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Exploring the e�ects of
human-centered AI explanations
on trust and reliance
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Klaus Opwis and Florian Brühlmann

Human-Computer Interaction Research Group, Center for General Psychology and Methodology,

Faculty of Psychology, University of Basel, Basel, Switzerland

Transparency is widely regarded as crucial for the responsible real-world

deployment of artificial intelligence (AI) and is considered an essential prerequisite

to establishing trust in AI. There are several approaches to enabling transparency,

with one promising attempt being human-centered explanations. However,

there is little research into the e�ectiveness of human-centered explanations

on end-users’ trust. What complicates the comparison of existing empirical

work is that trust is measured in di�erent ways. Some researchers measure

subjective trust using questionnaires, while others measure objective trust-related

behavior such as reliance. To bridge these gaps, we investigated the e�ects of

two promising human-centered post-hoc explanations, feature importance and

counterfactuals, on trust and reliance. We compared these two explanations with

a control condition in a decision-making experiment (N = 380). Results showed

that human-centered explanations can significantly increase reliance but the

type of decision-making (increasing a price vs. decreasing a price) had an even

greater influence. This challenges the presumed importance of transparency over

other factors in human decision-making involving AI, such as potential heuristics

and biases. We conclude that trust does not necessarily equate to reliance and

emphasize the importance of appropriate, validated, and agreed-upon metrics to

design and evaluate human-centered AI.
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1. Introduction

It is generally recognized that computers perform specific tasks better than humans,

such as numeracy, logical reasoning, or storing information (Solso et al., 2005). But with

the recent breakthroughs in artificial intelligence (AI), domains that used to be exclusively

associated with human competence and considered computationally unattainable are

likewise being challenged by machines. AI has led to improvements in speech recognition,

image classification, as well as object detection (LeCun et al., 2015) and is now increasingly

used in various everyday applications such as video surveillance, email spam filtering, online

customer support, and product recommendations. Because of this general applicability and

the potential manifold consequences, voices are being raised that AI should satisfy criteria

like fairness, reliability, accountability, and transparency (Ehsan et al., 2021b; ACM FAccT

Conference, 2022). The call for transparent AI has led to the multidisciplinary research field

of explainable artificial intelligence (XAI), which explores methods and models that make

the behaviors, predictions, and decisions of AI transparent and understandable to humans

(Lipton, 2018a; Liao et al., 2020). Abdul et al. (2018), as well as Biran and Cotton (2017) have
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pointed out that the development of transparent systems has long

been a research focus, originating from expert systems, intelligent

agents, recommender systems, context-aware systems, and other

adjacent fields such as automation.

Despite this rich history, current XAI research faces

unprecedented challenges as AI is increasingly complex and

thus more cumbersome to render transparent (Biran and Cotton,

2017). In the pursuit of ever more accurate predictions, modern

AI consists of millions of interdependent values and parameters,

resulting in a trade-off between complexity and transparency

(Shmueli, 2010; Mittelstadt et al., 2019). Because of this complexity,

AI is often characterized by the opaque box paradigm (Suresh et al.,

2021), meaning that AI can only be considered in terms of its inputs

and outputs without direct observations of its inner workings.

This opacity makes it more challenging than ever to ensure

fairness, reliability, and accountability, rendering transparency a

prerequisite for the other three criteria. Some researchers argue

that transparency helps verify and improve the functionality of

a system (i.e., for debugging), supports developers in learning

from a system (i.e., in generating hypotheses), or is needed to

ensure fair and ethical decision-making (Mittelstadt et al., 2019).

Others believe that transparency contributes toward building a

relationship of trust between humans and AI (Stephanidis et al.,

2019), which plays a key role in people’s willingness to rely on

automated systems (Hoff and Bashir, 2015).

While transparency is generally considered crucial for the

effective and responsible real-world deployment of AI, there are

various transparency approaches tailored to the algorithm’s goal,

the context, and the involved stakeholders, such as developers,

decision-makers, and end-users (Ehsan et al., 2019; Samek

et al., 2019). For end-users, the requirements and purpose of

transparency are expected to be distinct (Cheng et al., 2019; Langer

et al., 2021; Suresh et al., 2021), and Miller (2019) specified criteria

that should be taken into account in order to achieve human-

centered explainable AI (HCXAI). Following the notion of Ehsan

and Riedl (2020), we understand HCXAI as an approach that puts

humans at the center of technology design. Within this framework,

not only is it important to conduct user studies that validate XAI

methods with ordinary end-users, but also to consider explanations

designed to account for human needs.We argue thatMiller (2019)’s

criteria and the focus on how humans explain decisions to one

another are a good starting point for meaningful AI explanations

to end-users. However, empirical investigations of the effects of

human-centered explanations satisfying these criteria are sparse,

and there is mixed evidence about whether transparency is in

fact increasing trust (Cramer et al., 2008; Nothdurft et al., 2013;

Cheng et al., 2019; Ehsan et al., 2019; Zhang et al., 2020; Poursabzi-

Sangdeh et al., 2021). These ambiguous findings may arise from

the use of proxy-tasks rather than actual decision-making tasks

when evaluating AI systems (Buçinca et al., 2020) and from varying

conceptualizations of trust. Studies on XAI appear to define and

measure trust differently (Vereschak et al., 2021). Some researchers

assess attitudinal trust measures via questionnaires (Buçinca et al.,

2020), while others focus on trust-related behavior such as reliance

(Poursabzi-Sangdeh et al., 2021). However, research has shown that

subjective trust can be a poor predictor of actual reliance (Dzindolet

et al., 2003; Miller et al., 2016; Papenmeier et al., 2022). Therefore, it

seems particularly important to distinguish between attitudinal and

behavioral measures when studying the effect of transparency on

trust (Parasuraman and Manzey, 2010; Sanneman and Shah, 2022;

Scharowski et al., 2022).

In this study, we focus on explainability as a means of AI

transparency. Explainability, in this context, is the process of

explaining how an opaque box AI arrived at a particular result

or decision after a computation has been performed (i.e., post-

hoc explanations), without directly revealing the AI’s internal

mechanisms via visualizations or graphical interfaces, as typically

aimed for in clear box AI. Grounded in Miller’s work, we identified

feature importance explanations and counterfactual explanations as

two promising post-hoc explanations for achieving HCXAI. We

conducted an online decision-making experiment (N = 380) on

Amazon Mechanical Turk (MTurk) to investigate the effect of

those two human-centered explanations on end-users’ trust and

reliance with a control condition. The Trust between People and

Automation Scale (TPA, Jian et al., 2000) served as an attitudinal

measure of AI trust. Reliance on the AI recommendation, captured

by weight of advice, provided a measure for trust-related behavior.

The results suggest that the relationship between transparency and

reliance is more nuanced than commonly assumed and emphasize

the importance of adequately differentiating between trust and

reliance and their respective measurements when evaluating XAI.

While transparency did not affect trust, reliance increased through

human-centered post-hoc explanations, but only for specific

decision-making tasks. In the particular context we examined, it

appears that the type of decision-making participants were facing

(increasing a price vs. decreasing a price) had a greater influence

on reliance than how the AI explained its recommendation to

the end-users. This suggests that humans display cognitive biases

and apply heuristics in decision-making tasks that involve AI

recommendations. If biased human decision-making prevails, AI

may not support people to reach better decisions. The XAI

community should consider potential biases and heuristics for

a more nuanced understanding of the human-AI interaction. It

remains to be further explored whether measuring attitudinal trust

via questionnaires reflects trust-related behavior (i.e., reliance)

appropriately and whether heuristics and biases also have an impact

on trust. If researchers and practitioners who develop and evaluate

AI systems assess only subjective trust, they may not draw valid

conclusions about actual AI reliance and vice versa. Given that AI

is increasingly utilized to make critical decisions with far-reaching

consequences, adopting agreed-upon, validated, and appropriate

measurements in XAI is of paramount importance.

2. Related work

2.1. Human-centered explanations

Two closely related terms that are often used interchangeably

should be distinguished when referring to AI transparency:

explainability and interpretability. While both terms refer to

methods for achieving transparency, they differ in their approach

to implementing transparency. For Lipton (2018b), interpretability

is the information that a system provides about its inner workings
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and associated with the notion of clear box AI, meaning AI

whose internal mechanisms are accessible and not concealed.

Interpretability is thus achieved by using or designing AI in

a way that its decision-making can be directly observed or

otherwise visualized. Explainability, on the other hand, implies

accepting opaque box AI whose internal mechanisms are not

readily accessible or understandable, and providing meaningful

information by explaining how a specific output or decision was

reached after a computation has been carried out. In this sense,

explainability is post-hoc interpretability (Lipton, 2018b; Ehsan

et al., 2019; Miller, 2019; Mohseni et al., 2020).

In addition to this distinction between explainability and

interpretability, XAI researchers need to be aware of the varying

needs and goals different stakeholders have when interpreting,

understanding, and reacting to explanations coming from AI

(Suresh et al., 2021). Past research has raised concerns that AI

explanations are frequently based on the intuition of researchers,

AI developers, and experts rather than addressing the needs of end-

users (Du et al., 2019; Miller, 2019). A growing body of work has

engaged with this challenge (Ferreira and Monteiro, 2020; Hong

et al., 2020; Liao et al., 2020; Ehsan et al., 2021a) and now focuses

on more human-centered approaches that align AI explanations

with people’s needs. Despite these considerations regarding human-

centered explanations, previous work on AI transparency has

often placed a greater emphasis on interpretability (i.e., model

visualization for clear box AI) than on explainability (i.e., post-

hoc explanations for opaque box AI) (Kulesza et al., 2015; Krause

et al., 2016; Cheng et al., 2019; Kocielnik et al., 2019; Lai and Tan,

2019; Poursabzi-Sangdeh et al., 2021). This emphasis has led to

focusing on graphical interfaces that allow users to observe and

understand the decision-making processes of these models more

directly. While post-hoc explanations also require some sort of user

interface or visualization, they operate at a more abstract level and

provide a simplified or approximate representation of the decision-

making process rather than direct access to the internal workings of

the model, as interpretability seeks to accomplish. However, some

researchers have questioned that interpretability approaches are

useful to all people equally. Suresh et al. (2021) and Lipton (2018b)

argue that explainability might be more reflective of the way that

humans are transparent about their own decisions. When it comes

to humans, the exact processes by which our brains form decisions

and our explanations regarding those decisions are distinct (Lipton,

2018b). Similar to how people provide explanations to one another,

AI might explain its decisions without disclosing the computation

underlying them. Because of its proximity to how humans reason

about their decisions, explainability seems promising to achieve

HCXAI if the way humans provide and understand explanations

is taken into account.

With regard to human-centered explanations, researchers

have emphasized the importance of incorporating insights from

philosophy, the social sciences, and psychology on how people

define, generate, select, evaluate, and present explanations into

the field of XAI (Miller, 2019; Mittelstadt et al., 2019). Based

on findings from these areas of research, Miller (2019) defined

certain criteria for what contributes to ameaningful explanation for

people, including selectivity (providing the most important reasons

for a decision), contrastivity (providing contrastive information

with a decision), and sociality (explaining something in a similar

way to how humans explain their actions). Miller (2019) and

Mittelstadt et al. (2019) argued that explanations from AI should

at least fulfill some of these criteria to be meaningful for end-users.

Adadi and Berrada (2018) identified over 17 different transparency

approaches that are being proposed in the current XAI literature.

Based on Miller (2019)’s criteria, we narrowed down Adadi and

Berrada (2018)’s selection and identified two promising human-

centered post-hoc explanations: feature importance explanations

and counterfactual explanations.

Feature importance explanations. Humans rarely expect a

complete explanation for a decision and often select the most

important or immediate cause from a sometimes infinite number

of reasons (Miller, 2019). As the name suggests, feature importance

allows end-users to determine which features are most important

for an AI’s output. Such explanations thus satisfy the selectivity

criterion proposed by Miller (2019) because they show how certain

factors influenced a decision. Feature importance explanations have

the following notation: “Outcome P was returned because variable

V had values (vi, vii, ...) associated with it” (Wachter et al., 2018, p.

9).

Counterfactual explanations. Humans usually ask why a

particular decision was made instead of another one (Miller, 2019).

In addition to the leading causes of an output, counterfactuals

provide contrastive “what-if ” statements that help identify

what might be changed in the future to achieve a desired

output (Mothilal et al., 2020). Counterfactuals combine Miller’s

selectivity and contrastivity criteria. They are expected to have

psychological benefits because they help people act, rather

than merely understand, by altering future behavior to achieve

a desired outcome (Wachter et al., 2018; Mothilal et al.,

2020). Counterfactuals commonly have the following notation:

“Outcome P was returned because variable V had values (vi,

vii, ...) associated with it. If V had values (vi’, vii’, ...) instead,

outcome P’ would have been returned” (Wachter et al., 2018,

p.9).

Both explanations also seem to meet Miller (2019)’s sociality

criterion. For humans, explanations are a form of social interaction

or, more specifically, a transfer of knowledge often presented as

part of a conversation between the explainer and the explainee

that is subject to the rules of conversation (Hilton, 1990; Miller,

2019). Although Miller (2019) points out that this does not

imply that explanations must be given in natural language, we

expect natural language explanations to be a promising approach

for human-centered explanations because they are accessible and

intuitive to humans (Ehsan et al., 2019). De Graaf and Malle

(2018) argued that because people attribute human-like traits to

artificial agents, they might expect them to provide explanations

similar to how humans explain their actions. Szymanski et al.

(2021) showed that while end-users prefer visual over textual

explanations, they performed significantly worse with the former,

and Kizilcec (2016) demonstrated that short textual explanations

build subjective trust in an algorithm’s decision. There are

also jurisdictional reasons for explanations in natural language.

They comply with the EU’s GDPR (Wachter et al., 2018) and

align with the regulatory requirement for automated decision-

making to explain decisions in an “easily accessible form, using
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clear and plain language [...] provided in writing.” (European

Parliament and Council of the European Union, 2016, article

12). To the best of our knowledge, there is little to no

empirical research on the effectiveness of these two human-

centered explanations derived from the literature (i.e., Adadi and

Berrada, 2018) using Miller’s criteria in fostering end-users’ trust

in AI. Therefore, an empirical investigation into the efficacy of

feature importance explanations and counterfactual explanations

seems warranted.

2.2. Trust in XAI

Within the XAI community, researchers define and measure

trust in different ways, and there does not appear to be a clear

consensus about the desired effect of trust or a clear differentiation

of the factors that contribute to trust (Chopra and Wallace,

2003; Mohseni et al., 2020). To provide two examples: Lai and

Tan (2019) proposed a spectrum between full human agency

and full automation, with varying levels of explanations along

this spectrum. In a deception detection task (asking end-users

to decide whether a hotel review is genuine or deceptive), they

illustrated that heatmaps of relevant instances and example-based

explanations improved human performance and increased the

trust humans place on the predictions of the AI. Lai and Tan

defined trust as the percentage of instances for which humans

relied on the machine prediction. In contrast, Cheng et al. (2019)

conducted an experiment where participants used different UI

interfaces to comprehend an algorithm’s decision for university

admissions. They showed that revealing the inner workings of

an algorithm can improve users’ comprehension and found that

users’ subjective trust, assessed by a 7-point Likert scale, was not

affected by the explanation interface. These two empirical studies

exemplify how trust is measured differently in XAI research. These

discrepancies could be a reason for the inconclusive findings in

current XAI literature regarding the effect of transparency on trust.

This warrants a more precise definition and rigorous distinction

between trust and related concepts, such as reliance, in empirical

studies investigating the relationship between transparency and

trust.

The differentiation between subjective and objective trust and

their measurement in XAI was addressed by Mohseni et al. (2020).

They pointed out that subjective trust measures include interviews,

surveys, and self-reports via questionnaires, which according to

Buçinca et al. (2020) have been the focal points for evaluating AI

transparency. For objective measures of trust, Mohseni et al. (2020)

proposed users’ perceived system competence, understanding, and

users’ reliance on a system. This distinction between trust and

reliance was emphasized by Hartmann (2020). They argued that

the everyday use of the word trust is misleading when applied to

technology and that, in this case, trust must be differentiated from

reliance. Hartmann (2020) was not the only one that distinguished

between trust and reliance as other researchers have shown that

attitudinal judgments have an impact on people’s intention to rely

on automated systems (Cramer et al., 2008; Merritt, 2011); People

tend to rely on automation they trust and reject automation they

distrust (Lee and See, 2004). This makes trust particularly relevant

in the misuse (overreliance Parasuraman and Riley, 1997) and

disuse (neglect or underutilization Parasuraman and Riley, 1997)

of automation (Hoff and Bashir, 2015; Yu et al., 2017; Stephanidis

et al., 2019). To avoid such instances, users’ trust needs to be

calibrated or warranted. Trust calibration refers to the extent to

which the trust that users place in the system is adequate to the

system’s actual capabilities (Wischnewski et al., 2023). Fostering

end users’ trust in AI should aim to attain an appropriate level

of trust to avoid overreliance or underutilization of AI systems.

According to Lee and See (2004) and correspondent with Hoff

and Bashir (2015), we define trust in the context of AI as “the

attitude that an agent will help achieve an individual’s goals in

a situation characterized by uncertainty and vulnerability” (Lee

and See, 2004, p. 6). This definition encapsulates the notion of

uncertainty and vulnerability as proposed by Jacovi et al. (2021) and

Mayer et al. (1995), which is the most widely used and accepted

definition of trust (Rousseau et al., 1998). Adopting Lee and See’s

definition and model, we distinguish between trust and reliance

and think of trust as an attitude and reliance as a behavior that

follows the level of trust. In their work onmetrics for XAI, Hoffman

et al. (2019) make a similar distinction when they differentiate

between trusting amachine’s output and following its advice. In this

framework, attitudes and behaviors remain conceptually distinct

and do not share a deterministic but a probabilistic relationship

(Ajzen and Fishbein, 1980; Körber, 2018). Even if an AI system is

trusted, reliance must not necessarily follow (Kirlik, 1993; Körber,

2018), and people may claim to trust an AI system, yet behave

in a way that suggests they do not (Miller et al., 2016). This

implies that attitudes may not always translate into behaviors.

The empirical findings of Dzindolet et al. (2003) support this

argument: although some automated decision aids were rated

as more trustworthy than others, all were equally likely to be

relied upon.

Given these possible contradictions, we think it is useful

to conceptualize trust as an antecedent to reliance that guides

but does not determine it (Lee and See, 2004). However, this

consideration has been insufficiently taken into account in past

research (Papenmeier et al., 2022; Scharowski et al., 2022). A

rigorous distinction and an accurate conceptualization of trust

and reliance are vital for empirical XAI studies since researchers

who evaluate AI systems using only subjective measures of AI

trust might not draw valid conclusions about actual reliance on

AI and vice versa. Arrieta et al. (2020) emphasized that only

agreed-upon metrics and their respective measurements allow

for meaningful comparisons in XAI research and that without

such consistency, any claims are elusive and do not provide

a solid foundation. For this reason, we decided to investigate

two alternative methodological approaches, namely, measuring

attitudinal trust on the one hand and measuring trust-related

behavior in terms of reliance on the other hand. This approach

is in line with Sanneman and Shah (2022), that recommended

using trust scales in conjunction with behavior-based metrics to

determine if people appropriately trust and use AI systems in

response to AI explanations they provide.
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3. Empirical investigation

3.1. Research question and hypotheses

We investigated the following research question:

RQ: What effect do human-centered explanations have on

end-users’ trust and reliance?

To answer this research question, we compared the previously

introduced feature importance and counterfactual post-hoc

explanations with a control in a scenario in which participants

had to estimate subleasing prices for different apartments. We

employed a mixed study design with a 3 (explanation condition:

feature importance vs. counterfactual vs. control) × 2 (type

of AI recommendation: increasing price vs. decreasing price).

Explanation condition was the between-subject factor, type

of recommendation was the within-subject factor. Following

Poursabzi-Sangdeh et al. (2021), we focused on the domain

of real estate valuation, where machine learning is often used

to predict apartment prices. Airbnb (https://airbnb.com) and

Zillow (http://zillow.com) are examples of websites that provide

price recommendations to end-users in this way. Considering

the previous clarifications, we expected that trust and reliance

are influenced by human-centered explanations similarly but

should be treated as distinct concepts. We, therefore, formulated

separate hypotheses for both trust and reliance. We further

presumed that feature importance and counterfactual explanations

lead to more trust and reliance in participants compared

to a control condition where no additional explanation was

present. Counterfactuals are both selective and contrastive, while

feature importance explanations are just selective (Miller, 2019).

This makes counterfactuals an even more promising type of

human-centered explanation compared to feature importance

explanations.

For these reasons, the specific hypotheses were:

H1 The experimental condition feature importance

will lead to higher reliance compared to

the control.

H2: The experimental condition counterfactuals will lead to

higher reliance compared to the control.

H3: Counterfactuals will lead to higher reliance compared to

feature importance.

H4: The experimental condition feature importance will lead

to higher trust compared to the control.

H5: The experimental condition counterfactuals will lead to

higher trust compared to the control.

H6: Counterfactuals will lead to higher trust compared to

feature importance.

4. Method

4.1. Measures

The independent variable was condition, with the two

levels feature importance and counterfactuals, as well as a

third level without explanations, which served as a control.

We used two measures as dependent variables to account for

the aforementioned distinction between trust as an attitude

and reliance as trust-related behavior. On the one hand, we

wanted to determine if people relied on the AI and changed

their behavior after being presented with an explanation. This

behavior change was captured by the parameter Weight of

Advice (WOA), which stems from the literature on taking

advice (Harvey and Fischer, 1997). WOA has the following

notation:

WOA =
T2− T1

R− T1
(1)

In Equation (1), R is defined as the model’s recommendation,

T1 is the participant’s initial estimate of the apartment’s price

before seeing R, and T2 is the participant’s final estimate

of the apartment’s price after seeing R. WOA measures the

degree to which people change their behavior and move their

initial estimate toward the advice. WOA is equal to 1 if the

participant’s final prediction matches the AI recommendation

and equal to 0.5 if they average their initial prediction with the

AI recommendation. A WOA of 0 occurs when a participant

ignores the AI recommendation (T1 = T2), and a negative

WOA signifies that a participant discounted the recommendation

completely and moved further away from the recommendation.

WOA can be viewed as a percentage of how much people

weigh the received advice (i.e., the AI recommendation), and

this straightforward interpretation is an advantage of this reliance

measurement. While WOA has been used in the past by

researchers in XAI as an alternative trust measurement (Logg

et al., 2019; Mucha et al., 2021; Poursabzi-Sangdeh et al.,

2021), it has never been explicitly referred to as reliance

and thus clearly differentiated from trust to the best of our

knowledge.

On the other hand, we chose the TPA (Jian et al., 2000) to

measure trust because the scale’s underlying definition of trust is

compatible with the one we adopted from Lee and See (2004).

Furthermore, the TPA is an established measure in HCI (Hoffman

et al., 2019). Several other scales evaluating AI have adapted items

from the TPA (e.g., Hoffman et al., 2019), and its psychometric

quality has been evaluated multiple times (Spain et al., 2008;

Gutzwiller et al., 2019). Jian et al. (2000) treated trust and distrust

as opposite factors extending along a single dimension of trust.

The scale is a seven-point Likert-type scale (ranging from 1:

“not at all” to 7: “extremely”) and consists of 12 items. Five

items for distrust (i.e., “The system is deceptive.”, “The system

behaves in an underhanded manner.”, “I am suspicious of the

system’s intent, action or, outputs.”, “I am wary of the system.”,

“The system’s actions will have a harmful or injurious outcome.”).

The seven remaining items for trust (i.e., “I am confident in

the system.”, “The system provides security.”, “The system has

integrity.”, “The system is dependable.”, “The system is reliable.”,

“I can trust the system.”, “I am familiar with the system.”). We

used the scale in its original form, except for prefixing the word

“AI” to the word “system,” e.g., “I have confidence in the AI

system.”
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4.2. Experiment

We carried out a one-factor between-subjects design online

experiment1 over AmazonMechanical Turk (MTurk, http://mturk.

com). The experiment was implemented through the online survey

tool Limesurvey (http://limesurvey.org).

4.2.1. Participants
A total of 913 participants were initially recruited over MTurk,

and 798 of them fully completed the survey. Only workers from

the USA with a human-intelligence-task (HIT) approval of 95%

and at least 100 approved HITs were allowed to participate in the

experiment. Workers who completed the task conscientiously were

reimbursed with 1.50 US dollars and a bonus of 0.30 US dollars

for their participation. Several criteria were applied during data

cleaning to ensure data quality. Participants who failed to provide

a correct answer (n = 36) for the bogus item (“This is an attention

check. Please choose 7 here”) or for one of three control questions

(“In this survey, you had to tell us for how much money you

would sell a house to a company”; “In this survey, we asked you

to indicate in which U.S. state you currently live”; “In this survey,

you got price recommendations from a good friend”) were removed

(n = 310). We also excluded participants that showed unrealistic

WOA’s (n = 72). Following prior research (Gino and Moore, 2007;

Logg et al., 2019), we defined unrealistic WOA as being ≤ −1 and

≥ 2. For the data analysis, 380 participants remained. The sample

was predominantly male (61%) and had an average age of 37 years

(M = 37.03, SD = 10.15, min = 18, max = 69). A majority of

the participants (68%) possessed a higher-educational degree (i.e.,

a bachelor’s degree, master’s degree, or PhD).

4.2.2. Procedure and task
After providing informed consent, participants were

introduced to the study and their task. They were asked to

imagine a scenario where their goal was to sublease six different

apartments on a subleasing website. Based on the apartment’s

features and amenities (e.g., number of bedrooms, distance to

public transit), they had to estimate an initial subleasing price

(T1). After estimating T1, an alleged AI from the website provided

a computed price recommendation (R). In reality, the price

recommendation was based on an algorithm introduced as an AI.

Participants were informed that they would be more likely to find

a subleaser by deciding on a lower price but would consequently

receive less profit. If they decided on a higher price, they would be

less likely to find a subleaser but potentially receive more profit.

They were told that the AI’s goal was to help them find the optimal

price to successfully find a subleaser with a reasonable profit. How

exactly this price recommendation was calculated by the algorithm

will be discussed in the next section. Figure 1 shows how the price

recommendation and respective explanations were presented to

the participants. A list of all the explanations used for each type

1 Data, R-scripts, detailed EFA results, experimental materials (including all

questions and tasks), as well as a flowchart of the inclusion and exclusion

process of the experiment are available under https://osf.io/bs6q3/.

of recommendation can be found in the online repository1. The

output was designed to appear as if the subsequent explanation was

an extension of the preceding ones. The most relevant outputs were

presented as a console output in order to make the stimuli more

convincing (see Figure 1). After seeing the AI recommendation,

participants could decide if they desired to approach it or not

and settled on a final subleasing price (T2). This deliberate choice

by the participants to either rely on the AI recommendation or

not makes our experiment an actual decision-making task rather

than a proxy task (Buçinca et al., 2020). In proxy-tasks, the focus

lies on how well participants can simulate the model’s decisions

(Buçinca et al., 2020). In actual decision-making tasks, people’s

choices involve systematic thinking errors (biases) and mental

shortcuts (heuristics) (Tversky and Kahneman, 1974), as it is up

to the participants to decide whether and how to use the AI (i.e.,

reliance on the AI).

To evoke a certain degree of uncertainty, participants were

told that they would be reimbursed based on their performance.

Uncertainty is a defining characteristic of trust (Mayer et al.,

1995) and has been referred to as a necessary prerequisite of

human trust in AI that has been lacking in current XAI studies

(Jacovi et al., 2021). Participants were informed that for good

estimations, the top 10% would be paid an additional bonus of

0.30 US dollars. In actuality, every participant received the bonus,

regardless of their performance. In order to better control for

the price disparity between urban and rural regions, participants

were asked to indicate what US state they are currently living in

(e.g., Colorado) to ascertain their state capital (e.g., Denver). The

objective was to make the estimate easier for the participants and

to make the AI more persuasive since it was claimed that the AI

would likewise base its price recommendations on data collected in

that state capital. After an example that showed how the apartments

and their amenities would be presented to them, participants could

start with the actual task. Once the task was completed, participants

had to fill out the TPA (Jian et al., 2000) and give some demographic

information. Participants were debriefed at the end of the study and

informed that the AI was an algorithm introduced as an AI that

did not use participants’ state capitals for its recommendations. To

ascertain that our algorithm was convincing, we asked participants

before and after the interaction how certain they were about the AI’s

prediction. (“How certain are you that the AI can make an accurate

recommendation for a sublease price?”) on a ten-point Likert-

type scale (ranging from 1: “not certain at all” to 10: “absolutely

certain”).

4.2.3. Stimuli
The apartments that participants had to evaluate were real

apartments retrieved from the website Zillow (http://zillow.com)

in May 2020. To create some variability, we selected six different

apartments of different sizes and price ranges: two small-sized

apartments (500–750 square feet), two medium-sized apartments

(751–1,000 square feet), and two large-sized apartments (1,001–

1,250 square feet). Figure 2 shows an example of how apartments

were presented to participants. Features and amenities were

collected directly from the website Zillow, whenever available. If

not available, a random value within a reasonable range was chosen
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FIGURE 1

Examples how the di�erent explanations for the conditions (A) Control, (B) Feature Importance, and (C) Counterfactual were presented to the

participants. For this apartment, the AI recommended increasing the initial price T1.

for continuous variables (e.g., distance to public transit between 0.1

and 2.0 miles), and a random choice for dichotomous variables was

made (e.g., elevator YES/NO). All participants were presented with

the same stimuli, that is, identical apartments and features. What

differed was the price recommendation and the explanation that

accompanied it (see Figure 1).

The price recommendation from the algorithm introduced as

an AI was designed to pick a random number between 10 and

20. This random number was then transformed into percentages

and either added or subtracted to the initial subleasing price (T1),

which led to a random deviation between 10 and 20 percent.

This deviation seemed substantial enough that subjects did not

entirely adopt the recommendation, but it was also subtle enough

not to appear unrealistic and that it seemed possible that the

features and amenities could account for the discrepancy. With

this procedure, we ensured that no participant could estimate the

price accurately since there was no “true price.” Defining a ground

truth has been a limitation of past studies (Poursabzi-Sangdeh et al.,

2021). If, by pure chance, a participant estimates the “true price,”

the interpretation of WOA becomes meaningless since T1 and R

are equal. The absence of a “true price” imposes the decision on

participants either to rely or not to rely on the AI. By determining

a relative deviation between 10 and 20 percent from participants’

initial price estimate, we furthermore controlled for the system’s

accuracy since it was shown to have a significant effect on people’s

trust (Yin et al., 2019; Zhang et al., 2020).

It was randomly assigned that for three of the six apartments,

the algorithm introduced as an AI recommended decreasing the

initial price, T1 (e.g., if T1 was $1,000 and the random number

17, the AI recommendation was $830), and for the other three

apartments, the recommendation was to increase T1 (e.g., if T1

was $1,000 and the random number 17, the AI recommendation

was $1,170). By doing this, the AI informed participants that their

initial price estimates were either too low or too high, which

made it possible to compare AI recommendations to increase T1

with recommendations to decrease T1. We were interested in this

comparison because prior research from Kliegr et al. (2021) and

Wang et al. (2019) led us to postulate that the AI’s recommendation

to increase or decrease the initial price might also influence

participants’ decision-making and consequently their reliance on

the AI.

5. Results

5.1. Descriptive statistics

On average, participants across all conditions approached the

AI recommendation, resulting in a positive WOA (M = 0.69,
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FIGURE 2

Example of how an apartment was presented to participants in the online experiment. Note that the image of the apartment depicted in the

screenshot was replaced with a similar image for this publication due to potential copyright issues.

SD = 0.36). The TPA showed average overall ratings (M = 5.01,

SD = 0.86), high ratings for trust (M = 4.98, SD = 1.05), and

lower ratings for distrust (M = 2.95, SD = 1.62). Across all

three conditions, the certainty that the AI could make an accurate

prediction increased from pre- to post-interaction (M1 = 0.36,

SD = 1.53) and was rated at a high level after the interaction (M =

7.59, SD = 1.60). The inspection of the average estimated prices

also confirmed our classifications into the apartment categories

“small,” “medium,” and “large” (Msmall = $1, 091, Mmedium =

$1, 286, Mlarge = $1, 449). From this, we concluded that the

assigned task was a compelling one. Table 1 includes descriptive

statistics for the experiment.

5.2. Reliance—WOA

To address H1, H2, and H3, corresponding contrasts were

created. The first contrast made it possible to determine if the

feature importance condition was significantly different from the

control (planned contrast 1: feature importance explanation vs.

control for answering H1). By defining two other contrasts, it was

possible to examine if the counterfactual condition was significantly

different from the control (planned contrast 2: counterfactual

explanation vs. control for answeringH2) and if the counterfactual

condition was significantly different from the feature importance

condition (planned contrast 3: counterfactual explanation vs.

feature importance explanation for answeringH3). The effect of the

three contrasts on WOA was analyzed by employing linear mixed-

effect models (LMEMs) using the lme4 package (Bates et al., 2015)

for R (version 4.2.2.). We report β-estimates, their 95% confidence

interval, t-values, and the corresponding p-values. Our models

contained two fixed effects: the contrasts and the difference of the

recommendation to increase or decrease T1. Under the assumption

that the stimuli and conditions had varying random effects for

different participants, we introduced a random intercept (id) in the

model. The utilized model had the following specifications:

WOA∼1+ Contrast1+ Recommendation+ (1|id)

For this model, the first contrast (feature importance

explanation vs. control) was not significant [β = 0.01, 95% CI β[-

0.01, 0.03], t(378) = 0.64, p = 0.53], while the difference between

recommendations to increase or decrease T1 was highly significant

[β = 0.05, 95% CI β[0.03, 0.07], t(1,899) = 3.62, p < 0.001]. The

second contrast (counterfactual explanation vs. control) did not

return any significant results [β = 0.02, 95% CI β[-0.01, 0.04],

t(378) = 1.33, p = 0.19], and neither did the third contrast

(counterfactual explanation vs. feature importance explanation)

[β = 0.01, 95% CI β[-0.01, 0.03], t(378) = 0.63, p = 0.53].

However, in all three models, the recommendation type (increasing

a price vs. decreasing a price) returned highly significant results

with β-estimates ranging between 95% CI [0.03, 0.07]. Comparing

this model to a model without the recommendation term

confirmed that its inclusion was justified since it significantly
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TABLE 1 Descriptive statistics of the conducted experiment with the mean (M), standard deviation (SD), and median (Mdn) forWOA, the TPA, and AI

certainty.

Control Feature importance Counterfactual

(n = 130) (n = 143) (n = 107)

M SD Mdn M SD Mdn M SD Mdn

Weight of Advice

Increase price 0.69 0.38 0.69 0.68 0.36 0.69 0.67 0.34 0.67

Decrease price 0.69 0.38 0.69 0.73 0.40 0.79 0.78 0.37 0.79

TPA (Jian et al., 2000)

Overall 5.01 0.91 4.88 4.95 0.84 4.83 5.10 0.84 5.08

Trust 5.11 1.06 5.29 4.82 1.07 5.00 5.03 1.00 5.14

Distrust 3.12 1.73 2.60 2.88 1.58 2.40 2.82 1.54 2.20

AI certainty

Pre-interaction 7.24 1.60 8.00 7.20 1.57 8.00 7.27 1.64 8.00

Post-interaction 7.55 1.74 8.00 7.48 1.61 8.00 7.80 1.37 8.00

improved the model fit [χ2
(1)

= 13.05, p < 0.001]. To better

understand the relationship between explanations and the type of

recommendation, we created a visualization (see Figure 3).

Depending on the type of recommendation, the condition

effect was different, meaning that whether the AI recommended

increasing or decreasing the initial subleasing price T1, influenced

the way that explanations affected WOA. For recommendations

to increase, the explanations had a negligible effect on WOA, but

for recommendations to decrease, the effect was substantial. In

our case, the effect of explanations cannot be readily understood

without considering the different type of AI recommendation.

We therefore divided the data into two subsets. One subset

contained the three apartments with the recommendation to

increase T1, the other subset contained the three apartments

with the recommendation to decrease T1. We then executed

the specified model again, but the term “recommendation”

was naturally omitted as a fixed effect. For the subset that

contained the recommendations to decrease T1, the second

contrast (counterfactual explanation vs. control) was significant

[β = 0.04, 95% CI β[0.01, 0.08], t(378) = 2.31, p =

0.02]. The β-estimates indicate that on average, counterfactual

explanations increased WOA by an approximated 4% compared

to the control that received no explanations. Note that feature

importance explanations likewise increasedWOA by 2% compared

to the control, but this difference was not significant for the 0.05

significance level [β = 0.02, 95% CI β[−0.01, 0.05], t(378) = 1.10,

p = 0.27]. However, explanations had no effect on WOA when the

AI recommended increasing the price estimate (Figure 3). LMEMs

are quite robust against violations of distributional assumptions

(Schielzeth et al., 2020). We nevertheless checked the residuals

of WOA values for normal distribution via quantile–quantile

plots (Q–Q plots) to determine if the residual variance was

equal across conditions (homoscedasticity) and also checked the

multicollinearity assumption. The normality distribution seemed to

be satisfied, with some deviation from normality at the tails, which

indicates that more data is located at the extremes. Levene’s test

indicated equal variances [F(2) = 0.57, p = 0.56] that did not differ

between the conditions, and a multicollinearity check revealed low

correlation between the model terms.

5.3. Trust—Trust between people and
automation scale

To identify the underlying structure of the TPA, we performed

an exploratory factor analysis (EFA) using MinRes and rotated

with the Oblimin method (see footnote 1). Parallel analysis and

very simple structure (VSS) indicated two factors, which is in line

with previous research (Spain et al., 2008). The first five items

loaded on one factor (with 0.79− 0.89), and the other seven loaded

on a second factor (0.56 − 0.85), which corresponded accurately

to the trust/distrust items of the scale. Internal consistency for

the first five items (i.e., distrust) was excellent (α = 0.92, 95%

CI[0.90, 0.93], ω = 0.92, 95% CI[0.90, 0.93]) and good for the

seven trust items (α = 0.88, 95% CI[0.86, 0.90], ω = 0.88, 95%

CI[0.86, 0.90]) according to George and Mallery (2019). To test

H4 (feature importance leads to higher trust compared to the

control), H5 (counterfactuals lead to higher trust compared to the

control) and H6 (counterfactuals lead to higher trust compared

to feature importance), we intended to perform two types of one-

way analyses of variance (ANOVAs), once using the overall mean

score, and once using mean scores for the trust and distrust factors.

However, visual inspection of the distribution and a Shapiro–Wilk

test (W = 0.97, p < 0.001) revealed a non-trivial violation of the

normality assumption. Thus, the ANOVA results might not have

been interpretable and meaningful. Under these circumstances, a

non-parametric Kruskal–Wallis test (Kruskal andWallis, 1952) was

carried out as it does not assume a normal distribution of the

residuals. The results of the Kruskal–Wallis test showed that the

overall mean ratings for the TPA were not significantly different

between the conditions [H(2) = 1.54, p = 0.46]. The same was
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FIGURE 3

Mean weight of advice for each condition and type of recommendation. Note that the y-axis is scaled to better visualize the e�ect. The error bars

depict 95% confidence intervals. *Statistically significant di�erence with p < 0.05.

true for the factors trust [H(2) = 5.06, p = 0.08] and distrust

[H(2) = 2.03, p = 0.36]. Since the omnibus Kruksal–Wallis

was not significant, we did not perform further post-hoc tests.

Figure 4 captures the similar trust ratings for the two experimental

conditions and the control.

6. Discussion

The experiment reported in this study demonstrates

that participants generally rely on AI recommendations in

low-stake decision-making tasks—in this case, receiving AI

recommendations to find an optimal price for subleasing an

apartment. Regardless of the different experimental manipulations,

on average, participants displayed high overall Weight of Advice

scores (M = 0.67 − 0.69, SD = 0.25 − 0.36). A WOA of 0.70

signifies that participants adopted 70% of the AI recommendations

when updating their prior beliefs to form their final estimate. This

finding supports the idea that people generally rely on AI (Logg

et al., 2019).

The results further demonstrated that under certain conditions,

explainability significantly increases AI reliance. However, in the

context of our study, the effect of human-centered explanations

depended on the type of decision-making the participants had

to engage in. We presented participants with two kinds of

recommendations: for the first type, an algorithm introduced

as an AI recommended that participants increase their initially

estimated apartment price. For the second type, participants

were advised to decrease their initial price. The results of the

experiment indicate that when the AI recommended increasing

the price, human-centered explanations did not affect reliance.

By contrast, in the case of recommendations to decrease

the price, providing counterfactual explanations affected WOA

significantly. Participants in the counterfactual condition where the

AI recommended decreasing T1 relied up to 9 percentage points

more on the recommendation than participants in the control that

received the recommendation to increase their price. Therefore, the

findings support the second hypothesis (H2: counterfactuals will

lead to higher reliance compared to the control) only for decision-

making tasks where the AI recommended decreasing the price.

The first hypothesis (H1: feature importance will lead to higher

reliance compared to the control) and the third hypothesis (H3:

counterfactuals will lead to higher reliance compared to feature

importance) are not supported for either type of recommendation.

We conclude that counterfactual explanations can significantly

increase reliance but only under certain conditions. However,

there was no significant difference between the two post-hoc

explanations, although counterfactuals are arguably more human-

centered since they additionally fulfill Miller (2019)’s contrastivity

criterion.

The experiment illustrated that the decision-making task with

regards to increasing or decreasing a price had a significant effect

on reliance. Regardless of providing explanations, participants

consistently relied more on AI recommendations to decrease

prices than recommendations to increase them (see Figure 3).

This seems counterintuitive at first glance since one might

expect that participants would always embrace the prospect of

obtaining a higher subleasing price. We argue that the two
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FIGURE 4

Boxplots and density plots for the Trust in Automation factors trust and distrust for each condition. Black rhombuses indicate mean values. Items 1–5

of the TPA code for distrust, items 6–12 code for trust.

types of recommendations should be thought of as two distinct

decision-making tasks and our results demonstrate how cognitive

biases may affect humans in their decision-making involving AI

as proposed by Kliegr et al. (2021). The well-studied concept of

loss aversion by Tversky and Kahneman (1991) could account

for this discrepancy and serve as an explanation attempt for our

findings. Loss aversion suggests that, psychologically, people assign

more utility to losses than to gains (Tversky and Kahneman,

1991). In practical terms, this means that the dissatisfaction

experienced by a person who loses $100 is greater than the

satisfaction experienced by a person who gains $100. Our study

design seems to satisfy the preconditions for a possible loss-

aversion effect: when participants received a recommendation to

increase their initial price estimate, they were likely concerned that

this potential price increase would cause an unsuccessful sublease.

The prospect of getting more money (gain) mattered less in this

decision-making task than the possibility of not being able to

sublease at all (loss). A recommendation to decrease the initial

price may not have induced loss aversion in participants. When

not being confronted with loss aversion, explanations seemed

to convince participants that demanding less money was the

right decision to successfully sublease the apartment, compared

to the control where no additional explanation was present for

the recommendation. This interpretation suggests that human-

centered AI explanations can have an effect on reliance, but only

for decision-making tasks where other contributing factors such

as loss aversion are absent. Substantial work has been published

about biased AI-training data but little about humans’ cognitive

biases and heuristics when exposed to AI. A notable exception

is the work of Lu and Yin (2021) that showed how people use

heuristics and base their reliance on the level of agreement between

the machine learning model and themselves when performance

feedback was limited. Moreover, Wang et al. (2019) proposed a

framework of how human reasoning should informXAI tomitigate

possible cognitive biases, and a recent review by Kliegr et al.

(2021) explored to what extent biases affect human understandings

of interpretable machine-learning models. We present empirical

findings suggesting that the XAI community should account for

possible biases and heuristics to develop genuinely human-centered

explanations. Inherent biases and heuristics may be so hardwired in

people that AI explanations are not convincing enough to disprove

non-optimal human decision-making. If that is the case, AI may

not help users to reach better decisions in circumstances where

human intuition becomes too tempting for their judgment. While

the interpretation of the present results under the perspective of loss

aversion requires further investigation, our findings highlight the

importance of biases and heuristic end-users can exhibit in actual

decision-making tasks rather than proxy tasks. These biases and

heuristics may result in irrational and non-optimal choices, which

in turn affect the measured variables of interest, including trust and

trust-related behavior (Wang et al., 2019; Kliegr et al., 2021). In

the context of our study, the type of decision-making participants

faced had a greater effect on reliance than the explanation provided

by the AI. This suggests that factors other than explainability are

crucial when designing human-centered AI. Cognitive biases and

heuristics, such as loss aversion (Tversky and Kahneman, 1991),

framing (Tversky and Kahneman, 1981), or confirmation bias

(Wason, 1960), could potentially undermine AI explanations.

Concerning trust, no significant differences were found for

human-centered explanations (Figure 4). Therefore, we reject

the fourth hypothesis (H4: feature importance will lead to

higher trust compared to the control), the fifth hypothesis

(H5: counterfactuals will lead to higher trust compared to the

control), and the sixth hypothesis (H6: counterfactuals will lead

to higher trust compared to feature importance). While the

effect of human-centered explanations on reliance depended on
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the nature of the AI recommendation (increasing or decreasing

the initial estimated apartment price), this dependence and the

potential effect of cognitive biases and heuristics remain to

be explored for trust. We operationalized trust as an attitude

toward the AI system and consequently assessed users’ trust

after the entire task while we observed reliance from trial-

to-trial. Given the present study, our results do not indicate

a consistent effect of human-centered explanations on trust.

Thus, our findings are in line with other research that provided

mixed evidence regarding the effect of transparency on trust

(Cramer et al., 2008; Nothdurft et al., 2013; Cheng et al., 2019;

Ehsan et al., 2019; Zhang et al., 2020; Poursabzi-Sangdeh et al.,

2021). However, the conceptual distinction between trust and

reliance carries significant implications for XAI evaluation and

uncovers two potential challenges. First, if researchers only assess

attitudinal trust via questionnaires, they could falsely assume

that people will not rely on an AI system. Second, if only

trust-related behavior (i.e., reliance) is measured, researchers

might incorrectly deduce that people necessarily trust the

system in question. Consequently, researchers and practitioners

have to answer the challenging question of which of the two

measures to account for and investigate when evaluating AI.

Whether trust translates into reliance is more nuanced than

often assumed and depends on an interaction between the

operator, the automation, and the situation (Körber, 2018).

It remains to be determined which factors other than trust

drive AI reliance (e.g., system accuracy, perceived usefulness,

cognitive biases) or whether current measurement tools originally

designed to assess trust in automation also accurately capture AI

trust.

Furthermore, we initially chose to measure overall trust,

expecting a single-factor structure as proposed by Jian et al.

(2000). However, investigating the scale’s factor structure through

exploratory factor analysis before interpreting the results implied a

two-factor structure, as previously observed outside the AI context

(Spain et al., 2008). This change in the theoretical structure led

us to use the TPA to measure trust and distrust as two distinct

factors in the analysis. While in our study, levels of trust and

distrust behaved as expected across the three conditions (i.e., high

trust and low distrust), it is plausible to assume that there are

situations where the difference between people’s trust and distrust

in an AI is more nuanced. Attitudes are often seen as lying along

one continuum, as was initially proposed for the TPA, but past

research has argued that positive and negative attitudes can co-

occur (Priester and Petty, 1996). For example, when smokers

try to quit smoking, they can have a simultaneously negative

and positive view toward cigarettes (Cacioppo and Berntson,

1994). Thus, it may be necessary to distinguish between trust and

distrust in studies that aim to investigate ambivalent attitudes

toward AI. This distinction can be accounted for when using

the two-factor structure for the TPA. On the other hand, a

single-factor structure comes with the risk of oversimplifying

situations and losing important nuance when using the TPA

to measure trust in AI. Overall, our findings emphasize that

researchers must carefully differentiate attitude from behavior and

choose appropriate evaluation metrics for human-centered AI

accordingly.

7. Limitations and future work

We conducted an online decision-making experiment in a

domain-specific task. Future work should broaden the scope and

focus on domains other than real estate to investigate if the

findings of this study are transferable to different scenarios and

AI systems used in practice to increase external validity. While

decision-making experiments on MTurk allow high control over

confounding variables and are comparable to those in laboratory

settings, even in low-stakes scenarios (Amir et al., 2012), future

studies could focus on high-stakes decisions to evoke uncertainty

where a more tangible loss depends on the participants’ decision to

trust AI.

Participants were presented with AI recommendations

that were expected to seem reasonably trustworthy since the

recommendations were formed based on the participants’ initial

estimates. However, explainability might have a greater impact on

trust and reliance if the recommendations were not credible or

showed greater deviations from the initial estimate. Past research

has shown that people calibrate their trust based on the system’s

capabilities (Lee and See, 2004; Zhang et al., 2020), and often

fail to rely on algorithms after learning that they are imperfect,

a phenomenon called algorithm aversion (Dietvorst et al., 2015).

By providing explanations, people may better understand AI

errors and factors that influence those errors (Dzindolet et al.,

2003). Future research could investigate more untrustworthy

recommendations by gradually reducing the capabilities of the

system (e.g., by decreasing the system’s accuracy) and examining

how explainability affects reliance and trust in cases where the AI

objectively performs poorly or when there is a clear disagreement

between the end-user and the AI.

The study design did not allow for a clear distinction between

dispositional trust, situational trust, and learned trust, as suggested

by Hoff and Bashir (2015). In addition, by measuring trust as an

attitude toward the AI system after task completion, examining the

effects of bias and heuristics at the level of individual trials was not

possible. Trust is a dynamic process in the human–AI interaction,

and we expect that trust changes as time passes in the interaction

between end-users and AI-based systems. We recommend that

future studies investigate the varying manifestations of trust

because they are critical for a comprehensive understanding of

the human–AI interaction. Researchers could measure AI trust

before and after participants are exposed to an AI system and

compare the reported trust scores (learned trust). Alternatively,

they could expose participants to AI recommendations while

inducing different emotional valences (situational trust). Future

research could also investigate the relationship between AI trust

and reliance from the perspective of the technology acceptance

model (Davis, 1989), which can be seen as a further development

of Ajzen and Fishbein (1980)’s work.

8. Conclusion

We conducted an empirical experiment demonstrating that

human-centered explanations as a means for transparent AI

increase reliance for specific decision-making tasks. While this
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provides some evidence that human-centered post-hoc explanations

can be an opportunity for more transparent AI, our findings

emphasize that the effect of transparency on reliance and trust is

more nuanced than commonly assumed.

The type of decision-making task (increasing vs. decreasing a

price) had a greater influence on end-users’ reliance than how the

AI explained its decision did. We argue that humans may exhibit

cognitive biases and apply heuristics to decision-making tasks that

involve AI. So far, the discussion around bias has focused primarily

on biased data and prejudice due to incorrect assumptions in

the machine-learning process. The implications of potential biases

and heuristics when humans are presented with explanations from

AI have received little attention in the current XAI debate. Both

researchers and practitioners need to be aware of such dynamics

in the design for truly human-centered AI, as poor partnership

between people and automation will become increasingly costly

and consequential (Lee and See, 2004).

In order to draw valid conclusions from experiments, XAI

researchers need to be cautious when measuring the human side of

the human–AI interaction. Conceptualizing trust as an attitude and

reliance as a trust-related behavior might lead to divergent results.

Our study also confirmed a two-factor structure (trust and distrust)

for the TPA, as previously reported outside the AI context. Given

the importance of AI, as it is increasingly used to make critical

decisions with far-reaching implications, meaningful evaluations

in XAI research require agreed-upon metrics and appropriate

measurements that have been empirically validated.
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