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Classical good continuation for image curves is based on 2D position and
orientation. It is supported by the columnar organization of cortex, by
psychophysical experiments, and by rich models of (di�erential) geometry. Here,
we extend good continuation to stereo by introducing a neurogeometric model
to abstract cortical organization. Our model clarifies which aspects of the
projected scene geometry are relevant to neural connections. The model utilizes
parameterizations that integrate spatial and orientation disparities, and provides
insight into the psychophysics of stereo by yielding a well-defined 3D association
field. In sum, the model illustrates how good continuation in the (3D) world
generalizes good continuation in the (2D) plane.
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1 Introduction

Binocular vision is the ability of the visual system to provide information about the

three-dimensional environment starting from two-dimensional retinal images. Disparities

are among the main cues for depth perception and stereo vision but, in order to extract

them, the brain needs to determine which features coming from the right eye correspond to

those from the left eye, and which do not. This generates a coupling problem, which is usually

referred to as the stereo correspondence problem. Viewed in the large, stereo correspondence

must be consistent with stereo perception more generally, and knowing the relevant features

is key for both issues. In this paper we develop an approach to stereo based on the functional

organization of the visual cortex, and we identify the geometric features extracted by the

binocular cells. This model will be able to extend the notion of good continuation for planar

curves to that for 3D spatial curves. A simple example demonstrates their application in

computing stereo correspondence.

Good continuation in the plane (retinotopic coordinates) is one of the foundational

principles of Gestalt perceptual organization. It enjoys an extensive history (Wagemans

et al., 2012). It is supported by psychophysical investigations (e.g., Field et al., 1993;

Geisler et al., 2001; Elder and Goldberg, 2002; Hess et al., 2003; Lawlor and Zucker,

2013), which reveal connections to contour statistics; it is supported by physiology

(orientation selectivity), which reveals the role for long-range horizontal connections

(Bosking et al., 1997); and it is supported by computational modeling (Ben-Shahar

and Zucker, 2004; Sarti et al., 2007), which reveals a key role for geometry. The

notion of orientation underlies all three of these aspects: neurons in visual cortex are

selective for orientations, pairs of dots in grouping experiments indicate an orientation,

and edge elements in natural images are oriented and related to image statistics.

Orientation in space involves two angles, which we shall exploit. Nevertheless, good
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continuation in depth is much less well-developed than good

continuation in the plane, despite having comparable historical

origins. (Koffka, 1963, p. 161-162):

...a perspective drawing, even when viewed monocularly,

does not give the same vivid impression of depth as the

same drawing if viewed through a stereoscope with binocular

parallax... for in the stereoscope the tri-dimensional force of

the parallax co-operates with the other tri-dimensional forces

of organization; instead of conflict between forces, stereoscopic

vision introduces mutual reinforcement.

Our specific goal in this paper is to develop a neurogeometrical

model of stereo vision, based on the functionality of binocular cells.

The main application will be a good continuation model in three

dimensions that is analogous to the models of contour organization

in two dimensions. We will develop ad hoc mathematical

instruments, supported by a number of neural and psychophysical

investigations (Malach et al., 1993; Uttal, 2013; Deas and Wilcox,

2014, 2015; Khuu et al., 2016; Scholl et al., 2022).

Although only one dimension higher than contours in the

plane, contours extending in depth raise subtle new issues; this

is why a geometric model can be instructive. First among the

issues is the choice of coordinates which, of course, requires a

mathematical framework for specifying them. In the plane, position

and orientation are natural; smoothness is captured by curvature or

the relationship between nearby orientations along a contour. For

stereo, there is monocular structure in the left eye and in the right.

Spatial disparity is a standard variable relating them, and it is well-

known that primate visual systems represent this variable directly

(Poggio, 1995). Spatial disparity is clearly a potential coordinate.

However, other physiological aspects are less clear. The columnar

architecture so powerful for contour organization in the plane is

not only monocular: the presence of columns for spatial disparity

of binocular cells has been experimentally described in V2 (Ts’o

et al., 2009). However, orientation disparity does not seem to be

coded in the cortex (see next section). Nevertheless, orientation-

selective cells provide the input for stereo so, at a minimum, both

position disparity and orientation – one orientation for the right

eye and (possibly) another for the left – should be involved.While it

is traditional to assume only “like” orientations are matched (Hubel

and Wiesel, 1962; Nelson et al., 1977; Marr and Poggio, 1979;

Bridge and Cumming, 2001; Chang et al., 2020), our sensitivity to

orientation disparity questions this, making orientation disparity

another putative variable. We shall show that orientations do play a

deep role in stereo, but that it is not necessarily efficient to represent

them as a disparity. Furthermore, there is a debate in stereo

psychophysics about orientation: since its physiological realization

could be confounded with disparity gradients (Mitchison and

McKee, 1990; Cagenello and Rogers, 1993), orientation may be

redundant. This is not the case, since it is the orientation of

the “gradient” that matters. Thus we provide a representation

of the geometry of spatial disparity and orientation in support

of using good continuation in a manner that both incorporates

the biological “givens” and provides a rigorous foundation for

the correspondence problem. As has been the case with curve

organization, we further believe that our modeling will illuminate

the underlying functional architecture for stereo.

Hubel and Wiesel reported disparity-tuned neurons in early,

classic work (Hubel and Wiesel, 1970). They observed that single

units could be driven from both eyes and that it was possible to plot

separate receptive fields (RF) for each eye. We emphasize that these

monocular receptive fields are tuned to orientation (Cumming and

DeAngelis, 2001; Parker et al., 2016), and a review of neural models

can be found in Read (2015).

The classical model for expressing the left/right-eye receptive

field combination is the binocular energy model (BEM), first

introduced in Anzai et al. (1999b). It encodes disparities through

the receptive profiles of simple cells, raising the possibility of both

position and phase disparities (Jaeger and Ranu, 2015). However,

Read and Cumming (2007), building upon (Anzai et al., 1999a),

showed that phase disparity neurons tend to be strongly activated

by false correspondence pairs. Other approaches are based on the

statistics of natural images (Burge and Geisler, 2014; Jaini and

Burge, 2017; Burge, 2020) utilized in an optimal fashion; these

lead to more refined receptive field models. Nevertheless, the

orientation differences between the two eyes (Nelson et al., 1977),

or orientation disparity, should not be neglected. Although there

were attempts to incorporate it (Bridge et al., 2001) in energy

models, they are limited. The geometrical model we will present

incorporates orientation differences directly.

Many other mathematical models for stereo vision based on

neural models have been developed. Some claim (e.g., Marr and

Poggio, 1979) that orientations should match between the two eyes,

although small differences are allowed. This, of course, assumes the

structure is frontal-parallel. Subsequently, Jones and Malik (1991)

used a set of linear filters tuned to different orientations (and

scales) but their algorithm was not built on a neurophysiological

basis. Alibhai and Zucker (2000), Li and Zucker (2003), and Zucker

(2014) built a more biologically-inspired model that addressed the

connections between neurons. Their differential-geometry model

employed position, orientations and curvatures in 2D retinal

planes, modeling binocular neurons with orientations given by

tangent vectors of Frenet geometry. Our results here are related,

although the geometry is deeper (We develop this below.). A more

recent work, based on differential and Riemannian geometry, is

developed in Neilson et al. (2018). Before specifying these results,

however, we introduce the specific type of geometry that we shall

be using. It follows directly from the columnar organization often

seen in predators and primates.

1.1 Columnar architectures and
sub-Riemannian geometry

We propose a sub-Riemannian model for the cortical-inspired

geometry underlying stereo vision based on the encoding of

positional disparities and orientation differences in the information

coming from the two eyes. We build on neuromathematical

models, starting from the work of Koenderink and van Doorn

(1987) and Hoffman (1989), with particular emphasis on the

neurogeometry of monocular simple cells (Petitot and Tondut,

1999; Citti and Sarti, 2006; Sarti et al., 2007; Petitot, 2008;

Sanguinetti et al., 2010; Sarti and Citti, 2015; Baspinar et al., 2020).
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To motivate our mathematical approach, it is instructive to

build on an abstraction of visual cortex. We start with monocular

information, segregated into ocular dominance bands (LeVay et al.,

1975) in layer 4; these neurons have processes that extend into the

superficial layers.We cartoon this in Figure 1, which shows an array

of orientation hypercolumns arranged over retinotopic position.

It is colored by dominant eye inputs; the binocularly-driven cells

tend to be closer to the ocular dominance boundaries, while

the monocular cells are toward the centers. A zoom emphasizes

the orientation distribution along a few of the columns near

each position; horizontal connections (not shown) effect the

interactions between these units. This raises the basic question

in this paper: what is the nature of the interaction among groups

of cells representing different orientations at nearby positions and

innervated by inputs from the left and right eyes? The physiology

suggests (Figure 1C) the answer lies in the interactions among both

monocular and binocular cells; our model specifies this interaction,

starting from the monocular ones and building analogously into a

columnar organization.

1.2 Informal setup and overview

Since much of the paper is technical, we here specify,

informally, the main ingredients of the model and the results. We

first list several of the key points, then illustrate them directly.

• Stereo geometry enjoys a mathematical structure that is a

formal extension of plane curve geometry. In the plane, points

belonging to a curve are described by an orientation at a

position, and these are naturally represented as elements

(orientation, position) of columns. In our model, these

become abstract fibers. The collection of fibers across position

is a fiber bundle. Elements of the (monocular) fiber can be

thought of as neurons.

• Our geometrical model is based on tangents and curvatures.

Tangents naturally relate to orientation selectivity, and are

commonly identified with “edge” elements in the world.

We shall occasionally invoke this relationship, for intuition

and convenience, but some caution is required. While edge

elements comprising, e.g., a smooth bounding contour are

tangents, the converse is not necessarily true (e.g., elongated

attached highlights or hair textures). Instead, our model

should be viewed as specifying the constraints relevant to

understanding neural circuitry; see Section 1.3.

• To elaborate the previous point: the tangents in our model

need not be edges in the world; they are neural responses. The

constraints in our model can be used to determine whether

these responses should be considered as “edges.” This is why

the model is built from the geometry of idealized space curves:

to support such inferences.

• For stereo, we shall need fibers that are a “product” of the

left and right-eye monocular columns. This is the reason

why we choose position, positional disparity and orientations

from the left and right eyes respectively, as the natural

variables that describe the stereo fiber over each position.

We stress that these fibers are not necessarily explicit in the

cortical architecture.

• Curvature provides a kind of “glue” to enable transitions

from points on fibers to nearby points on nearby fibers.

These transitions specify “integral curves” through the stereo

fiber bundle.

• The integral curve viewpoint provides a direction of

information flow (information diffuses through the bundle)

thereby suggesting underlying circuits.

• The integral curves formalize association field models. Their

parameters describe the spray of curves that is well in

accordance with 3D curves as studied in psychophysical

experiments in Hess and Field (1995), Hess et al. (1997), and

Khuu et al. (2016).

• Our formal theory addresses several conjectures in the

literature. The first is the identity hypothesis (Kellman et al.,

2005a,b) and the organization of units for curve interpolation

(cf. Anderson et al., 2002); we show how tangents are natural

“units” and how they can be organized. The second concerns

the nature of the organization (Li and Zucker, 2006), where

we resolve a conjecture regarding the interpolating object (see

Proposition 3.2 below).

• Our formal theory provides a new framework for specifying

the correspondence problem, by illustrating how good

continuation in the 3-D world generalizes good continuation

in the 2-D plane. This is the point where consistent binocular-

binocular interactions are most important.

• Our formal theory has direct implications for understanding

torsional eye movements. It suggests, in particular, that

the rotational component is not simply a consequence

of development, but that it helps to undo inappropriate

orientation disparity changes induced by eye movements. This

role for Listing’s Law will be treated in a companion paper

(in preparation); see also the excellent paper (Schreiber et al.,

2008).

We now illustrate these ideas (Figure 2). Consider a three-

dimensional stimulus as a space curve γ :R −→ R
3, with a

unit-length tangent at the point of fixation. Since the tangent

is the derivative of a curve, the binocular cells naturally encode

the unitary tangent direction γ̇ to the spatial 3D stimulus γ .

This space tangent projects to a tangent orientation in the left

eye1, and perhaps the same or a different orientation in the

right eye. A nearby space tangent projects to another pair of

monocular tangents, illustrated as activity in neighboring columns.

Note how connections between the binocular neurons support

consistency along the space curve. It is this consistency relationship

that we capture with our model of the stereo association

field.

Since space curves live in 3D, two angles are required to

specify its space tangent at a point. In other words, monocular

tangent angles span a circle in the plane; space tangent angles

span a 2-sphere in 3D. In terms of the projections into the left-

eye and the right-eye, the space tangent can be described by the

1 We are here being loose with language. By a tangent orientation in the

left eye, we mean the orientation of a left-eye innervated column in V1.
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FIGURE 1

Cartoon of visual cortex, V1, superficial layers. (A) Macroscopic organization: A number of (abstracted) orientation hypercolumns, colored by left-eye
(green)/right-eye (purple) dominant inputs. The color grading emphasizes that at the center of the ocular dominance bands the cells are strongly
monocular, while at the boundaries they become binocularly-driven. (B) A zoom in to a few orientation columns showing left and right monocular
cells at the border of ocular dominance bands. Cells in these nearby columns will provide the anatomical substrate for our model. (C) More recent
work shows that both monocular and binocular inputs matter to these cells (redrawn from Scholl et al., 2022, using data from ferret). This more
advanced wiring suggests the connection structures in our model.

FIGURE 2

(A) Stereo projection of the highlighted tangent vector to the stimulus γ ∈ R
3 in the left-eye innervated and right-eye innervated monocular

orientation columns (Each short line denotes a neuron by its orientation preference.). Joint activity across the eyes, which denotes the space
tangent, is illustrated by the binocular neuron (circle). Note the two similar but distinct monocular orientations. Connections from the actively
stimulated monocular neurons to the binocular neuron are shown as dashed lines. (B) Stereo projection of a consecutive pair of tangents to the
stimulus γ ∈ R

3 in the left and right retinal columns. Each space tangent projects to a di�erent pair of monocular columns because of the spatial
disparity. Consistency in the responses of these four columns corresponds to consistency between the space tangents attached to nearby positions
along γ . This consistency is realized through the binocular neural connection (solid line).
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FIGURE 3

(A) The full geometry of stereo. Note how the stereo correspondence problem allows to establish the relationship between the 3D tangent point
(P, θ ,φ) and the projections pL and pR, the disparity and the orientations θL and θR. (B) Main result of the paper. The three-dimensional space curve γ

is enveloped by the 3D association field centered at a point. Formally, this association field is a fan of integral curves in the sub-Riemmanian
geometry computed entirely within the columnar architecture (It is specifically described by Equation (36) with varying c1 and c2 in R, but that will
take some work to develop.).

parameters n = (θ ,ϕ) of S2 (Figure 3A). Thus, we can suitably

describe the space of stereo cells – the full set of space tangents

at any position in the 3D world – as the manifold of positions

and orientations R3
⋊ S

2. Moving from one position in space to

another, and changing the tangent orientation to the one at the

new position, amounts to what is called a group action on the

appropriate manifold.We informally introduce these notions in the

next subsection; a more extensive introduction to these ideas is in

Appendix A (Supplementary material).

1.2.1 Sub-Riemannian geometry
We live in a 3D world in which distances are familiar; that

is, a space of points with a Euclidean distance function defined

between any pair of them. Apart from practical considerations we

canmove in any direction we would like. Cars, however, have much

more restricted movement capabilities. They can move forward or

backward, but not sideways. To move in a different direction, cars

must turn their wheels. Here is the basic analogy: in cortical space

information can move to a new retinotopic position in a tangent
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direction, or it can move up or down a column (orientation fiber)

to change direction.Moving in this fashion, from an orientation at a

position to another orientation at a nearby position, is clearly more

limited than arbitrary movements in Euclidean space. Euclidean

geometry, as above, is an example of a Riemannian geometry;

the limitations involved in moving through a cortical columnar

space specify a sub-Riemannian geometry (Citti and Sarti, 2014;

Citti et al., 2015; Sarti et al., 2019). Just as cars can move along

roads that are mostly smooth, excitatory neurons mainly connect

to similarly “like” (in orientation) excitatory neurons. This chain of

neurons indicates a path through sub-Riemannian space (Agrachev

et al., 2019); the fan of such paths is the cortical connectivity

which can be considered the neural correlate of association

fields. Again, for more information please consult Appendix A

(Supplementary material).

Moving now out to the world, we must be able to move

between all points. Repeating the abovemetaphormore technically,

we equip R
3
⋊ S

2 with a group action of the three-dimensional

Euclidean group of rigid motions SE(3). Notice, importantly, that

this group is now acting on the product space of positions and

orientations. A bit more is required, though, since the geometry of

stereo vision is not solved only with these punctual and directional

arguments. As we showed in Figure 2 there is the need to take into

account the relationships between nearby tangents; in geometric

language this involves a suitable type of connections. It is therefore

natural to look at integral curves of the sub-Riemannian structure,

which encode in their coefficients the fundamental concept of 3D

curvature and torsion. An example of this is shown in Figure 3B.

Notice how the 3D association field envelopes a space curve, in

the same way that a 2D association field envelopes a planar curve.

This figure illustrates, in a basic way, the fundamental result in

this paper.

1.3 On the neuro-geometric approach

There are many different ways to approach mathematical

modeling in vision. One could, for example, ask what is the best an

ideal observer could do for the stereo problem working directly on

image data (Burge and Geisler, 2014; Burge, 2020). This requires

specifying the task, e.g., disparity at a point; a database of images

on which the estimation is to be carried out; and a specification

of the output. The approach is fundamentally statistical, and has

been successful at predicting discrimination thresholds and optimal

receptive field designs for patches of natural images. We seek to

go the next step – to specify the relationship between receptive

fields; i.e., between neurons. Note that the complexity multiplies

enormously. At the behavioral level this raises the question of

grouping, or determining the combinations of disparities, or Gabor

patch samples, that belong together. The complexity arises because

this must be evaluated over all possible arrangements of patches,

be they along curves, or surfaces, or combinations thereof. In

effect, the output specification is pushed toward co-occurrence

phenomena, and these toward neural connections.

Our working hypothesis is that there is a deep functional

relationship between structure in the brain and structure in the

world, and that geometry is the right language with which to

capture this relationship, especially as regards connectivity between

neurons and their functionality. The neuro-geometric approach is

precisely this; an attempt to capture how the structure of cortical

connectivity (and other functional properties) are reflected in the

phenomena of visual perception.

At first blush this might seem completely unrelated to the

statistics of natural images, and how these could be informative

of neural connections, but we believe that there is a fundamental

relationship. Consider, to start, the distribution of oriented edge

elements in a small patch. Pairwise edge statistics are well-studied

(August and Zucker, 2000; Geisler et al., 2001; Elder and Goldberg,

2002; Sanguinetti et al., 2010), and indicate how orientation

changes are distributed over (spatially) nearby edge elements. Co-

linear and co-circular patterns emerge from these studies, as well

as in third-order statistics of edges (Lawlor and Zucker, 2013).

Interestingly, in Singh and Fulvio (2007) and Geisler and Perry

(2009) deviation from co-circular behavior emerges.2 In particular,

Geisler and Perry (2009) proposes a parabolic model to explain

these statistical evidences, that is consistent with previous results

if we consider a composition of the joint action of cocircularity

and parallelism cues (as found to factor for example in Elder

and Goldberg, 2002). To elaborate, it begins by following either

a co-circular or linear term, followed by the composition with

another circular or linear term. The outcome of this process is

described as a spline-like behavior that can approximate a parabola.

In Sanguinetti et al. (2010), it has been shown that the histogram

of the co-occurrence of edges in a natural image provides the

same probability kernel we could find with geometric analysis

instruments. As a result, statistical measurements are integrated

into the geometric approach.

The geometric analysis that we shall use is continuous

mathematics, and is essentially differential (Tu, 2011). This has

important implications. First, the relationships that matter are

those over small neighborhoods, not over “long” distances. Thus

at a point there is an orientation (tangent) and a curvature. These

barely change as one moves a tiny distance from the point. Thus we

are not considering (in this paper) what happens behind (relatively)

large occluders, when longer distances devoid of intermediate

structure separate structure (Singh and Fulvio, 2005; Fulvio et al.,

2008). Such problems are important but are outside the scope of

this paper. Second, because the mathematics is continuous, we shall

not consider sampling issues (Warren et al., 2002). To the extent

that it matters, we shall assume discrete entities are sufficiently

densely distributed that they function as if they were continuous

(Zucker and Davis, 1988). In this sense our analysis is restricted to

early vision. It does not necessarily account for the full range of

cognitive tasks, which may well invoke higher-order computations

over longer distances and even richer abstractions.

It has been observed that edge statistics for curves in the world

depart from co-circularity. To quote (Geisler and Perry, 2009):

“Except for a direction of zero, where the orientation difference

is consistent with a collinear relationship, the highest-likelihood

orientation differences are less than those predicted by a co-circular

2 Of course we need to take into account the di�culty of measurements

of coupled position-orientation variables for small di�erence of angle and

position. This is due to the well-known intrinsic uncertainty of measurement

in the non-commutative group of position and orientation (Barbieri et al.,

2012).
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relationship.”We believe this has to do with the notion of curvature

used: whether it is purely local, or an estimate over distance. In

summary of the geometric approach, we explain this as follows. Our

constraints can be used in two rather different ways. First, from a

computational perspective, one can “integrate” the local constraints

into more global objects. This is the approach used in the example

section of this paper, and could give rise to an “average” curvature

over some distance. The second approach is more distributed, and

may be closer to a neurobiological implementation (Ben-Shahar

and Zucker, 2004). In this second approach (not developed in

this paper, but see Li and Zucker (2006) and Figure 6), the local

computations overlap to enforce consistency (The scale of such

computations would be a small factor larger than that indicated

in Figure 2B). This scale corresponds to the extent of biological

“long range horizontal connections” but is smaller than many

of the occluders used in psychophysical experiments. In other

words, to emphasize this distinction, in the former case the use of

integral curves may be closer to the parabolic relations observed

in scene statistics (Geisler and Perry, 2009).3 Our use of the term

“co-circularity” is in the latter sense.

1.4 Overview of paper

The paper is organized as follows: in Section 2, we describe

the geometrical and neuro-mathematical background underlying

the problem of stereo vision. In particular, we review the standard

stereo triangulation technique to relate the coordinate system

of one retina with the other, and put them together in order

to reconstruct the three-dimensional space. Then, we briefly

review the classical neurogeometry of monocular simple cells

selective for orientation and the underlying connections. The

generalization of approximate co-circularity for stereo is also

introduced. In Section 3, starting from binocular receptive profiles,

we introduce the neuro-mathematical model for binocular cells.

First we present the cortical fiber bundle of binocular cells. It

follows the differential interpretation of the binocular profiles in

terms of the neurogeometry of the simple cells, and we show how

this is well in accordance with the results of the stereo triangulation.

Then, we give a mathematical definition of the manifold R
3
⋊ S

2

with the sub-Riemannian structure. Finally, we study the integral

curves and the suitable change of variables that allow us to switch

our analysis from cortical to external space. In Section 4 we proceed

to the validation of our geometry with respect to psychophysical

experiments. We combine information about the psychophysics of

3D perception and formal conjectures; it is here that we formulate

a 3D association field analogous to the 2D association field. At

the end, we show an example of a representation of a stimulus

(from image planes to the full 3D and orientation geometry) and

how our integral curves properly connect corresponding points.

This illustrates the use of our model as a basis for solving the

correspondence problem.4

3 The crucial point is that the curves demonstrate locally quadratic (not

linear) behavior.

4 Portions of this material were presented at Bolelli et al. (2023a).

FIGURE 4

Reconstruction of the 3D space point Q through points QL the
retinal plane RL and QR in RR.

2 Stereo vision and
neuro-mathematical background

2.1 Stereo geometry

In this subsection, we briefly recall the geometrical

configuration underlying 3D vision, to define the variables

that we use in the rest of the paper, mainly referring to (Faugeras,

1993, Ch. 6). For a complete historical background see Howard

(2012); Howard and Rogers (1995).

2.1.1 Stereo variables
We consider the global reference system (O, i, j, k) in R

3,

with O = (0, 0, 0), and coordinates (r1, r2, r3). We introduce the

optical centers CL = (−c, 0, 0) and CR = (c, 0, 0), with c real

positive element, and we define two reference systems: (CL, iL, jL),

(CR, iR, jR), the reference systems of the retinal planes RL and RR

with coordinates respectively (xL, y), (xR, y). In the global system

we suppose the retinal planes to be parallel and to have equation

r3 = f , with f denoting the focal length. This geometrical set-up is

shown in Figure 4.

Remark 2.1. If we know the coordinate of a point Q = (r1, r2, r3)
T

in R
3, then it is easy to project it in the two planes via

perspective projection, having c the coordinate of the optical

centers and f focal length. This computation defines two projective

maps 5L and 5R, respectively, for the left and right retinal
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planes:

5L :R
3 −→R

2 5R : R
3 −→ R

2






r1
r2
r3




 7→

(
f (r1+c)

r3
fr2
r3

)

,






r1
r2
r3




 7→

(
f (r1−c)

r3
fr2
r3

)

.

(1)

Proof. A point on the left retinal plane of local coordinates (xL, y)
T

has global coordinates QL = (−c + xL, y, f )
T , and it corresponds

to a point Q = (r1, r2, r3)
T in the Euclidean R

3 such that CL,

QL and Q are aligned. This means that the vectors QL − CL =
(xL, y, f )

T and Q − CL = (r1 + c, r2, r3)
T are parallel, obtaining

the following relationships:

xL = f
r1 + c

r3
, y = f

r2

r3
. (2)

Analogously, considering QR and CR, we get:

xR = f
r1 − c

r3
, y = f

r2

r3
. (3)

In a standard way, the horizontal disparity is defined as the

differences between retinal coordinates

d : = xL − xR

2
, (4)

up to a scalar factor. Moreover, it is also possible to define the

coordinate x as the average of the two retinal coordinates x : =
xL+xR

2 , leading to the following change of variables:











x = fr1
r3

y = fr2
r3

d = fc
r3

←→











r1 = xc
d

r2 = yc
d

r3 = fc
d

, (5)

where the set of coordinates (x, y, d) is known as cyclopean

coordinates (Julesz, 1971).

2.1.2 Tangent estimation
Corresponding points in the retinal planes allow to project

back into R
3. An analogous reasoning can be done for the tangent

structure: if we have tangent vectors of corresponding curves in the

retinal planes, it is possible to project back and recover an estimate

of the 3D tangent vector. Let us recall here this result; a detailed

explanation can be found in Faugeras (1993).

Remark 2.2. Let γL and γR be corresponding left and right retinal

curves; i.e., perspective projections of a curve γ ∈ R
3 through

optical centers CL and CR with focal length f . Knowing the left and

right retinal tangent structures, it is possible to recover the direction

of the tangent vector γ̇ .

Proof. Starting from a curve γ ∈ R
3, we project it in the two

retinal planes obtaining γL = 5L(γ ) and γR = 5R(γ ) from

Equation (1). The retinal tangent vectors are obtained through

the Jacobian matrix5 of the left and right retinal projections

γ̇L,R(t) = (J5L,R )γ (t)γ̇ (t):

γ̇R(t) =





f (γ3γ̇1+(c−γ1)γ̇3)

γ3(t)2

f (γ3γ̇2−γ2γ̇3)

γ 2
3



 , γ̇L(t) =





f (γ3γ̇1−(c+γ1)γ̇3)

γ3(t)2

f (γ3γ̇2−γ2γ̇3)

γ 2
3



 . (6)

Extending the tangent vectors and the points into R
3, we get t̃L =

(γ̇L1, γ̇L2, 0)
T , and m̃L = (γL1 − c, γL2, f )

T , and UtL = (PL)
−1m̃L ×

(P−1L )t̃L, with the projection matrix PL =






1 0 −c/f
0 1 0

0 0 1




. The same

reasoning holds for the right structure, with projectionmatrix PR =




1 0 c/f

0 1 0

0 0 1




 .

Then UtR × UtL is a vector parallel to the tangent vector γ̇ :

UtR × UtL =









f 42c(γ̇2γ3 − γ̇3γ2)

γ 4
3

︸ ︷︷ ︸

λ(t)

γ̇1,

f 42c(γ̇2γ3−γ̇3γ2)

γ 4
3

γ̇2,
f 42c(γ̇2γ3−γ̇3γ2)

γ 4
3

γ̇3









T

= λ(t)
(

γ̇1(t), γ̇2(t), γ̇3(t)
)T

= λ(t)γ̇ (t).

(7)

Although this section has been based on the geometry of

space curves and their projections, we observe that related

geometric approaches have been developed for planar patches and

surfaces; see, e.g., Li and Zucker, 2008; Oluk et al., 2022 and

references therein.

2.2 Elements of neurogeometry

We now provide background on the geometric modeling of

the monocular system, and good continuation in the plane. Our

goal is to illustrate the role of sub-Riemannian geometry in the

monocular system, which will serve as the basis for generalization

to the stereo system.

2.2.1 Classical neurogeometry of simple cells
We model the activation map of a cortical neuron’s receptive

field (RF) by its receptive profile (RP) ϕ. A classical example is

the receptive profiles of simple cells in V1, centered at position

5 The Jacobian matrix (J5)p evaluated at point p represents how to project

displacement vectors (in the sense of derivatives or velocities or directions).

In details, if γ̇ (t) is the displacement vector in R
3, then the matrix product

(J5)γ (t)γ̇ (t) is another displacement vector, but in R
2. In other words, the

Jacobianmatrix is the di�erential of5 at every point where5 is di�erentiable;

common notation includes J5 or D5.
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(x, y) and orientation θ , modeled (e.g., in Daugman, 1985; Jones

and Palmer, 1987; Barbieri et al., 2014b) as a bank of Gabor filters

ϕ{x,y,θ}. RPs are mathematical models of receptive fields; they are

operators which act on a visual stimulus.

Formally, it is possible to abstract the primary visual cortex as

R
2 × S

1, or position-orientation space, thereby naturally encoding

the Hubel/Wiesel hypercolumnar structure (Hubel and Wiesel,

1962). An example of this structure is displayed in Figure 5D from

Ben-Shahar and Zucker (2004).

Following the model of Citti and Sarti (2006), the set of simple

cells’ RPs can be obtained via translations along a vector (x, y)T and

rotation around angle θ from a unique “mother” profile ϕ0(ξ , η):

ϕ0(ξ , η) = exp

(
2π iξ

λ

)

exp

(

− ξ 2 + η2

2σ 2

)

, (8)

This RP is a Gabor function with even real part and odd imaginary

part (Figure 7A). Translations and rotations can be expressed as:

T(x,y,θ)(ξ , η) =
(

cos θ − sin θ

sin θ cos θ

)(

ξ

η

)

+
(

x

y

)

, (9)

where T(x,y,θ) denotes the action of the group of rotations and

translations SE(2) on R
2. This group operation associates to every

point (ξ , η) a new point (x̃, ỹ), according to the law (x̃, ỹ) =
T(x,y,θ)(ξ , η). Hence, a general RP can be expressed as

ϕ(x,y,θ)(ξ , η) = ϕ0(T
−1
(x,y,θ)

(ξ , η)), (10)

and this represents the action of the group SE(2) on the set of

receptive profiles.

The retinal plane R is identified with the R
2 plane, whose

coordinates are (x, y). When a visual stimulus I :R −→ R
+ of

intensity I(x, y) activates the retinal layer, the neurons centered

at every point (x, y) produce an output O(x, y, θ), modeled as the

integral of the signal I with the set of Gabor filters:

O(x, y, θ) =
∫

R

ϕ{x,y,θ}(ξ , η)I(ξ , η)dξdη, (11)

where the function I represents the retinal image.

For (x, y) fixed, we will denote θ̄ the point of maximal response:

max
θ
|O(x, y, θ)| = |O(x, y, θ̄)|. (12)

We will then say that the point (x, y) is lifted to the point

(x, y, θ̄). This is extremely important conceptually to understand

our geometry: it illustrates how an image point, evaluated against

a simple cell RP, is lifted to a “cortical” point by introducing the

orientation explicitly. If all the points of the image are lifted in the

same way, the level lines of the 2D image I are lifted to new curves

in the 3D cortical space (x, y, θ̄).

We shall now recall a model of the long range connectivity

which allows propagation of the visual signal from one cell in a

column to another cell in a nearby column. This is formalized as

a set of directions for moving in the cortical space (x, y, θ̄), in the

sense of vector fields. This is important because it will be necessary

to move within this space, across both positions and orientations.

To begin, in the right hand side of the Equation (11) the integral

of the signal with the real and imaginary part of the Gabor filter

is expressed. The two families of cells have different shapes, hence

they detect (or play a role in detecting) different features. Since the

odd-symmetry cells suggest boundary detection, we concentrate

on them, but this is a mathematical simplification. The output of

a simple cell can then be locally approximated as O(x, y, θ) =
−X3,p(Iσ )(x, y), where p = (x, y, θ) ∈ SE(2), Iσ is a smoothed

version of I, obtained by convolving it with a Gaussian kernel, and

X3,p = − sin θ∂x + cos θ∂y, (13)

is the directional derivative in the direction EX3,p =
(− sin θ , cos θ , 0)T . From now on, we will denote (by a slight

abuse of notation) ω⋆
: = EX3,p to remind the reader familiar with

the language of 1-forms the correspondence of these quantities,

and the relation with the Hodge star operator.6

Now, think of vector fields as defining a coordinate system at

each point in cortical space. Then, in addition to above, the vector

fields orthogonal to X3,p are:

X1,p = cos θ∂x + sin θ∂y, X2,p = ∂θ (14)

and they define a 2-dimensional admissible tangent bundle7 toR2×
S
1. One can define a scalar product on this space by imposing the

orthonormality of X1,p and X2,p: this determines a sub-Riemannian

structure on R
2 × S

1.

The visual signal propagates, in an anisotropic way, along

cortical connectivity and connects more strongly cells with

comparable orientations. This propagation has been expressed

by the geometry just developed and 2-dimensional contour

integration. This is the neural explanation of the Gestalt law of

good continuation (Koffka, 1963; Kohler, 1967). It can be directly

expressed as co-circularity in the plane (Parent and Zucker, 1989),

to describe the consistency and the compatibility of neighboring

oriented points, in accordance with specific values of curvature.

An example of these compatibilities can be found in Figure 5A.

It is complemented by psychophysical experiments, e.g., Uttal,

1983; Smits and Vos, 1987; Ivry et al., 1989. In particular, Field

et al. (1993) describe the association rules for 2-dimensional

contour integration, introducing the concept of association fields. A

representation of these connections can be found in Figures 5B, C.

Note that this is equivalent to the union (over curvature) in Parent

and Zucker (1989). Neurophysiological studies (Blasdel, 1992;

Malach et al., 1993; Bosking et al., 1997; Schmidt et al., 1997; Hess

et al., 2014) suggest that the cortical correlate of the association field

is the long-range horizontal connectivity among cells of similar (but

not necessarily identical) orientation preference.

Based on these findings, Citti and Sarti (2006) modeled cortical

propagation as propagation along integral curves of the vector fields

X1 and X2, namely curves γ :[0,T] ⊂ R −→ R
2 × S

1 described by

the following differential equation:

γ̇ (t) = EX1,γ (t) + kEX2,γ (t), t ∈ [0,T], (15)

6 The purpose of introducing this notation is also tomotivate an implication

of the mathematical model in Citti and Sarti (2006); see Appendix B.2.1

(Supplementary material) for explanation.

7 as defined in Appendix A3 (Supplementary material).
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FIGURE 5

(A) Examples of the compatibilities around the central point of the image, derived from planar co-circularity. Brightness encodes compatibility values.
Figure adapted from Ben-Shahar and Zucker (2004). (B) Starting from the central initial oriented point, the solid line indicates a configuration
between the patches where the association exists while the dashed line indicates a configuration where it does not. Figure adapted from Field et al.
(1993). (C) Association field of Field, Hayes, and Hess. Figure adapted from Field et al. (1993). (D) Orientation columns of cells in (x, y, θ ) coordinates.
Long-range horizontal connections between cells relate an orientation signal at position (x, y, θ ) to another orientation at (x′, y′, θ ′). Figure adapted
from Ben-Shahar and Zucker (2004). (E) Horizontal integral curves in R

2 × S
1 generated by the sub-Riemannian model (Citti and Sarti, 2006). (F)

Projection of the fan of the integral curves in the (x, y) plane. Figure adapted from Citti and Sarti (2006).

obtained by varying the parameter k ∈ R. (k acts analogously

as curvature.) An example of these curves is in Figure 5E. Their

2D projection is a close approximation of the association fields

(Figure 5F).

A related model has been proposed by Duits et al. (2013). They

study the geodesics of the sub-Riemannian structure to take into

account all appropriate end-conditions of association fields.

2.2.2 Generalizing co-circularity for stereo
The concept of co-circularity in R

2 has been developed by

observing that a bidimensional curve γ can be locally approximated

at 0 via the osculating circle.8 Alibhai and Zucker (2000), Li and

8 Locally, a curve can be approximated by its osculating circle and, at

a slightly larger scale, by the integral (parabolic) curve through the first

two Taylor terms. The first approximation is co-circularity; the second is a

parabolic curve. The second is an accurate model over large distances; see

discussion in Section 1.3. However, since in this paper we are working over

small distances and with cortical sampling (Figure 2), there is essentially no

di�erence between them; see Figure 22.4 in Zucker (2006) and Sanguinetti

et al. (2010) for a direct comparison.

Zucker (2003), and Li and Zucker (2006) generalize this concept

with the Frenet differential geometry of a three dimensional curve.

While in the two-dimensional case the approximation of the

curve using the Frenet 2D basis causes the curvature to appear

in the coefficient of the Taylor series development (1st order),

in the three-dimensional case the coefficients involve both the

curvature and torsion. So, in Alibhai and Zucker (2000) the authors

propose heuristically to generalize the osculating circle for space

curves with an osculating helix, with a preference for r3-helices to

improve stability in terms of camera calibration. In this way the

orientation disparity is encoded in the behavior of the helix in the

3D space: there is no difference in orientation in the retinal planes

if the helix is confined to be in the fronto-parallel plane (the helix

becomes a circle); otherwise moving along the 3D curves the retinal

projections have different orientations.

In Li and Zucker (2003, 2006) they observe that, by introducing

the curvature variable as a feature in the two monocular structures,

and assuming correspondence, it is possible to reconstruct the 3D

Frenet geometry of the curve, starting from the two-dimensional

Frenet geometry, up to the torsion parameter. In particular,

they prove:

Proposition 2.1. Given two perspective views of a 3D space curve

with full calibration, the normal N and curvature k at a curve
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FIGURE 6

(A) Geometrical setup of Proposition 2.1. The spiral curve 3D projects in the left and right retinal planes together with the Frenet structure. (B) Stereo
correspondence between pairs of (left-right) pairs of tangents. Both figures are taken from Li and Zucker (2006).

space point are uniquely determined from the positions, tangents,

and curvatures of its projections in two images. Thus the Frenet

frame {T,N,B} and curvature k at the space point can be

uniquely determined.

Hence, using the knowledge of the Frenet basis together with

the fundamental addition of the curvature variable, Zucker et al.

applied the concept of transport. This allowed moving the 3D

Frenet frame in a consistent way with the corresponding 2D Frenet

structures of the left and right retinal planes, to establish stereo

correspondence between pairs of (left and right) pairs of tangents

(see Figure 6B).

Remark 2.3. The model that we propose in this paper is related

to, but differs from, what has just been stated. In particular, to

remain directly compatible with the previous neuro-geometric

model, we will work only with the monocular variables of position

and orientation. Rather than using curvature directly, we shall

assume that these variables are encoded within the connections;

mathematically they appear as parameters. A theoretical result of

our model is that the heuristic assumption regarding the r3-helix

can now be established rigorously.

Let us also mention the paper (Abbasi-Sureshjani et al., 2017),

where the curvature was considered as independent variable and

helices have been obtained in the 2D space.

3 The neuromathematical model for
stereo vision

Here, we do not want to directly impose a co-circularity

property: our scope is to model the behavior of binocular cells, and

deduce properties of propagation, which will ultimately induce a

geometry of 3D good continuation laws.

3.1 Binocular profiles

Binocular neurons receive inputs from both the left and right

eyes. To facilitate calculations, we assume these inputs are first

combined in simple cells in the primary visual cortex, a widely

studied approach (Anzai et al., 1999b; Cumming and DeAngelis,

2001; Menz and Freeman, 2004; Kato et al., 2016). It provides a

first approximation in which binocular RPs are described as the

product of monocular RPs; see Figure 7. This model is clearly an

oversimplification, in several senses. First, it leaves out the more

refined receptive fields discussed in Section 1.3. Second, it leaves

out the role for complex cells (Sasaki et al., 2010). Third, it leaves

out different ways to get the position and orientation information,

such as eye fixations (Intoy et al., 2021). And fourth, it avoids the

delicate question of whether the max operation over a column

(Equation 12) truly captures a tangent element. Nevertheless,

since our focus is geometric, it does capture all of the necessary

ingredients and simplifies computations.

This binocular model allows us to define disparity and

frontoparallel coordinates as

{

d = xL−xR
2

x = xR+xL
2 ,

(16)

perfectly in accordance with the introduction of cyclopean

coordinates in (4). In this way (x, y, d) correspond to the neural

correlate of (r1, r2, r3), via the change of variables (5).

3.2 The cortical fiber bundle of binocular
cells

The hypercolumnar structure of monocular simple cells

(orientation selective) has been described as a jet fiber bundle in

the works of Petitot and Tondut (1999), among many others. We

concentrate on the fiber bundle R
2 × S

1, with fiber S1; see, e.g.,

Ben-Shahar and Zucker, 2004 among many others.
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FIGURE 7

(A) Even (top) and odd (bottom) part of Gabor function: the surface of the two-dimensional filters, their common bi-dimensional representation and
a mono-dimensional section. (B) Comparisons between binocular interaction RPs and the product of left and right eye RPs, where left and right RPs
are shown in image (A). Binocular interaction RPs (Raw data) of a cell is shown on the top row. Contour plots for the product of left and right eye RPs
(L × R) are shown in the bottom row along with 1-dimensional profiles of the left (L) and right (R) eye RPs. Figure adapted from Anzai et al. (1999b).

In our setting, the binocular structure is based on monocular

ones; recall the example illustrations from the Introduction. In

particular, for each cell on the left eye there is an entire fiber of

cells on the right, and vice versa, for each cell on the right there

is an entire fiber of cells on the left. This implies that the binocular

space is equipped with a symmetry that involves the left and right

structures, allowing us to use the cyclopean coordinates (x, y, d)

defined in (16).

Hence, we define the cyclopean retina R, identified with R
2,

endowed with coordinates (x, y). The structure of the fiber is F =
R × S

1 × S
1, with coordinates (d, θL, θR) ∈ F . The total space is

defined in a trivial way, E = R× F = R
2 × R× S

1 × S
1, and the

projection π : E −→ R is the trivial projection π(x, y, d, θL, θR) =
(x, y). The preimage of the projection E(x,y) : = π−1({(x, y)}), for
every (x, y) ∈ R, is isomorphic to the fiber F , and the local

trivialization property is naturally satisfied.

A schematic representation can be found in Figure 8. The base

has been depicted as 1-dimensional, considering the restrictionR|x
of the cyclopean retina R on the coordinate x. The left image

displays only the disparity component of the fiber F , encoding the

relationships between left and right retinal coordinates. The right

image shows the presence of the left and right monodimensional

orientational fibers.

3.3 Binocular energy model

To simplify calculations, as stated in the Introduction, we

follow the classical binocular energy model (Anzai et al., 1999b)

for binocular RPs. The basic idea is a binocular neuron receives

input from each eye; if the sum OL + OR of the inputs from the

left and right eye is positive, the firing rate of the binocular neuron

is proportional to the square of the sum, and it vanishes, if the sum

of the inputs is negative:

OB = (Pos(OL + OR))
2, (17)

with Pos(x) = max{x, 0}, OB the binocular output.

IfOL+OR > 0, then the output of the binocular simple cell can

be explicitly written asOB = O2
L+O2

R+2OLOR. The first two terms

represent responses due to monocular stimulation while the third

term 2OLOR can be interpreted as the binocular interaction term.

The activity of a cell is then measured from the output and will

be strongest at points that have a higher probability of matching

each other. The maximum value over d of this quantity is the

extracted disparity.

It is worth noting that neurophysiological computations of

binocular profiles displayed in Figure 7B assume the mono-

dimensionality of the monocular receptive profile, ignoring

information about orientation of monocular simple cells. However,

this information will be needed to encode different types of

orientation disparity.

Remark 3.1 (Orientation matters). In 2001, the authors of Bridge

et al. (2001) conducted investigations on the response of binocular

neurons to orientation disparity, by extending the energy model of

Anzai, Ohzawa, and Freeman to incorporate binocular differences

in receptive-field orientation.More recently, the difference between
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FIGURE 8

Left: schematic representation of the fiber bundle in two dimension, with relationships between left and right retinal coordinates. Right:
representation of the selection of a whole fiber of left and right simple cells, for every x and for every d.

orientations in the receptive fields of the eyes has been confirmed

(Sasaki et al., 2010).

The binocular energy model is a type of minimal model. It

serves as a starting point, allowing the combination of monocular

inputs. But is not sufficient to solve the stereo-matching problem.

Remark 3.2 (Connections). It is argued in Samonds et al. (2013)

and Parker et al. (2016) that, in addition to the neural mechanisms

that couple characteristics (such as signals, stimuli, or particular

features) relating the left and right monocular structures, there

must be a system of connections between binocular cells, which

characterizes the processing mechanism of stereo vision; see also

Samonds et al. (2013) in particular.

3.4 Di�erential interpretation of binocular
RPs

It is possible to write the interaction term OLOR coming from

(17), in terms of the left and right receptive profiles:

OLOR =
∫

ϕθL ,xL ,y(x̃L, ỹL)IL(x̃L, ỹL)dx̃LdỹL
∫

ϕθR ,xR ,y(x̃R, ỹR)IR(x̃R, ỹR)dx̃RdỹR

=
∫ ∫

ϕθL ,xL ,y(x̃L, ỹL)ϕθR ,xR ,y(x̃R, ỹR)IL(x̃L, ỹL)

IR(x̃R, ỹR)dx̃RdỹRdx̃LdỹL.

(18)

If we fix (x̃R, ỹR, x̃L, ỹL), we derive the expression of the binocular

profiles ϕL,R = ϕθR ,xR ,yϕθL ,xL ,y as the product of monocular left and

right profiles. This is in accordance with the measured profiles of

Figure 7B).

Proposition 3.1. The binocular interaction term can be associated

with the cross product of the left and right directions defined

through (13), namely ω⋆
L and ω⋆

R of monocular simple cells:

OLOR = ω⋆
L × ω⋆

R. (19)

Proof. The idea is that the binocular output is the combined

result of the left and right actions of monocular cells, thus

identifying a direction in the space of cyclopean coordinates. The

detailed proof of this proposition can be found in Appendix B

(Supplementary material).

To better understand the geometrical idea behind Proposition

3.1, we recall that the retinal coordinates can be expressed in terms

of cyclopean coordinates (4) as xR = x− d and xL = x+ d, and so

we can write ω⋆
L and ω⋆

R in the 3D space of coordinates (x, y, d) as:

ω⋆
R =(− sin θR, cos θR, sin θR)

T

ω⋆
L =(− sin θL, cos θL,− sin θL)

T .
(20)

We define ωbin : = ω⋆
L × ω⋆

R as the natural direction characterizing

the binocular structure:

ωbin =






sin(θR + θL)

2 sin θR sin θL

sin(θR − θL)




 . (21)

Remark 3.3. The vector ωbin of Equation (21) can be interpreted

as the intersection of the orthogonal spaces defined with respect to

ω⋆
R and ω⋆

L when expressed in cyclopean coordinates (x, y, d). More

precisely, if

(ω⋆
L)
⊥ = span














cos θL
sin θL

0




 ,






−1
0

1














,

(ω⋆
R)
⊥ = span














cos θR
sin θR

0




 ,






1

0

1














(22)

then

ωbin = (ω⋆
L)
⊥ ∩ (ω⋆

R)
⊥. (23)

The result of the intersection of these monocular structures

identifies a direction, as shown in Figure 9A.
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We earlier showed that the result of the action of a monocular

odd simple cell is to select directions for the propagation of

information. We now combine these, for the two eyes, to show that

in the three-dimensional case the binocular neural mechanisms

also lead to a direction. We will see in the next sections that this

direction is the direction of the tangent vector to the 3D stimulus,

provided points are corresponding.

3.5 Compatibility with stereo geometry

We consider the direction characterizing the binocular

structure ωbin defined in (21) and we show that it can be associated

with the 3D tangent vector to the 3D curve. The idea is that this

tangent vector is orthogonal both to ω⋆
R and to ω⋆

L, and therefore it

has the direction of the vector product ω⋆
L × ω⋆

R.

Precisely, we consider the normalized tangent vector tL and tR
on retinal planes

tR = (cos θR, sin θR)
T tL = (cos θL, sin θL)

T , (24)

to the points (xR, y) and (xL, y) respectively. Taking into account

that f is the focal coordinate of the retinal planes in R
3, then

we associate to these points the correspondents in R
3, namely

m̃L = (xL − c, y, f )T , m̃R = (xR + c, y, f )T . Applying Equation

(7), it is possible to derive the tangent vector of the three

dimensional contour:

UtL = P−1L m̃L × P−1L t̃L =






xL
yL
f




×






cos θL
sin θL

0






=






−f sin θL

f cos θL
xL sin θL − yL cos θL




 ,

UtR = P−1R m̃R × P−1R t̃R =






xR
yR
f




×






cos θR
sin θR

0






=






−f sin θR

f cos θR
xR sin θR − yR cos θR




 ,

(25)

and the tangent direction is recovered by

UtL × UtR =

f






xL+xR
2 sin(θR − θL)− xR−xL

2 sin(θL + θR)

y sin(θR − θL)− (xR − xL)(cos(θR − θL)− cos(θL + θR))

f sin(θR − θL)






(26)

If we define

ω̃⋆
L : =

d

fc
UtL , ω̃⋆

R : =
d

fc
UtR (27)

and the corresponding 2 form ωR3 : = ω̃⋆
L × ω̃⋆

R, using the change

of variables (16) we observe that:

ω̃⋆
L = ω⋆

L, ω̃⋆
R = ω⋆

R, ωR3 = ωbin, (28)

up to a scalar factor. See Appendix C (Supplementary material) for

explicit computation.

In this way, the disparity binocular cells couple in a natural

way positions, identified with points in R
3, and orientations in

S
2, identified with three-dimensional unitary tangent vectors. As

already observed in Remark 3.2, the geometry of the stereo vision is

not solved only with these punctual and directional arguments, but

there is the need to take into accounts suitable type of connections.

In Alibhai and Zucker (2000); Li and Zucker (2003, 2006), Zucker

et al. proposed a model that considered the curvature of monocular

structures as an additional variable. Instead, we propose to consider

simple monocular cells selective for orientation, and to insert the

notion of curvature directly into the definition of connection.

It is therefore natural to introduce the perceptual space via the

manifold R
3
⋊ S

2, in line with the theoretical toolbox proposed

in Miolane and Pennec (2016) to generalize 2D neurogeometry to

3D images, and adapt this framework to our problem, looking for

appropriate curves.

3.6 A perceptual model in the space of 3D
position-orientation

We now derive the objects in Figure 3A. We have clarified (end

of Section 3.5) that binocular cells are parameterized by points in

R
3, and orientations in S

2. An element ξ of the space R3
⋊ S

2 it

is defined by a point p = (p1, p2, p3) in R
3 and an unitary vector

n ∈ S
2. Since the topological dimension of this geometric object is

2, we introduce the classical spherical coordinates (θ ,ϕ) such that

n = (n1, n2, n3) ∈ S
2 can be parameterized as:

n1 = cos θ sinϕ

n2 = sin θ sinϕ

n3 = cosϕ

(29)

with θ ∈ [0, 2π] and ϕ ∈ (0,π). The ambiguity that arises using

local coordinate chart is overcome by the introduction of a second

chart, covering the singular points.

Translations and rotations are expressed using the group law of

the three-dimensional special Euclidean group SE(3), defining the

group action

σ :R
3
⋊ S

2×SE(3) −→ R
3
⋊ S

2 s.t. σ ((p, n), (q,R)) = (Rp+q,Rn),
(30)

with (p, n) ∈ R
3
⋊ S

2, (q,R) ∈ SE(3), namely R ∈ SO(3)

tridimensional rotation, and q ∈ R
3.

3.6.1 Stereo sub-Riemannian geometry
The emergence of a privileged direction in R

3 (associated with

the tangent vector to the stimulus) is the reason why we endow

R
3
⋊ S

2 with a sub-Riemannian structure that favors the direction

in 3D identified by ωbin.

Formally, we consider admissible movements in R
3
⋊ S

2

described by vector fields:
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FIGURE 9

(A) Direction detected by ωbin through the intersection of left and right planes generated by (ω⋆
R)
⊥ and (ω⋆

L)
⊥. Red vector corresponds to the associated

2-form ωbin. (B) Three dimensional reconstruction of the space from retinal planes. The 1- forms ω⋆
L and ω⋆

R are identified with the normal to the
curves γL and γR. Their three dimensional counterpart ω̃⋆

L and ω̃⋆
R identify the tangent vector to the curve γ :R→ R

3 by the cross product ω̃⋆
L × ω̃⋆

R.

YR3 ,ξ = sinϕ cos θ∂1 + sinϕ sin θ∂2 + cosϕ∂3

Yθ ,ξ = −
1

sinϕ
∂θ

Yϕ,ξ = ∂ϕ

(31)

with ξ ∈ R
3
⋊ S

2 for ϕ 6= 0,ϕ 6= π . The admissible tangent space9

at a point ξ

Aξ : = span{YR3 ,ξ ,Yθ ,ξ ,Yϕ,ξ } (32)

encodes the coupling between position and orientations, as

remarked by Duits and Franken (2011). In particular, the vector

field YR3 identifies the privileged direction in R
3, while Yθ and Yϕ

allow changing this direction, involving just orientation variables

of S
2. The vector fields {YR3 ,Yθ ,Yϕ} and their commutators

generate the tangent space of R
3
⋊ S

2 in a point, allowing to

connect every point of the manifold using privileged directions

(Hörmander condition). Furthermore, it is possible to define a

sub-Riemannian structure by choosing a scalar product on the

admissible tangent bundle A: the simplest choice is to declare

the vector fields {YR3 ,Yθ ,Yϕ} orthonormal, considering on S
2

the distance inherited from the immersion in R
3 with the

Euclidean metric.

3.6.2 Change of variables
We have already expressed the change of variable in the

variables (x, y, d) to (r1, r2, r3) in Equation (5). However, the cortical

coordinates also contain the angular variables θR and θL which

involve the introduction of the spherical coordinates θ ,ϕ.

9 see Appendix A (Supplementary material) for the definition of admissible

tangent space.

To identify a change of variable among these variables, we first

introduce the function

(r1, r2, r3, θ ,ϕ)
F−→ (x, y, d, θL, θR) :

F : R
3
⋊ S

2 −→ R
3
⋊ S

2










r1
r2
r3
θ

ϕ










7→











fr1
r3
fr2
r3
cf
r3

tan−1( r3 sin θ cosϕ−r2 cosϕ
r3 cos θ sinϕ−(c+r1) cosϕ )

tan−1( r3 sin θ cosϕ−r2 cosϕ
r3 cos θ sinϕ−(c−r1) cosϕ











, (33)

where the retinal right angle θR = tan−1( r3 sin θ cosϕ−r2 cosϕ
r3 cos θ sinϕ−(c+r1) cosϕ )

and the retinal left angle θL = tan−1( r3 sin θ cosϕ−r2 cosϕ
r3 cos θ sinϕ−(c−r1) cosϕ ) are

obtained considering Equation (6).

Analogously, it is possible to define the change of variable

(x, y, d, θL, θR)
G−→ (r1, r2, r3, θ ,ϕ):

G : R
3
⋊ S

2 −→ R
3
⋊ S

2










x

y

d

θR

θL










7→











cx
d
cy
d
cf
d

tan−1( 2 sin θR sin θL
sin(θR+θL)

)

tan−1(
√

sin2(θR+θL)+4 sin2 θR sin2 θL
sin(θR−θL)

)











,

(34)

where the angles θ = tan−1( 2 sin θR sin θL
sin(θR+θL)

) and ϕ =
tan−1(

√
sin2(θR+θL)+4 sin2 θR sin2 θL

sin(θR−θL)
) are obtained considering

that tan θ = (EY
R3 )2

(EY
R3 )1

and tanϕ =
√

(EY
R3 )

2
1+(EYR3 )22

(EY
R3 )3

.
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3.6.3 Integral curves
The connectivity of the space is described by admissible curves

of the vector fields spanningA. In particular, a curve Ŵ :[0,T] −→
R
3
⋊ S

2 is said to be admissible10 if:

Ŵ̇(t) ∈ AŴ(t),↔ Ŵ̇(t) = a(t)EYR3 ,Ŵ(t) + b(t)EYθ ,Ŵ(t) + c(t)EYϕ,Ŵ(t),

(35)

where a, b, c are sufficiently smooth function on [0,T]. We will

consider a particular case of these admissible curves, namely

constant coefficient integral curves with a(t) = 1, since the vector

field YR3 represents the tangent direction of the 3D stimulus (and

so it never vanishes):

Ŵ̇(t) = EYR3 ,Ŵ(t) + c1 EYθ ,Ŵ(t) + c2 EYϕ,Ŵ(t), (36)

with c1 and c2 varying in R.

These curves can be thought of in terms of trajectories in R
3

describing a movement in the EYR3 direction, which can eventually

change according to EYθ and EYϕ . An example of the fan of integral

curves was shown in the Introduction in Figure 3B.

It is worth noting that in the case described by coefficients c1
and c2 equal to zero, the 3D trajectories would be straight lines in

R
3; by varying the coefficients c1 and c2 in R, we allow the integral

curves to follow curved trajectories, twisting and bending in all

space directions.

Formally, the amount of “twisting and bending” in space is

measured by introducing the notions of curvature and torsion.

We then investigate how these measurements are encoded in the

parameters of the family of integral curves, and what constraints

have to be imposed to obtain different typologies of curves.

Remark 3.4. The 3D projection of the integral

curves (36) will be denoted γ and satisfy γ̇ (t) =
(cos θ(t) sinϕ(t), sin θ(t) sinϕ(t), cosϕ(t))T . Classical instruments

of differential geometry let us compute the curvature and the

torsion of the curve γ (t):

k =
√

(ϕ̇)2 + sin2 θ(θ̇)2,

τ = 1

k2
(− cosϕ sin2 ϕ(θ̇)3 − sinϕϕ̇θ̈ + θ̇(−2 cosϕ(ϕ̇)2 + sinϕϕ̈)).

(37)

Using the explicit expression of the vector fields Yθ and Yϕ in

Equation (36), we get

θ̇ = − c1

sinϕ
, ϕ̇ = c2, (38)

from which it follows that:

k =
√

c21 + c22

τ =c1 cotanϕ.
(39)

Proposition 3.2. By varying the parameters c1 and c2 in (39) where

we explicitly find solutions of (36), we have:

1. If ϕ = π
2 then k =

√

c21, τ = 0, and so the family of curves

(36) are circles of radius 1/c21 on the fronto-parallel plane

r3 = cost.

10 sometimes the term horizontal is preferred.

2. If ϕ = ϕ0, with ϕ0 6= π/2, then k =
√

c21 and τ = c1 cotanϕ0,

and so the family of curves (36) are r3-helices.

3. If θ = θ0 then k =
√

c22, τ = 0, and so the family of curves

(36) are circles of radius 1/c22 in the osculating planes.

Proof. The computation follows immediately from the

computed curvature and torsion of (39) and classical results

of differential geometry.

Remark 3.5. If we know the value of the curvature k, and we have

one free parameter, c2, in the definition of the integral curves (36),

then we are in the setting of Proposition 2.1. In fact, the coefficient

c1 is obtained by imposing c1 = ±
√

k2 − c22, and in particular the

component that remains to be determined is the torsion.

Examples of particular cases of the integral curves (36)

according to Proposition 3.2 and Remark 3.5 are visualized in

Figure 10.

4 Comparison with experimental data

Our sub-Riemannian model enjoys some consistency with the

biological and psychophysical literature. We here describe some

initial connections.

4.1 Biological connections

The foundation for building our sub-Riemannian model of

stereo was a model of curve continuation, motivated by the

orientation columns at each position. The connections between

cells in nearby columns were, in turn, a geometric model

of long-range horizontal connections in visual cortex (Bosking

et al., 1997). In the Introduction we cartooned aspects of the

cortical architecture that support binocular processing. Although

the inputs are organized into ocular dominance bands, there

is no direct evidence for “stereo columns” in V1 analogous to

the monocular orientation columns. But such columns are not

strictly necessary for our model. Rather, what is central is how

information propagates. We showed in Figure 1C that there is

evidence of long-range connections between binocular cells, and

our model informs, abstractly, what information could propagate

along these connections. Although less extensive than in the

monocular case, some measurements are beginning to emerge that

are informative.

The Grinwald group first established the presence of long-range

connections between binocular cells (Malach et al., 1993) (see also

Figure 11A), using biocytin. This is a molecule that is taken up

by neurons, propagates directly along neuronal processes and is

deposited at excitatory synapses. These results were refined, more

recently, by the Fitzpatrick group (Scholl et al., 2022), using in vivo

calcium imaging. As shown in Figure 1C the authors demonstrated

both the monocular and the binocular inputs for stereo, and (not

shown) the dependence on orientations.

More precisely, Malach et al. (1993) showed selective anisotripic

connectivity among binocular regions: the biocytin tracer does

not spread uniformly, but rather is highly directional with
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FIGURE 10

Examples of integral curves obtained varying parameters c1 and c2. (A) Arc of circles for ϕ = π/2. (B) r3-helices for ϕ = π/3. (C) Family of curves with
constant curvature k and varying torsion parameter.

FIGURE 11

(A) A biocytin injection superimposed on a map of ocular dominance columns, image result from the work in Malach et al. (1993). Binocular zones
are in the middle of monocular zones (coded in black and white). Starting from the injection site (yellow circle in the center of a binocular zone) the
patches’ propagation (red corresponds to dense while green to sparsely labeled) tends to avoid highly monocular sites, bypassing the centers of
ocular dominance columns, and are located in binocular zones. (B) 3D interpretation of the physiological image (A).

distance from the injection point. (This was the case with

monocular biocytin injections as well.) Putting this together

with Scholl et al. (2022), we interpret the anisotropy as being

related to (binocular) orientation (Scholl et al., 2022), which

is what the integral curves of our vector fields suggest. Our

3D association fields are strongly directional, and information

propagates preferentially in the direction of (the starting point

of) the curve. An example can be seen in Figure 11B, where

the fan of integral curves (36) is represented, superimposed with

colored patches, following the experiment proposed in Malach

et al. (1993). We look forward to more detailed experiments along

these lines.

4.2 Psychophysics and association fields

In this section, we show that the connections described by

the integral curves in our model can be related to the geometric

relationships from psychophysical experiments on perceptual

organization of oriented elements in R
3; in other words, that

our connections serve as a generalization of the concept of an

association field in 3D.

4.2.1 Toward a notion of association field for
3D contours

The perception of continuity between two elements of position-

orientation in R
3 has been studied experimentally. To start,

Kellman, Garrigan, and Shipley (Kellman et al., 2005a,b) introduce

3D relatability, as a way to extend to 3D the experiments of Field,

Hayes and Hess (Field et al., 1993) in 2D.

Particularly, in a system of 3D Cartesian coordinates, it

is possible to introduce oriented edges E at the application

point (r1, r2, r3)
T and with an orientation identified with the

angles θ and ϕ. This orientation can be read, in our case,

through the direction expressed by (cos θ sinϕ, sin θ sinϕ, cosϕ)T .

For an initial edge E0, with application point on the origin

of the coordinate system (0, 0, 0)T and orientation lying on

the r1-axis, described by θ = 0,ϕ = π/2, the range of

possible orientations (θ ,ϕ)11 for 3D-relatable edges with E0 is

given by:

11 The angle ϕ here has been modified to be compatible with our set of

coordinates. The relationship between the angle ϕ̃ in works (Kellman et al.,

2005a,b) can be expressed as : ϕ̃ = acos(sinϕ)+ π .
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tan−1
(
r2

r1

)

≤ θ ≤ π

2
and

π

2
≤ 3π

2
− ϕ ≤ tan−1

(
r3

r1

)

.

(40)

The bound on these equations identified with the quantity π
2

incorporates the 90 degree constraint in three dimensions, while

the bounds defined by the inverse of the tangent express the

absolute orientation difference between the reference edge E0 and

an edge positioned at the arbitrary oriented point E(r1 ,r2 ,r3) so that

its linear extension intersects E0; see Kellman et al. (2005a,b) for

further details.

Numerical simulations allow us to visually represent an

example of the 3D positions and orientations that meet the 3D

relatability criteria. Starting from an initial edge E0 with endpoints

in (p01, p02, p03)
T and orientation on the e1- axis, we represent for

an arbitrary point (p1, p2, p3)
T the limit of the relatable orientation

(θ ,ϕ). Results are shown in Figure 12A.

Remark 4.1. By projecting on the retinal planes of the 3D fan of

relatable points, it is possible to notice that these projections are in

accordance with the notion of 3D compatibility field in Alibhai and

Zucker (2000) (see Figures 12B, C).

Psychophysical studies, see Hess and Field (1995); Hess

et al. (1997); Deas and Wilcox (2015), have investigated the

properties of the curves that are suitable for connecting these

relatable points. These curves are well-described as smooth and

monotonic. In particular, using non-oriented contour elements for

contours, Hess et al. (1997) indicate that contour elements can

be effectively grouped based primarily on the good continuation

of contour elements in depth. This statement is confirmed

by the more recent work of Deas and Wilcox (2015) who,

in addition, observe that detection of contours defined by

regular depth continuity is faster than detection of discontinuous

contours. All these results support the existence of depth grouping

operations, arguing for the extension of Gestalt principles of

continuity and smoothness in three dimensional space. Finally,

on the relationship of the three-dimensional curves to 2-

dimensional association fields, see Kellman et al. (2005b); Khuu

et al. (2016). These authors have assumed that the strength

of the relatable edges in the co-planar planes of E0 must

meet the relations of the bi-dimensional association fields of

Field et al. (1993).

4.2.2 Compatibility with the
sub-Riemannian model

To model the associations underlying the 3D perceptual

organization discussed in the previous paragraph, we consider

again the constant coefficient family of integral curves studied

in (36):

Ŵ̇(t) = EYR3 ,Ŵ(t) + c1 EYθ ,Ŵ(t) + c2 EYϕ,Ŵ(t), with c1, c2 ∈ R. (41)

Importantly, these curves locally connect the association fan

generated by the geometry of 3D relatability. In particular,

Figure 13B shows the family of the horizontal curves connecting the

initial point E0 with 3D relatable edges (Figure 13A). These curves

are computed using Matlab solver function ode45.

In analogy with the experiment of Field, Hayes, and Hess in

Field et al. (1993), we choose to represent non-relatable edges to

the left of the starting point E0, while on the right are 3D relatable

edges. So, filled lines of the integral curves indicate the correlation

between the central horizontal element E0 and the ones on its right,

while dotted lines connect the starting point E0 with elements not

correlated with it, as represented on the left part of the image.

Restricting the curves on the neighborhood of co-planar planes

with an arbitrary edge E, we have different cases. First, on the r1-r2
plane (fronto-parallel) and the r1-r3 plane we have arcs of circle, as

proved with Proposition 3.2. Furthermore, for an arbitrary plane in

R
3 containing an edge E, we observe that the curves generating with

fixed angle ϕ are helices, and locally they satisfy the bidimensional

constraint in the plane. Examples can be found in Figures 13C–

E. In particular, the curves displayed in Figures 13C, D are well in

accordance with the curves of the Citti-Sarti model, depicted in

Figure 5.

One final connection with the psychophysical literature

concerns how depth discrimination thresholds increase

exponentially with distance (Burge, 2020 and references therein).

This is related to how the fan of integral curves “spreads out” with

distance (Figures 11, 12), which is also exponential. These notions

are developed more fully in Bolelli et al. (2023a).

4.3 Integration of contours and stereo
correspondence problem

Although the goal of this paper is not to solve the stereo

correspondence problem, we can show how our geometry is helpful

in understanding how to match left and right points and features.

These ideas are developed more fully in Bolelli (2023).

Inspired by Hess and Field (1995), we consider a path stimulus

γ interpreted as a contour, embedded in a background of randomly

oriented elements: left and right retinal visual stimuli are depicted

in Figure 14A. We perform an initial, simplified lift of the retinal

images to a set � ⊂ R
3
⋊ S

2. This set contains all the possible

corresponding points, obtained by coupling left and right points

which share the same y retinal coordinate, see Figure 14B. The set

� contains false matches, namely points that do not belong to the

original stimulus. It is the task of correspondence to eliminate these

false matches.

We compute for every lifted point the binocular output OB of

Equation (17). This output can be seen as a probability measure

that gives information on the correspondence of the pair of left

and right points. We then simply evaluate which are the points

with the highest probability of being in correspondence, applying

a process of suppression of the non-maximal pairs over the fiber

of disparity. In this way, noise points are removed (Figure 14C).

We now directly exploit the Gestalt rule of good continuation

by filtering out any couple of elements with high curvature. This

qualitative rule could be quantitatively modeled by considering the

statistics of distribution of curvature and torsion in natural 3D

images (Geisler and Perry, 2009). The remaining noise elements are

orthogonal to the directions of the elements of the curve that we
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FIGURE 12

(A) Example of the fan of the 3D relatable edges with initial point E0. (B) Example of 3D association field in the two left and right retinal planes,
generated with the geometry of 3D relatability. (C) Example of 3D compatibility field of Alibhai and Zucker (2000).

FIGURE 13

(A) 3D relatable edges displayed on the right of the initial edge E0. Unrelatable 3D edges displayed on the left. (B) Horizontal integral curves with filled
lines connect 3D relatable edges with initial point E0. Horizontal integral curves with dotted lines do not connect 3D unrelatable edges. (C)
Restriction of the fan of the integral curves on the e1-e2 plane. (D) Restriction of the fan of the integral curves on the e1-e3 plane. (E) Restriction of
the fan at ϕ = ϕ0. These curves (black lines) are not planar curves but helices. However, their projection (white lines) on the coplanar plane with initial
edge satisfies the bidimensional constraints.

would like to reconstruct. Calculating numerically the coefficients

c1 and c2 of integral curves (36) that connect all the remaining pairs

of points, we can obtain for every pair the value of curvature and

torsion using (39).

Figures 14E, F show matrices M representing the values of

curvature or torsion for every pair of points ξi, ξj in the element

Mij. In particular, we observe that random points are characterized

by very high curvature and deviating torsion. So, by discarding
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FIGURE 14

(A) Left and right retinal images of the set �. Black points are the projection of the point of the curve γ , while gray points are background random
noise. (B) Lifting of the two left and right retinal images of image (A) in the space of position and orientation R

3 × S
2. (C) Selection of lifted points

according to the binocular output. (D) Points of the stimulus γ connected by integral curves (36). (E, F) Matrices M which element Mij represents the
value of curvature/ torsion for every couple of points ξi, ξj. The first eight points correspond to points of the curve γ while the others are random
noise. (E) Curvature matrix. (F) Torsion matrix.

these high values, we select only the three-dimensional points of

the curve γ , which are well-connected by the integral curves, as

shown in Figure 14D. This is in accordance with the idea developed

in Alibhai and Zucker (2000); Li and Zucker (2003, 2006), where

curvature and torsion provide constraints for reconstruction in 3D.

In this artificial example we assumed that local edge elements

have already been detected. Our goal was simply proof-of-concept.

To apply this approach to realistic images, of course, stages of edge

detection would have to be adopted, for which there is a huge

literature well outside the scope of our theoretical study.

5 Summary and conclusions

Understanding good continuation in depth, like good

continuation for planar contours, can benefit from basic

physiological constraints; from psychophysical performance

measures, and from mathematical modeling. In particular, good

continuation in the plane is supported by orientation selectivity

and cortical architecture (orientation columns), by association field

grouping performance, and by geometric modeling. We showed

that the same should be true for good continuation in depth.

However, while the psychophysical data may be comparable, the

physiological data are weaker and the geometry of continuation is

not as well-understood. In this paper, we introduced the neuro-

geometry of stereo vision to fill this gap. It is strongly motivated by

an analogical extension to 3D of 2D geometry, while respecting the

psychophysics. In the end, it allowed us to be precise about the type

of geometry that is relevant for understanding stereo abstractly,

and concretely was highly informative toward the physiology.

Although a “stereo columnar architecture” is not obvious from the

anatomy, it is well-formed computationally.
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Technically, we proposed a sub-Riemannian model on the

space of position and orientation R
3
⋊ S

2 for the description

of the perceptual space of the neural cells involved. This

geometrical structure favors the tangent direction of a 3D

curve stimulus. The integral curves of the sub-Riemannian

structure encode the notions of curvature and torsion

within their coefficients, and are introduced to describe the

connections between elements. This model can be seen as an

extension in the three-dimensional scene of the 2-dimensional

association field. In particular, the integral curves of the sub-

Riemannian structure of the 3D space of position-orientation

are exactly those that locally correspond to psychophysical

association fields.

Although the goal of this paper is not to solve the stereo

correspondence problem, we have seen how the geometry we

propose is a good starting point to understand how to match left

and right points and features. We used binocular receptive fields

to prioritize orientation preferences and orientation differences

under the assumption that neuronal circuitry has developed to

facilitate the interpolation of contours in 3D space. On the other

side, the neurogeometrical method has been coupled with a

probabilistic methods for example in Sanguinetti et al. (2010) and

Sarti and Citti (2015). Here, the authors studied an analogous

problem for generation of perceptual units in monocular vision:

they introduced stochastic differential equations, analogous to

the integral curves of vector fields, and used its probability

density as a kernel able to generate monocular perceptual units.

In Montobbio et al. (2019), the probability kernel is built in a

direction starting from the receptive fields. A future development

of the model will consist in adapting the technique of Sarti

and Citti (2015) to find the probability of the co-occurrence

between two elements, and individuate percepts in 3D space.

Individuation of percepts through harmonic analysis on the

sub-Riemannian structure has been proposed in the past, both

for 2D spatial stimuli (Sarti and Citti, 2015) and in 2D +

time spatio-temporal stimuli (Barbieri et al., 2014a). It would

be interesting to develop a similar analysis and extend it to

stereo vision.
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