following MAS (Guo et al., 2014) with give agents and

Laplacian (Equation 70)

A =

[

0 1

0 −0.4

]

, B =

[

0.8

0.5

]

. (72)

The attack-free situation in He and Mo (2022) requires

setting µ= 1. The control gain K=BTP is obtained by solving

the generalized eigenvalue problem given in He and Mo (2022)

(Equation 13). Except for Ŵ= PBBTP, the required parameters

for DETC [He and Mo, 2022, Equation (34)] (namely ξ , ζ , θ , σ )

should satisfy some feasibility regions specified by conditions (38)

and (39) in He and Mo (2022). With α= α̃=α1, we have tested

several different values satisfying the feasible regions and run

consensus for Equation (72). These parameters are selected in

such a way that conditions (38) and (39) in He and Mo (2022) are

“just" satisfied so that we get the full advantage of the DETC. Three

of the selected set of parameters are reported in Table 3. As for

our proposed framework, we use Corollary 1 (DoS-free situation)

with ω1 ∈ {0.9, 1.0, 1.2} to compute necessary parameters for

MAS (Equation 72) and run consensus. Comparing the results

with He and Mo (2022), the following matters worth mentioning:

• The employed objective function F in our design stage helps

in reducing the intensity of events as compared to He and Mo

(2022). This is concluded by comparing the values of AIET for

the rows with almost the same range of t⋆.

• Our proposed co-design framework computes the exact values

of the necessary DETC parameters and there is no need for the
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TABLE 2 Impact of ω1 and α on design parameters and consensus features.

ω1 α ‖K‖ ‖81‖ ‖82‖ φ3 φ4 ‖85‖ t⋆ AE AIET

0.1 0.15 0.32 372.6 0.018 0.77 0.83 0.018 10.67 137.4 0.077

0.2 0.15 0.65 1472.6 0.071 0.76 0.86 0.071 5.73 150.8 0.038

0.3 0.15 0.97 3290.0 0.16 0.74 0.89 0.16 3.79 147.8 0.025

0.4 0.15 1.29 5814.7 0.28 0.73 0.93 0.28 3.26 156.6 0.021

0.2 0.10 0.94 2689.8 0.15 0.76 0.86 0.15 3.98 135.6 0.029

0.2 0.20 0.49 1016.4 0.042 0.76 0.86 0.042 7.01 158.8 0.044

0.2 0.25 0.41 797.3 0.028 0.76 0.86 0.028 8.10 162.4 0.049

0.2 0.30 0.35 678.9 0.019 0.76 0.86 0.020 9.02 163.4 0.055

TABLE 3 Comparison between our work and He and Mo (2022).

Our work ω1 ‖K‖ ‖81‖ ‖82‖ φ3 φ4 ‖85‖ t⋆ AE AIET

0.9 2.26 16.44 0.27 0.66 1.11 0.27 9.27 21.2 0.43

1.0 2.58 22.77 0.31 0.65 1.15 0.31 8.10 20.0 0.40

1.2 6.58 84.87 0.65 0.63 1.23 0.65 6.42 43.2 0.14

He and
Mo (2022)

α ‖K‖ ‖Ŵ‖ θ σ ζ ξ t⋆ AE AIET

1.5 0.52 0.27 2.8 0.02 1.6 1.5 9.05 32.4 0.27

1.2 0.58 0.33 2.5 0.02 1.3 1.6 8.25 23.4 0.35

0.6 0.91 0.83 0.1 0.01 1.6 2.4 6.29 45.4 0.14

process of trial and error to find efficient parameters within a

region.

• Although the design stage in He and Mo (2022) has reduced

complexity compared to our approach, since the extreme

eigenvalues of the Laplacian matrix are used to derive the

feasible regions for the DETC parameters, it inherently

introduces some conservation in the DETC performance (i.e.,

more events are triggered than our work).

6 Conclusion

This article proposes a resilient framework for consensus in

multi-agent systems (MAS) using a distributed dynamic event-

triggering control (DETC) protocol which reduces the burden

of control updates. The MAS is under denial of service (DoS)

attacks. In a general scenario, it is assumed that the DoS

attack may target any arbitrary communication link between two

agents in an asynchronous manner. The DoS attacks are thus

categorized into connectivity-preserved DoS (CP-DoS) which does

not impair the connectivity of the network, and connectivity-

broken DoS (CB-DoS) which breaks the network into isolated

sub-graphs. The implementation is based on the knowledge of the

control gain and several DETC parameters. These parameters are

co-designed through a unified distributed convex optimization.

Numerical simulations are conducted to illustrate the capability

of the proposed method. In future, we will study the sampled-

data dynamic event-triggered control scheme for secondary control

in microgrids under communication delay and asynchronous

DoS attacks.
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