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This paper begins with a description of methods for estimating probability density

functions for images that reflects the observation that such data is usually

constrained to lie in restricted regions of the high-dimensional image space—

not every pattern of pixels is an image. It is common to say that images lie on

a lower-dimensional manifold in the high-dimensional space. However, although

images may lie on such lower-dimensional manifolds, it is not the case that all

points on the manifold have an equal probability of being images. Images are

unevenly distributed on the manifold, and our task is to devise ways to model

this distribution as a probability distribution. In pursuing this goal, we consider

generative models that are popular in AI and computer vision community. For our

purposes, generative/probabilisticmodels should have the properties of (1) sample

generation: it should be possible to sample from this distribution according to

the modeled density function, and (2) probability computation: given a previously

unseen sample from the dataset of interest, one should be able to compute the

probability of the sample, at least up to a normalizing constant. To this end, we

investigate the use of methods such as normalizing flow and di�usion models.

We then show how semantic interpretations are used to describe points on the

manifold. To achieve this, we consider an emergent language framework that

makes use of variational encoders to produce a disentangled representation of

points that reside on a given manifold. Trajectories between points on a manifold

can then be described in terms of evolving semantic descriptions. In addition to

describing the manifold in terms of density and semantic disentanglement, we

also show that such probabilistic descriptions (bounded) can be used to improve

semantic consistency by constructing defenses against adversarial attacks. We

evaluate our methods on CelebA and point samples for likelihood estimation

with improved semantic robustness and out-of-distribution detection capability,

MNIST and CelebA for semantic disentanglement with explainable and editable

semantic interpolation, and CelebA and Fashion-MNIST to defend against patch

attacks with significantly improved classification accuracy. We also discuss the

limitations of applying our likelihood estimation to 2D images in di�usion models.

KEYWORDS

image manifold, normalizing flow, di�usion model, likelihood estimation, semantic

disentanglement, adversarial attacks and defenses

1. Introduction

Understanding the complex probability distribution of the data is essential for image

authenticity and quality analysis, but is challenging due to its high dimensionality and

intricate domain variations (Gomtsyan et al., 2019; Pope et al., 2021). Seen images usually

have high probabilities on a low-dimensional manifold embedded in the higher-dimensional

space of the image encoder.
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Nevertheless, the phenomenon that image embeddings

encoded using methods such as a pretrained CLIP

encoder (Ramesh et al., 2020) lie within a narrow cone of the

unit sphere instead of the entire sphere (Gao et al., 2019; Tyshchuk

et al., 2023), which degrades the aforementioned pattern of

probability distribution. Hence, on such a manifold, it is unlikely

that every point can be decoded into a realistic image because of

the unevenly distributed probabilities. Therefore, it is important

to compute the probability in the latent space to indicate whether

the corresponding image is in a high-density region of the

space (Lobato et al., 2016; Chang et al., 2017; Hajri et al., 2017;

Grover et al., 2018; Papamakarios et al., 2021; Coeurdoux et al.,

2022; Klein et al., 2022). This helps to distinguish seen images from

unseen images, or synthetic images from real images. Some works

train a discriminator with positive (real) and negative (synthetic)

examples in the manner of contrastive learning (Liu et al., 2022) or

analyze their frequency differences (Wang et al., 2020). However,

they do not address this problem using the probabilistic framework

afforded by modern generative models.

In this work, we calculate the exact log-probability of an image

by utilizing generative models that assign high probabilities to seen

images and low probabilities to unseen images. The confidence

of such probabilities is usually related to image fidelity, we hence

also introduce efficient and effective (with improved semantic

robustness) generation strategies using hierarchical structure and

large sampling steps with the Runge-Kutta method (RK4) (Runge,

1895; Kutta, 1901) for stabilization. Specifically, we use normalizing

flow (NF) (Rezende and Mohamed, 2016; Papamakarios et al.,

2021) and diffusion models (DMs) (Ho et al., 2020; Song et al.,

2021; Luo, 2022) as image generators. NF models learn an image

embedding space that conforms to a predefined distribution,

usually a Gaussian. In contrast, DMs diffuse images with Gaussian

noise in each forward step and learn denoising gradients for the

backward steps. A random sample from the Gaussian distribution

can then be analytically represented on an image manifold and

visualized through an image decoder (for NF models) or denoiser

(for diffusion models). In prior works, NF for exact likelihood

estimation (Rezende and Mohamed, 2016; Kobyzev et al., 2019;

Zhang and Chen, 2021) and with hierarchical structure (Liang et al.,

2021; Hu et al., 2023; Voleti et al., 2023) have been explored in

model training. To the best of our knowledge, however, it has not

been studied by investigating such likelihood distribution of seen

and unseen images with a hierarchical structure (without losing the

image quality) from themanifold perspective. This is also applied to

the diffusion models noting the difficulty of combining such exact

likelihood with the mean squared error loss in diffusion training.

Samples from these image generators can be thought of

having several meaningful semantic attributes. It is often desirable

that these attributes be orthogonal to each other in the sample

latent space so as to achieve a controllable and interpretable

representation. In this work, we disentangle semantics in the

latent space by using a variational autoencoder (VAE) (Kingma

and Welling, 2013) in the framework of emergent languages

(EL) (Havrylov and Titov, 2017; Kubricht et al., 2020; Pang et al.,

2020; Tucker et al., 2021; Mu et al., 2023). This allows the latent

representation on the manifold to be more robust, interpretable,

compositional, controllable, and transferable. Although some

VAE variant models such as β-TCVAE (Chen et al., 2018),

GuidedVAE (Ding et al., 2020), and DCVAE (Parmar et al., 2021)

achieve qualified semantic disentanglement results, we mainly

focus on understanding the effectiveness of the emergent language

framework for VAE based disentanglement inspired by Xu et al.

(2022) and emphasizing the feasibility of our GridVAE (with

mixture of Gaussian priors) under such an EL framework to study

semantic distributions on the image manifold. We also evaluate

their semantic robustness on such a manifold against adversarial

and patch attacks (Carlini and Wagner, 2016; Brown et al., 2017;

Tramer et al., 2017; Madry et al., 2018; Chou et al., 2019; Liu et al.,

2020; Xiang et al., 2021; Hwang et al., 2023) and defend against the

same attacks using semantic consistency with a purification loss.

We organize this paper into three sections, each with their

own experiments: log-likelihood estimation for a given image

under normalizing flows and diffusion models (see Section 2),

semantic disentanglement in emergent languages for a latent

representation of object attributes, using a proposed GridVAE

model (see Section 3), and adversarial attacks and defenses in image

space to preserve semantics (see Section 4).

2. Likelihood estimation with image
generators

We evaluate the log-probability of a given image using (1) a

hierarchical normalizing flow model, (2) a diffusion model adapted

to taking large sampling steps, and (3) a diffusion model that uses a

higher-order solution to increase generation robustness.

2.1. Hierarchical normalizing flow models

Normalizing flow (NF) refers to a sequence of invertible

functions that may be used to transform a high-dimensional image

space into a low-dimensional embedding space corresponding

to a probability distribution, usually Gaussian. Dimensionality

reduction is achieved via an autoencoding framework. For the

hierarchical model, the latent vector corresponding to the image xi
at each level i is computed as

zi = gi(yi) = gi ◦ fi(xi) ∼ N(0, 1) , (1)

and the inversion of this process reconstructs the latent z′i to x
′
i as

x′i = f ′i ◦ g
′
i (z

′
i) , (2)

where the decoder f ′i and flow inverse function g′i are inversions

of the encoder fi and flow function g respectively, and z′i can be

zi or randomly sampled from N(0, 1). We illustrate hierarchical

autoencoders and flows for rich and high-level spatial information

with conditioning variables in either image space or latent space.

In Figure 1, we show a 4-level hierarchical normalizing flow

model, where each set of functions (fi, gi, g′i , f
′
i ) corresponds to

one level and where g′i and f ′i are conditioned on the higher-level

reconstruction, that is

x′1 = f ′1 ◦ g
′
1(z

′
1|f

′
2 ◦ g

′
2(z

′
2|f

′
3 ◦ g

′
3(z

′
3|f

′
4 ◦ g

′
4(z

′
4)))) . (3)

The model is learned in two phases: joint learning of all

autoencoders {fi, f ′i } and then joint learning of all flows {gi, g′i} with
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the pretrained autoencoders, for all i ∈ {1, 2, 3, 4}. The loss function
for autoencoder learning, denoted Lae, is the mean squared error

(MSE) between the reconstructed data and the processed data, and

for the learning of flows the objective is to minimize the negative

log-probability of yi, denoted Lflow, such that the represented

distribution of the latent variable is modeled to be the standard

Gaussian distribution, from which a random latent variable can be

sampled for data generation. GivenN pixels and C channels (C = 3

for an RGB image and C = 1 for a greyscale image), xi at level i can

be represented as xi = {xij} for all j ∈ {1, ...,N}, the autoencoder
loss is then given by

Lae(x
′
i, xi) =

1

CN

N
∑

j=1

‖x′ij − xij‖2 , (4)

and the flow loss for the latent at level i is the negative log-

probability of yi, that is Lflow(yi) = − log pY (yi), using the change

of variables as

log pY (yi) = log pZ(zi)+ log
∣
∣det∇Ygi(yi)

∣
∣

= log pZ(zi)+ log
∣
∣JY

(

gi(yi)
)∣
∣ , (5)

where

log pZ(zi) = −
1

di
log

1
(√

2π
)di

exp

(

−
1

2
‖zi‖2

)

=
1

2
log 2π +

1

2di
‖zi‖2 , (6)

di is the dimension of the ith latent and JX(·) computes the Jacobian

matrix over the partial derivativeX. Similarly, the log-probability of

xi at level i is

log pX(xi) = log pZ(zi)+ log
∣
∣det∇X

(

gi ◦ fi(xi)
)∣
∣

= log pZ(zi)+ log
∣
∣det JY (gi(yi))

∣
∣+ log

∣
∣det JX(fi(xi))

∣
∣ .
(7)

Then, the log-probability of an image at level i with hierarchical

autoencoders and flows from multiple downsampling layers,

xi+1 = d(xi) at level i, can be calculated with the chain rule as

log p(xi) =
i
∑

j=1

log pX(xj)+ log
∣
∣det JX(d(xj−1))

∣
∣ · 1

[

j > 1
]

, (8)

where [·] is a binary indicator.

2.2. Di�usion models

Differently from normalizing flow models that sample in a

low-dimensional embedding space due to the otherwise large

computational complexity, diffusion models diffuse every image

pixel in the image space independently, enabling pixelwise

sampling from the Gaussian distribution. We outline below a

strategy and formulas to allow uneven or extended step diffusion

in the backward diffusion process.

FIGURE 1

A 4-level hierarchical normalizing flow model, where each level

involves the functions (fi,gi,g
′
i , f

′
i ). The normalizing flow (NF) model

is based on Glow (Kingma and Dhariwal, 2018); the downsampling

block decreases image resolution by a factor of two; and the output

of each higher (i > 1) level is conditioned on the output of the lower

level. We first train all autoencoders {fi, f ′i } jointly, then train all flows

{gi,g
′
i} jointly, to obtain the generated image x′1. The latent variable

zi conforms to the standard Gaussian distribution N(0, 1) during

training; at test time, zi is sampled fromN(0, 1) for image generation.

2.2.1. Multi-step di�usion sampling
2.2.1.1. Forward process

The standard description of denoising diffusion model (Ho

et al., 2020) defines a sequence of random variables {x0, x1, . . . , xT}
according to a forward diffusion process

xt+1 =
√
αt xt +

√

βt ǫ , (9)

where βt = 1 − αt , xt is a sample from a random variable Xt , and

ǫ is a sample from the standard (multidimensional) Gaussian. The

index t takes integer values between 0 and T, and the set of random

variables form a Markov chain.

The idea can be extended to define a continuous family of

random variables according to the rule

xt =
√

ᾱt x0 +
√

β̄t ǫ , (10)

where β̄t = 1 − ᾱt , and for simplicity, we can assume that xt is

defined for t taking continuous values in the interval [0, 1]. Here,

the values ᾱt are a decreasing function of t with ᾱ0 = 1 and ᾱ1 = 0.

It is convenient to refer to t as time.

It is easily seen that if {0 = t0, t1, ..., tT = 1} are an increasing

set of time instants between 0 and 1, then the sequence of random

variables {Xt0 , . . .XtT } form a Markov chain. Indeed, it can be

computed that for 0 ≤ s < t ≤ 1, the conditional probabilities

p(xt|xs) are Gaussian

p(xt|xs) = N
(

xt |
√

ᾱstxs, β̄st
)

. (11)

where ᾱst = ᾱt/ᾱs and β̄st = 1 − ᾱst . This is the isotropic

normal distribution havingmean
√
ᾱstxs and variance β̄st . Similarly

to Eq. (9), one has

xt =
√

ᾱst xs +
√

β̄st ǫ . (12)

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Tu et al. 10.3389/fcomp.2023.1253682

This applies in particular when s and t refer to consecutive

time instants ti and ti+1. In this case, the joint probability of

{Xt0 , . . . ,XtT } is given by

p(xt0 , xt1 , . . . , xtT ) = p(xt0 )
T
∏

i=1

p(xti |xti−1 ) . (13)

One also observes, from Eq. (10) that p(x1) is a standard Gaussian

distribution. A special case is where the time steps are chosen evenly

spaced between 0 and 1. Thus, if h = 1/T, this can be written as

p(x0, xh, x2h, . . . , xTh) = p(x0)
T
∏

i=1

p(xih|x(i−1)h) . (14)

2.2.1.2. Backward process

The joint probability distribution is also a Markov chain, which

can be written in the reverse order, as

p(xt0 , xt1 , . . . , xtT ) = p(xtT )
T
∏

i=1

p(xti−1 |xti ) . (15)

This allows us to generate samples from X0 by choosing a

sample from X1 = XtT (a standard Gaussian distribution)

and then successively sampling from the conditional probability

distributions p(xti−1 |xti ).
Unfortunately, although the forward conditional distributions

p(xti |xti−1 ) are known Gaussian distributions, the backward

distributions are not known and are not Gaussian. In general, for

s < t, the conditional distribution p(xt|xs) is Gaussian, but the

inverse p(xs|xt) is not.
However, if (t − s) is small, or more exactly, if the variance of

the added noise, β̄st = 1 − ᾱst is small, then the distributions can

be accurately approximated by Gaussians with the same variance

β̄st as the forward conditionals. With this assumption, the form of

the backward conditional p(xs|xt) is specified just by determining

its mean, denoted by µ(xs|xt). The training process of the diffusion
model consists of learning (using a neural network) the function

µ(xs|xt) as a function of xt . As explained in Ho et al. (2020), it

is not necessary to learn this function for all pairs (s, t), as will be

elaborated below.

We follow and generalize the formulation in Ho et al. (2020).

The training process learns a function ǫθ (xt , t) that minimizes the

expected least-squared loss function

Ex0∼X0 ,ǫ∼N [‖ǫ − ǫθ (xt , t)‖2] , (16)

where xt =
√
ᾱtx0 +

√

β̄tǫ. As such it estimates (exactly, if the

optimum function ǫθ is found) the expected value of the added

noise, given xt (note that it estimates the expected value of the added

noise, and not the actual noise, which cannot be predicted). In this

case, following Ho et al. (2020),

µ(xt−1|xt) =

√

ᾱt−1

ᾱt

(

xt −
1− ᾱt/ᾱt−1√

1− ᾱt
ǫθ (xt , t)

)

. (17)

In this form, this formula is easily generalized to

µ(xs|xt) =
1

√
ᾱst

(

xt −
1− ᾱst√
1− ᾱt

ǫθ (xt , t)

)

=
1

√
ᾱst

(

xt −
β̄st
√

β̄t
ǫθ (xt , t)

)

. (18)

As for the variance of p(xs|xt), in Ho et al. (2020) it is assumed that

the p(xt−1|xt) is an isotropic Gaussian (although in reality, it is not

exactly a Gaussian, nor exactly isotropic). The covariance matrix of

this Gaussian is denoted by σ 2
stI, and two possible choices are given,

which are generalized naturally to

σ 2
st = β̄st or σ 2

st =
β̄sβ̄st

β̄t
. (19)

As pointed out in Ho et al. (2020) both of these are compromises.

The first choice expresses the approximation that the variance of

the noise added in the backward process is equal to the variance

in the backward process. As mentioned, this is true for small time

steps.

Thus, in our work, we choose to model the reverse conditional

as follows,

pθ (xs|xt) = N(xs|µ(xs|xt), σ 2
stI) , (20)

where µ(xs|xt) is given by Eq. (18) and σ 2
st is given by Eq. (19). This

is an approximation of the true conditional probability p(xs|xt).

2.2.2. Probability estimation
In the following, we choose a finite set of T time instances

(usually equally spaced) {0 = τ0, τ1, . . . , τT = 1} and consider the

Markov chain consisting of the variables Xτt , for t = {0, . . . ,T},
at these time instances. For simplicity, we use the notation Xt

instead of Xτt and xt a sample from the corresponding random

variable. Then, the notation corresponds to the common notation

in the literature, but also applies in the case of unevenly, or widely

sampled time instants.

To distinguish between the true probabilities of the variables

Xt and the modeled conditional probabilities, the true probabilities

will be denoted by q (instead of p which was used previously).

The modeled probabilities will be denoted by pθ (xt−1|xt), and the

probability distribution of XT , which is Gaussian, will be denoted

by p(xT).

The image probability can be calculated by using the forward

and backward processes for each step of a pretrained diffusion

model. The joint probability p(x0 :T) and the probability of clean

input x0 can be computed using the forward and backward

conditional probability, q(xt+1|xt) and pθ (xt|xt+1) respectively.

Each sampling pair (xt , xt+1) where t ∈ S = {0, 1, 2, ...,T − 1},
follows the Markov chain rule resulting in the joint probability

p(x0 :T) = q(x0)
∏

t∈S
q(xt+1|xt) = p(xT)

∏

t∈S
pθ (xt|xt+1) , (21)

so

q(x0) =
p(xT)

∏

t∈S pθ (xt|xt+1)
∏

t∈S q(xt+1|xt)
. (22)

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Tu et al. 10.3389/fcomp.2023.1253682

The negative log-probability of the input image x0 is then

−log q(x0) = − log p(xT)+
∑

t∈S




log q(xt+1|xt)
︸ ︷︷ ︸

forward process

− log pθ (xt|xt+1)
︸ ︷︷ ︸

backward process




 .

(23)

Computing Eq. (23) can be decomposed into three steps:

(1) Calculating log p(xT). Since x0 is fully diffused after T

forward steps, xT follows the standard Gaussian distribution

N(0, 1), and thus the negative log-likelihood only depends on the

Gaussian noise.

(2) Calculating log q(xt+1|xt). Since q(xt−1|xt) is a Gaussian

with known mean ᾱt/ᾱt−1, and variance 1 − ᾱt/ᾱt−1, the

conditional probability is easily computed, as a Gaussian

probability.

(3) Calculating log pθ (xt|xt+1). Similarly, the probability

pθ (xt−1|xt) is modeled as a Gaussian, with mean and variance given

by Eq. (18) and Eq. (19) (where s = t−1) the backward conditional

probabilities are easily computed.

2.2.3. Higher-order solution
With the hypothesis that high-fidelity image generation is

capable of maintaining image semantics, in each of the diffusion

inversion steps the x0 estimation and log-likelihood calculation

should be stable and reliable with a small distribution variance. The

diffusion inversion, however, usually requires a sufficiently small

sampling step h, where DDPM (Ho et al., 2020) only supports h = 1

and DDIM is vulnerable to h (Song et al., 2021) as evidenced in

Figure 8. It is important to alleviate the effect of h on the generation

step by stabilizing the backward process in diffusion models.

Without loss of generality, the Runge-Kutta method

(RK4) (Runge, 1895; Kutta, 1901) can achieve a stable inversion

process by constructing a higher-order function to solve an

initial value problem. Different from the traditional RK4, the

diffusion inversion requires inverse-temporal updates because of

the denoising gradient direction from the initial noisy image at

t = T to the clean image at t = 0. We provide the formulation

of traditional RK4 and our inverse-temporal version in the

Supplementary material.

2.3. Experiments

For each of the hierarchical normalizing flows (NFs) and

diffusion models (DMs), we first show the effectiveness of

likelihood estimation to analyze the image distribution (on 2D

images for NFs and point samples for DMs). For likelihood

estimation with image fidelity, we then illustrate the quality of

images generated by our generation models (sampling on the

manifold from a Gaussian distribution as well as resolution

enhancement in NFs and sampling step exploration with RK4

stabilization in DMs).

2.3.1. Experiments on hierarchical normalizing
flow models
2.3.1.1. Probability estimation

Figure 2 illustrates the probability density estimation on level

3 for an in-distribution dataset CelebA (Liu et al., 2015) and

an out-of-distribution dataset CIFAR10 (Krizhevsky, 2009). The

distribution of the latent variable zi of CelebA is concentrated

on a higher mean value than that of CIFAR10 due to the

learning of zi in the standard Gaussian distribution. Similarly, this

distribution tendency is not changed in the image space illustrated

by log p(xi). In this case, outlier samples from the in-distribution

dataset can be detected with a small probability in the probability

estimation.

2.3.1.2. Random image generation

Image reconstructions with encoded latent variables and

conditional images as well as random samples are provided in

Figure 3. For the low-level autoencoder and flow, say at level 1,

conditioned on the sequence of decoded xi for i = {2, 3, 4}, the
reconstruction of x1 is close to the processed images although some

human facial details are lost due to the downsampling mechanism,

see Figure 3A. While randomly sampling {zi} from the normal

distribution at each level, the generated human faces are smooth

but with blurry details in such as hair and chin and lack a realistic

background.

2.3.1.3. Image super-resolution

With the jointly trained autoencoders and flows on CelebA, the

images with low resolution, 3 × 8 × 8 (channel × height × width)

and 3 × 16 × 16, are decoded to 3 × 64 × 64 with smooth human

faces, see Figures 4A, B respectively. The low-resolution image xi
is used as a condition image for (1) NF inverse {g′i} to generate

embedding code to combine with the randomly sampled zi ∼
N(0, 1) and (2) decoders {f ′i } to concatenate with all upsampling

layers in each decoder. This preserves the human facial details from

either high levels or low levels for realistic image generation. As the

resolution of the low-resolution images increases, the embedding

code contains richer details.

2.3.2. Experiments on di�usion models
2.3.2.1. Log-likelihood estimation on point samples

We evaluate the log-probability of each point of point samples

(Pedregosa et al., 2011) including Swiss roll, circle, moon, and

S shown in Figure 5. Given a pretrained diffusion model on

Swiss roll samples with 100 forward steps with each diffused

by random Gaussian noise (see Figure 5A, the log-probability

of the samples in Figure 5B follows Eq. (23) with h = 1

and indicates higher probability and density on seen or similar

samples than unseen ones. In Figures 5B, C, the mean value

of the Swiss roll sample achieves a higher mean value, −0.933,

and a higher histogram density, 0.7, than the others. As the

difference in the sample shape from the Swiss roll increases, the

log-likelihood decreases, as shown in the bar chart in Figure 5C.

It indicates that sampling from a low-density distribution is unable

to reverse the diffusion step to obtain a realistic sample from the

training set.

2.3.2.2. DDPM sampling with large steps

While Figure 5 uses h = 1 as the standard DDPM sampling

process, it is feasible to sample with a fairly large step without

losing the sample quality. This enables sampling from the Gaussian

distribution for the log-likelihood estimation with less running
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FIGURE 2

Log-likelihood estimation using hierarchical autoencoders and flows. The encoder and flow are trained on CelebA and evaluated on CelebA and

CIFAR10. The x-axis is logp(·) and the y-axis is the histogram density. In each subfigure, the first row is on the in-distribution dataset CelebA and the

second row is on out-of-distribution CIFAR10, both are in the last row. In (A), logp(z) can detect outlier samples, and adding log |det(·)| from NF and

autoencoder does not significantly a�ect the distribution tendency, see (B) and (C). For better visualization, samples with logp(·) less than −10,000

are filtered out.

FIGURE 3

Image reconstruction and generation on the end-to-end training of 4-level autoencoders and flows. For each of two columns from left to right in

(A), the left is the real image and the right is the reconstructed image. (A) Reconstruction at level 1 with {zi} from encoders {gi} and conditioned on

{f ′i }. (B) Random generation at level 1 with latent variables {zi} ∼ N(0, 1) and conditioned on {f ′i }.

FIGURE 4

Image super-resolution on dataset CelebA. The first column is low-resolution images, the second column is real images, and the rest are

high-resolution images with latent variables {Zi} ∼ N(0, 1) conditioned on the low-resolution images and temperature 1.0. (A) Resolution: 3× 8× 8

to 3× 64× 64. (B) Resolution: 3× 16× 16 to 3× 64× 64.

time. To visualize the image quality, we evaluate the samples

on CelebA dataset by using a pretrained diffusion model with

1,000 forward diffusion steps. In Figure 6, the sampling has

an increase step h in {2, 10, 100} while the samples have a

high quality for h = {2, 10} and a fair quality for h =
100.
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FIGURE 5

Evaluation of log-probability of x0 on point samples with each of 10,000 points. (A) The training is on a Swiss roll sample and a di�usion model with

forward (noising) and backward (denoising) processes. (B) At the evaluation phase, unseen samples, that is circle, moon, and S, have lower logp(x)

values than the seen Swiss roll sample. In (B), the first row is sampled points and the middle and last rows are the mean value and the standard

deviation of logp(x) for each point on 100 random rounds respectively, which is represented as “mean ± SD.” The randomness lies in the random

noise in the forward and backward processes. A lighter color indicates a higher density. (C) Statistics indicates the higher density of a seen sample

(Swiss roll) than an unseen one (circle, moon, or S) through the di�usion model by using the negative of Eq. (23) with log10.

2.3.2.3. Higher-order solution stabilizes sampling

While sampling with a large step h can sometimes cause bias

from the one with a small h, RK4 effectively alleviates such a bias.

We evaluate both the point samples and human face images from

CelebA. In Figure 7, compared with the sample by using DDPM,

RK4 with DDPM inference achieves less noise at h = {2, 5, 10}. For
h = 20, RK4 performs expectedly worse because it only applies

five sampling steps while the training is on (T = 100) diffusion

steps. In Figure 8, we apply DDIM as the inference method for

RK4 to deterministically compare the samples with DDIM. As

h increases from 1 to 100, many of the samples using DDIM

lose the image consistency with the samples at h = 1; however,

most of the samples using RK4 still retain the image consistency.

This indicates the robustness of applying RK4 with a large

sampling step.

3. Semantic disentanglement on
manifold

Semantics of object attributes are crucial for image distribution

and spatial presentation. For instance, different shapes in Figure 5

represent different objects while those closer to the seen samples

have high likelihood; in Figure 8 semantics such as human gender

(see the 2nd row and 3rd column image with DDIM and

RK4) are fundamental for controllable generation by sampling

in high-density regions of specific semantic clusters on the

manifold. These semantics, however, are usually entangled without

independent distributions from each other for deterministic

embedding sampling on the image manifold (Liu et al., 2018;

Ling et al., 2022; Pastrana, 2022). Hence, regardless of image

generation models, we exploit the popular and efficient variational

autoencoder and introduce our GridVAE model for effective

semantic disentanglement on the image manifold.

3.1. GridVAE for clustering and
disentanglement

3.1.1. Formulation
A variational autoencoder (VAE) (Kingma and Welling, 2013)

is a neural network that maps inputs to a distribution instead

of a fixed vector. Given an input x, the encoder with neural

network parameters φ maps it to a hidden representation z.

The decoder with the latent representation z as its input and

the neural network parameters as θ reconstructs the output to

be as similar to the input x. We denote the encoder qφ(z|x)

and decoder pθ (x|z). The hidden representation follows a prior

distribution p(z).

With the goal of making the posterior qφ(z|x) close to the actual

distribution pθ (z|x), we minimize the Kullback-Leibler divergence

between these two distributions. Specifically, we aim to maximize

the log-likelihood of generating real data while minimizing the

difference between the real and estimated posterior distribution by

using the evidence lower bound (ELBO) as the VAE loss function

L(θ ,φ) = − log pθ (x)+ DKL(qφ(z|x)||pθ (z|x))
= −Ez∼qφ (z|x) log pθ (x|z)+ DKL(qφ(z|x)‖pθ (z)) , (24)

where the first term is the reconstruction loss and the second term

is the regularization for qφ(z|x) to be close to pθ (z). The prior

distribution of z is often chosen to be a standard unit isotropic
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FIGURE 6

Image generation from our modified DDPM with step size h. Samples follow a Gaussian distribution. Fine details are obtained even for very large

steps (h = 100). (A) h = 1. (B) h = 2. (C) h = 10. (D) h = 100.

FIGURE 7

Sampling robustness of DDPM and RK4 @ step h. With h being 5 or 10, RK4 still achieves clear sampling compared with DDPM. If h is too large, for

instance 20, RK4 fails as expected. (A) DDPM. (B) RK4@2. (C) RK4@5. (D) RK4@10. (E) RK4@20.

FIGURE 8

Random image generation using DDIM and RK4 with DDIM as inference @ time step h={1, 2, 10, 100}. The RK4 sampling method is more robust than

DDIM, especially at h = 100, with a higher image consistency than those at h = 1. (A) DDIM@1. (B) DDIM@2. (C) DDIM@10. (D) DDIM@100. (E)

RK4@1. (F) RK4@2. (G) RK4@10. (H) RK4@100.
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FIGURE 9

Scatter plot of test set latent space with an MoG prior.

Gaussian, which implies that the components of z should be

uncorrelated and hence disentangled. If each variable in the latent

space is only representative of a single element, we assume that this

representation is disentangled and can be well interpreted.

Emergent language (EL) (Havrylov and Titov, 2017) is hereby

introduced as a language that arises spontaneously in a multi-agent

system without any pre-defined vocabulary or grammar. EL has

been studied in the context of artificial intelligence and cognitive

science to understand how language can emerge from interactions

between agents. EL has the potential to be compositional such that

it allows for referring to novel composite concepts by combining

individual representations for their components according to

systematic rules. However, for EL to be compositional, the latent

space needs to be disentangled (Chaabouni et al., 2020). Hence,

we integrate VAE into the EL framework by replacing the sender

LSTM with the encoder of the VAE noting that the default

LSTM encoder will entangle the symbols due to its sequential

structure where the previous output is given as the input to the

next symbol. In contrast, the symbols can be disentangled with a

VAE encoder.

To achieve disentangled representations in EL, the VAE

encoder must be able to cluster similar concepts into discrete

symbols that are capable of representing attributes or concepts. The

standard VAEs are powerful, but their prior distribution, which

is typically the standard Gaussian, is inferior in clustering tasks,

particularly the location and the number of cluster centers. In

the EL setting, we desire a posterior distribution with multiple

clusters, which naturally leads to an MoG prior distribution with

K components

p(z) =
1

K

K
∑

k=1

N(z|µk, σ
2
k ) . (25)

We choose the µk to be located on a grid in a Cartesian coordinate

system so that the posterior distribution clusters can be easily

determined based on the sample’s distance to a cluster center. We

refer to this new formulation as GridVAE, which is a VAE with

a predefined MoG prior on a grid. The KL-divergence term in

Eq. (24) can be re-written as

DKL(qφ(z|x)‖pθ (z)) = Ex∼p(x)Eqφ (z|x)[log p(z)− log qφ(z|x)] .

(26)

The log probability of the prior can be easily calculated with

the MoG distribution, and we only need to estimate the log

probability of the posterior using a large batch size during training.

By using a GridVAE, we can obtain a posterior distribution with

multiple clusters that correspond to the same discrete attribute,

while allowing for variations within the same cluster to generate

different variations of the attribute.

3.1.2. Experiments
We evaluate the clustering and disentanglement capabilities

of the proposed GridVAE model using a two-digit MNIST

dataset (LeCun et al., 1998) consisting of digits 0 to 5. Each digit

is from the original MNIST dataset, resulting in a total of 36 classes

[00, 01, 02,..., 55].

To extract features for the encoder, we use a 4-layer ResNet (He

et al., 2016) and its mirror as the decoder. The VAE latent space

is 2-dimensional (2D), and if the VAE learns a disentangled

representation, each dimension of the 2D latent space should

represent one of the digits.We use a 2Dmixture of Gaussian (MoG)

as the prior distribution, with six components in each dimension

centered at integer grid points from [−2, −1, 0, 1, 2, 3], that is the

coordinates for the cluster centers are [(−2, −2), (−2, −1),..., (3,

3)]. The standard deviation of the mixture of Gaussian is 1/3.

After training the model, we generate a scatter plot of the test

set latent space, as shown in Figure 9. Since the prior is a mixture

of Gaussian on the grid points, if the posterior matches the prior,

we can simply draw a boundary in the middle of two grid points,

illustrated by the red lines in Figure 9.

With the trained model, one can sample in the latent space

for image generation. In Figures 10A, B, when we decode from

the cluster centers (i, j): in (A) we keep j = 0 and change i from

−2 to 3, while in (B) we keep i = 0 and change j from −2 to

3. The latent space is disentangled with respect to the two digits

- the first dimension of the latent space controls the first digit, while

the second dimension controls the second digit. Each of the cluster

centers corresponds to a different number.

Figures 10C, D show images generated within the cluster

centered at (1, 1), that is the pairs of number “44”. If we slightly

modify one of the dimensions, it corresponds to different variations

of the number “4” along this dimension, while keeping the other

digit unchanged.

Overall, these results demonstrate the effectiveness of the

proposed GridVAEmodel in clustering and disentangling the latent

space on the two-digit MNIST dataset.
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FIGURE 10

Generated images from sampling the latent space. (A) The second

dimension is fixed at 0, changing the first dimension from −2 to +3.

(B) The first dimension is fixed at 0 and the second dimension is

changed from −2 to +3. (C) Around the cluster center(1, 1), keep

the second dimension fixed and change the first dimension. (D)

Around the cluster center(1, 1), keep the second dimension fixed

and change the first dimension.

3.2. Scaling up GridVAE

In Section 3.1, the two-digit MNIST dataset lies in a 2-

dimensional latent space. However, many real-world datasets

would require a much higher dimensional space.

3.2.1. Addressing higher dimensional latent space
Discretizing a continuous space, such as in GridVAE, is

challenging due to the curse of dimensionality (Bellman, 1957).

This refers to the exponential growth in the number of clusters

as the number of dimensions increases, which leads to a

computational challenge when dealing with high-dimensional

latent space. For example, when applying GridVAE to reconstruct

images of the CelebA (Liu et al., 2015) dataset to learn the 40

attributes, we need a 40-dimensional latent space with two clusters

in each dimension to represent the presence or absence of a given

attribute. Firstly, parametrizing the mixture of Gaussian prior

p(z) =
∑K

k=1 N(z|µk, σ
2
k
)/K over 40 dimensions is prohibitively

expensive as K = 240 ≈ 1.1 × 1012. Secondly, the assumption

of equal probability for the components, which was appropriate

for the simple 2-digit MNIST dataset, is no longer valid. This is

because the attributes in the CelebA dataset are not uniformly

distributed, and some combinations may not exist. For instance,

the combination of “black hair” + “blonde hair” + “brown hair”

+ “bald” is impossible due to attribute conflicts. To address this

issue, we use the proposed loss function in Eq. (24) incorporating

relaxation.

To avoid pre-parametrizing p(z) over 40 dimensions, we have

implemented a dynamic calculation of the KL-divergence between

qφ and pθ , whereby only the cluster that is closest to the latent

space representation is considered, as illustrated in Figure 11. This

means that clusters to which the data point does not belong do not

affect its distribution, and the MoG distribution is simplified to a

FIGURE 11

When calculating the KL-divergence, only the mixture component

closest to the data (darker shade) is considered. Other components

(lighter shade) are ignored. This can be generalized to multiple

dimensions and multiple components in each dimension.

multivariate Gaussian as

DKL(p1 || p2) =
1

2

[

log
|62|
|61|

− n+ tr
(

6−1
2 61

)

+ (µ2 − µ1)
⊺6−1

2 (µ2 − µ1)
]

, (27)

where p1 = qφ(z|x) = N(z|µ1,61), 61 = diag(σ 2
1 , . . . , σ

2
n ),

p2 = N(µ2,62), µ2 = R(µ1), and 62 = diag(σ 2
0 , . . . , σ

0
n ) with

the round function R(·) for the closest integer.
The key step here is that the round function dynamically selects

the cluster center closest to µ1, and σ0 is a pre-defined variance for

the prior distribution. It should be chosen so that two clusters next

to each other have a reasonable degree of overlap, for example, σ0 =
1/16 in some of our following experiments. The KL-divergence

term becomes

DKL(qφ(z|x)‖pθ (z)) =
1

2

[

log
|62|
|61|

− n+ tr
(

6−1
2 61

)

+ (µ2 − µ1)
⊺6−1

2 (µ2 − µ1)
]

=
1

2

[

log
∏

i

σ 2
0 − log

∏

i

σ 2
i − n+

∑

i

σ 2
i

σ 2
0

+
∑

i

(µi − R(µi))2

σ 2
0

]

=
1

2

[
n
∑

i=1

(

log σ 2
0 − log σ 2

i − 1
)

+
n
∑

i=1

σ 2
i + (µi − R(µi))2

σ 2
0

]

.

(28)

By adopting Eq. (28), we can significantly reduce the computational

complexity of the model, even for a high-dimensional latent space,
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bringing it to a level comparable to that of a standard VAE. It is

worth noting that the global disentanglement may no longer be

guaranteed. Rather, the model only provides local disentanglement

within the proximity of each cluster.

Upon training the GridVAE with a 40-dimensional latent space

by using the proposed Eq. (28) on the CelebA dataset, we observe

some intriguing disentanglement phenomena. Figure 12 showcases

the disentanglement of two latent space dimensions, where the

first dimension governs one attribute and the second dimension

determines another one. Combining these two dimensions leads to

simultaneous attribute changes in the generated images.

An inherent limitation of this unsupervised approach is that

while the latent space appears to be locally disentangled for

each image, the same dimension may have different semantic

interpretations across different images. To address this issue, we

introduce all 40 attributes of the dataset during the training. This

should establish an upper bound on the disentanglement.

3.2.2. From unsupervised to guided and partially
guided GridVAE

To this end, we described an unsupervised approach to learning

the latent space representation of images. However, for datasets like

CelebA with ground truth attributes, we can incorporate them into

the latent space to guide the learning. Specifically, we extract the

40-dimensional attribute vector indicating the presence or absence

of each feature for each image in a batch and treat it as the ground

truth cluster centerµ
gt
i . Hence, instead of rounding the latent space

representation µi in Eq. (28), we replace it with µ
gt
i .

One limitation of this approach is the requirement of the

ground truth attributes for all images, which may not always

be available or feasible. Additionally, it is important to note

that while we refer to this approach as “guided,” the given

attribute information only serves in the latent space as the

cluster assignment prior, and the VAE reconstruction task remains

unsupervised. This differs from classical supervised learning,

where the label information is the output. Furthermore, in

our approach, no specific coordinate in the latent space is

designated for the input. Instead, we provide guidance that the

sample belongs to a cluster centered at a certain point in the

latent space.

This guided learning framework can be extended to a subset of

the 40 attributes or a latent space withmore dimensions. For clarity,

we will refer to the latter as “partially guided” to distinguish it

from the commonly used “semi-supervised” by using a subset of the

labeled dataset.

We conduct the experiments using attribute information

as latent space priors and obtain the following findings for

the guided approach: (a) GridVAE is able to cluster images

accurately based on their attributes and the same dimension

has the same semantic meaning across different images. For

instance, dimension 31 represents “smile”. (b) GridVAE could not

generate images for clusters that have little or no representation

in the training set. For example, the attempt to generate

an image of a bald female by constraining GridVAE to the

“female” and “bald” clusters is not achievable for an accurate

representation. (c) Some attributes are more universal across

different images, such as their ability to add a smile to almost

any face. However, other attributes, such as gender, are not

always modifiable. This could be caused by attributes that are

not independent and can be influenced by others. Universal

attributes, such as “smile,” seem to primarily located locally in the

image region without interruption from the other attributes, see

Figure 13.

To further illustrate the incompleteness and correlation among

the attributes in the CelebA dataset, we use a subset of the

given attributes. We choose 38 out of the 40 attributes, excluding

attributes 20 (female/male) and 31 (not smiling/smiling). Figure 14

shows that the GridVAE cannot learn the omitted attributes. This

highlights the interdependence of different attributes in the latent

space.

3.3. Combining manifolds of GridVAE
disentangled attribute and facial
recognition

After achieving a disentangled latent space, one may still

wonder about the usefulness of a semantic description of a

manifold. One can consider the scenario where another manifold,

such as a facial recognition manifold, is learned. By studying these

two manifolds jointly, we can gain insights to make the models

more explainable and useful. One potential application is to better

understand the relationship between facial attributes and facial

recognition. By analyzing the disentangled latent space of facial

attributes and the manifold learned for facial recognition, we can

potentially identify which attributes are the most important for

recognizing different faces. This understanding can then be used

to improve the performance of facial recognition models as well as

explain the model decisions.

For instance, FaceNet (Schroff et al., 2015) directly learns a

mapping from face images to a compact Euclidean space where

distances correspond to a measure of face similarity. To discover

the semantic structure of this manifold with x as binary attributes,

we can follow these steps:

1. Build a face recognition manifold using contrastive learning.

2. Use the CelebA dataset with ground truth attribute labels (40

binary values).

3. Insert CelebA samples onto the recognition manifold.

4. Find the nearest neighbor for each CelebA sample using the face

recognition manifold coordinates.

5. For each attribute in x, compute p(x) over the entire CelebA

dataset.

6. For each attribute in x, compute p(x|x of nearest neighbor = 0).

7. For each attribute in x, compute the KL divergence between p(x)

and p(x|x of nearest neighbor = 0).

8. Identify attributes with the largest KL divergence.

Figure 15 demonstrates that the KL Divergence between p(x)

and p(x|x of nearest neighbor = 0) is significantly larger for

certain attributes, such as “male,” “wearing lipstick,” “young” and

“no beard,” than the others. This indicates that the neighborhood

structure of the facial recognition manifold is markedly different

from the distribution of these attributes in the entire dataset.

These findings highlight the importance of the joint study of
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FIGURE 12

Two generated examples using linear sampling in the latent space. The top row fixes the dimensions and changes the first one, collar in (A) and skin

color in (B), from −0.5 to +1.5. The middle row fixes the dimensions and changes the second one, hair color in (A) and hairstyle in (B), from −0.5 to

+1.5. The bottom row changes the first and second dimensions from −0.5 to +1.5.

different manifolds to gain a more profound understanding of the

relationship between the attributes and the recognition tasks. By

incorporating it into the models, we can potentially improve the

performance of facial recognition models and also enhance their

interpretability.

4. Application to defend patch attacks

To this end, interpretable and controllable samplings from each

semantic distribution on the manifold can be achieved by using

the semantic disentanglement in Section 3 toward high-fidelity and

diverse image generation and probability distribution analysis in

Section 2. It is also of strong interest to enhance the robustness

of such semantic samplings under certain attacks. In this section,

we present an adversarial robustness framework by enforcing the

semantic consistency between the classifier and the decoder for

reliable density estimation on the manifold.

4.1. Adversarial defense with variational
inference

In Yang et al. (2022), adversarial robustness can be achieved

by enforcing the semantic consistency between a decoder and a

classifier (adversarial robustness does not exist in non-semantically

consistent classifier-decoder). We briefly review the adversarial

purification framework below. We define the real-world high-

dimensional data as x ∈ R
n which lies on a low-dimensional

manifold M diffeomorphic to R
m with m ≪ n. We define an

encoder function f :Rn → R
m and a decoder function f †

:R
m →

R
n to form an autoencoder. For a point x ∈ M, f † and f are

approximate inverses. We define a discrete label set L of c elements

as L = {1, ..., c} and a classifier in the latent space as h :Rm → L.

The encoder maps the image x to a lower-dimensional vector z =
f (x) ∈ R

m and the functions f and h together form a classifier in

the image space h(z) = (h ◦ f )(x) ∈ L.

A classifier (on the manifold) is a semantically consistent

classifier if its predictions are consistent with the semantic

interpretations of the images reconstructed by the decoder. Despite

that the classifiers and decoders (on the manifold) have a low

input dimension, it is still difficult to achieve high semantic

consistency between them. Thus, we assume that predictions and

reconstructions from high data density regions of p(z|x) are more

likely to be semantically consistent and we need to estimate the

probability density in the latent space with the variational inference.

We define three sets of parameters: (1) φ parametrizes the

encoder distribution, denoted as qφ(z|x), (2) θ parametrizes

the decoder distributions, represented as pθ (x|z), and (3) ψ

parametrizes the classification head, given by hψ (z). These

parameters are jointly optimized with respect to the ELBO loss and

the cross-entropy loss as shown in Eq. (29), where λ is the trade-

off term between the ELBO and the classification. We provide the

framework in Figures 16A, B for the two-stage procedure and the

trajectory of cluster center change after introducing our purification

over attacks in Figure 16C. By adopting this formulation, we notice

a remarkable semantic consistency between the decoder and the

classifier. Specifically, on Fashion-MNIST (Xiao et al., 2017), when

making predictions on adversarial examples, if the predicted label

is “bag,” we observe that the reconstructed image tends to resemble

a “bag” as well. This phenomenon is illustrated in Figures 16D, 17.

max
θ ,φ,ψ

Ez∼qφ (z|x)
[

log pθ (x|z)
]

− DKL[qφ(z|x)‖p(z)]
︸ ︷︷ ︸

ELBO (lower bound of log pθ (x))

+λEz∼qφ (z|x)[y
⊺ log hψ (z)]

︸ ︷︷ ︸

Classification loss

. (29)

To defend against image-level attacks, a purification vector can

be obtained through the test-time optimization over the ELBO loss.

For example, given an adversarial example xadv, a purified sample

can be obtained by xpfy = xadv + ǫpfy with

ǫpfy = argmax
ǫ∈Cpfy

Ez∼qφ (z|xadv+ǫ)
[

log pθ (xadv + ǫ|z)
]

−DKL[qφ(z|xadv + ǫ)‖p(z)] ,
(30)

where Cpfy = {ǫ ∈ R
n | xadv + ǫ ∈ [0, 1]n and ‖ǫ‖p ≤ ǫth} which

is the feasible set for purification and ǫth is the purification budget.

Since the classifier and the decoder are semantically consistent, the

predictions from the classifier become normal to defend against the

attacks upon normal reconstructions.
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FIGURE 13

Generated images from sampling in the latent space. Keeping all other dimensions fixed and changing dimension (A) 31 (smile) from −0.5 to +1.5, or

(B) 20 (male) from −0.5 to +1.5.

FIGURE 14

Partially guided GridVAE generation from the latent attributes which are not provided during training. The left and right subfigures (each with 11

images) are with the dimensions 20 and 31 respectively.

FIGURE 15

Semantic structure of the face recognition manifold by jointly studying the attribute manifold and the facial recognition manifold. (A) p(x) and

p(x|x of nearest neighbor = 0) distributions. (B) KL divergence.
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FIGURE 16

The framework of adversarial purification for image-level adversarial attacks. (A) Jointly train the classifier with the ELBO loss. (B) Test time adversarial

purification with the ELBO loss. (C) Trajectories of clean (green)—attack (red)—purified (blue) images on a 2D latent space. (D) Input images and

reconstruction images of samples in (C). The top two rows are the input and reconstruction of clean images, the middle two rows are the input and

reconstruction of adversarial images. The bottom two rows are the input and reconstruction of purified images. The text represents predicted classes

with green color for correct predictions and red color for incorrect predictions. The red box on the right corresponds to the failure case (purified

process fails).

FIGURE 17

Class predictions from the VAE-Classifier models on clean, adversarial and purified samples of the CelebA gender attribute. The top two rows are the

input and reconstruction of clean images, the middle two rows are the input and reconstruction of patch adversarial images. The bottom two rows

are the input and reconstruction of purified images. The text represents the predicted classes with green color for correct predictions and red color

for incorrect predictions. Since predictions and reconstructions from the VAE classifier are correlated, our test-time defenses are e�ective against

adversarial attacks.
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TABLE 1 Classification accuracy of the model on clean and adversarial (patch) examples.

VAE-CLF +TTD (ELBO)

Dataset (backbone) Clean Patch-PGD Patch-NAG Clean Patch-PGD Patch-NAG

CelebA-Gender (ResNet-50) 97.86 13.14 6.83 91.20 75.75 76.75

4.2. Bounded patch attack

In this work, we focus on the ℓ0-bounded attacks (Papernot

et al., 2016; Brown et al., 2017) from the manifold perspective

which is not investigated in the prior work. In contrast to full

image-level attacks like ℓ2 and ℓ∞ bounded attacks (Madry

et al., 2018), patch attacks, which are ℓ0 bounded attacks, aim to

restrict the number of perturbed pixels. These attacks are more

feasible to implement in real-world settings, resulting in border

impacts. Below, we conduct an initial investigation into the defense

against patch attacks by leveraging the knowledge of the data

manifold.

When compared to ℓ∞ attacks, ℓ0 attacks, such as the

adversarial patch attacks, introduce larger perturbations to the

perturbed pixels. Therefore, we decide to remove the purification

bound for the patch-attack purification. Without these constraints,

the purified examples can take on any values within the image

space. A purification vector can then be obtained through

the test-time optimization over the ELBO loss as shown in

Eq. (30).

4.3. Experiments

We use the gender classification model (Yang et al., 2022) to

demonstrate the adversarial purification of ℓ0 bounded attacks.

To ensure that the adversarial examples do not alter the semantic

content of the images, we restrict the perturbation region to

the forehead of a human face. The patch for perturbation is

a rectangular shape measuring 16 × 32, see Figure 17. For

the patch attacks, we conduct 2,048 iterations with step size

1/255 using PGD (Madry et al., 2018) and PGD-NAG (Nesterov

Accelerated Gradient) (Lin et al., 2020). In Table 1, the purification

is carried out through 256 iterations with the same step

size.

5. Limitation

The current version of log-probability estimation in diffusion

models has limitations in evaluating high-dimensional images.

Specifically, at early denoising steps (when t is small) the

diffusion model serves as a denoiser such that xt and xt+h

are similar while at large steps (when t moves toward T),

their difference is still small due to the high proportion

of the Gaussian noise in xt . This leads to the proportion

of the difference between xt and xt+h for effective out-of-

distribution detection small compared with the log p accumulated

in the processes. We keep this as an open problem for

future work.

6. Conclusion

This work studies the image geometric representation from

high-dimensional spatial space to low-dimensional latent space on

the image manifold. To explore the image probability distribution

with the assumption that real images are usually in a high-

density region while not all samples from the distribution can

be represented as realistic images, we incorporate log-likelihood

estimation into the procedures of normalizing flows and diffusion

models. Meanwhile, we explore the hierarchical normalizing flow

structure and a higher-order solution in diffusion models for high-

quality and high-fidelity image generation. For an interpretable

and controllable sampling from the semantic distribution on the

manifold, we then propose GridVAEmodel under an EL framework

to disentangle the elements of the latent variable on the image

manifold. To test the semantic and reconstruction robustness on

the manifold, we first apply patch attacks and defenses in the image

space and then effectively recover the semantics under such attacks

with our purification loss. Experiments show the effectiveness of

probability estimation in distinguishing seen examples from unseen

ones, the quality and the efficiency with large sampling steps in

image generation, meaningful representations of varying specific

element(s) of the latent variable to control the object attribute(s) in

the image space, and the well-preserved semantic consistency with

patch attacks.
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