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Software and information systems have become a core competency for every

business in this connected world. Any enhancement in software delivery and

operations will tremendously impact businesses and society. Sustainable software

development is one of the key focus areas for software organizations. The

application of intelligent automation leveraging artificial intelligence and cloud

computing to deliver continuous value from software is in its nascent stage across

the industry and is evolving rapidly. The advent of agile methodologies with

DevOps has increased software quality and accelerated its delivery. Numerous

software organizations have adopted DevOps to develop and operate their

software systems and improve e�ciency. Software organizations try to implement

DevOps activities by taking advantage of various expert services. The adoption of

DevOps by software organizations is beset with multiple challenges. These issues

can be overcome by understanding and structurally addressing the pain points.

This paper presents the preliminary analysis of the interviews with the relevant

stakeholders. Ground truths were established and applied to evaluate various

machine learning algorithms to compare their accuracy and test our hypothesis.

This study aims to help researchers and practitioners understand the adoption

of DevOps and the contexts in which the DevOps practices are viable. The

experimental results will show that machine learning can predict an organization’s

readiness to adopt DevOps.

KEYWORDS

DevOps, machine learning, survey, adaption, accelerated software delivery, continuous
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1. Introduction

DevOps helps businesses accelerate software delivery and experience to deliver optimal

value. More broadly, DevOps is a philosophy that promotes better communication

and collaboration between these teams. In this context, other observed trends include

software increasingly being delivered over the Internet, either server-side (for example,

Software-as-a-Service) or as a channel with direct delivery to the customer. Mobile platforms

and their technology becoming increasingly pervasive and technologies upon which this

software runs (Varia and Mathew, 2014).

Agile and DevOps process models require the delivery and execution of

software engineering activities to add real value to the business. A fundamental

success factor for the Agile and DevOps process models is the continuous delivery

of incremental value to the organization. This requires an industrial assembly
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line mindset for delivering software with a solid foundation

of underlying toolsets, infrastructure, automation, and lean

methodologies. Cloud computing and artificial intelligence

are key technological advancements that are accelerating this

development. These emerging trends support quick and short

software delivery cycles within the Internet’s fast-paced, dynamic

world. DevOps has addressed the following drawback of the Agile

software development methodology, i.e., iterative and rapid code

development does not essentially result in iterative and rapid code

deployment; annual “State of DevOps” reports have shown that

there has been a 46% increase in the number of DevOps teams in

organizations (DevOps Trends Survey, 2020).

The definition of DevOps is a combination of cultural and

engineering practices, patterns, and tools that can increase an

organization’s capacity to deliver services and applications at high

speed and with better quality. Continuous Integration, Continuous

Delivery, Infrastructure as Code, and Monitoring and Logging are

the various essential practices that have emerged over time in

the adoption of DevOps. With DevOps, organizations can fully

optimize the accomplishment of their goals of increasing revenue,

minimizing costs, and retaining good employees. Increasing

income will require the faster release of an organization’s services

or products on the market, which in turn necessitates much

quicker and more reliable methods for building and deploying.

To reduce costs by reducing rework, quality must be built into

the process from the initial stages. DevOps teams tend to build

and deploy early and often, away from the intensity of release

night. Due to this, groups follow a systems-thinking approach

that considers the time needed for fine-tuning scripts, discovering

and resolving any problems, and cross-training team members.

A DevOps team will employ a systems-thinking approach to

facilitate the continuous improvement of critical skills and, thus,

lead to increased expertise. DevOps will construct continuous

integration and delivery capabilities without managing any servers

or build nodes, and leverage Infrastructure as Code to iteratively

and consistently provision and manage one’s cloud resources

(Hamunen, 2016).

Challenges in Adopting DevOps: DevOps adoption has certain

aspects in its implementation that will slow it down either by

inhibiting the DevOps enablers or by increasing the risk of

not accomplishing the DevOps goals. These challenges include

having staff with the right technical skills, resistance to change

and uncertainty, changing the technology stack and tools, and

uncertainty in responsibilities (Senapathi et al., 2018). The

implementation of DevOps is easiest for small organizations.

Since these organizations have few IT staff, the engineers will

serve various roles to successfully complete all IT tasks. It is the

developers’ responsibility to help support and test the apps. This

will tend to occur in a more organic way than in a deliberate

manner. Even large companies may find themselves involved in a

more organic construction of their strategies. The primary reason

for this is that in large enterprises, the IT organization tends to be

divided into various small-sized teams, each working on different

apps and processes. Due to the small size of these individual teams,

their members also tend to embrace DevOps practices by carrying

out various IT roles, either unintentionally or deliberately. In

general, large companies find it beneficial to plan and implement an

enterprise-wide strategy. At a company level, promoting DevOps

best practices will enhance collaboration between the various

teams within an organization. Medium-sized organizations tend

to have the most challenging time with the adequate performance

of DevOps because they are big enough to have a sizeable IT

organization but too small to divide it into multiple project

teams. Another chief challenge is deciding whether an organization

is DevOps-ready. Assessing an organization’s characteristics and

current state is essential to determining whether it can undergo a

DevOps transformation.

The novelty of this research is to take a data-driven decision-

making approach in DevOps readiness prediction; within this

approach, validate variousmachine learningmethods, and combine

the A∗ search algorithm with Adaboost to improve the accuracy of

the prediction. By combining the power of intelligent search, the

A∗ algorithm with the traditional Adaboost framework improves

optimal weak classifier selection and generalization, leading to

more accurate and resource-efficient classification prediction.

By combining the A∗ search algorithm with AdaBoost to

create A∗ AdaBoost, we are presenting a novel and innovative

method. A∗ AdaBoost combines two distinct algorithms, AdaBoost

and A∗ search, which are traditionally used in different domains.

AdaBoost is a well-known ensemble learning method, while

A∗ search is primarily utilized in pathfinding and optimization

problems. Incorporating the A∗ search algorithm into AdaBoost,

A∗ AdaBoost can efficiently navigate the feature space and focus on

informative regions while building an ensemble of weak learners.

This intelligent search strategy can lead to faster convergence

and reduced computation time, setting it apart from traditional

boosting algorithms.

This work is organized into the following four sections: Sections

2 and 3 will detail DevOps practices, which describe practices in

software engineering and various machine learning techniques,

respectively. Section 4 will review some of the available related

literature. Section 5 will present the different methods employed in

this work. Section 6 will show the experimental results and include

the discussion, while Section 7 will conclude the work.

2. Devops practices

The software engineering process can be envisioned as a value

stream with various activities from requirement intake to design,

build, test, deploy, maintain, andmonitor. Automating a part of the

value stream provides local efficiencies. However, more is needed

to make the system flow optimally. This requires an orchestration

approach rather than a simple automation approach. Orchestration

involves a workflow approach to automating multiple tasks and

aligning an efficient flow that smooths and helps reduce the overall

cycle time and accuracy of the value stream. Ensuring a high

Percent Complete and Accurate is another critical enabler to benefit

from automation; otherwise, it will be garbage in and garbage out.

This requires a shift left/built-in quality approach across the entire

life cycle. The problem is that the value stream is broken down into

multiple layers/blocks, and each layer is analyzed for opportunities

for automation and orchestration to get the best business value.
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FIGURE 1

Software value stream as a set of layers.

As shown in Figure 1, the software value stream can be

represented as a set of layers supported by feedback loops

and metrics.

Continuous Development is the foundation for improving the

software delivery process; however, it is also the least focused

on in many organizations. This is the first building block where

requirements are understood, coded/configured, and committed to

the code base by the developer. Agile design practices, the definition

of ready/done, standard Integrated Development Environment

(IDE), coding standards, SCM, integration, and automation are the

critical practices required at this level.

Continuous Integration extends continuous build, where the

committed code of the developers is compiled as a package and

assessed for code quality, automated unit testing/behavior-driven

testing is run, and feedback is fed back to the developers. Static

code analysis (Haas et al., 2020) leveraging various tools helps

automate the identification of code quality issues—critical practices

to adhere to commit frequency, fully automated CI, and behavior-

driven tests.

Continuous Delivery extends further the Continuous

Integration workflow and allows the deployment of any

version of the code to any platform. It focuses on developing

deliverable software that meets the functional and non-functional

requirements of the Minimum Viable Product (MVP). Critical

practices identified and needed for teams are MVP feature

prioritization and Feature-driven development, ensuring that

technical debt is tracked, measured, and regularly addressed so

that software meets all critical quality needs, and implementing

quality gates, elastic infrastructure, infrastructure management,

integration, and automation essential for quality testing. Robotic

Process Automation can be leveraged for end-user testing.

Continuous Deployment automates software delivery

to production as part of the build pipeline and requires

extreme maturity and agile deployment practices to benefit

the organization. Critical practices identified and proposed

include an agile deployment architecture, which gives the team

the flexibility to switch on and off the capabilities released to

Production. Since we have automated the deployment of code to

Production, it is necessary to ensure that the functionality is not

visible to end-users unless needed and that it can be switched on

dynamically when required by the business. An automated rollback

mechanism is required before considering continuous deployment.

Disaster—technical or human error—can happen, and a system

should be built to recover quickly from any such failure. Agile

architecture—modular and based on microservices/Application

Programming Interfaces (APIs) that reduce the size and

impact of each deployment. Deployable architecture needs

products and services/functions composed of loosely coupled,

well-encapsulated components.

Continuous Operation and Monitoring provide the ability

to continuously ensure system health, performance, and

reliability at the infrastructure layer and business process

level. Critical practices studied and proposed are visual monitoring

of infrastructure, predictive monitoring and forecasting of

events, regular vulnerability scans, internal and external

audits, and time-bound PDCA for outcomes, observability,

and architecture. System design and architecture should

support monitoring with proper log tracking, audit trail and

easy debugging, and automatic alerting mechanisms for all

critical events.

The cloud provides an abstraction of the underlying

infrastructure that is managed by the cloud vendors, who are

committed to high SLAs. For example, cloud vendors provide

highly resilient, multi-site federated services to organizations,

which helps them not worry about the underlying infrastructure

and focus on the application layer for operation and monitoring.

This resilience allows businesses to scale up and down their

infrastructure and dynamically manage costs. Also, the use of

AI-powered monitoring tools helps ensure that there is no human

dependency/error in the 24 × 7 monitoring of their business

applications. Predictive and auto-healing algorithms can detect any

critical hardware/software failures and automatically take actions

to address them and alert relevant stakeholders.

The people aspect of Touchless automation is a critical

element for successful adoption. This futuristic framework requires

investment in building the culture and skills needed for the software

team. To leverage emerging technologies, the teammembers should

be familiar with them. Also, they should continuously seek and

learn about new developments in their domain with respect to

emerging processes, toolsets, and capabilities. Team members are

typically specialists in one or more technical/functional domains

and generalists in other relevant domains. Organizations should

build a culture with practices such as open houses, hackathons, best

practice sharing sessions, and well-defined recognition programs.

A continuous improvement mindset should be cultivated by

leveraging various lean tools like Kaizen, Value Stream Mapping,

Problem Solving, 6S, and so on.

The Process aspect is another critical element. Any automation

and standardization will only work when there is discipline. If

we attempt to automate a process that is not standardized, the

result will be suboptimal and non-value-adding. Hence, before

we embark on the journey of touchless automation, it is essential

that the organization first defines a standard process for software

engineering practices and drives adherence to the same. This

will also simplify the complexity and variants that we need to
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accommodate while building the continuous delivery pipeline

workflow for the organization.

3. Machine learning algorithms

Machine learning algorithms enable us to analyze existing

systems and process attributes across various industry datasets,

identifying intelligent patterns and classifications that can help

in faster decision-making. In this study, machine learning

techniques were used to validate their application for predicting

DevOps readiness based on various software engineering attributes

mentioned in the previous section.

What follows is an overview of the algorithms considered for

this study.

Logistic Regression:

Logistic regression is used to estimate the likelihood of an event

occurring based on a given dataset (Oates et al., 2022). It is a simple

and efficient algorithm when the data is linear, but the results may

need to be more accurate for nonlinear and smaller data sets.

Support vector machines (SVM):

SVM is a robust algorithm (Shafiabady et al., 2023; Wu Robert

et al., 2023) with vast applicability in testing and data mining

with large data sets. It aims to create the best line or decision

boundary that can segregate the n-dimensional space into classes

to quickly place the new data points in the correct category in the

future. This best-decision boundary is called a hyperplane. SVM

chooses the extreme points/vectors that help create the hyperplane.

These extreme cases are called support vectors and, hence, Support

Vector Machines.

K-nearest neighbor (KNN):

KNN is a non-parametric, supervised learning classifier that

uses proximity to make classifications or predictions about the

grouping of an individual data point. It assumes a similarity

between the new case/data and the available cases and places the

new case in a category that resembles the available ones.

Naive Bayes:

The Naive Bayes classifier (Jadhav and Channe, 2016) is one of

the simpler forms of the Bayesian network, featuring independent

attributes and a particular class variable value. This is also called

conditional independence and has a numerical approach besides

being accurate, fast, and straightforward. Naive Bayes is used for

binar problems and multi-class classification problems; it assumes

the mutual independence of the variables, contributing to their

classification. The Naive Bayesian classifier is formed based on the

theorem of total probabilities.

Decision Tree–Entropy:

A decision tree constructs classification or regression models

in a tree structure. It will divide a data set into smaller subsets,

incrementally developing an associated decision tree. The outcome

will be a tree composed of decision nodes and leaf nodes. While

a decision node will have two or more branches, a leaf node will

denote a classification or decision. The top decision node in a tree

will correspond to the best predictor, the root node. Decision trees

can handle numerical and categorical data (Li et al., 2019).

Decision Tree–Gini Index:

The Gini index, also known as Gini impurity, evaluates the

probability that a specific feature will be incorrectly classified in a

random selection. If all elements are linked to a single class, they

will be called pure. There is a variance in the Gini index between

the values of 0 and 1. When the Gini index = 0, it will indicate the

purity of the classification; that is, either all elements are members

of a specific class or there is the presence of only a single class.

When the Gini index= 1, it will indicate the random distribution of

elements across multiple classes. In contrast, when the Gini index=

0.5, it will indicate the uniform distribution of the elements across

certain classes (Raileanu and Stoffel, 2004).

Random Forest:

The Random Forest classifier will have a combination of tree

classifiers in which the generation of each classifier is done using an

unexpected vector that has been independently sampled from the

input vector, and each tree will cast a unit vote for the most popular

class for classifying an input vector (Breiman, 1999; Pal, 2005).

AdaBoost:

The AdaBoost algorithm will aid in integrating weak classifiers

into a robust classifier. A weak classifier is defined as a simple

classifier that continues to suffer from poor performance despite

being capable of performing better than random extraction. It

is possible to train multiple weak classifiers and combine their

outcomes to yield a robust classifier. The AdaBoost algorithm will

generate strong classifiers fromweak classifiers (Wyner et al., 2017).

AdaBoost will use the adaptive modification of the weights at each

cycle to produce a group of weak classifiers from the members

of the ensemble classifier. With a reduction in the correctly

classified training sample weights of a current weak classifier, there

will be an increase in the incorrectly classified training sample

weights of the current weak classifier. Even though AdaBoost is

an accurate algorithm for building ensemble classifiers, it may

be unable to form ensemble classifiers that minimize the average

generalization error.

Adaboost assigns equal weights to all data points. A decision

stump is created for every feature, and the Gini index is calculated.

The stump with the lowest Gini index is considered the first

stump. In the next step, the classifier’s “influence” (Importance)

in classifying the data points is computed. The total error is the

sum of all the sample weights of misclassified data points. The

weights are increased for incorrect predictions and decreased for

correct predictions. The new weights are normalized. This process

is iterated until a low training error is attained (Wyner et al., 2017).

4. Related works

Some works in the literature on DevOps address the

acquisition of adequate DevOps skills to meet the demand for

DevOps practitioners in the industry (Suescún-Monsalve et al.,

2021) and the adoption prospects of DevOps practices (Airaj,

2017; Hasselbring et al., 2019). Sen et al. (2021) attempted to

demonstrate how the DevOps principles can effectively manage

and deploy business problems in the classroom, more specifically,

the execution of the DevOps methodology for managing the

development and deployment of a small web application. Rafi

et al. (2020) identified the critical factors that adversely impacted

the data quality assessment procedure of DevOps. A systematic

literature review (SLR) approach was employed to identify 13

challenging critical factors. Furthermore, these SLR findings were
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validated by industry experts through a questionnaire. Finally, the

Fuzzy TOPSIS approach was applied to prioritize the examined

challenging factors in terms of their significance to the DevOps data

quality assessment procedure.

Continuous delivery of software applications using automation

(Humble and Farley, 2010) is a cornerstone development that we

extend further in the proposed approach. Leveraging automation,

tooling, and lean thinking in software is revolutionizing the

software value stream and driving continuous value to the business.

Continuous delivery and deployment are still in their nascent

stages and face numerous challenges (Shahin et al., 2017) that

software organizations need to overcome to reap the benefits.

Various factors, such as compliance and regulatory requirements,

tool limitations, and human trust, continue to challenge the level

of automation in the build pipeline. Standardization challenges are

another key barrier to adoption, as it is evident that automating

poor and non-standard processes leads to poor outcomes. The

impact of continuous delivery practices from a software developer’s

point of view and the prerequisites for a good continuous delivery

pipeline were explored by Kärpänoja et al. (2016), and this is

still evolving rapidly. Addressing this cultural and human aspect

of the continuous delivery pipeline is key to the success and

adoption of our proposed framework. The work of Olszewska and

Waldén (2015) focused on how formal modeling can function

within DevOps and thus promote various dimensions of quality

and continuous delivery. The authors also noted that DevOps

is still not a well-structured and defined concept, but utilizing

existing developments and tools through a well-structured merge

is important to support the end-to-end spectrum of software

development and its related people, processes, and artifacts, which

also include operations and quality management tasks. A survey

(Bezemer et al., 2019) on how performance is addressed in the

DevOps lifecycle has provided a detailed view of the practices,

processes, and toolsets that can be leveraged in a continuous

lifecycle; this also shows the challenges and the need to have

simplified and lean processes and tools that can learn and adapt

quickly for success.

Another critical success factor in implementing DevOps and

automation in mainstream software organizations is architecture.

The work done by Shahin (2015) provides an understanding and

addresses new challenges for designing architectures to support

DevOps in the context of Continuous deployment. Lianping

Chen’s six strategies (Chen, 2017) for overcoming the challenges

of Continuous deployment adoption broadly address the threats

and opportunities in CD adoption. “The Impact of Artificial

Intelligence on Innovation” (Iain, 2018) details how the latest

technologies can revolutionize innovation. Research can shift from

labor-intensive research to one that takes advantage of the interplay

between passively generated large data sets and enhanced predictive

algorithms. The work by Bhandari et al. leverages various machine

learning and deep learning algorithms (Bhandari et al., 2023) to

make predictions with high accuracy. The validity and assurance of

the use of machine learning algorithms in predicting the accuracy

and classification of ground truths are explained by various research

works (Ambagtsheer et al., 2020).

Despite the plethora of research on DevOps implementation,

it is critical to address the numerous benefits and challenges of

determining an organization’s readiness in a heterogeneous IT

environment. Most of our work is based on a survey questionnaire

that collected responses from industry practitioners working in

the DevOps environment. Unlike other observational methods,

this approach offers the best opportunity to gather opinions on

the related research problem from a diverse and well-distributed

population. Inferences from survey responses can be made with

either frequency analysis or a case study approach to determine

the observations. The research was then used to establish the

ground truths. This work investigates the use of a machine

learning approach for the prediction of DevOps readiness and its

adoption within a heterogeneous IT environment. To accomplish

this work’s goals, a survey has been conducted with frequency

analysis to infer ground truths. Subsequently, the same data has

been employed to train the machine learning algorithms to predict

effectiveness work by Chang and Rong (2019) provided insight

into how various ensemble algorithms can be used for data-

driven prediction analysis, and that by Nevendra and Singh (2019)

provided insight into the weaknesses of ensemble algorithms and

the potential to combine various other techniques to improve

accuracy and performance.

5. Methodology

A survey was designed as a combination of objective

and subjective questions to allow the audience to express

their opinions. The questionnaire design comprised five

sections with 19 high-level questions and 35 sub-questions.

Three of the 19 high-level questions were open-ended,

while the others were in single-choice, multiple-choice,

or Likert format. Furthermore, the survey was limited to

software and management professionals in the field of

software delivery. Sample questions from the questionnaire

are as follows:

• What is the main challenge in your company’s IT

application landscape?

• Are your software development practices truly agile and able

to meet business and end-user needs seamlessly and quickly?

• Do business and IT work well together as a team?

• Do you work in sprints and release working solutions at

each sprint?

• Do you plan and prioritize work for each sprint, considering

emerging business needs?

• Does your IT management believe in agility and support the

team without much interference?

• Do your Software Engineering practices enable agility and not

create too much overhead?

• What is the frequency of releases to customers?

• Do you version control all software deliverables to include

code, documents, test cases, and all artifacts?

• Are developers performing well-documented unit

testing, and are most defects being caught during

this process?
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We analyzed the data and performed a frequency analysis

based on various identified variables, frequencies, and patterns

to understand the following ground truths: the variables were

based on application legacy, various DevOps practices, industry

size and attributes, and perceived success and outcomes of DevOps

transformation. We evaluated the statistical insights from the

survey results and combined them with our qualitative study of

DevOps practices.

The key insights that helped us build the mentioned ground

truths are that larger organizations with a larger legacy and complex

system landscape find it very challenging to adopt DevOps, as it

increases the cost and risk of the transformation. A systematic

approach and risk-based approach seems to be helping the

organizations to adopt DevOpsmore smoothly. Also, organizations

with an agile mindset and lean startup culture could implement

DevOps faster with less resistance and start reaping its benefits.

Based on these findings, the following fundamental truths

were established:

Truth 1 —The organization has many legacy applications; it

is effort-intensive and complex to migrate to the DevOps model.

Application rationalization is required before DevOps can be

adapted to deliver business value. High-risk and effort-intensive.

Truth 2—The organization is already equipped with basic

DevOps building blocks and has an extensive and diverse IT

landscape; by introducing a structured framework, it can quickly be

onboarded to the Touchless Automation Framework for a group of

applications, while the rest follow the traditional approach, more

suitable for a bi-model setup.

Truth 3 —The nascent organization and IT landscape,

processes, and tools/frameworks are highly evolving, have a

start-up mindset, and can quickly leverage DevOps/touchless

automation practices to deliver business value.

These truths are classified as Not Recommended,

Recommended, and Highly Recommended, respectively. Based

on this, machine learning algorithms such as Logistic Regression,

support vector machines (SVM), K-nearest neighbor (KNN),

Naïve Bayes, Decision Tree—Entropy, Decision Tree—Gini Index,

Random Forest, and AdaBoost were implemented and tested

to validate the accuracy of whether they can be used to test for

DevOps readiness.

The framework for applying machine learning to predict

DevOps readiness and adaptation in IT environments is shown

in Figure 2. In summary, the feedback from our survey was

analyzed for ground truths. The obtained feedback data set was

then applied to various classification machine learning algorithms,

and the results were compared to test the hypothesis of whether the

algorithms provided accurate results.

As part of this research, we also experimented with the

algorithms to provide better accuracy.With the latest developments

in software engineering and the complexity of the multiple factors

involved in successful DevOps implementation, we need to build a

prediction model. In this study, we validated the hypothesis that

we can predict DevOps readiness by evaluating it with multiple

available machine learning and statistical approaches.

Machine language algorithms were used for this research to

handle large data sets and their potential to scale as we deploy them

to a larger number of organizations in the future. In addition, one

FIGURE 2

Framework for predicting DevOps readiness with machine learning.

of our other objectives is to test whether automated, data-driven

decision-making can be applied to various software engineering

problems and drive sustainability.

5.1. Proposed A∗ adaboost algorithm

Adaboost is a powerful classification algorithm. However, it has

limitations such as a lack of explicit search, sensitivity to outliers in

the data sets, and insufficient handling of dynamic environments.

An important parameter for Adaboost is the number of weak

learners used, which is generally adjusted to the accuracy of the

model. A higher number of trees is required for the model to be

efficient. Prediction also depends on the depth of the tree. The

learning rate is generally fixed at 0.5, but a smaller learning rate

is feasible, as higher rates lead to overfitting. Thus, optimizing the

values of several weak learners, the depth of the trees, and the

learning rate parameters of Adaboost is essential to improving the

performance of this ensemble algorithm.

In this work, it is proposed to use the A∗ algorithm to optimize

the Adaboost parameters. A∗ is a best-first search path search

algorithm that aims to find the path with theminimum cost. The A∗

search algorithm guarantees to find an optimal path by combining

heuristics; it prunes unnecessary branches of the search space

and optimizes the solution; it takes advantage of domain-specific

knowledge data sets and searches efficiently. The A∗ AdaBoost steps

are explained in Figure 3 below:
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FIGURE 3

A* AdaBoost workflow.

The pseudocode and explanation of the proposed are

as follows:

Initialize weights:

import numpy as np

def initialize_weights(n):

weights= np.ones(n) / n

return weights

By initializing the weights to equal values, the A∗ AdaBoost

algorithm starts with the assumption that all data sets are equally

important. As the algorithm progresses, the weights are updated

based on the performance of weak classifiers, assigning higher

weights to misclassified data sets and lower weights to correctly

classified data. This way, subsequent weak classifiers focus more on

the previously misclassified data, improving overall performance.

Iterating through weak classifiers to build robust ones:

In each iteration, the weak classifier is trained using the

current data set weights, and the weights are updated based on the

performance of the weak classifier. This iterative process enables

the algorithm to focus on the misclassified data set, improving

the performance of the ensemble classifier over time. Using the

A∗ search algorithm, the modified AdaBoost algorithm efficiently

explores the space of weak classifiers and identifies the best

def adaboost_a_star(D, T):

n= len(D) # Number of training data sets

weights= initialize_weights(n) # Initialize weights

weak_classifiers= [] # List to store weak classifiers

weak_classifier_weights= [] # List to store weak classifier weights

for t in range(T):

weak_classifier= train_weak_classifier(D, weights)

weak_classifiers.append(weak_classifier)

errors = np.array([weak_classifier_error(weak_classifier, dataset,

weight) for dataset, weight in zip(D, weights)])

weighted_error= np.dot(weights, errors)

beta_t= weighted_error / (1 - weighted_error)

alpha_t= np.log(1 / beta_t)

weights ∗
= np.power(beta_t, 1 - errors)

weights /= np.sum(weights)

weak_classifier_weights.append(alpha_t)

# Combine weak classifiers to form strong classifier

def strong_classifier(x):

total_score= 0

for classifier, weight in zip(weak_classifiers, weak_classifier_weights):

total_score+ = weight ∗ classifier(x)

return np.sign(total_score)

return strong_classifier

performance on the training data set. This helps construct a strong

classifier that generalizes well to an unseen new data set and

improves the overall classification performance.

6. Results and discussion

As every industry domain leverages software and systems

to drive efficiency and quality, it becomes critical for industry

professionals to understand and apply software engineering

best practices, what works, and what attributes lead to failure.

DevOps practices are rapidly evolving with advancements in cloud

computing, data technologies, and virtualization. To capture the

latest trends in DevOps and use them to predict a model, a

survey was carried out to understand the industry’s technical

agility/automation and engineering practices. The survey format

consisted of five sections with 19 high-level questions (of which

three were open-ended while the rest were either single-choice,

multiple-choice, or Likert format) and 35 sub-questions. This

survey was delivered to a target audience of about 200+ software

workers. A total of 105 responses were received, meaning that

52.5% of the target audience responded to the study. Since there was

a healthy distribution of company sizes in the audience, the range

of survey submissions across different company sizes was good.

Participation in this survey was both anonymous and voluntary.

Based on the frequency analysis, we can infer the following from

the responses to the IT application landscape: the majority of

organizations have fragmented applications with an overlap of

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1214722
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Sriraman and R. 10.3389/fcomp.2023.1214722

abilities, and while there is a fair awareness of agility among the

participants, there is, however, a significant number of respondents

who feel that agile practices have high overheads, which in turn

would indicate that the participants have a limited understanding of

Lean-Agile practices, and also that there continue to be gaps in basic

hygiene practices such as Version Control and Unit Testing. The

fragmented IT landscape leads to multiple challenges, such as a lack

of integration possibilities, data inconsistency, and inefficient and

broken workflows with high manual effort that result in increased

maintenance and operations costs. This also exposes organizations

to higher security and compliance risks. A summary of the survey

profile and data set is presented in Appendix I.

We also observed that awareness of Lean-Agile practices could

be more balanced even in established organizations, leading to

inefficient processes, poor collaboration across teams, and high

IT costs and time for businesses. The lack of efficient Lean-Agile

DevOps practices is seen by organizations as the primary root cause

of not getting the best value from IT investments.

By applying frequency analysis to the acquired data, the

following ground truths were inferred and used to apply the

algorithms to the data.

Truth 1 —Not Recommended; The organization has many

legacy applications; it is effort-intensive and complex to migrate to

the DevOps model.

Truth 2—Recommended; The organization is already equipped

with basic DevOps building blocks and has an extensive and diverse

IT landscape; by introducing a structured framework, it can quickly

be onboarded.

Truth 3 —Highly Recommended; The nascent organization

and IT landscape, processes, and tools/frameworks are highly

evolving, have a start-up mindset, and can quickly leverage

DevOps/touchless automation practices to deliver business value.

The resulting data set ended up containing 340 Not

Recommended, 410 Highly Recommended, and 120

Recommended instances. This data set was created based on

the survey submission data, feature selection, and processing. The

evaluations were carried out using Python software.

The answers to the questions were used as the features for

the classifiers. The features were both numerical and categorical

in nature. In this work, supervised learning algorithms were used

for classification. The data set was split into a test set (20%)

and a training set (80%). The classifiers were trained using the

training data. The classifiers used in this investigation are Logistic

Regression, Support Vector Machines (SVM), K-nearest neighbor

(KNN), Naive Bayes, Decision Tree- Entropy, Decision Tree—Gini

Index, Random Forest, AdaBoost, and the proposed A∗ Adaboost.

The obtained output is Not Recommended (Class A), Highly

Recommended (Class B), and Recommended (Class C).

Appendix II (Tables 1, 2) provides the results on the Accuracy,

Precision, Recall (Sensitivity), Specificity, and F measure values

across the algorithms used by the classification.

• Accuracy is a measure of the correctness of the

model’s prediction.

• Precision is the ratio of true positive predictions to the total

number of predictions.

• Recall is a measure of the ability to capture all

positive instances.

• F-measure is the balance between Precision and Recall and

provides insight to evaluate the performance of the model

considering the trade-offs.

It was observed that the accuracy of the proposed A∗ Adaboost

is effective in classifying the correct class as compared to the

other classifiers. A∗ Adaboost achieves better accuracy by 16.12%

for Naive Bayes, 12.42% for Decision tree—Entropy, 10.32%

for Decision Tree- Gini Index, 8.12% for Random Forest, and

5.24% for Adaboost. Combining the weak learners’ performance

of the proposed A∗ Adaboost with optimized parameters to

formulate a robust classifier that has better performance than any

other weak classifier helped achieve higher precision. A∗Adaboost

outperformed Naïve Bayes by 21.43%, Decision Tree—Entropy by

15.51%, Decision Tree—Gini Index by 12.27%, Random Forest by

11.01%, and Adaboost by 7.95%.

The proposed A∗ Adaboost achieved a better recall of 22.9%

for Naïve Bayes, 15.94% for a Decision tree—Entropy, 11.9%

for Decision Tree- Gini Index, 11.63% for Random Forest and

9.03% for Adaboost. It was observed that the optimization

of the A∗ Adaboost parameters significantly improved the

recall performance.

The proposed A∗ Adaboost achieved a better recall by 22.16%

for Naïve Bayes, 15.84% for a Decision tree—Entropy, 12.34% for

Decision Tree- Gini Index, 11.34% for Random Forest and 8.4%

for Adaboost.

The superiority of A∗ Adaboost lies in its ability to use machine

learning to refine the A∗ search algorithm. By incorporating

Adaboost, A∗ Adaboost can learn from the characteristics of the

problem domain and adaptively adjust its search strategy. The

optimized parameters of A∗ Adaboost play a crucial role in its

enhanced performance. Tuning the classifiers and finding the right

balance between multiple training iterations and classifier weights

improves the performance of our algorithm.

Based on the above results, we observed that the modified A∗

Adaboost machine learning algorithm yielded better prediction

results and that it could be adapted to predicting readiness as

we scaled the data sets and increased the volume of data to

build an industry prediction model. The proposed A∗ Adaboost

is more effective than Logistic Regression, SVM, KNN, Naïve

Bayes, Decision Tree—Entropy and Gini indexes, Random Forest,

and Adaboost. In A∗ Adaboost, the enhanced performance of the

resulting combined classifier is due to optimized added weights.

This unique combination of algorithms provides efficient feature

space navigation, unbalanced data handling, dynamic adaptability,

application flexibility, and the opportunity it presents to explore

new directions in ensemble learning. This novel approach promises

to advance state-of-the-art machine learning and may offer

significant advantages over traditional boosting techniques in

various real-world applications.

In this study, we conducted an in-depth analysis of the

consistency of parameter adjustments and hyperparameters for

the A∗ AdaBoost algorithm and its performance. The objective

was to understand how variations in these settings influence
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model behavior and predictive capabilities. We systematically

manipulated specific hyperparameters, such as the number of weak

learners, the learning rate, and the depth of the decision trees, while

keeping other settings fixed. We performed multiple experimental

runs, each with a different combination of parameter values, and

recorded the corresponding model performance metrics.

Our results demonstrated a clear relationship between

parameter adjustments and the model’s performance. We observed

that increasing the number of weak learners improved model

accuracy and generalization ability up to a certain point. Beyond

that point, increasing the number of weak learners yielded little

performance gain, suggesting diminishing returns. Similarly, the

learning rate was crucial in balancing the tradeoff between

convergence speed and stability. A higher learning rate enabled

faster convergence but risked overshooting the optimal solution,

resulting in suboptimal performance.

Conversely, a lower learning rate ensured more stable updates

but could prolong the convergence process. We also investigated

the effect of decision tree depth on model performance. We found

that shallow decision trees improved the model’s interpretability

but could not capture complex patterns in the data, leading to

reduced predictive power. Deeper decision trees could capture

intricate relationships in the data but there is a risk of overfitting,

resulting in poor generalization to unseen data. Our sensitivity

analysis further revealed that the optimal parameter configurations

were specific to the data set and problem. However, we identified

trends across different data sets, suggesting some degree of

transferability in parameter settings.

Overall, our findings indicate that tuning the hyperparameters

of the A∗ AdaBoost algorithm is crucial to achieving optimal

performance. Our results highlighted the need to consider the

interplay between different parameters and their effects on model

behavior. Several consistent trends and patterns were observed

that had a significant impact on the model’s predictive capabilities.

The number of weak learners, learning rate, search heuristic,

weight, depth of decision trees, and space pruning are several

parameters that we leveraged in our experiment. These insights

provide avenues to enhance its performance in predicting DevOps

readiness and potentially in other machine learning applications.

7. Conclusion and future work

This work has employed machine learning approaches to

classify an organization’s DevOps adoption into the following

categories: Highly Recommended, Recommended, and Not

Recommended. Various machine learning algorithms have

been deployed and tested with the available data, validating the

approach for predicting DevOps readiness and the different

parameters enabling DevOps in organizations. The effectiveness

of the proposed A∗ AdaBoost in predicting an organization’sx

willingness to adopt DevOps has been noted. It is possible to

explore the optimization of AdaBoost to improve the accuracy

levels in future research studies. Metaheuristic algorithms

to optimize classifiers can be further investigated. Applying

various data science techniques to predict DevOps readiness and

different DevOps practices leads to more sustainable and efficient

computing. In our future work, we aim to work further on how

emerging data science technologies can be leveraged to improve

sustainable computing and DevOps practices in detail.
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