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Introduction:Methods and tools evaluating treatment e�ect have been primarily

developed for binary type of treatment. Yet, treatment is rarely binary outside the

experimental setting, varies by dosage, frequency and time. Treatment is routinely

adjusted, initiated or stopped when being administered over a period of time.

Methods: Both Gaussian Process (GP) regression and Bayesian additive regression

tree (BART) have been used successfully for handling complex setting involving

time-varying treatments that is either adaptive or non-adaptive. Here, we

introduce an application programming interface (API) that implements both BART

and GP for estimating averaged treatment e�ect (ATE) and conditional averaged

treatment (CATE) for the two-stage time-varying treatment strategies.

Results: Weprovide two real applications for evaluating comparative e�ectiveness

of time-varying treatment strategies. The first example evaluates an early

aggressive treatment strategies for caring children with newly diagnosed Juvenile

Idiopathic Arthritis (JIA). The second evaluates the persistent per-protocol

treatment e�ectiveness in a large randomized pragmatic trial. The examples

demonstrate the use of the API calling from R and Python, for handling both

non-adaptive or adaptive treatments, with presences of partially observed or

missing data issues. Summary tables and interactive figures of the results are

downloadable.

KEYWORDS

application programming interface (API), BART, comparative e�ectiveness research (CER),

averaged treatment e�ect (ATE), conditional ATE (CATE), Gaussian process (GP), Bayesian

additive regression tree (BART)

1. Introduction

Scientists seek to understand what works better, when, and for whom. The methods for

understanding the treatment have made great advancement since the seminal papers from

Rubin (1978) and Rosenbaum and Rubin (1983) laid foundation for causal inference. Now a

days, non experimental data are frequently examined to estimate causal treatment effect by

emulating experimental studies. However, in non experimental setting, treatment rarely is
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binary (0/1) and often time-varying. Yet, most of the causal

inference analytical tools made available for evaluating treatment

effect were devoted to simple binary treatment setting, in an

effort to resembles a parallel randomized trial. In addition, little

attention has been paid to address additional challenges of missing

or partially observed data, which are inherent features of real-

world data.

Simple binary treatment focuses on evaluating the question

of “what” by comparing two alternative treatment approaches.

The generalized propensity score methods have been proposed to

extend the treatment beyond binary, but not able to deal with

the various time of exposure (Hirano and Imbens, 2004; Imai

and Dyk, 2004). Consider time aspect of treatment, there are two

types of treatment strategies: adaptive and non-adaptive. The

non-adaptive treatment strategy may involve different treatment at

different time over different duration, but the treatment decision is

made ahead of time, not adjusted post initial assignment. A typical

example of non-adaptive time-varying treatment is a multi-staged

treatment protocol. For example, a surgery protocol may require

patients to first go through a preoperational preparation before

operation, which may be followed up by a rehabilitation program

post-surgery. More often, time-varying treatment is adaptive. The

adaptive treatment strategy (ATS) varies over time, and the decision

for the later time point is made adaptive given the responses to

the previous treatment. ATS is a common practice when treating

patients with chronic condition. A second-line medication is

assigned when a patient fail to respond to the first-line treatment; or

the initial treatment dosage may be adjusted up or down based on

how well the patient has been progressing. Because the ATS could

not be predetermined ahead of time, rather the next treatment

decision is made adaptive according to the new information

obtained from the previous course of treatment, treatment effect

evaluation of ATS requires special handling (Robins et al., 2000;

Robins and Hernán, 2009).

Under the commonly adopted causal assumptions (Rosenbaum

and Rubin, 1983), Bayesian causal inference attempts to uncover

the “science mechanisms” underlying the potential outcomes by

directly modeling the observed outcomes given treatments and

individual characteristics (Rubin, 1978). Bayesian causal inference

can mitigate the issue of model misspecification by taking

advantage of the flexibility of Bayesian nonparametric modeling.

Studies demonstrated that the Bayesian additive regression tree

(BART) (Chipman et al., 2010) method performs better than some

of commonly adopted propensity score methods for estimating

averaged causal treatment effect when the true outcomes model

is nonlinear (Hill, 2011) or when there exists heterogeneous

treatment effects (Hill et al., 2020).

In addition to BART, a Bayesian Gaussian process (GP)

regression model has also been successfully applied to causal

inference in adaptive treatment settings (Xu et al., 2016). Huang

et al. (2023) suggest that a carefully designed GP covariance prior

can serve as a matching tool. The performances of GP and BART

in causal inference were shown to be among the top contenders in

the 2019 Atlantic Causal Inference Data Challenge (ACIC, 2019).

Extensive simulation studies demonstrated that the GP and BART

perform well in various settings and often show significantly better

results than some commonly used causal inference methods in

both non-adaptive and adaptive time-varying treatment settings

(Huang, 2020; Huang et al., 2023).

Many causal inference packages are now made available. To

name a few, there are twang (Cefalu et al., 2021), MatchIt (Ho

et al., 2011), and causalweight (Bodory et al., 2023), available

in the Comprehensive R Archive Network (CRAN). Packages

available in Python include Causalinference (Wong, 2015), DoWhy

(Sharma and Kiciman, 2019), Causal ML (Chen et al., 2020)

and causalimpact (Brodersen et al., 2014). Most of the packages

only consider binary type intervention that is assigned at one

time point. To the best of our knowledge, ltmle (Lendle et al.,

2017) is the only causal inference package made available for

evaluating the averaged causal treatment effect for time-varying

treatment strategies. The package DynTxRegime (Holloway et al.,

2023) implements a learning algorithm designed to search for

the best time-varying treatment strategies, rather than estimating

causal treatment effect for an ATS. Both ltmle and DynTxRegime

are non-Bayesian approaches. To the best of our knowledge,

bartCause (Dorie and Hill, 2020) is the only Bayesian’s approach

which implemented BART for binary type of treatment. Many

packages are also made available for handling missing data and/or

partially observed data (van Buuren and Groothuis-Oudshoorn,

2011; Stekhoven and Buehlmann, 2012). However, no existing

causal inference package is currently made available to handle both

time-varying, missing and/or partially observed data.

The PCATS (Patient Centered Adaptive Treatment Strategy)

application programming interface (API) was build to implement

two Bayesian nonparametric methods, GP and BART regression,

for estimating averaged causal treatment effect under general types

of treatment strategies, with capacity to handle missing or partially

observed data. The representational state transfer (REST) API is

a standard way of interacting with applications for the purpose

of processing data using a script or integrating different services

or architectures. Our REST API allows users to submit data for

processing and retrieve results anywhere as long as the user is

connected to the internet. It can be called from different computing

environments such as R, Python, or SAS as long as there is an

HTTP capacity. The PCATS API is a two-tired system, with the

middleware server hosts the REST API endpoints responding to

API calls and the backend computational server perform and

managing jobs in the queue. The API package can be called

using R and Python, the two most commonly used statistical

computing software.

The goal of the paper is to introduce PCATS API for estimating

averaged causal treatment effects of time-varying treatment

considering a two-stage setting, i.e., treatment decisions are made

at two time-points, and capable of handling missing or partially

observed data. Two real application examples are presented to

demonstrate usage of API. The rest of the paper is organized as

follows. Section 2 provides an overview of Bayesian GP and BART

causal inference methods. Section 3 describes the use of PCATS to

evaluate a non-adaptive treatment strategy where the exposure time

may vary. Data extracted from electronic health care records are

use for evaluating the effectiveness of an early aggressive treatment

strategies vs. the more conventional conservative approach caring

for children with JIA. In the same example, we also presented

the handling of challenges for bounded summary score outcomes,
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a type of partially observed data, and missing data using API.

Section 4 presents an example of estimating treatment effect from

a pragmatic trial where treatment switching occurred at different

point of the study. Section 5 discusses API design considerations,

and presents simulation studies on the performance of PCATS

bench-marking against ltmle under a two-stage ATS treatment

setting where treatment decisions are made at a fixed time. Finally,

Section 6 provide summaries and discussion as well as future

directions. The Appendix section provides the functions included

in the PCATS, and example codes in R and Python.

2. Methods

The Gaussian process (GP) regression fits the outcome by

defining a distribution over functions in whose space the inference

is directly made. It can model a highly complex dynamic system

with many desirable mathematical properties. For this reason,

the GP prior has been widely used to describe biological, social,

financial, and physical phenomena. Unlike the linear regression, for

each observation i, GP regression determines the local regression

weights for each individual data point by its relative distance

to the rest of the data points in the sample. The distance is

determined by the GP prior covariance function, and the PCATS

uses the squared exponential (SE) covariance function, which can

be viewed as a general version of the Mahalanobis distance within

the p-dimensional covariate spaces. It assigns a weight of near

unity to the j-th individual who shares the same values of the p-

dimensional covariates with the i-th individual. In other words,

the GP regression would consider the j-th individual a complete

match to the i-th individual in this case. The weight decreases

exponentially as the distance increases, which quickly declines to

0. The rate of decline is governed by the length scale parameters

of the GP prior, which is part of the model parameters to be

determined by fitting the data. Therefore, the PCATS imputes

the unobserved potential outcome for any given individual with a

locally weighted sum of the observed outcomes from thosematched

(either completely or partially) individuals where the degree of

matching is determined by the relative similarities of the baseline

features as measured by covariates (Huang et al., 2023).

The Bayesian additive regression tree (BART) is another

parameter-rich Bayesian modeling technique highly flexible to

capture complex forms of the sampling distribution. It fits a sum-

of-tree model to data and estimates the expected potential outcome

for the i-th unit, utilizing information in adjacent data points

that fall within the same leaf node of each tree. As a result, it

provides a highly flexible and robust inferential tool requiring little

assumption about how the outcomes are related to the covariates

(Hill et al., 2020). Unlike the existing R bartCause which handles

only binary type of treatment, our proposed PCATS can handle

more general types of the treatment such as in the time-varying

adaptive treatment strategies.

The GP regression and the BART are considered in PCATS for

their proven performances in estimating averaged causal treatment

effect and ability to handle general types of treatment (Hill, 2011;

Huang et al., 2023). The performances of the GP regression and the

BART implemented in PCATS have been extensively studied and

validated for non-adaptive or adaptive treatment strategies (Huang,

2020; Huang et al., 2023). Below, we provide a brief overview of

methods used to estimate the averaged treatment effect (ATE) and

conditional ATE (CATE).

2.1. Non-adaptive treatment strategy

The non-adaptive treatment strategy is determined ahead of

time and remains the same over the entire treatment course.

Although it is static, the time of treatment exposure may not

known ahead of time, and is an important determinant to the

outcomes. Let Y
(a(t))
i denote the corresponding potential outcome

for the unit i resulting from exposure to the treatment a for t time

duration. Let Yi denote the observed outcome, (Ai,Ti) the observed

treatment and duration of its exposure, Wi the p-dimensional

prognostic variables, i.e., covariates that are determinants of

the data generation mechanism of potential outcome Y
(a(t))
i ,

and Vi the q-dimensional baseline confounders, which are the

baseline variables that are determinants to the treatment selection

mechanism. The Vi and Wi may overlap. Let Xi be Wi

⋃
Vi, a

m-dimensional baseline covariates, where m ≥ max(p, q). Under

the stable unit treatment value assumption (SUTVA) and no

unmeasured confounder assumptions, the observed outcome Yi =∑
a I(Ai = a,Ti = t)Y

(a(t))
i . Let

fa(x, t) = E(Yi|Ai = a,Ti = t,Xi = x), (1)

for a ∈ A, and min{Ti} <= t <= max{Ti}. Under the controlled

treatment condition, i..e. a = 0, f0(xi, t) follows either a GP or

a BART prior. When taking the GP approach, the PCATS fits a

Bayesian model by fa(., t) ∼ GP(m(w, a, t),6(v, t)), where the

mean functionm(w, a, t) is a linear equation of prognostic variables

W, the assigned treatment A = a, the T exposure time, and

their interaction terms. The GP covariance function is a squared

exponential (SE) function of confounding variables (V ,T) and

6ij = γ
∑

k(vk,i − vk,j)
2/lk + γt(ti − tj)

2. This structural model

setup assumes that the Y
(a(t))
i for the i-th unit is a weighted sum

of the Y
(a(t))
j for j = 1, ..., n, with the weight for each j-th unit

defined by the similarity between the pair (i, j) according to their

confounding variable profiles and the exposure time. When using

the BART approach, the PCATS calls bartMachine in R (Kapelner

and Bleich, 2016) with including all Xi as predictors in the BART

model for outcome modeling. Of note, BART does not distinguish

confounding variables from the prognostic variables.

In a non-experiment, units exposed to treatment a is likely

to have different duration of exposure than the units exposed to

the alternative treatment a′. To ensure the comparison of two

treatment strategies free from the differential time, we define

treatment effect at a pre-specified exposure time t∗. For each unit

Xi = x, PCATS estimate causal treatment effect by contrasting

the potential outcomes τ̂ (x, t∗) = Ŷ
(a(t∗))
x − Ŷ

(a′(t∗))
x , where

Ŷ
(a(t∗))
x = f̂a(x, t∗). The sample averaged treatment effect (ATE) is

estimated by

ÂTE(t∗) =
1

n

n∑

i=1

τ̂ (xi, t∗). (2)
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TABLE 1 PCATS algorithm for non-adaptive treatment assignment.

Step Description

1. Fit a Bayesian non-parametric model of the observed outcome Y,

with either GP or BART prior.

2. Generate posterior draws of all model parameters via MCMC,

estimate the posterior distribution of [fa(x, t∗)|Data], and

estimate the treatment effect τ (x, t∗) = Y (a(t∗))
x

− Y (a′ (t∗))
x

for all

sample units i = 1, ..., n.

3. Estimate ATE, CATE, PrTE, and PrCTE from the posterior

distribution for t = t∗ .

The conditional ATE (CATE) is estimated for a user specified

subgroup class xk∗, e.g., conditional on the age group Xk = I(Age ≥

65),

ĈATE(t∗) =
1

m

∑

i∈{Xki=xk∗}

τ̂ (Xk,i = xk∗,X−k,i = X−k,i, t = t∗),

(3)

for min{Ti|xk∗} <= t∗ <= max{Ti|xk∗}, where X−k includes all

the covariates other than Xk and m = #{Xki = xk∗} is the number

of the individuals meeting the subgroup classification. Of note, a

can be binary, multilevel or continuous.

When making a treatment decision, we are more interested

in comparing different treatment strategies with considering

a minimum important margin of superiority (or inferiority).

For example, when choosing between two alternative treatment

strategies, patients and clinical providers wish to know if the more

aggressive (presumably less safe) demonstrate sufficient benefit

beyond a given superiority margin. For a user supplied meaningful

margin c, the PCATS will output a new parameter describing the

likelihood for one treatment demonstrates a meaningful benefit

than the other above the given margin PrTE(c, t∗) = Pr(ATE(t∗) >

c) in the study population. Similarly, the subgroup treatment

superiority (or inferiority) can be estimated by PrCTE(c, t∗) =

Pr(CATE(t∗) > c).

Table 1 outlines the algorithm in PCATS used for a non-

adaptive treatment assignment. Three types of link functions are

considered for the continuous outcome: identity, log, and logit

functions. If log link is used, the ATE and CATE are estimated

based on the log-transformed outcome, thus may be interpreted as

treatment ratio. Similarly, in case of logit link, the ATE and CATE

correspond to odds ratio estimates.

2.2. Adaptive treatment strategy

Considering a two-stage adaptive treatment strategy, let A0 and

A1 denote treatment receive during each of the treatment stages,

denoted by s = 0, 1, at the times t1 and t2, respectively. After treated

on A0, the next treatment A1 is determined based on the patient

responses Y1 observed at t1. The study endpoint outcome Y2 is

recorded at the end of t2. For each unit i, let Y
(a0(t1))
1i denote the

potential intermediate response to the continued treatment a0 at t1,

and Y
(a0(t1),a1(t2))
2i the potential outcome given continued exposures

to the treatment a0 for t1 duration followed by the continued

treatment exposure to a1 for t2 − t1 duration. Let Ws denote the

prognostic variables, Vs confounders, and Xs = Ws

⋃
Vs denote

the collection of covariates at the beginning of each stage, s =

0, 1, prior to the treatment decisions were made. By following

the same approach presented in Section 2.1, the PCATS estimates

the posterior distribution of the missing potential outcomes at the

end of each treatment stage, in a sequential generative manner,

following the Bayesian’s g-computation formula. At the end of the

first stage, the PCATS predicts the potential intermediate outcome

Ŷ
(a0(t1∗))
1i = Ê

(
Y1i|Xi0,Ai0 = a0,T1i = t1∗) and the potential

outcome Ŷ
(a0(t1∗),a1(t2∗))
2i = Ê

(
Y2i|Xi0,Xi1,Ai0 = a0,Ai1 = a1,T1i =

t1∗,T2i = t2∗). The potential outcomes for a given treatment

history are estimated, and the ATE is estimated by the contrast

between an intervention (a0(t1∗), a1(t2∗)) and a comparator ATS

(a′0(t1∗), a
′
1(t2∗))at the final study endpoint.

The PCATS estimates the following types of averaged causal

treatment effect.

• At the stage 1, the treatment effect of A0 = a0 vs. A0 = a′0 for

a pre-specified exposure time t1∗ :

ATE(t1∗)= E
(
Y
(a0(t1∗)
1 − Y

(a0
′(t1∗))

1

)
,

CATE(t1∗)= E
(
Y
(a0(t1∗))
1i − Y

(a′0(t1∗))
1i |Xki = xk∗

)
, for

i ∈ {Xki = xk∗}

PrTE(t1∗) = Pr
(
ATE(t1∗) > c1

)
, and

PrCTE(t1∗) =Pr
(
CATE(t1∗) > c1

)

• At the stage 2, the treatment effect of (A0,A1) = (a0, a1) vs.

(A0,A1) = (a0
′, a1

′) for a pre-specified exposure time t1∗ and

t2∗ :

ATE(t1∗, t2∗) =
(
Y
(a0(t1∗),a1(t2∗))
2 − Y

(a0
′(t1∗),a1

′(t2∗))
2

)
,

CATE(t1∗, t2∗) = E
(
Y
(a0(t1∗),a1(t2∗))
2i − Y

(a0
′(t1∗),a1

′(t2∗))
2i |Xki =

xk∗
)
, for i ∈ {Xki = xk∗}

PrTE(t1∗, t2∗) = Pr
(
ATE(t1∗, t2∗) > c2

)
,

PrCTE(t1∗, t2∗) = Pr
(
CATE(t1∗, t2∗) > c2

)

Table 2 outlines the algorithm used for a two-stage adaptive

treatment assignment.

2.3. Handling partially observed outcome
or missing data

Partially observed outcome or missing data are commonly

encountered in medical and health field. The partially observed

outcome can be considered as a type of measurement error where

actual values falling below or above bounds were not accurately

measured. Failure to appropriately account for the bounded nature

of the outcome can result in a seriously biased estimate of the

treatment effect. One typical example of the partially observed

outcome is the bounded summary score outcome. For example,

health related quality of life is defined between 0 and 100; clinician-

reported or patient-reported health outcome is often on a visual

analog scale of 0 and 100. Sometime, the clinical outcome measure,

such as disease severity or activity score, is a summary score of

several bounded measures, and thus itself is bounded. Another

typical example of partially observed data is laboratory test, which is

only recorded if the values fall within the upper and lower detection

limits; lower or upper detection limits are recorded for values fall
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TABLE 2 PCATS algorithm for two-stage adaptive treatment assignment.

Step Description

Stage-1 modeling

1.1 Fit a Bayesian nonparametric model, either by GP regression or a

BART model, for the intermediate outcome.

1.2 Generate posterior samples of all model parameters via MCMC to

estimate the posterior distribution of [Y
(a0(t1∗))
1i |A0i ,X0i] for each

individual.

1.3 Estimate the ATE(t1∗), CATE(t1∗), PrTE(t1∗), or

PrCTE(t1∗) for intermediate outcome.

Stage-2 modeling

2.1 Fit a Bayesian nonparametric model, either by GP regression or a

BART model, for the final outcomes.

2.2 Generate posterior draws of all second stage model parameters via

MCMC to estimate the posterior distribution,

[Y
(a0(t1∗),a1(t2∗))
2i |A0i ,A1i ,Y

(a0(t1∗))
1i ,X0i ,X1i] for each individual.

G-computation

3.1 Integrate out the intermediate responses to get the marginal posterior,

[Y
(a0(t1∗),a1(t2∗))
2i |X0i ,X1i].

3.2 Estimate the marginal average treatment effect, ATE(t1∗ , t2∗),

CATE(t1∗ , t2∗), PrTE(t1∗ , t2∗), or PrCTE(t1∗ , t2∗) for all individuals.

outside the detection limit. The time to event is a case of partially

observed data as well, when the event happens before one start

recording or after finish recording the event. The missing data

are ubiquitous in non-experimental studies, as the data can only

be recorded when the study subject interact with the recorder, or

when the recorder is active. Two types of missing data problems

are considered in the PCATS: missing baseline covariates and

missing treatment response. This section describes the approaches

implemented in the PCATS to address these issues.

2.3.1. Partially observed outcome
The PCATS conducts Bayesian GP regression directly

incorporating the known bounds in the data model. Let

Y = (Y1, ...,Yn)
′ denote the n-dimensional array of observed

bounded outcomes for all sample units and Y
∗ the corresponding

latent unbounded outcomes. The observed bounded outcomes

and the latent unbounded outcomes are related in the following

way : Yi = LB if Y∗
i ≤ LB where LB stands for the lower bound,

Yi = UB if Y∗
i ≥ UB where UB is the upper bound, and Yi = Y∗

i

if LB < Y∗
i < UB. Let (β,3) denote the mean and covariance

functions of the GP model, respectively. The MCMC algorithm

proceeds in the following steps:

1. For i such that Yi = LB or Yi = UB, sample Y∗
i from

[Y∗
i |Data,Y

∗
−i,β ,3], a normal distribution truncated below LB

or above UB, i.e.,

f (Y∗
i |Data,β ,3) =

1

σi

φ

(
Y∗
i −µi

σi

)

8

(
LB−µi

σi

) for i such that Yi = LB

and

f (Y∗
i |Data,β ,3) =

1

σi

φ

(
Y∗
i −µi

σi

)

1− 8

(
UB−µi

σi

) for i such that Yi = UB

where µi = βi − (3i,−i)1×(n−1) (3−1
−i,−i)(n−1)×(n−1)

(Y∗
−i − β−i)(n−1)×1 and σi = (3i,−i)1×(n−1) (3

−1
−i,−i)(n−1)×(n−1)

(3′
i,−i)(n−1)×1 and the subscript −i denotes the vector/matrix

except the ith element or the ith row/column. For i such that

LB < Yi < UB, set Y∗
i = Yi.

2. Sample β,3 from its posterior distribution [β,3|Data,Y∗],

which is a nontruncatedmultivariate Guassian distribution.

3. Calculate ATE, CATE, PrTE and PrCTE as described in Table 1.

The approach assumes normal distribution of the latent

outcomeY∗. When such assumption is in question, one could apply

transformation to the outcomemeasure, and the PCATS provided a

few commonly used link functions. If other transformation is more

suitable given data, the user may pre-transform the data before

calling the PCATS API.

For bounded summary score outcome, some commonly

adopted approaches are compared in Molas and Lesaffre (2008)

and Hutmacher et al. (2011). These approaches require users

to first normalize the bounded summary score into 0–1 range,

such that the lower bound is set at 0 and upper bound at 1.

One may then apply logit or log (-log) transformation to the

normalized data shifting the 0 and 1 values by a small number

ǫ. The choice of ǫ value can be challenging, which may lead to

different estimation results. In addition, since the treatment effect

is estimated for the transformed data, its interpretation may not

be straightforward. For these reasons, PCATS does not directly

implement these methods. However, users may apply the methods

by pre-transforming their data ahead of time before calling API.

2.3.2. Missing data
The default setting of the PCATS assumes no missing data in

treatment assignment. For missing data in response variable, the

PCATS first estimates the model parameters using the complete

data only, and then estimates the potential outcomes for all

individuals based on their baseline covariates. For the missing

covariates, the PCATS allow users to supply multiple imputed

baseline covariate datasets, which are pre-computed before calling

API. This is because missing data computation is best performed

with substantial content knowledge, and there are ample tools a

user could use for generating multiple imputed (MI) data.

With the user-supplied multiple imputed datasets, the PCATS

produces the estimates of ATE andCATE by combining the analysis

results of each imputed dataset following the method suggested in

Zhou and Reiter (2010), Si and Reiter (2011), and Gelman et al.

(2013). Under the missing at random and the commonly adopted

causal assumptions (Rubin, 1978; Huang et al., 2023), the ATE and

CATE are summarized over all individuals in the study sample,

ÂTE(t∗) =
1

m

m∑

l=1

{
1

n

n∑

i=1

[Ŷ
(a1(t∗))
li

− Ŷ
(a0(t∗))
li

|Datal]

}
, (4)
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TABLE 3 PCATS algorithm for non-adaptive treatment assignment with

missing data.

Step a Description

No missing covariates

1 Fit a non-parametric Bayesian model with complete data.

2. Generate posterior MCMC for all model parameters, estimate

posterior of potential outcomes [Y
(a(t∗))
i |Ai ,Xi] for all individuals

without missing covariates.

3. Estimate the ATE or CATE for all units.

Missing covariates

Step b1 No multiply imputed missing covariates

1. Go to step a.

Step b2 Multiply imputed missing covariates

1. Use multiply imputed datasets as input data.

2 Fit a Bayesian model with the GP or BART model for continuous

outcomes; or build a BART model for discrete outcomes.

3. Generate posterior MCMC for all model parameters, estimate

posterior of [Y
(a(t∗))
i |Ai ,Xi] for each individual and each

imputation.

4. Estimate and report the ATE or CATE for each imputation.

5. Derive the combined result of ATE or CATE by putting all

posterior MCMC of the individual treatment effect from all

imputation together.

where l is the imputation indicator for total m multiply imputed

set. Similarly, the CATE, PrTE or PrCTE can be calculated for each

imputed dataset and combined.

Under themissing at random assumption, themissing response

measures does not impose any particular challenges to the

Bayesian’s approach (Rubin, 1978). For each data units, potential

outcomes are estimated using the baseline covariates., for multiply

imputed covariates. The treatement effect is computed for all

individuals in the study sample. The algorithm implemented in the

PCATS is outlined in Table 3.

2.4. Installation of libraries in R and Python

Before calling the PCATS from R and Python, users should

install the package pcatsAPIclientR in R and PCATS API python

library first. The R library can be installed by the common

lines below

install.packages("pcatsAPIclientR")

The Python library can be installed by

python -m pip install git+https://github.com/pcats-api/
pcats_api_client_py.git

There are three steps in calling PCATSAPI. The first stepmakes

the request and retrieves the job id. The request will be sent to the

API, which after initiating the execution will send back a response.

The second step is to wait for the computation to finish by checking

the request status using the job id. The last step fetches the results

from the API. Below we demonstrate the usage of PCATS API

using two case examples. Both R and Python code used in this

paper can be downloaded from GitHub (https://github.com/pcats-

api/pcats_api_examples/tree/main/casedata), details are provided

in the Supplementary material.

3. An example of non-adaptive
treatment strategy with missing
covariates and bounded summary
score

3.1. Research question and the study
design of the JIA study

Juvenile idiopathic arthritis (JIA) is one of the most common

childhood autoimmune diseases and a major cause of childhood

disability. There is no cure for JIA, the management of JIA has

evolved from managing pain and symptoms to targeting inactive

disease, thanks to the advent of disease-modifying antirheumatic

drugs (DMARDs), particularly the biologic DMARDs (bDMARD).

The current clinical practice has been using conventional synthetic

nonbiologic DMARDs (nbDMARDs) as the first line of treatment,

followed by the bDMARD as the second line often after three

months of nbDMARD. Studies suggest there might be a window of

opportunity such that early andmore effective treatment could lead

to better outcomes faster and avoid irreversible damage to joints

(Boers, 2003; Tynjälä, 2011). Randomized clinical trial offered some

evidence that the early combination of biologic and nonbiologic

DMARDs (n + nbDMARDs) could lead to better clinical outcomes

than the nbDMARDs (Wallace et al., 2012).

Observational study can be designed to emulate randomized

controlled trial to provide real-world evidence (Hernán et al., 2022).

We design an observational study to emulate a randomized trial,

where children newly diagnosed with JIA and were treated on

nbDMARD would be randomized to the early (<3 month) or

delayed (3–6 months) initiation on bDMARD. The study utilizes

data originally collected from an inception cohort study (Seid et al.,

2014). Children younger than 16 years of age, newly diagnosed

with JIA, being cared for at a large pediatric rheumatology clinic

center were eligible to be enrolled into the study soon after

being diagnosed with JIA. Patients were followed up at the 6

and 12 month after baseline, treatment and clinical variables were

retrieved from patients’ electronic health records and confirmed

with patients by the study research coordinator. The primary

outcome is JADAS10 at the 6 month follow-up. However, not all

participants were followed up at the 6 months, as the follow-up

visit is made conveniently for patient to be coincide with their

clinical follow-up visit near the 6 month. Therefore, patients may

be exposed to either one of the treatments between 119 and 462

days with median and quartile range of 173 (140, 196). Further

details of the study design are reported in Seid et al. (2014). For the

purpose of evaluating combination vs. nbDMARD, only a subset of

patients received DMARDs prescriptions within the first 3 month

were included in this CER study. The primary outcome is JADAS10

score at the 6 month of follow up.

JADAS10 is a widely used outcome measure for children

with JIA (Consolaro et al., 2009). This summary disease activity

score is derived from four clinical outcomes: physician’s global

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1183380
https://github.com/pcats-api/pcats_api_examples/tree/main/casedata
https://github.com/pcats-api/pcats_api_examples/tree/main/casedata
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Chen et al. 10.3389/fcomp.2023.1183380

TABLE 4 Data description.

Variable Name Description

Outcome Jadas6 Juvenile Arthritis Disease Activity Score

(JADAS10) at 6 months of follow up.

Value ranges from 0 to 40, with higher

score indicating more disease activities.

Treatment treatment_group Treatment group: 0 = nbDMARDs; 1 =

b + nbDMARDs.

Time diffvisit Days between the baseline and the 6

month follow up visit, used as the

measure for time of being treated.

Baseline covariate Jadas0 Juvenile Arthritis Disease Activity score

at baseline. Value ranges from 0 to 40,

with higher score indicating more

disease activities.

chaq_score Functional ability measured by the

Childhood Health Assessment

Questionnaire, range from 0 to 3, with

higher value indicting higher functional

disability.

timediag Time since date of diagnosis of JIA

(days) at the baseline. Baseline is the

date when patient enrolled into the

study.

RF_pos Positive Rheumatoid Factor (RF): 0 = no

Vs. 1 = yes.

Female Gender: 0 = Male; 1 = Female

Private Private Insurance: 0 = No; 1 = Yes

Age Age at the baseline

evaluation of patient’s disease activity (0–10), patient’s rating of

his or her wellbeing (0–10), the number of active joint counts

(truncated at 10) and the standardized erythrocyte sedimentation

rate or SED rate (0–10), a marker for inflammation activity. As

the result, JADAS10 is bounded between 0 and 40, with lower

value indicating less disease activity. The baseline covariates (see

Table 4) include demographic characteristics and disease specific

clinical characteristics, with 18 out of 98 patients (18.4%) missed

at least one covariate measure. We imputed five sets of the

missing covariates using the MICE package (van Buuren and

Groothuis-Oudshoorn, 2011) and saved the imputed datasets in the

example1_midata.csv file. A column named “imputation” is

created in the CSV data to identify each imputed dataset.

3.2. Calling API to estimate average
treatment e�ect

The JIA CER study is designed to emulate a parallel

arm randomized trial, thus staticGP function is used. The

list of input parameters for the function are presented in

Supplementary Table S2 in Appendix 2. The days of treatment

exposure which was recorded in the variable diffvisit varies

between 4 and 15 months. Here we describe how API can be used

to estimate treatment effects at the 6 months.

We specify the outcome Jadas6 by setting outcome.type

to “Continuous”, and specify outcome.bound_censor as

“bounded” with the lower and upper bounds of outcome.lb=0

and outcome.ub=40 . In the case of categorical outcome

with two levels, users should re-code it as 0 and 1, and set

outcome.type to “Discrete”. Users can define a link function

by outcome.link whose default value is “identity”. The

treatment identifies the treatment variable and tr.type

defines the treatment type, which can take the value of

“Discrete” and “Continuous”. For continuous treatment, users

should input the parameters tr.values because PCATS

calculates the ATE based on the user-specified values of

the variable which are given by tr.values . The API will

estimate treatment at the 6 month follow-up, when we specify

time=diffvisit and time.value=180 . The time input

parameter is required, but the time.value is optional. If users

do not specify time.value , then the API assigns median

of diffvisit as the default value for time.value . The

parameter x.explanatory specifies the prognostic variables

W and x.confounding specifies the confounders V . In

this example, we consider age, Female, chaq_score, RF_pos,

private, Jadas0, timediag in W, and age, Jadas0, chaq_score,

and timediag in V . The categorical variables in W and V

should be identified in x.categorical . The mi.datafile

= "example1_midata.csv" requests the API to calculate the

ATE for each imputed dataset, and report the combined results.

By default, the estimates of averaged treatment effect and potential

outcomes are reported. Users can also request PrTE defined in

Section 2.1 for one or a list of supplied number(s) specified by

c.margin . In the example, we set c.margin to “0,1” to output

PrTE(c = 0, t∗ = 180) and PrTE(c = 1, t∗ = 180). By default, the

number of burn-in MCMC samples (burn.num ) and the number

of MCMC samples after burn-in (mcmc.num) are set to 500 for

both. Users may specify different values for both parameters.

The output in Listing 1 presents the result of average causal

treatment effect estimation. The average treatment effects (ATE)

are generated based on the user-specified treatment type in

tr.type . If the treatment variable is a factor, the sample potential

outcomes for each level of the treatment variable are given. The

pairwise comparisons of the treatment effects for all treatment

groups are calculated. The first table shows the estimated ATE

with standard deviation (SD), the 95% credible interval and

PrTE for c.margin=(0,1) for each imputed dataset and also

the summarized result. The estimate of ATE is 3.436 with the

corresponding 95% equal tail credible interval (CI) of (−0.402,

7.824). The probability for b+nbDMARDs is more effective than

nbDMARDs is 94.5% by amargin of 0, and 85.6% by amargine of 1.

The second table presents the estimated average potential outcomes

by treatment groups. The expected mean (standard deviation) for

the potential outcomes are 8.043 (0.962) for nbDMARDs and 4.607

(1.574) for b+nbDMARDs, respectively. The PCATS also provides

several interactive figures. Users can access these figures by using

Firefox, Microsoft Edge, Chrome, or Safari. Currently, Internet

Explorer does not support these figures. The histograms of MCMC

posterior estimates of ATE (Figure 1) and the estimated potential

outcomes (Figure 2) are presented in the URLs, which could be

copied from Listing 1. The figures are interactive. By hovering

the pointers, users are provided with the corresponding posterior

estimates of the average treatment effect and potential outcomes.

Users can hide any traces in the plot by clicking on the legend
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Average treatment effect (t * =180):
Imputation Contrast Estimation SD LB UB PrTE(c=0) PrTE(c=1)

1 treatment_group=0 - treatment_group=1 3.436 2.219 -0.46 3 7.724 0.952 0.858
2 treatment_group=0 - treatment_group=1 3.399 2.223 -0.70 6 7.599 0.936 0.864
3 treatment_group=0 - treatment_group=1 3.460 2.184 -0.35 5 7.734 0.948 0.850
4 treatment_group=0 - treatment_group=1 3.435 2.200 -0.32 0 7.774 0.944 0.860
5 treatment_group=0 - treatment_group=1 3.453 2.250 -0.67 8 7.604 0.944 0.846

Combined treatment_group=0 - treatment_group=1 3.436 2.2 14 -0.402 7.824 0.945 0.856

Potential outcomes (t * =180):
Imputation treatment_group Estimation SD LB UB

1 0 8.055 0.967 6.205 9.804
2 0 8.026 0.973 6.292 9.844
3 0 8.059 0.956 6.105 9.721
4 0 8.011 0.949 6.217 9.893
5 0 8.065 0.968 6.199 9.819
1 1 4.619 1.579 1.330 7.300
2 1 4.627 1.561 1.914 7.883
3 1 4.599 1.561 1.765 7.537
4 1 4.576 1.585 1.815 7.472
5 1 4.612 1.589 1.582 7.481

Combined 0 8.043 0.962 6.165 9.819
Combined 1 4.607 1.574 1.527 7.431

Plot URL: https://pcats.research.cchmc.org/api/job/a9 8404b1-e429-4e3c-99c9-18b2bec54393/plot

Plot Potential URL: https://pcats.research.cchmc.org/a pi/job/a98404b1-e429-4e3c-99c9-18b2bec54393/plot/Po tential

Listing 1 GP result output of example 1.

FIGURE 1

The histogram of the estimated average treatment e�ect.

on the right side. In each histogram, users could obtain a more

detailed report of the results by hovering themouse over the specific

histogram. For example, if a user is interested in finding if the

probability of Y(0) − Y(1) is <5, then (s)he could click on the

pink histogram as in Figure 1, then move the mouse to the bar at

ATE = 5. The user could also save the entire figure into a PNG file

which can be used for sharing the results.

Users could also set method to “BART” in the staticGP

function. To handle the bounded summary score of JADAS10,

users may wish to first transform the JADAS10 score

by mapping it onto an unbounded space following the

recommendations from the current literature (e.g., Molas

and Lesaffre, 2008; Hutmacher et al., 2011) before calling

PCATS.
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FIGURE 2

The histogram of the average of the estimated potential outcomes.

3.3. Calling API to estimate conditional
average treatment e�ect

The PCATS can estimate the conditional average treatment

effect (CATE) which captures heterogeneity of a treatment effect

varying by treatment effect modifier(s). This can be accomplished

by specifying the treatment effect modifier(s) for the first treatment

variable with tr.hte , and for the second treatment variable

with tr2.hte in the staticGP function. When specified,

the corresponding interaction term(s) will be added into mean

function of the GP model. In this example, by setting tr.hte

=“RF_pos” , we can evaluate CATE by RF_pos.

The staticGP.cate function in R and the

staticgp_cate function in Python provide the calculation

of CATE (3) and PrCTE(c, t∗) for non-adaptive treatment after

executing the staticGP function. The input parameters are

listed in Supplementary Table S4 of Appendix 2. The conditional

average treatment effects of the sample data are estimated for

the user-specified treatment sub-groups. control.tr defines

the reference group and treat.tr defines the treatment group

compared to the reference group. Then, the estimated CATE

and PrCTE and their 95% confidence intervals at each level of

“RF_pos” will be reported. The R and Python codes are provided

in Appendix 3.2.

The table in Listing 2 shows the estimated CATEs of the user-

specified treatment groups for each level of “RF_pos”. The estimate

of ATE is 2.663 (−1.669, 7.389) for the patients with negative RF

and 7.716 (−1.870, 18.196) for the patients with positive RF. So

the effectiveness of b+nbDMARDs compared to nbDMARDs is

bigger on the patients with positive RF. The last table presents

the estimated PrCTE, Pr(Y > c|Data), by “RF_pos” group. The

interactive figures of the estimated CATEs in Figure 3 can be

retrieved through the URL link shown at the bottom of the result

in Listing 2. The violin plots show the kernel probability densities

of the estimated CATEs, and the box plots show the medians of

the estimated CATEs with the boxes indicating the interquartile

ranges. The corresponding values are also shown in the

hover text.

4. An example of adaptive treatment
strategy

4.1. The MOBILITY study

Weight gain is a common side effect of treatment with

second-generation antipsychotics (SGA) in overweight and obese

children and adolescents with bipolar spectrum disorders. Patients

and parents ranked the weight gain as the top reasons for

lack of adherence to SGA treatment, they are willing to

start Metformin (MET) to control weight gain (Klein et al.,

2020). However, the effectiveness of Metformin (MET) in

mitigating weight gain remains to be established for this

patient population. For this reason, the MOBILITY study

(ClinicalTrials.gov, Identifier NCT02515773) is conducted. This

open-label, multi-site, randomized pragmatic trial randomizes the

participants in a 1:1 ratio to the intervention, i.e., MET plus

healthy lifestyle intervention (MET + LIFE) or LIFE only groups.

Participants are allowed to initiate or stop MET over the course of

the study against the randomization. Many participants switched

between treatment arms, often due to concerns over continuing

weight gain. For pragmatic reasons, most of participants are

followed up at their usual schedule for clinical visits, instead

of following the trial protocol specified follow-up visits. As a

result, the follow-up times vary greatly for participants and visits

may be skipped. Examination of the data pattern suggested that

many of the patients made switch at least once up to their 6

months follow-up, and their 6 month follow up ranges from 90
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Conditional average treatment effect (t * =180):
Constrast Imputation RF_pos Estimation SD LB UB PrCTE(c=0) PrCTE(c=1)

0 - 1 1 0 2.676 2.418 -1.493 7.376 0.852 0.750
0 - 1 2 0 2.622 2.427 -1.969 7.080 0.838 0.718
0 - 1 3 0 2.698 2.402 -2.077 6.931 0.856 0.746
0 - 1 4 0 2.655 2.379 -1.487 7.301 0.862 0.744
0 - 1 5 0 2.663 2.444 -1.258 7.930 0.852 0.744
0 - 1 1 1 7.642 5.249 -1.852 18.092 0.932 0.896
0 - 1 2 1 7.694 5.230 -1.512 18.540 0.930 0.902
0 - 1 3 1 7.674 5.196 -2.332 17.808 0.934 0.914
0 - 1 4 1 7.749 5.331 -2.727 17.608 0.926 0.898
0 - 1 5 1 7.823 5.230 -1.417 18.058 0.942 0.910
0 - 1 Combined 0 2.663 2.412 -1.669 7.389 0.852 0.740
0 - 1 Combined 1 7.716 5.244 -1.870 18.196 0.933 0.904

Plot URL: https://pcats.research.cchmc.org/api/job/f1 e12799-f5f1-4df6-887a-2760ea99b155/plot

Listing 2 Result output of example 1—CATE.

FIGURE 3

Estimates of the conditional average treatment e�ect by RF_pos.

to 270 days. Detailed information about the study is available in

Weldge et al. (2023). The data structure is shown in the Table 5.

Because the MOBILITY trial is still ongoing, this example

uses a semi-synthetic data (N = 1,200), which is designed to

preserve the real-world features of this case study. Only the

outcome variable is simulated based on the baseline data collected

from real patients at the real follow-up time of the MOBILITY

study up to the month 6 visits. First, the baseline covariates,

treatment pattern, and time of follow-up were generated by

a random bootstrap sampling with replacement. Second, we

simulated BMI outcomes BMI1 & BMI2 at the real observed

follow-up time at the point of treatment switching (time1)

and up to their months 6 visit (time2). For patient who did

not made treatment switch, their month 3 visit is used as

the start of the stage 2. The BMI2 is set as a function of

BMI1 and its interaction with the treatment. To accurately

reflect the real data, we set the simulated BMI1 or BMI2 to

be missing if the observed values of BMI are missing at the

given visit. As a result, 43% patients missed at least one of

the outcomes.

• BMI1 ∼ N(1.05 ∗ BMI0− 0.75 ∗ A0 − 0.01 ∗ time1, 1)

• BMI2 ∼ N(−4 + 1.1 ∗ BMI0 − A0 + 0.05 ∗ BMI1 + 0.005 ∗

BMI12− 0.5∗A1− 1.5∗A0 ∗A1− 0.08∗A1 ∗BMI1− 0.005∗

time2, 1)

4.2. Calling API to estimate adaptive
treatment e�ect

The dynamicGP function is used to estimate the ATE

for dynamic treatment. Since the model involves modeling

of outcomes at two time-points, we require users to specify

outcomes, treatment and covariates for each time. For the

first time point time1, BMI1 is set to stg1.outcome

and stg1.outcome.type is set to “Continuous”. The

stg1.treatment identifies the treatment variable A0 and

stg1.tr.type defines the type of A0, which is set to

“Discrete” here. The time of exposure at time1 is specified in

stg1.time , and the treatment effect is evaluated at the 3 months
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TABLE 5 Example 2 data description.

Variable Name Description

Outcome BMI2 BMI at time2.

Intermediate outcome BMI1 BMI at time1.

Treatment A0 Treatment group from baseline to

time1: 0 = LIFE; 1 = MET+LIFE

A1 Treatment group from baseline to

time2: 0 = LIFE; 1 = MET + LIFE

Time time1 Days from baseline to time1.

time2 Days from baseline to time2.

Baseline covariate BMI0 Body mass index at baseline.

Obesity BMI0 is equal to or greater than the

95th percentile

MET Randomization arm: 0 = LIFE; 1 =

MET+LIFE

Gender 1 = Male Vs. 2 = Female

AGE Age at baseline

by setting stg1.time.value to 90 days. The parameter

stg1.x.explanatory specifies the prognostic variables W

and stg1.x.confounding specifies the confounders V at

time1. In this example, MET, Gender, BMI0, AGE, and Obesity

are put into W, and BMI0 and AGE are put into V . Similar, the

input parameters at time2 can be specified. The names of these

parameters all start with stg2 . And stg2.time.value is set

to 180 here. In addtion, stg2.tr2.hte specifies the treatment

effect modifier “BMI1” for the treatment at time2, which is A1

here. The categorical variables in W and V at both time1 and

time2 should be listed in x.categorical . The detailed input

parameters are listed in Supplementary Table S3 of Appendix

2. The R and Python codes using BART method are shown in

Appendix 3.3.

4.3. Results for MOBILITY study

The results of BART method are shown in Listing 3. The

statistical results of ATE and potential outcomes at two time points

are shown in the output tables. Stage 1 shows the results of the

first time point and Stage 2 shows the second time point. For

Stage 1, the interpretation of the result is similar to that in non-

adaptive treatment. In the example, the estimated ATE and its 95%

confidence interval are 0.784 (0.312, 1.162) at 90 days of treatment,

which is close to the true value 0.75. At the study endpoint, the API

report ATE for all six possible treatment combinations. The true

values of Y
(0,0)
2 −Y

(0,1)
2 , Y

(0,0)
2 −Y

(1,1)
2 , Y

(0,0)
2 −Y

(1,0)
2 , Y

(0,1)
2 −Y

(1,1)
2 ,

Y
(0,1)
2 − Y

(1,0)
2 and Y

(1,1)
2 − Y

(1,0)
2 after 90 days of the stage 1

treatment and 90 days of the stage 2 treatment are 2.95, 5.55, 1.26,

2.61, −1.69, and −4.3. For example, the second row of Table 3 in

Listing 3 provides an estimate for persistent MET treatment vs.

persistent control E(Y2(a0(t1∗ = 90) = 0, a1(t2∗ = 180) =

0)) − E(Y2(a0(t1∗ = 90) = 1, a1(t2∗ = 180) = 1)). This is the

recommended per protocol effect for pragmatic trial (Hernán and

Robins, 2017), which reports treatment benefit of 5.026 and the

95% credible interval is (4.447, 5.639) in BMI. All reported 95%

confidence intervals cover the true values. The histogram of the

estimated ATEs is shown in Figure 4. And the histogram of the

estimated potential outcomes is shown in Figure 5.

Stage 1:
Average treatment effect (t * =90):

Contrast Estimation SD LB UB
A0=0 - A0=1 0.784 0.23 0.312 1.162

Potential outcomes (t * =90):
A0 Estimation SD LB UB

0 29.804 0.231 29.364 30.261
1 29.020 0.241 28.540 29.463

Stage 2:
Average treatment effect (t_1 * =90 & t_2 * =180):

Contrast Estimation SD LB UB
A0=0 & A1=0 - A0=0 & A1=1 2.824 0.462 1.935 3.709
A0=0 & A1=0 - A0=1 & A1=1 5.026 0.322 4.447 5.639
A0=0 & A1=0 - A0=1 & A1=0 1.048 0.507 0.052 1.989
A0=0 & A1=1 - A0=1 & A1=1 2.202 0.507 1.180 3.140
A0=0 & A1=1 - A0=1 & A1=0 -1.776 0.472 -2.682 -0.817
A0=1 & A1=1 - A0=1 & A1=0 -3.978 0.457 -4.879 -3.102

Potential outcomes (t_1 * =90 & t_2 * =180):
A0 A1 Estimation SD LB UB

0 0 32.819 0.312 32.192 33.522
0 1 29.996 0.422 29.161 30.745
1 1 27.793 0.330 27.179 28.458
1 0 31.772 0.456 30.887 32.582

Plot URL: https://pcats.research.cchmc.org/api/job/39
fc70d2-db8e-4091-86eb-61d942513a97/plot

Plot Potential URL: https://pcats.research.cchmc.org/a pi/
job/39fc70d2-db8e-4091-86eb-61d942513a97/plot/
Potential

Listing 3 BART result output of example 2.

Similarly as in the example 1, the dynamicGP.cate function

in R and the dynamicGP_cate function in Python can be used

to request calculation of CATE and PrCTE for adaptive treatment.

The input parameters are listed in Supplementary Table S4 of

Appendix 2.

5. API architecture and benchmark
performances

5.1. Design principals and architecture of
API

The API is designed with the principals of clarity, consistency,

robustness, extensibility and scalability in mind. The parameter

names are designed to be self explanatory and consistent with

the field convention. For example, we give the names of the

input parameter according to the widely accepted nomenclatures

in causal inference by grouping covariates into confounded and

explanatory variables. Given the important role of time in the

API, we made time of treatment as a distinct input parameter,

rather than lump it together with the treatment variable. This

also provides consistency in the sense that the treatment effect is

evaluated for the treatment parameter, where as one may control

the time-varying exposures by estimating treatment effect at a

given fixed time t∗. On the other hand, if the research question
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FIGURE 4

The histogram of the estimated average treatment e�ect at each stage.

FIGURE 5

The histogram of the average of the estimated potential outcomes at each stage.

is to comparing effect of different exposure timing, this can be

accomplished by by supplying the time exposure variable name in

treatment and specify tr.type = continuous . The error

handling is another design principal we pay careful attentions.

For example, to prevent erroneous extrapolating estimation results

beyond themodeling space, any input values specified for t∗ outside

the observed range of T variables are considered invalid. Users

will be provided corresponding suggestions. For another example,

we prohibit users from inputting the same variables specified

for treatment into the list of confounders. From extensibility

prospective, we purposely choose to not implement missing data

imputation within the API. Rather we provide functions that can

compute treatment for multiply imputed data and summarize

the results. This choice allows the API to keep up with the

development of missing data imputation tools, while adhere to

the principals of handling missing data in evaluating treatment

effect. The design of API is an iterative process, version control and

updated documents are important. We use GitHub repository to
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FIGURE 6

Performance of the suggested PCATS with GP and BART, compared with the existing R packages ltmle in two-stage adaptive data simulation settings.

Bias, mean absolute error (MAE), and root mean squre error (RMSE) are compared for six all pairwise comparison averaged treatment e�ects over

three di�erent sample sizes N.

provided latest documentation; step-by-step users guide includes

rich examples, code, and snapshot of outputs.

With scalability in mind, we design the PCATS as a two-

tier system. First, the middleware server that host the REST API

endpoints respond to some commands directly such as printing

the results, generating plots. The second tier is the backend

computational server. In general, those commands are expected to

complete in a short amount of time with a very little computation

are handled by the middleware server. The commands that might

potentially require significant time are submitted to a queue and

a handle to the submission is returned to the caller. The backend

computational server handles the jobs in the queue. Users is

expected to poll the status of the computations and retrieve the

results when the computation is done.

This solution allows us to create an agile system with a potential

to expand horizontally, i.e., add servers if the demand on the

computation increases beyond the capabilities of the current single

server; as well as vertically, i.e., we can add more memory or CPUs

into the existing server. Similarly we can increase the redundancy

and security based on the demand of the individual tasks, such as

adding an authentication layer and redirecting users belonging to a

particular group to a separate set of servers.

Efficiency is important. To ensure that duplicate submissions

don’t tie up resources unnecessarily a caching layer was introduced.

We create a hash for all input parameters as well as data and if

we encounter a submission with the same hash we simply return

the existing results rather than going through the computation

again. The storage supporting the jobs as well as the caching

layer is utilizing Network File System (NFS) protocol allowing us

to expand as needed as well as to maintain proper security and

access controls.

5.2. Benchmark performances

One of the key feature of the PCATS is its ability to estimate

causal treatment effect for time-varying adaptive treatment. To

the best of our knowledge, ltmle (the longitudinal targeted

maximum likelihood estimate method with ensemble machine

learning) is the only existing package that is capable of handling

adaptive treatment. This section presents a simple simulation

study, to benchmark the performance of the GP and BART

methods implemented in the PCATS, in comparison with ltmle.

The simulation study uses a two-stage adaptive data generating

mechanism shown below. Since ltmle does not explicitly provide

causal effect estimation for a given time of follow-up, the simulation

design did not include the time into the consideration. PCATS

can handle this case by including time variable(s) within the

dataset and set NA or a constant number (e.g., 0) for all

units.

• X ∼ N(0, 1)

• M ∼ Bernoulli(0.4)

• A1 ∼ Bernoulli(expit(0.3− 0.5X − 0.4M))

• L1|A1,X,M ∼ N(0.75X − 0.75A1 − 0.25A1M + 0.5M, 1)

• A2|L1,A1,X,M ∼ Bernoulli(expit(0.5X + 0.2A1 − 0.05L1 −

0.1L1A1 − 0.01L21 − 0.2M))

• Y|A1,X,M, L1,A2 ∼ N(3+0.5A1+0.4A2M−L1−L21+2A2−

A1A2 +M, 1)

For GP and BART methods, the ATE effect was

estimated from 2,000 posterior MCMC draws after

2,000 burn in. For the ltmle, we use the R code shown

in Listing 4.
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TABLE 6 Computation time of BART and GP in the PCATS and that of

ltmle for reference in the simulation study.

Method N Wall time CPU time

BART 200 132 140

400 238 251

600 334 348

GP 200 304 1,894

400 976 4,416

600 1,885 7,670

LTMLE 200 140 201

400 219 313

600 303 413

library(ltmle)
library(SuperLearner)
data <- datause[,c("X","M","A1","L1","A2","Y")]
Q.SL.lib <- c("SL.glm", "SL.stepAIC", "SL.nnet",

"SL.gam",
"SL.bartMachine", "SL.glm.interaction")

g.SL.lib <- c("SL.glm", "SL.stepAIC", "SL.nnet",
"SL.gam",

"SL.glmnet", "SL.bartMachine", "SL.glm.
interaction")

fit <- ltmle(data, Anodes = c("A1","A2"), Lnodes = "L1",
Ynodes = "Y",

SL.library = list(Q = Q.SL.lib, g =
g.SL.lib),

estimate.time = FALSE,
abar = list(treatment = c(0,1), control = c

(0,0)))

Listing 4 R code for ltmle method.

Three sample sizes were considered here,N = 200, 400, and 600.

The standard deviation and the 95% confidence interval of ATE

for each replicate were calculated. For comparing performances

of different methods, all results were summarized over M=100

replicates by Bias =
∑

(τ̂i − τ )/M; median absolute error, MAE

= median | τ̂i − τ |; and the root mean square error, RMSE

=
√∑

(τ̂i − τ )2/M. All six pairwise comparisons of averaged

treatment effects were estimated for Y(0,1) − Y(0,0), Y(1,0) − Y(0,0),

Y(1,1) − Y(0,0), Y(1,0) − Y(0,1), Y(1,1) − Y(0,0), and Y(1,1) − Y(1,0),

and plotted against three sample sizes for each method. The results

using BART, GP and LTMLE methods are presented in Figure 6,

where the line plot connects the estimations for the per protocol

treatment, i.e., (1, 1) vs. (0, 0). The results are also reported for each

of the estimation method in Supplementary Table S5 in Appendix

4. These simulation results show that both PCATS and ltmle show

similar performances in terms of bias, while the MAE and RMSE of

ltmle are consistently larger than those of GP and BART.

We further compared the computational time between the two

packages. Table 6 shows the average wall time and CPU time (in

seconds) of the three computation methods used in the simulation

study. The BART is comparable to the LTMLE in wall and CPU

times. GP’s computation time, however, is significantly higher and

demands more computation resources as the sample size increases.

This simulation study is not designed as a comprehensive

study to compare general performances of two packages, but rather

served as a simple example to benchmark PCATS against ltmle in

TABLE 7 Comparison of features for outcomes between GP and BART

methods in the PCATS.

Outcomes GP BART Related input parameters

Binary No Yes outcome.type = “Discrete"

Continuous Yes Yes outcome.typ e = “Continuous"

Bounded Yes No∗ outcome.bound_censor = “bounded"

outcome.lb

outcome.ub

∗Users may pre-transform outcomes and then apply BART method.

the specific example. Note that ltmle requires a categorical type of

treatment, does not provide estimates of CATE or more detailed

information on treatment effect such as the probability of treatment

benefit, and does not handle partially observed or missing data.

The PCATS, on the other hand, is designed to offer detailed causal

treatment effects of time-varying treatment strategies, particularly

within the context of comparative effectiveness research.

6. Discussion

The PCATS is designed to implement Bayesian nonparametric

causal inference methods for time-varying treatment, either

adaptive or non-adaptive, involving binary, multilevel treatment,

continuous treatment, and their time of exposure. Both Bayesian

GP and BART are implemented, which support different features

(see Table 7). We provide functionality to handle the missing

responses and covariates in the PCATS, as well as partially observed

outcome measures. No missing values in the treatment variables

are allowed. The API is also applicable to the cases when the

time exposure to treatment is fixed. With PCATS API, one can

easily access the function either by calling from R or Python.

More examples using R or Python are provided in the user

manual at https://github.com/pcats-api/pcats_api_examples/raw/

main/doc/users_manual.pdf.

Treatment is rarely binary nor administered one-time only.

More often, the treatment is taken over a period of time, and often

adjusted over time. However, a few tools are available that consider

the time component of a treatment when evaluating the treatment

effect. PCATS includes time of exposure when estimating treatment

effect, and provides the treatment effect estimated at a pre-specified

exposure time. This is amajor feature of the PCATSAPI. It provides

the estimates of ATE or CATE at a user supplied time of exposure

by fitting a non-parametric Bayesian model. For clinicians and

patients, probability of achieving a superiority or inferiority margin

is important to inform a clinical decision, and PrTEc and PrCTEc
are provided to serve the needs. The interactive figures of treatment

effects and potential outcomes are also given.

We consider the time-varying aspects of the treatment in

two ways. First, for non-adaptive treatment, the treatment may

vary by different time of exposure. This is illustrated in the

JIA example, which utilizes data extracted from electronic health

records. For adaptive treatment, the next treatment is unknown at

the initial assignment, and varies by the patient’s responses to the

previous treatment. This is illustrated in the second example of the

MOBILITY pragmatic trial. For both cases, data are not collected

at the regular intervals. Instead, data is collected at the point of
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clinical encounters, and maybe missing due to skipped visit or

missed recording. The treatment maybe switched at different time

point. How to best handle time-varying dynamic treatment arise

from such setting remains as a challenging topic in causal inference

analyses. Our approach adheres to the currently widely accepted

approaches to the design and analyses of observational study

for estimating causal treatment effect. We design the JIA study

targeting a parallel arm static treatment strategies as recommended

in Hernán and Robins (2016) and Hernán et al. (2022). For the

second example, we design and analyze the MOBILITY pragmatic

trial evaluating the per protocol causal treatment effect, aiming to

inform treatment effect had the treatment were adhered over the

entire course (Hernán and Robins, 2017). When utilizing these

real world data, it is important to ensure data quality (Huang

et al., 2020). The PCATS requires the data be organized in a wide

format. So there should be only one row for each individual unit.

While PCATS implemented two Bayesian’s approaches to estimate

treatment effect following principled approach to the design and

analyses of causal inference. Users should carefully evaluate the

validity of fundamental causal assumptions, ensure fitness of the

data, and should always exercise caution when interpreting the

treatment effect estimate as causal.

Amajor limitation of the current version of PCATS is that it can

be computationally demanding for large n or q, when GPmethod is

used. Therefore, users are suggested to take BART for large dataset.

We are working on improving the method to enhance computation

efficiency. Here, we only presented a simple simulation study to

compare PCATS to ltmle as the benchmark package. We refer

interested readers to Hill (2011) and Huang et al. (2023) for the

methodology details of using GP and BART for causal inference,

and Huang (2020) for comparison of some commonly used

existing methods for time-varying treatment. Future studies may

consider extensive simulation studies comparing the performances

of PCATS, ltmle and other compatible packages for ATS. The API

is readily available for conducting additional simulation studies.

Currently, PCATS only considers a two-stage adaptive

treatment assignment, focusing on estimating averaged treatment

effect. However, with the posterior distribution of the model

parameters, one may apply the same generative g-computation

algorithm to handle the adaptive treatment with more than

two stages adaptive treatment strategies. While the Bayesian

method is readily extensible, scaling the API up beyond two-

stage setting demands much more resources and efficient

algorithms. The duration of treatment exposure is just one

post-treatment time-varying confounding, more complex setting

involves additional post-treatment time-varying confounders.

Future development could consider addressing more complex

issue. Future development could also consider introducing

additional estimates, such as rank order of the best treatment

options according to the estimated potential outcomes. The API

development is an iterative refinement process. We intend to

collaborate closely with researchers and stakeholders to further

enhance the API for better providing data driven evidence that is

most relevant to their decision making.

An R Shiny graphic user interface is under active development,

which allows for users to upload their dataset, accessing the

computational capacity of PCATS online independently from R

or Python. This is beyond the current scope of the manuscript.

Interested users could access GUI at https://pcats.research.cchmc.

org.
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